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We construct hybrid binary black holes merger waveforms using analytical model waveforms for the

early inspiral phase and numerical relativity waveforms for late inspiral to merger and post merger phases.

To hybridize analytical and numerical waveforms, we first perform a 3-dimensional rotation to align the

instantaneous orbital planes associated with the two waveforms at some fiducial frequency; we then find

appropriate phase and time translations that maximize the overlap of the two waveforms in a hybridization

interval. We discuss the accuracy and limitations for hybrids constructed by this procedure in the context

of LIGO-Virgo-KAGRA observations. Our goal is to hybridize waveforms for more generic precessing

binaries and construct longer waveforms that are sufficiently accurate for the parameter estimation

techniques for upcoming LIGO observations.
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I. INTRODUCTION

With the first ever detection of gravitational waves of

merging black hole binaries [1], a new era of gravitational

wave astronomy has been opened for new and upcoming

gravitational wave detectors, such as advanced LIGO,

Virgo, KAGRA and LISA [2–6]. LIGO and Virgo have

already observed gravitational waves from merging com-

pact binaries [7] and will be observing more as the O3

observing run continues. There is an expectation that

with current capabilities gravitational wave detectors will

observe tens to hundreds of binary black hole mergers

every year [8–10] with binaries with a total mass of 100

times the mass of the sun being observed at the distances of

the order of giga parsecs [8].

The detection of gravitational waves requires theoretical

waveform templates to match the observed data at the

gravitational wave detector. This technique is called

matched filtering, where a theoretically generatedwaveform

signal appropriate for a given source is cross correlated

against the observed signals at the detector. Because the

instrumental noise is a random process, a cross correlation

will yield positive signature for any signal that matches the

template within the detectable band, even if the signal is

formally weaker than the noise. A similar cross correlation

arises when inferring source parameters. A family of

theoreticallymodeledwaveforms that depends on the source

parameters, such as the two masses, spins, sky location,

orbital eccentricities, etc., allows for parameter estimation

techniques to be used to infer the properties of the systems

that produced the waves [11].

To construct the theoretical templates, one needs to solve

the Einstein field equations for generic binary black holes.

Analytical weak-field approximation methods, such as

post-Newtonian theory, can accurately describe the dynam-

ics of such systems in the early inspiral phase prior to

merger. Numerical relativity is crucial for the late inspiral to

merger phases. Both of these techniques have been devel-

oped and shown to be very successful in the past decade

[12,13]. It has been shown that analytical model waveforms

have similar accuracies to numerical ones for the early

inspiral phase of binary black hole systems but lose their

accuracy when the binary separation is small. On the

other hand, it is practically prohibitive to use numerical

relativity for large binary separations, as the simulation

time scales roughly as T ∼D4, where D is the orbital

separation. Because of the computational cost of numerical

simulations, most numerical relativity simulations of

generic precessing binaries cover relatively few orbits prior

to merger. These numerical relativity waveforms can be

fused together with analytical model waveforms covering

the earlier stage of inspiral. Such fused waveforms are

called hybrid waveforms.

Hybrid waveforms have many advantages. They com-

bine the best part of two types of waveforms and can play

an important role in the construction of phenomenological

waveforms [14,15] and surrogate waveforms [16].

The hybridization of post-Newtonian waveforms with

numerical relativity waveforms has been principally

explored for nonspinning binaries, as well as binaries

where the spins are aligned or antialigned with the orbital

angular momentum. These hybrid waveforms were then
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tested for their accuracies and limitations in Refs. [17–24].

Limited aligned-spin Numerical Relativity (NR) hybrids

have been used to interpret LIGO observations [25]. Other

studies have also manually constructed hybrids for selected

precessing waveforms [26–28]. While no observations yet

reported have strong evidence for precession, as deduced

by applying semianalytic templates to O1 and O2 obser-

vations, recent studies have indicated that neglecting

precession can significantly impact detections and param-

eter estimations in upcoming runs [29–31]. Thus, having

precessing waveforms is now crucial.

Hybridizing precessing waveforms is a complicated

process in comparison to the hybridization of nonprecess-

ing waveforms. The reason is that the orbital precession

strongly affects the gravitational waveforms by modulating

both amplitude and phase. This produces a complex

waveform that contains rich information about the binary’s

parameters. In addition, because the orbital plane precesses

one needs to rotate the analytical and numerical waveforms

into some standard frame before hybridizing. In addition,

there are also a lack of accurate model waveforms for such

configurations and work is in progress. Here, we describe a

new code that both automates and extends a procedure first

described in [32] to hybridize precessing waveforms, as

well as provide an analysis of the various sources of

hybridization error.

This paper is organized as follows. In Sec. II, we describe

the techniques we use to construct the hybrid waveforms.

In Sec. III, we construct hybrids for two precessing and

two nonprecessing systems. In Sec. IV, we analyze the

accuracy of our hybrids. Finally, in Sec. V, we review our

results and discuss the advantages and limitations of our

procedure.

II. TECHNIQUES

A. Coprecessing frame

The dynamics of binary black holes is significantly

affected by the spins of individual components. The details

of how gravitational radiation is produced also depends on

the spin of the two compact objects. The spin of a body thus

imprints itself on the gravitational wave signal. When the

spins of either one or both compact objects are not aligned

with the orbital plane axis, both the orbital plane itself and

the individual spins can precess. This precession can impart

interesting modulations on the gravitational-wave signal.

The ðl ¼ 2; m ¼ �2Þ quadrupolar mode is not necessarily

the most dominant mode as energy is transferred into other

modes, as seen in Fig. 1.

Due to the effects of precession, the usual procedure for

hybridization of nonprecessing waveforms, which amounts

to a time and a phase translation of the two waveforms, as

has been done in [17–24], is not sufficient to obtain a

reasonable hybrid. We solve this problem using the extra

step of performing a full 3-dimensional rotation of the two

waveforms such that, at a given time, their principle axes

align. It has been shown that precessing dynamics can be

efficiently estimated via two independent procedures. In

first approach described in [34], a maximization procedure

is used to maximize the magnitude of ðl ¼ 2; m ¼ �2Þ
modes by Euler rotations. These rotations align the orbital

angular momentum of binary along the z-direction and thus

the ðl ¼ 2; m ¼ �2Þ waveform modes become dominant.

These two Euler angles can also be efficiently obtained in

another approach described in [35], which is based on a

preferred direction V̂ aligned with the principal axes of

tensor hLðabÞi. This tensor is defined by
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FIG. 1. (left) The real part of ðl ¼ 2; m ¼ 2Þ and ðl ¼ 2; m ¼ 1Þ modes of a precessing binary black hole (SXS:BBH:0058) with

q ¼ 5, χ1 ¼ ð0.5; 0; 0Þ, χ2 ¼ ð0; 0; 0Þ. The ðl ¼ 2; m ¼ 1Þ contains significant energy and is important for LIGO data analysis for

gravitational waves from such precessing binaries [33]. (right) The corresponding coprecessing frame waveform. In the coprecessing

frame the precessing binaries behaves like a nonprecessing binary with ðl ¼ 2; m ¼ 2Þ mode being the dominant mode of radiation.
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hLðabÞi ¼

P

lmm0h�
lm0hlmhlm

0jLðaLbÞjlmi
R

dΩjhj2
; ð1Þ

where La are the rotation group generators and

h ¼
X

∞

l¼2

X

l

m¼−l

hlm
−2Ylm: ð2Þ

These components of hLðabÞi can be expressed as:

hLðabÞi ¼
1

P

lmjhlmj
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with clm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ −mðmþ 1Þ
p

.

Two of the Euler angles are related to principal axes V̂ of

the orientation-averaged tensor by

α ¼ cos−1½v̂z�

β ¼ Arg½v̂x þ iv̂y� −
π

2
:

The remaining Euler angle can be computed using [36],

which account for the gradual buildup of transverse phase

due to precession and is given by

γ ¼ −

Z

_α cos βdt:

Rotating the waveform using these Euler angles causes

the ðl ¼ 2; m ¼ �2Þ modes to become dominant. The

resulting coprecessing modes are given by

hR
lm ¼

X

m0

Dl

mm0ðα; β; γÞhlm; ð3Þ

where the Wigner rotation matrix Dl

mm0ðα; β; γÞ is given by

Dl

mm0 ¼ dl
mm0ðβÞeiðmαþm0γÞ with dl

mm0ðβÞ given by

dl
m0m

ðβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþmÞ!ðl−mÞ!ðlþm0Þ!ðl−m0Þ!
p

×
X

k

ð−1Þkþm0−m

k!ðlþm− kÞ!ðl−m0 − kÞ!ðm0 −mþ kÞ!

×

�

sin
β

2

�

2kþm0−m
�

cos
β

2

�

2l−2k−m0þm

: ð4Þ

In this rotating frame, the waveform modes behave very

similar to those of a nonprecessing binary system, as can be

seen in Fig. 1.

In the present work, we use fixed rotations to transform

the waveforms into an instantaneously coprecessing

frame at the start of the hybridization interval Hrot
lmðtÞ ¼

P

l
m0¼−l

eim
0γþimαdl

mm0ðβÞhlmðtÞ. Here, ðα; β; γÞ are angles at
the fixed time, such that, at that time the orbital planes

associated with the two waveforms are aligned. It is

important to note that the rotation angles are constant in

time, thus the waveforms are still in an inertial frame.

B. Hybridization procedure

The numerical and analytical waveforms are expressed

in different gauges and can use different conventions for

the polarization. Thus, in addition to performing a 3-

dimensional rotation to align the waveforms at a fixed

time, we have the additional freedom of adding an arbitrary

time translation and phase shift to either waveform and an

additional degree of freedom of multiplying the entire

waveform by a fixed phase Ψ. The choice of time trans-

lation can be chosen by aligning the frequency of two

waveforms in a hybrid interval. We align the frequency of

two waveforms at a reference frequency in the inertial

frame. The reference frequency is chosen to be the

frequency of the numerical waveform at the start of hybrid

interval. We then optimize over time translations, phase

shifts, and polarization angles using a “Nelder-Mead

downhill simplex minimization” algorithm, as imple-

mented in SciPy [37]. In order to find the global minimum,

we optimize using several different initial guesses for the

time shift (close to the one obtained from the coprecessing

frame) and several choices for phase shifts in ½−π; π�. In all
cases we found that the ideal choice of Ψ is either 0 or π

(this is expected because the two standard choices for the

polarization differ by π). The function we optimize is

Δ¼mint0;ϕ0

Z

t2

t1

X

l;m

jHNR
lm ðtÞ−HMODEL

lm ðt−t0Þe
iðmϕ0þ2ΨÞjdt:

Here, HNR
lm ðtÞ is the NR waveform and HMODEL

lm ðt − t0Þ is
the model waveform shifted in time and rotated, such that,

at the start of the hybridization interval the principle axes

of the NR and MODEL waveforms agree. Note that the

rotation of the model waveform depends on the value of t0.
After optimizing for t0, ϕ0, and Ψ, we taper the time

domain waveform using a Planck window [38] and then
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zeropad to the nearest power of two. The tapering at the

start of the waveform is done to avoid Gibbs phenomena at

the start of waveform. The tapering at the end is done right

after the merger happens to avoid issues with errors in the

numerical waveforms during the latter part of the ring-

down phase.

After obtaining the appropriate phase and time shifts, we

construct the hybrid waveforms via

h
hyb
lm ¼ τðtÞHNR

lm ðtÞ þ ½1 − τðtÞ�HMODEL
lm ðt − t0

0
Þeiðmϕ0

0
þ2Ψ0Þ;

ð5Þ

where τðtÞ is a function that smoothly goes from 0 to 1 in

the hybrid interval and is given by

τðtÞ ¼

8

>

>

<

>

>

:

0 t < t1

1

2
ð1þ cos

�

πðt−t1Þ
ðt2−t1Þ

�

t1 ≤ t ≤ t2

1 t > t2

: ð6Þ

We implemented our hybridization procedure using

PYTHON. As a test of the timing of our code, we hybridized

a numerical waveform 15 orbits prior to merger with a

model waveform that was 40 orbits longer. We used a

hybrid interval containing 12 cycles (6 orbits). Using these

data, the optimization took 40 seconds for each choice of

initial time and phase offsets.

III. RESULTS

A. Configurations

We constructed hybrids for a few binary black hole

systems with different properties. We show results for

five cases (three precessing, two nonprecessing). In order

to hybridize our waveforms consistently, we perform

all hybridizations on waveforms corresponding to binaries

with a total mass of Mtot ¼ 70 M⊙. It is only after

hybridizing that we rescale to different masses. In

Table I, we provide the mass ratio and initial spin configu-

rations for each of the five test configurations. Note that four

of the NR waveforms were obtained from the SXS catalog

[39,40] and the fifth was obtained from the RIT catalog

[41,42]. For the model waveforms, we use the post-

Newtonian waveforms from the spin-Taylor T4 approxim-

ant based on [43–49]. The waveforms are generated from

lalsuite [50]. For the two nonprecessing cases, we also use

waveforms from the Effective One-Body (EOB) models

[51–56]. In this case, we use the SEOBNRv4HM [56]

implementation in lalsuite for the nonspinning and for the

spinning case. For brevity, we refer to the spin-Taylor T4

approximant as the post-Newtonian (PN) waveform and the

EOB approximant as the EOB waveforms.

The first system we hybridized was a nonspinning

binary system with mass ratio q ¼ 5. Here, we used the

SXS:BBH:0056 waveform from the SXS catalog [58] and

the corresponding spin-Taylor T4 and SEOBNRv4HM

approximants, as obtained from [50]. We then hybridized

a spinning, but nonprecessing system, with q ¼ 3 and

χ1 ¼ ð0; 0; 0.5Þ and χ2 ¼ ð0; 0; 0.5Þ. Here, we used the

SXS:BBH:0047 waveform from the SXS catalog [59] and

both the SEOBNRv4HM and spin-Taylor T4 waveforms

(again, as obtained from [50]). Finally, we hybridized

two mildly precessing binary black hole systems. These

were SXS:BBH:1392 [59,60], which has q ¼ 1.513 and

initial spins of χ1 ¼ ð−0.3955; 0.229; 0.168Þ and χ2 ¼
ð0.35401;−0.125;−0.253Þ. The other precessing wave-

form was SXS:BBH:1410 [59,61], which has q ¼ 4.0

and initial spins χ1 ¼ ð0.2399;−0.3186; 0.2448Þ and χ2 ¼
ð−0.3612; 0.0393; 0.2897Þ. In both of these precessing

cases, we used the spin-Taylor T4 approximant with the

same initial parameters as the numerical waveforms. In the

next section, we show the numerical and analytical model

waveforms before our hybridization procedure and after it

and then compute the mismatch as function of total mass.

We analyze the waveforms and discuss different hybrid

errors and issues in the analysis section.

B. Hybrid waveforms

When constructing the hybrids, we need to align

the numerical and analytical waveforms. This alignment

TABLE I. The waveforms used for analysis. The first column gives the identification string of the waveform as provided in the SXS

catalog [39] and RIT catalog [57], q is the mass ratio of the binary χ⃗1, and χ⃗2 are the initial dimensionless spin vectors of the two

components, Ncycle shows number of cycles in the ðl ¼ 2; m ¼ 2Þmode of the waveforms, fref is the reference frequency (in Hertz) used

to construct the corresponding approximant waveform, and ϕref is the reference phase, which is taken to be zero in all cases. The last two

columns show the reference frequency at the start of hybrid interval for the hybrid constructed using 40 and 20 cycles of the numerical

waveforms. These values correspond toMtot ¼ 70 M⊙. Note that the coordinates are chosen such that the two components of the binary

lie on the x-axis (with the large mass component on the þx-axis), and the orbital angular momentum is initially along the z-direction.

Waveform q χ⃗1 χ⃗2 Ncycles fref ϕref fhybrefð40Þ fhybrefð20Þ

SXS:BBH:0056 5 (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) 56.4 14.608 0.0

SXS:BBH:0047 3 (0.0, 0.0, 0.5) (0.0, 0.0, 0.5) 44.5 16.37 0.0

SXS:BBH:1392 1.53 (−0.395, 0.229, 0.168) (0.354, −0.125, −0.253) 281.2 4.73801 0.0 15.18 21.95

SXS:BBH:1410 4 (0.239, −0.318, 0.244) (−0.361, 0.039, 0.289) 154.24 8.5045 0.0 17.673 25.36

RIT:BBH:0137 2 (0.353, 0.0, 0.353) (−0.353, 0.0, 0.3536) 63.77 11.6455 0.0 15.27 22.37
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consists of a time translation and, in general, a full

3-dimensional rotation of one or both waveforms. In the

nonprecessing case, a rotation by an angle ϕ about

the z-axis is equivalent to a phase shift of an m-mode

by emϕ.

For the nonspinning configuration (SXS:BBH:0056),

we construct the hybrid using the corresponding post-

Newtonianwaveformsusing the spin-TaylorT4approximant.

Weconstructedhybridsof allmodes except them ¼ 0modes.

We compare this hybrid with the available modes of the same

system using the SEOBNRv4HM approximant, which has

the (l ¼ 2; m ¼ �2), (l ¼ 2; m ¼ �1), (l ¼ 3; m ¼ �3),

and (l ¼ 4; m ¼ �4) modes.

The resulting hybrid constructed using our method is

shown in Fig. 2. The plot shows the NR and PN modes, the

resulting hybrid waveforms, and comparisons of the hybrid

with the EOB waveform. Note that the ðl ¼ 4; m ¼ 4Þ
mode of the PN model has an amplitude error not apparent

FIG. 2. Hybridization of a nonspinning, q ¼ 5 system (SXS:BBH:0056) and a spinning, but nonprecessing case (SXS:BBH:0047)

with q ¼ 3 and initial spins χ1 ¼ ð0; 0; 0.5Þ, χ2 ¼ ð0; 0; 0.5Þ. The numerical waveforms were obtained from [58,59]. The PN waveforms

used the spin-Taylor T4 approximant. The EOB waveform corresponding to SXS:BBH:0056 and SXS:BBH:0047 was obtained using

SEOBNRv4HM. The waveforms correspond to Mtot ¼ 70 M⊙. Results from SXS:BBH:0047 are shown on the top row. Results from

SXS:BBH:0056 are shown on the bottom two rows. The top-left and middle-left plots show the PN and NR modes (after time shifting

and phase translations). The top-right and middle-right plots show the hybrid and EOB modes. Although not apparent in the plots in the

first two rows, there is a nontrivial amplitude error in the (3,3) and (4,4) PN modes. The bottom row shows the hybrid and EOB modes

for the ðl ¼ 3; m ¼ 3Þ and ðl ¼ 4; m ¼ 4Þ modes of SXS:BBH:0056. Note the amplitude error in the early part of the waveform.

Finally, the plot on the bottom-right shows the phase difference between the hybrid and EOB ðl ¼ 4; m ¼ 4Þmode for SXS:BBH:0056

near merger.
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in EOB mode. We also constructed a hybrid of the NR and

EOB waveforms.

The next case we studied was an aligned spin (and

therefore nonprecessing) binary (SXS:BBH:0047). We

constructed two hybrids, one based on the spin-Taylor

T4 and NR modes, the other based on the SEOBNRv4HM

and NR modes. The SEOBNRv4HM approximant has the

(l ¼ 2; m ¼ �2), (l ¼ 2; m ¼ �1), (l ¼ 3; m ¼ �3),

(l¼4;m¼�4), and (l ¼ 5; m ¼ �5) modes. However,

we did not use the (l ¼ 5; m ¼ �5) modes for our

analysis. We show results similar to the nonspinning case

in Fig. 2.

We next consider three mildly precessing cases. Our goal

here was to use very long numerical waveforms and then

truncate them. We then compare the hybrids of the

truncated waveforms with the original numerical wave-

forms. The first case we considered is the SXS1410

waveform [61] (see Table I). We used the spin-Taylor

T4 approximant for post-Newtonian waveforms based on

[43] and obtained from [50]. We choose the initial

frequency for PN waveforms to be the same as the initial

frequency of the numerical waveform (prior to truncating

the waveform). We choose fref ¼ 8.5045 Hz, which was

approximately the initial frequency of the numerical wave-

form (recall that the hybrid is constructed with a binary

mass of 70 M⊙ and then rescaled to different masses).

The spin configurations were chosen to be the same as the

initial spin configurations of the numerical waveforms. We

choose ϕref to be zero, which means the large Black Hole

(BH) is along the x-axis initially. First, we hybridized the

two waveform earlier in inspiral regime. This corresponds

to 80 cycles before merger. We then hybridized them closer

to merger 40 cycles before merger. Finally, we hybridized

waveforms 20 cycles before merger. The resulting aligned

waveforms are shown in Fig. 3.

In addition, we considered two other mildly precessing

waveforms. We used the SXS1392 simulation [60] as well

as the RIT simulation RIT0137 [41] (see Table I). Again,

we hybridized them with spin-Taylor T4 PN waveforms in

early inspiral, as well as late inspiral phase. The PN

waveform is obtained by setting initial frequency to be

the same as the numerical waveforms, which in this case

was fref ¼ 4.73801 Hz and fref ¼ 11.6455Þ Hz, respec-
tively (at M ¼ 70 M⊙).

IV. ANALYSIS

To asses the accuracy and usefulness of our hybridization

procedure, we calculate the mismatch between the hybrid

waveform and either very long NR waveforms or model

waveforms (e.g., EOB). The mismatch itself is calculated in

two ways. First, we perform a mode-by-mode mismatch

using the “create compatible complex overlap” function in

LALSimUtils. This function automatically optimizes over

both time translations and phase shifts. Because of this,

the mode-by-mode mismatch allows for the phase shifts of

different modes to be inconsistent. That is, one expects each

m mode to be shifted by mϕ. As a second analysis, we

construct a grid of angles that covers the sphere and

calculate the mismatch at each point on the grid. We then

plot the results. This latter analysis guarantees that all

modes are time shifted and phase shifted consistently, but

suffers from the fact that the ðl ¼ 2; m ¼ �2Þ modes will

dominate the mismatch calculation.

First, we define an inner product

hh1jh2i ¼ 2

Z

∞

−∞

h�
1
ðfÞh2ðfÞ

SnðfÞ
df; ð7Þ

where hðfÞ is the Fourier transform of the complex

waveform hðtÞ and we use the Advanced-LIGO design

sensitivity “zero-detuned-high P” noise curve [62] with

fmin ¼ 20 Hz and fmax ¼ 2000 Hz. This inner product can

also be computed with a further maximization over time

and phase shifts as described in [63],

hh1jh2i ¼ maxt0;ϕ0

�

2

�

�

�

�

Z

∞

−∞

h�
1
ðfÞh2ðfÞ

SnðfÞ
df

�

�

�

�

	

: ð8Þ

The overlap of two waveforms is then given by

O ¼
hh1jh2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh1jh1ihh2jh2i
p ; ð9Þ

and the mismatch is given by

M ¼ 1 −O: ð10Þ

The mismatch indicates how close the two waveforms h1
and h2 are, with a mismatch of 0 indicating the two

waveforms are essentially the same. IfM is less than some

threshold, we regard the final hybrid as accurate enough for

detections. For a maximum loss of 10% of the signals in the

detection process, we can accept amismatch of nomore than

1.5% [24] or even 0.5%, as suggested in [64].

We begin our analysis by comparing the hybrid of the

nonspinning waveform (SXS:BBH:0056) to the corre-

sponding EOB waveform. As explained above, we com-

puted two different hybrids: an NR-EOB hybrid and an

NR-PN hybrid. The mode-by-mode mismatch versus the

total mass of the binary is given in Fig. 4. At early times,

the PN and EOB waveforms disagree substantially in the

ðl ¼ 4; m ¼ 4Þ and ðl ¼ 3; m ¼ 3Þ modes, which is

apparent in the mismatch between the PN-NR and EOB

waveforms at small masses. On the other hand, the ðl ¼ 4;
m ¼ 4Þ mode of the EOB-NR and EOB waveforms

disagree by more than 1.5% at high masses. This, in turn

means that EOB ðl ¼ 4; m ¼ 4Þ mode, as shown in Fig. 2,

has a relatively large phase difference to the NR mode

when compared to the lower-order modes. We see similar

behavior for the spinning, but nonprecessing system
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(SXS:BBH:0047). The mismatch between the PN and EOB

ðl ¼ 3; m ¼ 3Þmodes and ðl ¼ 4; m ¼ 4Þmodes is larger

than our cutoff tolerance of 1% at all masses. On the other

hand, we see that the EOB and NR waveforms for the

ðl ¼ 4; m ¼ 4Þ modes show a mismatch of 2.5% (as is

evident by the high-mass limit in the plots). This indicates a

significant offset of the EOB version of this mode from the

numerical one.

While the mode-by-mode mismatch measures the errors

in each mode, it accounts for neither the relative power in

FIG. 3. A q ¼ 4 mildly precessing waveform (BBH1410). The NR and PN waveforms were aligned in the early inspiral regime. The

plots on the left show the alignment of the NR and PN ðl ¼ 2; m ¼ 1Þmodes (as well as the hybrid) for the case where the hybridization

is done 80 (top), 40 (middle), and 20 (bottom) cycles before merger. For each plot on the left, the top panel shows the (l ¼ 2, m ¼ 1)

modes before alignment, the middle panel shows the modes after alignment, and the bottom panel shows the hybrid overploted onto the

aligned modes. The plots on the right show the rest of the PN and NR modes after alignment for these three cases. The waveforms

correspond to Mtot ¼ 70 M⊙. In all cases, the vertical lines show the hybrid interval.
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each mode nor the orientation-dependence of the mismatch.

For example, motivated by the orientation-averaged over-

lap
R

dΩ
4π
hh1jh2i ¼

P

lm hh1;lmjh2;lmi=4π, we can introduce

a mode-weighted mismatch,

W½M� ¼

P

lmρ
2

lmMlm
P

lmρ
2

lm

; ð11Þ

where Mlm are the mode-by-mode, time-and-phase-

maximized mismatches, and ρ2lm¼hhlmjhlmi. The dark

black curve on each of the mismatch figures shows the

corresponding mode-weighted mismatch. For the nonpre-

cessing case, this weighted mismatch closely follows the

dominant quadrapolar mismatch curves. As we will see

below, nonquadrapolar mismatches become increasingly

important in the precessing case.

For the precessing case, we do not have models whose

systematic errors are confidently well below the hybridi-

zation errors we seek to assess. Rather, we compare the

hybrid waveform with a much longer numerical waveform,

as explained above. One consequence of this choice is that

at high masses, the model waveform (i.e., the original NR

waveform) and the hybrid are essentially identical.

We show the mode-by-mode mismatches for the three

precessing cases in Fig. 5. In the figure, we show the

mismatch between two hybrids and the original NR wave-

forms. One of these hybrids is constructed starting at 40

cycles and the other at 20 cycles before the merger. For the

former case, the higher-order modes fall within the 1%

tolerance for masses larger than 60 M⊙ and 80 M⊙, for the

l ¼ 3 and l ¼ 4 modes, respectively. For the hybrid

constructed 20 cycles prior to merger, the l ¼ 4 mis-

matched are within tolerance at 95 M⊙. The mismatch at

small masses indicates a substantial phase difference

between the PN modes used to construct the hybrid and

the early part of the numerical waveform (note, the hybrid

is constructed from the late part of the NR waveform). In

addition, we include the weighted mismatches as a function

of total mass and number of cycles in the numerical

waveform in Table II.

One important question that we need to address is to

what extent is the mismatch observed as an artifact of

numerical truncation error. To test this, we compute the

FIG. 4. Mismatch for different modes for the two nonprecessing cases. The top two plots are for the SXS:BBH:0056 (nonspinning,

q ¼ 5) configuration and the bottom two plots are for the SXS:BBH:0047 (q ¼ 3, aligned spins). The numerical waveforms were

obtained from [58] and corresponding post-Newtonian and EOB waveform are taken from [50]. The plots show the EOB-NR hybrid

versus the EOB waveform and the PN-NR hybrid versus the EOB waveform. The largest errors are in the ðl ¼ 4; m ¼ 4Þmode. We use

the Advanced-LIGO design sensitivity zero-detuned-high P noise curve [62] with fmin ¼ 20 Hz and fmax ¼ 2000 Hz. Finally, the

curves marked WM are the weighted mismatch defined by Eq. (11). On each plot, the top axis shows the number of cycles to merger

with frequencies larger than 20 Hz (which is a function of the total mass). Here, WM refers to the mode-weighted mismatch.
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mismatch of the Lev2 and Lev3 (higher resolution) wave-

forms of SXS1410 (i.e., the two highest resolutions). We

calculate the mismatch between the numerical waveforms

at these two resolutions after aligning the waveforms at

80 cycles prior to merger and again at 40 cycles prior to

merger. The results are shown in Fig. 6. When aligning the

waveforms at 80 cycles, the mismatch is within tolerance

for all modes and all masses. On the other hand, when

aligning the waveform at 40 cycles, the mismatches are

below tolerance for all modes when the mass is larger than

40 M⊙. Importantly, these mismatches are below those

observed for the hybrid.

Finally, we address the issue of the efficacy of hybridi-

zation in the first two plots of the bottom row of Fig. 6.

Here, we plot the mismatch of the original NR waveform

with truncated versions of the same waveform. Here, we

truncate at 40 and 20 cycles prior to merger. When we

truncate the waveform at 40 cycles before merger, the

weighted mismatch is outside the tolerance of 1% for

M < 60 M⊙, while the corresponding hybrid is within

FIG. 5. Mismatch as a function of total mass for different ðl; mÞ modes for the three precessing systems. The top panels show the

mismatched for SXS:BBH:1410. The second row shows the mismatched for SXS:BBH:1392, and the third row shows the mismatches

for RIT0137. The numerical waveforms were taken from [57,61], respectively, and the post-Newtonian waveforms taken from [50]

based on [43]. Hybridization is done in both inspiral as well as late closer to merger regions. The plots show the result when the hybrid is

constructed 40 cycles before merger and 20 cycles prior to merger. We use the Advanced-LIGO design sensitivity zero-detuned-high P

noise curve [62] with fmin ¼ 20 Hz and fmax ¼ 2000 Hz. The curves marked WM are the weighted mismatch defined by Eq. (11). On

each plot, the top axis shows the number of cycles to merger with frequencies larger than 20 Hz (which is a function of the total mass).
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tolerance for M > 40 M⊙. The improvement is more

dramatic for the 20 cycles case. When truncating at 20

cycles, even the l ¼ 2modes are outside tolerance for total

masses less than 80 M⊙, and the weighted mismatch is

outside the 1% tolerance for M < 100 M⊙. The corre-

sponding hybridized waveform is within tolerance for all

masses larger than 50 M⊙.

Thus far, we have considered how truncation errors in the

NR waveforms can affect the mismatch (see Fig. 6). In

Fig. 7, we consider how PN truncation errors affect the

accuracy of the resulting hybrid. To do this, we modify the

amplitude order (here denoted by α) and the phase order

(here denoted by ϕ) of the PN approximation. We use the

spin-Taylor T4 approximant in all cases and find that, in

TABLE II. The mismatch of numerical waveform SXS:BBH:1410 versus the hybrid of numerical with spin-Taylor T4 approximant.

The first column shows the total mass of the binary. We construct three hybrids with hybrid intervals starting 10, 20 and 40 cycles before

merger. The two columns for each case shows frequency in Hz within the hybrid interval and the weighted mismatch as computed in

Eq. (11). Clearly mismatches are better when one uses longer numerical waveforms.

(SXS:BBH:1410) Mismatch versus frequency of hybrid

Cycles ⇒
10 20 40

Mtot⇓ Freq (Hz) M Freq (Hz) M Freq (Hz) M

10 [210.7-341.5] 0.0508 [179.7-344.8] 0.0219 [123.7-199.3] 0.01241

20 [105.3-170.6] 0.0693 [89.8-172.6] 0.0221 [61.85-99.6] 0.01297

30 [70.2-113.7] 0.0664 [59.8-115.0] 0.0180 [41.2-66.4] 0.01111

40 [52.65-85.3] 0.0498 [44.9-86.31] 0.0124 [30.9-49.8] 0.00808

50 [42.1-68.2] 0.0336 [35.9-69.0] 0.0088 [24.74-39.8] 0.00409

60 [35.1-56.8] 0.0224 [29.9-57.5] 0.0046 [20.6-33.2] 0.00201

70 [30.1-48.7] 0.0146 [25.6-49.3] 0.0031 [17.67-28.4] 0.00126

80 [26.3-42.6] 0.0101 [22.4-43.1] 0.0021 [15.4-24.9] 0.00043

90 [23.4-37.9] 0.0071 [19.9-38.3] 0.0012 [13.7-22.13] 0.00021

100 [21.06-34.1] 0.0047 [17.9-34.5] 0.0008 [12.37-19.9] 0.00008

FIG. 6. (top panels) Plots of the mismatch between the full NR waveform against the NR waveforms truncated at 40 and 20 cycles

prior to merger (i.e., truncated but not hybridized) for SXS:BBH:1410. Note the factor of ∼10 improvement in the mismatch when

hybridizing the waveform, as shown in Fig. 5. (bottom panels) Plots of the mismatch between the Lev2 (low resolution) and Lev3 (high

resolution) waveforms for SXS:BBH:1410. Here the mismatch is between the two NR waveforms.
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general, higher PN order terms in both amplitude and phase

lead to more accurate hybridization; although, we found the

best result was obtained with 3PN order terms in the phase

rather than the 3.5 or 4th order terms. For a detailed

analysis of PN errors in the waveform see [63]. We see that

the PN truncation error has a substantial effect on the

mismatch, which indicates that the PN truncation error is

the dominant error at the separations considered here.

As an alternative analysis of the mismatch presented is

above, for each simulation, we can directly compute the

mismatch M between the original NR simulation and

our PN-NR hybrid as a function of angle. Just like the

mismatches in Fig. 6, our choice of fiducial mass has a

significant impact on the overall scale of the mismatch.

In Fig. 8, we show the mismatch as a function of

angle for a total mass of 40 M⊙ for the three precessing

simulations. To quantify the effect that higher-order modes

have on the mismatch, we suppress these modes in the

hybrid. For the two SXS simulations, high-order modes are

very important to the total mismatch, with the mismatch

increasing by a factor of ∼10 when these modes are

suppressed. One the other hand, in the RIT simulation,

the quadrapolar modes dominate the waveform. The reason

for this difference in behavior between the RIT and SXS

waveforms appears to be due to the degree with which the

various simulations precess.

V. DISCUSSION

Hybrid NR waveforms have two potentially direct

applications to GW observations, particularly as the sensi-

tivity of GW detectors improves at low frequency. First

and foremost, a sufficiently dense and long family can be

FIG. 7. Mismatch of the ðl ¼ 2; m ¼ 2Þ and ðl ¼ 4; m ¼ 4Þ
modes of the PN-NR hybrid (versus NR) for the SXS:BBH:1410

case versus PN order. Here, α is the amplitude order and ϕ is the

phase order. In general, higher order approximants will provide

more accurate hybridization; although, the phase order or 3

provides the most accurate hybrid.

FIG. 8. Mismatch of the strain constructed using all hybrid modes and the numerical waveforms for the precessing cases SXS:

BBH:1410 (left two panels) and SXS:BBH1392 (right two panels) for binaries with a total mass of 40 M⊙. The numerical waveform is

taken from [61] and post-Newtonian waveforms taken from [50] based on [43]. The plots labeled as Quadrapole included only the

l ¼ 2 modes in the hybrid and comparing to the full NR waveforms (all modes). We use the Advanced-LIGO design sensitivity zero-

detuned-high P noise curve [62] with fmin ¼ 20 Hz and fmax ¼ 2000 Hz.
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directly applied as search templates [65] with a mismatch

target of 0.03. For high-mass binaries, hybridization is

critical to extend short simulations into a sufficiently dense

and reliable bank. Second, NR simulations, which repro-

duce existing candidate events including potentially

directly targeted simulations, can be directly compared

to the data producing likelihoods for each simulation and

mass along with best-fit GW signals and residuals. By

stitching these likelihoods together, one can directly infer

the source responsible for the candidate event. However,

both of these analyses are systematically biased by NR

simulation’s finite durations when their relevant modes start

above the lowest observationally accessible GW frequency.

Hybridization is critical to reduce these effects and enable

detection and parameter inference with NR.

The accuracy thresholds for these two applications can

be more concretely understood using the conventional

mismatch threshold required for detection (0.03) and to

avoid systematic bias in parameter inference [1=ρ2, for ρ
the source signal-to-noise ratio (SNR)]. For sources with

high red-shifted total massMz ¼ ð1þ zÞM > 100 M⊙, the

NR signal alone suffices and hybridization has relatively

little impact; for the strongest mode, mismatches are well

below 10−5 independent of hybridization, suggesting reli-

able inference for signals up to ρ ≃ 300. For comparison, in

a Euclidean cosmology we would need roughly 50 years at

a detection rate of 1000/yr to find a source of that

magnitude. Equivalently, for sources with this high red-

shifted mass, NR alone will be more than adequate enough

up to the Voyager era. Conversely, for sources with very

low red-shifted mass, hybridization is dominated by inspi-

ral, and the mismatch reflects systematic differences

between GR (as calculated with NR simulations) and

our early-time approximations. In the case described in

this work, we emphasized a PN-based early-time approxi-

mation with substantial systematic errors. In between these

two limits, hybridization generally occurs inside the detec-

tor’s sensitive band. Because of the early-time approxima-

tions we employed, the mismatch generally decreases

almost monotonically as source mass increases, and as

thus the analyzed signal contains less of the early-time

model. As a result, for a very loose mismatch threshold of

10−3 for parameter inference and using the ðl ¼ 2; m ¼ 2Þ
mode mismatches as key diagnostics, our results suggest

even short hybrids with 20 cycles before merger are

generally reliable above 50 M⊙. Due to large PN

differences with NR, hybridizing earlier would not enable

access to significantly lower masses with high accuracy

but would dramatically increase the accuracy of the

hybrid at high mass and thus the ability to use this approach

for high-amplitude signals. Based on prior work, we

anticipate that with a superior early-time model the mis-

match would have a local maximum versus mass related

to the characteristic frequency at which hybridization was

performed.

In general, we see that higher-order modes show larger

mismatches than lower-order modes. As both the PN/EOB

and NR errors for these modes are expected to be larger

than for the lower-order modes, this is perhaps not

surprising. Interestingly, as shown in Fig. 8, despite the

relatively large mismatches in these modes, including them

leads to substantially smaller mismatches. As shown in

Fig 8, the mismatch is almost 10 times larger when

comparing a hybrid constructed 40 cycles prior to merger

that uses only the quadrupolar modes (mismatch against the

full numerical waveform with all modes) to a hybrid that

uses all modes up to the l ¼ 5 modes. When the hybrid is

constructed closer to merger, the mismatch is 3 to 4 times

larger if only the quadrupolar modes are used.

VI. CONCLUSION

We have introduced and assessed a simple, automated

algorithm to hybridize gravitational waves from generic

precessing quasicircular binaries. In this work, we hybrid-

ize in an inertial frame choosing consistent orientations for

the pre- and post-merger binary such that a waveform-

derived estimate of the orbital angular momentum L is

along the z-axis. This simple procedure avoids the need to

carefully understand and reproduce precessional dynamics

smoothly through the hybridization interval as needed for

proposals which hybridize in a coprecessing frame. We

assessed our approach by comparing long NR simulations

to hybrids of artificially-truncated variants of those same

simulations. As expected, we found that the choice of early-

time waveform has significant impact on the quality of the

overall hybrid. EOB-based hybrids had better behavior at

very low-mass; post-Newtonian hybrids, however, showed

increasing mismatch with NR for very low masses sug-

gesting systematic relative dephasing in long waveforms.

For generic quasicircular binaries, we were only able to

hybridize with existing PN-based approximations, and as a

result, our hybrids performed poorly at very low detector-

frame mass (Mz ≲ 30) where inspiral dominates the signal.

For the very loose mismatch tolerances needed for

searches, our hybrid procedure would be more than

sufficient for all masses investigated here, implying NR-

based searches are limited solely by simulation density.

Conversely, for the tighter mismatch thresholds needed

for parameter inference (1=ρ2, typically 10−3 − 10−4 for

contemporary observations), the precessing NR/PN hybrids

demonstrated here are expected to be reliable only for

red-shifted masses Mz > 50 M⊙, depending somewhat

on mass ratio. We expect hybrids with improved models

will produce better performance at early times and low

masses.

Hybrid NR waveforms have been applied directly to

analyze GW signals. Already, by mitigating the errors

introduced by abrupt early-time truncation, our hybridiza-

tion method will enable even relatively short NR simu-

lations to be usefully compared to GW observations.
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To enable this method to analyze lower masses, however,

we will need early-time models which are more phase-

coherent with numerical relativity. We will explore the

impact of alternative early-time models in future work.

That said, particularly at the high red-shifted masses

Mz > 100 M⊙, which are most relevant to future high

red-shift observations of known binary black hole (BBH)

populations, our hybrids will be immediately relevant for

data analysis even for high-amplitude signals relevant to the

next generation of detectors.
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