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In recent years, we have seen the continuous and rapid increase of job openings in Science, Technology,
Engineering and Math (STEM)-related fields. Unfortunately, these positions are not met with an equal
number of workers ready to fill them. Efforts are being made to find durable solutions for this phenomena,
and they start by encouraging young students to enroll in STEM college majors. However, enrolling
in a STEM major requires specific skills in math and science that are learned in schools. Hopefully,
institutions are adopting educational software that collects data from the students’ usage. This gathered
data will serve to conduct analysis and detect students’ behaviors, predict their performances and their
eventual college enrollment.

As we will outline in this paper, we used data collected from the students’ usage of an Intelligent
Tutoring System to predict whether they would pursue a career in STEM-related fields. We conducted
different types of analysis called “problem-based approach” and “skill-based approach”. The problem-
based approach focused on evaluating students’ actions based on the problems they solved. Likewise, in
the skill-based approach we evaluated their usage based on the skills they had practiced. Furthermore,
we investigated whether comparing students’ features with those of their peer schoolmates can improve
the prediction models in both the skill-based and the problem-based approaches. The experimental re-
sults showed that the skill-based approach with school aggregation achieved the best results with regard
to a combination of two metrics which are the Area Under the Receiver Operating Characteristic Curve
(AUC) and the Root Mean Squared Error (RMSE).
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1. INTRODUCTION

Nowadays, Science, Technology, Engineering, and Mathematics (STEM) fields are driving na-
tions’ economies. The demand for skilled personnel does continues to grow. Yet for several
reasons, the number of open positions does not match the number of workers ready to take these
positions. In fact, just in the United States, employment related to STEM occupations has grown
considerably faster than for other non-STEM positions. Over the last decade, STEM job open-
ings have increased by 24.4% compared to only a 4% increase in non-STEM jobs (Noonan,
2017). Nevertheless, trying to deal with the shortage in the STEM workforce is an integral part
of educating and training the necessary highly skilled personnel.
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Previous research has shown concern with student enrollment and retention in STEM fields
when they went to college (Whalen and Shelley II, 2010). In fact, this can be explained by
the students’ personal choices made throughout their academic career. Moreover, students’
motivation to enter into STEM careers can be tracked up to middle school (San Pedro et al.,
2014). Many factors can influence student decisions. For example, financial situations have a
big impact on students’ choices regarding their future enrollment (Olenchak and Hbert, 2002).
Furthermore, the educational level of parents is also considered an influential factor in students’
academic enrollments and outcomes (Pascarella et al., 2004).

Aside from the external factors, stronger effects are more closely associated with academic
success. For example, students’ abilities in Math and Science subjects and the self-assessment
of their academic aptitudes are known to have a strong influence on their decisions (Xueli, 2012;
Xueli, 2013). Factors related to academic performance can be detected early, not only in high
school but also in middle school, since it is during this period that students acquire the necessary
skills to help them prepare for college. It is also at that time that students start to develop their
career aspirations and objectives. And depending on their learning experience, they become
more engaged in or, unfortunately, disengaged from an effective learning path at school leading
to academic success (San Pedro et al., 2013; Balfanz, 2009).

Pursuing a STEM career is closely associated with graduating with a STEM major (Whalen
and Shelley II, 2010). Thus, dealing with the growth of STEM positions depends also on increas-
ing the numbers of students enrolling in STEM majors. Continuous efforts have been made to
increase STEM enrollments. But encouraging students to continue their study in a STEM major
must begin as early as middle school. The reason being that the required knowledge and skills
for STEM fields are taught during the middle and high school years. Also, student decisions
are still manageable during middle and high school, when it is possible to build confidence in
their ability to continue in a STEM major (Xueli, 2013). Therefore, it has become crucial to
recognize students who have difficulties and who are most likely to lose interest in STEM fields.
Detecting these students makes it easier to provide them with adequate support that helps them
overcome their problems and reignite their interest in STEM fields. Previous research proposed
several detectors that can indicate which students are most likely to pursue STEM college ma-
jors. Factors such as family background and financial situation have an influence, but they can’t
be addressed easily (Pascarella et al., 2004; Olenchak and Hbert, 2002). Student skills and
academic performance are very effective indicators, but since these detectors rely on student
grades and in-field observations, it is hard to adjust the students’ treatment by the time they have
finished high school (San Pedro et al., 2014; Whalen and Shelley II, 2010).

However, thanks to the growing adoption of educational software within different academic
institutions, educators are able to gather data about student usage. The recorded data is fine-
grained and can describe every student’s action within the system. The deployment of such
software opens up many possibilities for extensive analysis. With a large amount of data at
hand, researchers have been able to build predictive models capable of detecting students’ affec-
tive states over a wide range of constructs such as gaming-the-system, boredom, carelessness,
frustration, and off-task behaviors (Baker et al., 2004; Baker, 2007; San Pedro et al., 2011; Par-
dos et al., 2013; Sabourin et al., 2011). These detectors have been used, for example, in research
that aimed at predicting learning outcomes (Pardos et al., 2013), college enrollment (San Pedro
et al., 2013) and more importantly, predicting whether or not students will enroll in a STEM
major in college (San Pedro et al., 2014).

Following the previous analysis, the ASSISTments team conducted a longitudinal study in
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which they followed up on students that had used the ASSISTments1 software during middle
school between 2004 and 2006, then recorded their college enrollment and first job after col-
lege. The team opened the dataset for public use in 2017 and simultaneously organized a data
mining competition where several research projects were conducted using that dataset to predict
student engagement in STEM jobs. They also held a workshop2 at the Educational Data Mining
conference in 2018, where participants in the competition presented their work. To compare all
models on the same basis, the evaluation criteria were calculated by using a linear combination
of the area under the ROC curve (AUC) and the root mean squared error (RMSE).

AUC was the initial choice as the evaluation criterion, but using only one metric opens the
risk of having models overfit to it. Therefore, having a linear combination of two metrics is a
more robust way of evaluating models. Moreover, AUC and RMSE grasp different aspects of the
model’s performance. In fact, AUC is particularly applicable in the case of binary classification
problems since it captures the ability of a model to distinguish between the predicted classes,
while RMSE is more suitable for comparing two numbers. Using RMSE as a performance
metric rewards models that are more certain when they are correct, and punishes models that
are uncertain. The final score used to compare models is a linear aggregation of the AUC and
RMSE, with the RMSE value being inverted (Thanaporn et al., 2018).

Score = AUC + (1−RMSE)

Different approaches were taken to predict the students’ enrollment in STEM-related jobs.
For example, one team investigated three predictive methods: an ensemble classifier, clustering
prior to classification, and a probabilistic classifier. They also compared the classifiers’ perfor-
mance in different scenarios: using the raw data, using the data after removing the outliers, and
using the data after resampling. They used features describing students’ affective states, knowl-
edge, correctness, carelessness and gaming-the-system behaviors. The best score was achieved
using the probabilistic classifier. To build the model, they split the dataset according to the dis-
persion of the data points relative to the selected features. The split was made using the Median
Absolute Deviation (MAD) metric, and three splits were chosen. A split where data points had
at least one attribute below two MAD of the corresponding attribute (called Data 05), another
split in which data points had at least one attribute above two MAD of the corresponding at-
tribute (called Data 95), and the last split contained data points having all attributes within a
range of two MAD of the corresponding attribute (called Data rest). The best model achieved
an RMSE of 0.383 and an AUC of 0.836 using the Data 05 split. However, this split contained
only 73 data points which are very few (Effat et al., 2018).

Another contribution to the workshop consisted of building an automatic machine learning
system that can reformat the dataset, create new features, proceed to feature selection and build
different models with the least possible human intervention. The authors used many summary
statistics (e.g., mean, std, 9th percentile) to generate the student-level dataset from the click-
stream data. Later, they investigated the interactions between features pair by pair, by measuring
many values such as addition, multiplication, feature A divided by feature B, etc. And after a
first round of feature elimination based on correlation, they used both forward and backward
feature selection strategies. Finally, for the model selection, they used Penalized Logistic Re-
gression and tried many different penalty functions. The best model achieved an AUC of 0.628
and an RMSE of 0.292 (Ruitao and Aixin, 2018).

1https://www.assistments.org
2https://sites.google.com/view/edm-longitudinal-workshop

3 Journal of Educational Data Mining, Volume 12, No 2, 2020



One more participating team used “state-of-the-art” Deep Knowledge Tracing (DKT) mod-
els (Piech et al., 2015) and an enhanced version called DKT+ (Chun-Kit and Dit-Yan, 2018).
They measured student knowledge tracing using DKT+ and then combined it with other fea-
tures from the dataset that they grouped together and called “Student Profile”. The Student
Profile contained 11 features related to a student’s abilities, correctness, affective states and dis-
engaged behavior. The authors used different machine learning methods to train their models.
They tried Gradient Boosted Decision Tree, Linear Discriminant Analysis, Logistic Regression
and Support Vector Machines. Then they tried a combination of features to train those models.
The best result was achieved by training a Logistic Regression model using the combination of
the student profile features with the DKT estimation of the knowledge state. The model attained
an AUC of 0.694 and an RMSE of 0.414 (Chun-Kit et al., 2018).

In our submission to the workshop, we wanted to investigate if comparing students’ perfor-
mances to their schoolmates could improve predictions of STEM careers. We used univariate
feature selection to choose the best features. The dataset contained clickstream data from four
different schools. To compare students to their peer schoolmates, we separated the students per
school and applied the z-score function to all features of all students, school by school. We called
this approach the “school-based approach”. We compared it to a baseline approach where we did
not proceed to any school-based aggregation. Once the final dataset was generated, we used ge-
netic programming to obtain the best machine learning technique and its hyper-parameters. We
applied the optimization process to each approach independently. The best result was attained
with the school-based approach, achieving an AUC of 0.601 and an RMSE of 0.546 (Makhlouf
and Mine, 2018).

Even though our results in the workshop were not the best compared to other submissions,
we wanted to push our analysis further. In fact, after finding that aggregating students within
their school could lead to better predictions, we wanted to explore the dataset more and examine
school-based aggregation from different angles. Therefore, in this paper, we aim to achieve two
objectives, the first one of which is to improve the prediction models that identify which students
will/won’t pursue a career in STEM fields compared to our submission in the workshop. For that
purpose, we used the same dataset provided in the ASSISTments data challenge. Our second
objective consisted of investigating different approaches for building the prediction models. The
first technique, called “problem-based approach” consisted of measuring student features based
on the problems they solved within the system. In the second technique, called “skill-based
approach” we carried out the same procedure, but based on the skills that the students practice
in the software. Meanwhile, we also proved that the school-based aggregation of the students’
features improved the performance of the model. In the process of building our models, we con-
tinued using genetic programming to find the best machine learning pipeline for each approach.
The experimental results showed that the skill-based approach outperformed the problem-based
approach on the same metrics used in the workshop, which are the AUC and the RMSE.

2. METHODOLOGY

2.1. ASSISTMENTS INTELLIGENT TUTORING SYSTEM

To accomplish our research, we used a large amount of data provided by the ASSISTments team.
ASSISTments is a web-based Intelligent Tutoring System provided for free by Worcester Poly-
technic Institute. It is used for middle school mathematics where teachers can use a predefined
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set of contents or create their own. The system provides students with the right assistance while
assessing their knowledge and reporting it back to the teachers. When students use the platform
to work on problems assigned to them by their teachers, they receive immediate feedback as
to whether their answers are correct or not. If they are correct, they can proceed to the next
problem; if not, the system provides them with scaffolding exercises which are sub-components
of the original problem to help students master the required skills. Once those skills have been
acquired, the student is directed back to the original problem for another try. Then, after cor-
rectly answering this problem, they can move on to the next one. Questions in the ASSISTments
platform are related to specific skills, which make tracking student performance more precise.
At the same time, teachers get full reports on student activities and their performance. The re-
ports help the teachers to identify students’ common mistakes and problems and determine who
struggled to solve which problems, which can all be done even before they meet their students
in the classroom (Olenchak and Hbert, 2002). The ASSISTments team gave us access to the
data gathered during a longitudinal study over a decade long.

Figure 1: Example of an ASSISTments problem where the student answered incorrectly and is
led to solve a scaffolding problem.4

4https://www.assistments.org/
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2.2. DATA ACQUISITION

The dataset consisted of click-stream log files describing students’ interactions with the AS-
SISTments software. The dataset contained students’ actions spanning from 2004 to 2006. We
counted 942,816 actions stored in the log files related to different types of student interactions,
such as answering a question or requesting help. Each row identified an action within the sys-
tem, and each action was described by a set of recorded information. Those actions were carried
out by a group of 1,709 students enrolled in four different schools that used ASSISTments. The
dataset also contained several other kinds of information related to these students, such as their
MCAS (Massachusetts Comprehensive Assessment System) score, their anonymized ID, and
whether their first job out of college was STEM-related or not. This dataset contained no less
than 3,765 problems related to a complete set of 102 skills. Some data was duplicated and, at
the same time, some students did not have their first job out of college registered in the dataset.
So after proceeding to an initial cleanup of the dataset, we ended up having an overall total of
316,947 actions completed by 591 unique students. The number of problems the students prac-
ticed dropped to 3,162, same as the skills involved as we kept 93 out of the 102 unique skills. We
also had access to the students’ STEM job enrollment files, which ultimately was the predicted
variable.

2.3. FEATURE EXPLORATION

The dataset consisted of a list of actions recorded when students used the ASSISTments system.
It contained 82 features. These features described different aspects of the usage of the ASSIST-
ments system. Some features were related to the context of the usage, such as the school ID
and the academic year. Features such as the Student ID, the Inferred Gender and the MCAS test
score were related to the student who used the system. Another subset of features was associ-
ated with the action performed. In this subset of features, we obtained time-related information,
such as the time taken to answer the question, or the detected long pauses after a correct answer.
We also had access to features relevant to the correctness of the answers given by students and
features that described the type of the answer, whether it was a fill-in or chosen answer (e.g.,
Multiple choice). The dataset also described some functionalities of the ASSISTments system.
In fact, information about the hint and help request usage was registered. Moreover, ASSIST-
ments provided problems at different levels: original problems and scaffolding problems. In
this dataset, many features related to the original or scaffolding problems were available. Fi-
nally, there is a subset of features related to models assessing students’ knowledge, behaviors,
and affective states such as boredom, engaged concentration, confusion, frustration, off-task and
gaming-the-system behaviors.

2.4. DISCOVERY WITH MODELS

Some of the dataset features were generated using models based on previous research on student
behaviors, affective state or latent knowledge. In fact, tracking student knowledge is an active
field of research that has been characterized by the emergence of Bayesian Knowledge Tracing
(BKT) as one of the most-used models (Corbett and Anderson, 1995; Joel and Kurt, 1995;
Reye, 2004; Pavlik et al., 2009). Indeed, BKT is able to estimate a student’s latent knowledge
of a specific skill given previous observable performances. It runs continuously and, for each
student’s attempt, it measures the probability that the student knows the skill involved.
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Table 1: Features chosen by Univariate Feature Selection.

Feature Name F-Score P-Value
AveKnow 16.88 0.000045 (p < 0.001)
AveCarelessness 18.20 0.000023 (p < 0.001)
hintCount 11.11 0.000908 (p < 0.001)
hintTotal 10.05 0.001601 (p < 0.05)
attemptCount 7.19 0.007514 (p < 0.05)
frPast5HelpRequest 8.58 0.003520 (p < 0.05)
frPast8HelpRequest 5.86 0.015705 (p < 0.05)
past8BottomOut 7.18 0.007538 (p < 0.05)
timeSinceSkill 10.54 0.001234 (p < 0.05)
totalTimeByPercentCorrectForskill 5.37 0.020812 (p < 0.05)
res gaming 4.11 0.042891 (p < 0.05)
Ln-1 16.10 0.000068 (p < 0.001)
Ln 16.89 0.000045 (p < 0.001)
correct 16.56 0.000053 (p < 0.001)
original 8.95 0.002884 (p < 0.05)
hint 14.12 0.000188 (p < 0.001)
bottomHint 10.82 0.001062 (p < 0.05)
frIsHelpRequestScaffolding 5.97 0.014831 (p < 0.05)
timeGreater10SecAndNextActionRight 16.46 0.000056 (p < 0.001)
manywrong 15.97 0.000072 (p < 0.001)

Along with predicting student knowledge, different detectors were able to estimate students’
affective state and disengaged behavior. Research conducted by (Pardos et al., 2013) identified
different affective states such as boredom, engaged concentration, confusion, and frustration.
They also detected students’ disengagement, such as the off-task and gaming-the-system be-
haviors. They performed field observations to track the students’ behaviors while using the
ASSISTments software, and then synchronized these observations with the log data. They then
created automated individual models for each affective state and disengagement behavior. All
these detectors were used in ASSISTments and for each action in the dataset we had records of
the students’ affective state, disengagement as well as their knowledge estimation.

2.5. INITIAL FEATURE SELECTION

The first thing we notice about the dataset is that each row described a single action, while the
predictions were being made for each student. Thus, to predict which students would pursue a
STEM career, we had to change the granularity of our data from the action level to the student
level. The first step in this research was to identify which features were useful and that we
could investigate in our different approaches. So we began by transforming the dataset to the
student level. In fact, for each student, we took the average of the numerical features and the
frequency of 1 (True) in binary features. Then we proceeded to Univariate Feature Selection
using the ANOVA F-Score. We only kept predictors that had a statistically significant relation
to the predicted variable: p value < 0.05. The resulting selected features are shown in Table 1.
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Table 2: Feature set to be used.

Feature Name Meaning
correct Answer is correct
timeTaken Time spent on the current step
bottomHint Bottom-out hint is used
frIsHelpRequestScaffolding First response is a help request Scaffolding
timeSinceSkill Time since the current Knowledge Component (KC)

was last seen.
hint Action is a hint request
attemptCount Total problems attempted in the tutor so far.
manywrong Many wrong answers given
Ln Bayesian Knowledge Tracing’s knowledge estimate

at the time step (Corbett and Anderson, 1995)
res gaming Rescaled of the confidence of the student affective

state’s prediction: gaming-the-system
frPast5HelpRequest Number of last 5 First responses that included a help

request
totalTimeByPercentCorrect
Forskill

Total time spent on this KC across all problems di-
vided by percent correct for the same KC

timeGreater10SecAnd
NextActionRight

Long pause after correct answer

Some of the features shown in Table 1 were highly correlated. For example, the “hintCount”
and “hintTotal” features were notably correlated, as were the “frPast5HelpRequest” and the
“frPast8HelpRequest” features. “AveKnow”, “Ln” and “Ln-1” were measured using the BKT
formulas and thus expressed the same aspect and their correlation was high as well. Also, we
were going to use the “original” feature to measure and generate new features, therefore we did
not use it as a predictor. Accordingly, we reduced the feature set and we added “timeTaken” as
we were curious to see how it would perform in our approaches. The final set of features we
used is presented in Table 2

2.6. MODEL BUILDING APPROACHES

Once we selected the features to investigate, we proceeded to build different prediction mod-
els. For each approach, we followed different feature transformation and selection procedures.
In the baseline model, we continued to use the normal average for numerical features and the
frequency of 1 in binary features, for every student. The first approach consisted of measuring
the students’ performance on the selected features based on the problems they solved. And in
the second approach we evaluated students’ performance based on the skills they practiced. We
wanted to investigate whether using the information about the problems or the skills could im-
prove our predictions. In fact, problems might involve more than one skill in order to find the
correct answer. Therefore, skills are more fine-grained in analyzing students’ aptitudes. More-
over, skills represent a single aptitude or knowledge about a specific concept such as addition,
multiplication, measuring the surface of a square, etc. So far in the dataset we had records of
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3,162 unique problems related to 93 unique skills.

2.6.1. Problem-based Approach

In this approach, we did not take the simple average values (for numerical features) and the
frequency of 1 (for binary features) across all actions. Instead, for each student, we took the
average/frequency problem by problem. The features used are those selected in Table 2, that we
called {selected features}. In the process of measuring the average/frequency, we distinguished
between actions done in an original problem and actions done in a non-original problem. In
fact, in ASSISTments, there are two types of problems. Original and scaffolding. While using
the ASSISTments software, students are asked to solve original problems. If they fail to answer
correctly, they are redirected to scaffolding problems which are sub-components of the original
problem, where the aim is to help students learn the required skills. We considered the differ-
ence between the two types of problems and we added the suffix o and no accordingly. Thus,
we had {selected features} o which are the measured features when the problem is an original
problem (original = 1). And {selected features} no are measured when the problem is not orig-
inal (original = 0). Thus we generated 13*2 features. By the end of the calculation, we had a
dataset in which each row represented a student’s performance in a specific problem. Finally, to
change the granularity to the student level where each row represents only one student, we took
the average values for all 26 generated features. Figure 2 shows how the transformation is done.

2.6.2. Skill-based Approach

In the skill-based approach, we followed the same steps as in the problem-based approach to
transform the dataset. The only difference was that we used the skill, not the problem, when
taking the average/frequency of values. In fact, we measured students’ performances skill by
skill, while differentiating between actions done in original problems and actions done in non-
original problems.

2.7. MODEL FEATURE SELECTION

After generating the problem-based and skill-based datasets, we proceeded to another round of
feature selection. For each approach, we separately used a combination of stepwise forward
feature selection and backward feature elimination. Then, we took the union of the feature sets
that resulted from each feature selection method.

For the problem-based approach, the selection gave us the following features listed in Ta-
ble 3. The selected features set was quite small and contained predictors related to hint usage
in original and non-original problems. Likewise, the behavior of gaming-the-system in non-
original problems was detected as a strong predictor. The correctness, the longtime pauses after
a correct answer and the number of the five last first responses that included a help request, all
in non-original problems, were also selected as strong features. Finally, the average time since
the skill has been seen across original problems was the last strong predictor in the features set.

We ran the same selection process in the skill-based approach and we found different fea-
tures. Table 4 shows the list of selected features for the skill-based approach. The selected
feature set for the skill-based approach was larger than that for the problem-based approach.
Again, we found the behavior of gaming-the-system in non-original problems to be a strong
predictor. The average BKT estimate and the average carelessness both in the original problems
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Figure 2: Feature transformation in the problem-based approach.

were selected this time. Surprisingly enough, they were not selected in the problem-based ap-
proach. We also found that the average time since the skill was seen in non-original problems
was a good predictor, as well as the average correctness in both original and non-original prob-
lems. Likewise, the hint and the bottom hint usage in original problems were detected as strong
predictors. Similarly to the problem-based approach, the longtime pauses after a correct answer
and the number of the five last first responses that included a help request, both in non-original
problems, were also selected as strong features.

2.8. AGGREGATING DATA BASED ON SCHOOLS

Along with these two different approaches in constructing the features, we wanted to investigate
whether comparing students’ performances with their peer schoolmates could improve the pre-
dictions and lead to better performances. Accordingly, for each approach, we built two models
separately. In the first model, we did not make any change in the data, while in the second model
we compared students with their peer schoolmates by measuring the z-score of each feature for
all students, school by school. Figure 3 explains how the school-based aggregation was done.
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Table 3: Final feature set to be used in the problem-based approach.

Features measured in original problems Features measured in non-original problems
avg hint per problem o frPast5HelpRequest per problem no
timeSinceSkill per problem o res gaming per problem no

avg correct per problem no
avg hint per problem no
avg timeGreater10SecAndNext
ActionRight per problem no

Table 4: Final feature set to be used in the skill-based approach.

Features measured in original problems Features measured in non-original problems
Ln per skill o res gaming per skill no
AveCarelessness per skill o timeSinceSkill per skill no
avg correct per skill o frPast5HelpRequest per skill no
avg hint per skill o avg correct per skill no
avg bottomHint per skill o avg manywrong per skill no

avg timeGreater10SecAndNext
ActionRight per skill no

Figure 3: Example of z-scoring within schools.

2.9. OPTIMIZATION AND GENETIC PROGRAMMING

Since we compared different approaches independently, we wanted to find the most adequate
machine learning method with the best hyper-parameters for each approach. To this end, we
used genetic programming as our tool for searching.

Briefly, genetic programming is a technique derived from genetic algorithms in which in-
structions are encoded into a population of genes. The goal is to evolve this population using
genetic algorithm operators to constantly update the population until a predefined condition is
met. The most common ways of updating the population are to use two famous genetic op-

11 Journal of Educational Data Mining, Volume 12, No 2, 2020



erators called crossover and mutation. Crossover is used to diversify the search in the research
space by taking some parts of the parents and mixing them into the offspring. On the other hand,
mutation is the process of updating only some part of an individual and it is used to maintain
the actual diversity, in other words, intensify the search in a certain area of the research space.
The population is evolving from one generation to another while keeping the individuals that
are fittest in regard to one or many objectives. When using genetic programming for machine
learning optimization, we used the pipeline score as the objective function; the pipeline accuracy
score is an example of an objective function which must be maximized.

In our case, we used genetic programming to search through a multitude of machine learning
techniques and their respective hyper-parameters to determine which combination gives the best
results. In fact, genetic programming can be compared to a heuristics-based grid search. Instead
of searching every possible combination of parameters, it only investigates combinations that
are more likely to improve the end result. Thanks to the concept of evolving the population
individuals, it avoids searching in areas that are less likely to give good results and thus makes
the process faster by reducing the iteration/instruction count. When using genetic programming
to optimize the machine learning pipelines, we encoded the machine learning techniques and
their hyper-parameters in an individual. The optimization process then evolves a population of
individuals (therefore a population of machine learning pipelines) and only keeps individuals
with the best scores. By means of the crossover and mutation operators, it explores heuristi-
cally the research space (the possible values of the hyper-parameters) and tries to find the best
combination. However, to use genetic programming, there are several hyper-parameters that we
need to initialize wisely. Even if the use of genetic programming is faster than a grid search,
the quality of the result depends on how much time is given to the process. Therefore, it still
requires a lot of time. In our work, we used a genetic programming python library called TPOT
(Olson et al., 2016).

Table 5: Genetic Programming Hyper-parameters

Generation
count

Population
size

Offspring
size Scoring Mutation

rate
Crossover

rate

Internal
Cross

Validation
200 150 150 AUC 0.9 0.1 5-fold

Table 5 explores the principal hyper-parameters that we had to initialize to run a genetic
programming experiment. The Generation count is the number of iterations of the whole opti-
mization process. A bigger number has a greater chance of leading to better results but also takes
more time to finish. We can also fix a maximum amount of time instead of the Generation count.
The Population size is the number of individuals involved in the optimization process. The Off-
spring size is the number of individuals that are supposed to be generated from the previous
population using the genetic algorithm operators. For each generation (iteration), the parents
and offspring compete to survive and be part of the next generation’s population. When the
individuals compete against each other, we only keep the fittest ones, meaning the individuals
with the best score.

To determine how we choose which individual is the fittest, we must declare the scoring
method in the hyper-parameters. We used the AUC as our scoring method. That means we only
keep the individuals (thus the pipelines) that have the highest AUC values. The Mutation and
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Crossover rates are the probabilities of having respectively a Mutation or a Crossover operation
to evolve one or more individuals. We set them to be a 90% chance of having a mutation
against a 10% chance of having a crossover operation. TPOT evaluates individuals using an
internal cross-validation, thus we can declare how many folds we are willing to use. We set this
parameter to five-fold cross-validation.

Since we were comparing different approaches, we independently ran different optimization
processes, but with the same hyper-parameters. For the problem-based approach, we ran two
optimization processes, one for the normal problem-based approach, and another one where we
used the school-aggregated z-scores. The same process was done with the skill-based approach
as we ran two optimization processes, one for the normal skill-based approach and another for
the z-scored dataset based on schools. Overall, we had five optimization processes: one for the
baseline where we only took the average value of each action for every student, and two for each
approach.

2.10. EXPERIMENTAL RESULTS

Before conducting the experiments, we split the data into training data and testing data to val-
idate the results, after finding the best pipeline for each approach. Due to the unbalanced pro-
portions of the label (isSTEM), the split was stratified on the label so the proportions between
STEM and non-STEM were preserved in the test set. Table 6 shows which methods were cho-
sen for each approach. For the baseline model, in which we just took the average values across
all actions for each student, the optimization process generated a pipeline having Randomized
Decision Trees as the prediction method. In the normal problem-based approach, the resulting
pipeline contained a stacking technique using a Naive Bayes classifier combined with Logistic
Regression. For the problem-based approach with school aggregation, we found that the Ex-
treme Gradient Boosting algorithm had the best results. Similarly, for the normal skill-based
approach, a Gradient Boosting Classifier was chosen. Finally, for the skill-based approach with
school aggregation the best pipeline used a Decision Trees Classifier.

Table 6: Results of the optimization process.

Approach Best pipeline
Baseline Randomized Decision Trees
Problem-based Logistic Regression
Problem-based, school-aggregated XGBClassifier
Skill-based Gradient Boosting Classifier
Skill-based, school-aggregated Decision Trees

Once the optimization process was complete, we proceeded to train all chosen models using
a five-fold cross-validation. The predicted variable consisted of a binary value related to whether
the student pursued a STEM-related career after college. The distribution of the STEM-related
career values was not balanced, as the dataset contained more students that enrolled in STEM-
related careers than students who did not. To deal with this issue, we applied the cross validation
in a stratified way, which implies respecting the proportions of the STEM career outcome in each
fold. When we had to apply the school-based aggregation, we also had to deal with unbalanced
proportions in terms of school data. In fact, the number of students from each school varied.
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Therefore, to consider this aspect of the dataset, we applied the stratified cross-validation in
regard to the STEM career outcome and also the school of the student when we trained our
models involving the school-based aggregation.

To evaluate the quality of our models, we measured the same metrics that were used during
the ASSISTments data mining challenge5 and workshop. The metrics used are AUC and RMSE.
The combined score was calculated as follows:

Score = (1−RMSE) + AUC

As explained in the preface of the workshop (Thanaporn et al., 2018), each metric measures
different aspects of the performance of our models. Using two performance metrics led to more
robust evaluations.

Table 7: Cross-validated scores of all approaches.

Model AUC RMSE Combined Score
Baseline 0.521 0.466 1.055
Problem-based 0.629 0.482 1.146
Problem-based, school-aggregated 0.610 0.474 1.135
Skill-based 0.621 0.461 1.160
Skill-based, school-aggregated 0.682 0.513 1.169

Table 7 shows the scores of the cross-validated models. The best scores for each measure
are shown in boldface. The baseline model had the worst results in AUC and in the combined
score, suggesting that simply taking the average values across all students’ actions was not an
effective concept. The problem-based approach had better results in AUC, attaining 0.629, but
a worse RMSE of 0.482. Its combined score reached 1.146 which is better than the baseline
score. Against our expectations, the aggregation of the features’ values within schools did not
improve the predictions in the problem-based approach. In fact, the school-aggregated model
had a lower AUC, but better RMSE. However, the combined score was worse than the normal
problem-based approach. Compared to the problem-based approach, the skill-based approach
had a significant improvement in terms of RMSE, dropping to 0.461, which is the best RMSE
score among all the models. With a combined score of 1.160, the normal skill-based approach
had a better result than the normal problem-based approach and the school aggregated problem-
based approach. The best AUC score was achieved by the skill-based approach with school
aggregation, which showed a significant improvement, attaining 0.682 in AUC. However, its
RMSE was the highest among all the models, reaching 0.513. Despite the high RMSE, this
model had the best combined score of all the models considered.

3. DISCUSSION AND CONCLUSION

In this paper, we aim to achieve long-term predictions regarding which students would pursue a
career in STEM-related fields. To achieve this objective, we made a comparative study of two
approaches to building the prediction models. These two approaches were also compared to a

5https://sites.google.com/view/assistmentsdatamining/data-mining-competition-2017
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baseline, in which we took the average value of numerical features and the frequency of 1 (True)
in binary features across the actions of each student. This baseline model did not have good
results compared to the other models. The problem-based approach, whether it was school-
aggregated or not, improved the AUC score, but also worsened the RMSE, compared to the
baseline scores. On the other hand, the skill-based approach outperformed the problem-based
approach and the baseline. The best RMSE score was achieved by the normal skill-based model,
and the best AUC was attained by the school-aggregated skill-based approach. Since we wanted
to compare the different approaches and not just compare different machine learning methods,
we gave each approach its best try using genetic programming. In that way, we searched for the
best machine learning pipeline which is appropriate to each approach. This resulted in different
methods being applied to predict students’ STEM careers.

In a direct confrontation between the skill-based and the problem-based approaches, we
found that the normal skill-based model outperformed the normal problem-based model, and
the same was true for school-aggregation. These results can be explained by the fact that build-
ing features around skills gives stronger predictors than the problem-based model. And that’s
because skills are more fine-grained than problems and they better encapsulate the ability of stu-
dents to master the subject. Moreover, problems can be related to one or many skills at the same
time and that’s probably why they are not as effective as the skills in terms of describing the
failing students and the successful ones. Since problems can be related to different skills, when
students master a skill, they are more likely to be successful applying it in different problems
that involve that skill. However, the reverse is not always true, as you can’t generalize from the
problem viewpoint to the skill viewpoint. In other words, mastering one single problem does
not mean mastering all the skills involved in that problem. Moreover, when we investigated the
effect of comparing students’ performances with their peer schoolmates, we found that such ag-
gregation improved our models. Our aim was not to compare which school was the best or had
the best students. Our objective was to verify whether students that had the best performance
relative to their schoolmates were more likely to enroll in STEM-related fields.

The feature selection schema was also effective in picking the right features that were strong
predictors. We took the union of the features picked by stepwise forward feature selection and
backward feature elimination. It is also worth noting that the feature creation process was ef-
fective. For the same feature set, we separated the measurement of its values based on whether
the action happened in an original or non-original problem. That helped us investigate more
thoroughly the difference between students. Actions happening in original problems and scaf-
folding problems did not have the same significance, as original problems are the principal
exercises necessary to complete the task, while scaffolding problems are meant to explain the
skills gradually. When we look at the features measured in original problems and features mea-
sured in non-original problems, we noticed they were different. This suggests that separating
the measures in regard to the type of the problem can extract more meaningful information re-
lated to students’ usage. For example, in the skill-based approach, carelessness was selected as
a strong feature when it was measured in original problems but not in non-original problems.

In our first contribution to the ASSISTments data challenge workshop, we found that the
school-based aggregation performed better than a baseline model. In this paper, we not only
confirmed the same findings about school-based aggregation, but we also improved our predic-
tion models. However, we did not achieve the best results in terms of RMSE or AUC, compared
to the other workshop submissions. Nonetheless, we focused on exploring several aspects of the
dataset that resulted in very interesting findings that might help the tailoring of better intelligent
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tutoring systems. Firstly, we discovered that the performance of the students regarding skills is
more significant than their performance in problems. That means that students’ performances in
the designated skills are stronger predictors than their performance in problems even when they
involve the same skill. Secondly, we found that distinguishing between original and scaffolding
problems when investigating students’ performances, behaviors and affective states grasps more
information. Finally, comparing students to their peer schoolmates has a significant impact on
the prediction models.

All these findings might improve the design of digital learning and assessment platforms.
In fact, the scaffolding concept is not only useful because it helps students learn the required
skills, but also because it can be used for more accurate predictions and reporting of students’
behaviors and performances. Furthermore, skills should get a greater focus of attention since
performances with regard to the required skills have better prediction ability than performances
in problems that might involve those skills.

Overall, the ASSISTments dataset was very rich, and exploring it was instructive. The usage
of genetic programming helped us automate the search for the best machine learning method
with the best hyper-parameters. However, it is still slow even if it is faster than a grid search
method. One solution to overcoming this issue is to limit the research space by specifying the
hyper-parameter value range and how many different machine learning methods the optimiza-
tion process is expected to search. In our case, we did not use the automatic dimensionality
reduction mechanism (e.g., PCA) not only to reduce the execution time but also to keep our
feature exploration and generation methods untouched. Finally, we still have different ideas that
we want to explore within the dataset. In fact, several features can be used and investigated. It
will be particularly interesting to further explore what kind of influence the type of the problem
can have on students. For example, answering a Fill-In question is different from picking the
correct answer from the list of potential correct answers.
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