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A B S T R A C T

This article proposes a data-driven combination of travel times, distance, and collision counts in
urban mobility datasets, with the goal of quantifying how intertwined traffic accidents are in the
road network of a city. We devise a bi-attribute routing problem to capture the tradeoff between
travel time and accidents. We apply this to a dataset from New York City. By visualizing the
results of this computation in a normalized way, we provide a comparative tool for studies of
urban traffic.

1. Introduction

1.1. Motivation

Global, mobility-related technological advances, e.g., Google maps, ride-hailing apps of Didi, Lyft, and Uber, and real-time flight
status data, have enormously influenced travel. This might in fact be called an “age of transportation”. Building on a strong foun-
dation of software and computation, we are at a point of generational change.

Mathematically, the problem of efficiently getting from an origin to a destination is a classical one, leading directly to Riemannian
geometry, the calculus of variations, and later to Dijkstra’s efficient routing algorithm. With the advent of ubiquitous GPS-enabled
cell phones, classical routing problems can be connected to real-time traffic models and estimators.

The purpose of this paper is to rethink routing problems to include safety. We want to: (a) redefine the notion of best path to
include safety, and (b) develop broad measures of accident risk which will allow us to compare cities (cf. Dai et al., 2016). A key goal
is to determine how intrinsic accidents are to traffic patterns. Our work develops a data-driven methodology for combining data sets
to quantify tradeoffs between level of service and safety.

1.2. Problem statement

We aim to study the tradeoff between trip time and accident exposure. Motivated by a constrained optimization (routing)
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problem, we consider the problem of optimally routing a vehicle from an origin to a destination, where optimality in our case is a
combination of minimizing trip duration and maximizing trip safety. Our core question is: how much time would you have to give up to
achieve a certain level of safety?. By asking this in a global way over many trips, we propose a descriptive way of quantifying how
intertwined accidents are in traffic patterns. By further using time-minimizing trips as a point of comparison in computing relative
tradeoffs between trip duration and accidents, we propose a normalized framework for studying and comparing different cities. As
cities of different size and character are experimenting and innovating in mobility, we believe that measures of comparison are
crucial to identifying best practices in urban management and intelligent transportation systems.

1.3. Datasets

Our methods combine three datasets. In this paper, we will apply our calculations to Manhattan Island weekday traffic data. We
require

• speed data on most, if not all the links (directed edges) in a city; we will use Donovan et al. (2016).
• accident data in a city, annotated by time and location; we will use NYPD (n.d.).
• trip data (with some approximation allowed). The dataset of Donovan et al. (2016) is used as the basis of the estimates of Donovan
et al. (2016), Donovan and Work (2016).

An important aspect of our approach is that trip data gives us broad statistical properties of travellers.
A similar approach in (Liu et al., 2019) combines multiple accessible urban datasets to provide insights into emission hotspots in

traffic networks. The authors similarly use taxi data as a proxy for all traffic, but they utilize kriging with additional images of roads
to infer vehicle volume from the taxi data. As more technologies give rise to new and diverse datasets, new insights will become
available; see O’Keeffe et al. (2019), Massaro et al. (2016).

In the context of ride-hailing, Alemi et al. (2019) combines multiple data sources to look for factors (i.e. neighborhood type)
which strongly influence the frequency of ride-hailing service usage. Another data-driven analysis, using unsupervised learning and
visualization, was developed in Dong et al. (2018) to identify and understand spatio-temporal hotspots of ride-sharing activity.

1.4. Related work and contribution

In 1997, the Swedish Parliament passed a bill on traffic safety which stated: “Vision Zero means that eventually no one will be
killed or seriously injured within the road transport system” (Belin et al., 2012; Haq, 2006; Johansson, 2009; Tingvall and Haworth,
2000). As of March 2017, 33 U.S. cities have committed to the Vision Zero effort1 for the design and functioning of the road transport
system (Belin et al., 2012; Johansson, 2009; Tingvall and Haworth, 2000).

By some estimates, more than 50% of the world’s population currently lives in cities, a percentage which is projected to increase
to 70% by the year 2050 (United Nations-World, 2011). The notion of “smart cities” has thus attracted significant attention (Kumar
et al., 2018). Personalized location/direction recommendations based on the behavior of city dwellers on various social-network
profiles have been developed in Benouaret and Lenne (2016), Berjani and Strufe (2011), Dai et al. (2015), Fu et al. (2014), Noulas
et al. (2012), Yang et al. (2015). In the orienteering problem (Gionis et al., 2014; Vansteenwegen et al., 2011), routing problems are
augmented by a set of user benefits along different links. Other routing problems have focused on cost of exposure to crime (Galbrun
et al., 2016) and environmental costs such as fuel consumption (Boriboonsomsin et al., 2012; Dhaou, 2011; Guo et al., 2015a,b;
Minett et al., 2011; Nie and Li, 2013; Rakha et al., 2012; Yang et al., 2018; Yang et al., 2014).

In Bruglieri et al. (2019) the authors study a constrained optimization problem for optimally routing alternative fuel vehicles
where the constraints are related to the fact that vehicles must not run out of fuel. That paper focussed on efficient methods for
solving a fixed optimization problem; our focus is on understanding the relationships among solutions to a parametric family of
optimization problems for an entire network.

Multi-objective optimization techniques are used in Zero et al. (2017), Zografos and Davis (1989) to take travel cost and travel
risk into account when routing hazardous materials. Those works consider routing for a single origin-destination pair; our work
considers an ensemble of origin-destination pairs as a means to understand network-wide properties (and unlike the fuzzy cost
analysis of Zero et al. (2017), we focus on a deterministic analysis).

Our work here is based on historical data; our algorithm is thus descriptive, and not predictive; we make no claim about predicting
accidents. Accidents are affected by a complex combination of road and human factors (Caliendo et al., 2007; Lee et al., 2003; Lord
and Persaud, 2000). The intent here is to provide city-wide measures by which cities (and traffic safety policy implementations) can
be assessed. We claim no contributions to questions of realtime routing.

Routing problems also occur in computer science applications; see Chen and Chin (1990).

1.5. Outline

We start out in Section 2 (Section 2.1) by mathematically formulating a data-related, bi-attribute optimization problem (see also

1 see https://visionzeronetwork.org/resources/vision-zero-cities/.
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Wang et al., 2018; Yang et al., 2014). The corresponding objective function can be defined for a single trip (i.e., an origin-destination
pair) using data consisting of traffic speed estimates and accident counts. We then extend this to a citywide optimization problem by
considering a statistical sample of trips. We also construct (Sections 2.1 and 2.2) several measures on the output of these optimization
problems. These measures are designed to capture the tradeoff between time and accident risk. In Section 3, we apply this analysis to
the dataset mentioned in Section 1.3, starting with a broad description of the data in Section 3.1. Several different perspectives on the
results are in Sections 3.2 and 3.3. An illustration of the comparative aspects of this work is developed in Section 3.4, where the
calculations are specialized to Upper/Central Manhattan. Computational considerations are addressed in Section 3.5. Finally future
work is described in Section 4. Appendix A connects the optimization problem of Section 2.1 to the theory of bi-objective costs. Some
of our results will be parametric plots of tradeoffs; Appendix B reviews some numerical aspects of such plots. Finally, Appendix C
contains an empirical study of desirable monotonicity properties.

2. Setup and theory

2.1. Optimization problem

We start out with a data-related optimization problem, with being a collection of origin-destination O D( , ) pairs (i.e., trips). As
in Donovan and Work (2016), we want to reflect typical travel statistics. For each O D( , ) , let O D( , ) be the collection of
paths which start at O and end at D. Let = O D( , )O D

def
( , ) .

We are interested in several measures of trips. For p , define

=

=

=

p p

p p

p p

A

L

T

( ) historical number of accidents/hr along ,

( ) trip length of ,

( ) trip duration of .

def

def

def
(1)

The normalization by hour in A reflects risk which is stationary over some subset of a day (see Section 3.2). For [0, 1], define a
cost function

= +p p pc T A( ) (1 ) ( ) ( ).def
(2)

For = 0, this cost gives the trip duration; for = 1, it gives the accidents per hour along the path. We will use as a parameter to
capture the tradeoff between risk and travel time (see the figures of Section 3).

For each O D( , ) , we can compute

=O D p p O Dc c( , ) min{ ( ): ( , )}def

and let p O D( , ) be an argmin of this minimization problem; i.e.,

=p O D O Dc c( ( , )) ( , ). (3)

Then p O D( , ) is a geodesic from O to D in the metric defined by c . Since c is additive along links in a path, we can use standard off-
the-shelf routing algorithms (e.g., Dikjstra’s algorithm) to find p O D( , ).

Noting that accidents are integer-valued, the path with the least accidents (minimizing c1) may fail to be unique (two paths from
origin O to destination Dmay both have 5 accidents). Given that trip times are floating point numbers (e.g., one path from O to Dmay
take 14.6 minutes and the other may take 14.99 minutes according to our data), we can usually break any tie in selecting p O D( , )1 (the
path with fewest accidents) in favor of the faster path (the path which takes 14.6 minutes in our example). We do this by lexico-
graphically ordering the (accident,time) pair (with <(5, 14.6) (5, 14.99); see also Appendix A).

In cases where the data of floating-point travel times still does not lead to a unique solution of (3), we take any of the minimizers
(which may depend on software implementations).

As increases, our cost function gives more weight to accidents and less to travel time. See Fig. 1 for some examples of geodesics
between a fixed origin and destination as varies. The path p O D( , )1 passes the fewest accidents, but may take the longest. In fact,
the cost function 2 is connected to solutions to

p p A p O DT Amin{ ( ): ( ) , a path from to }

where A is a prespecified upper limit on the accidents on a path; see Miettinen (1998), Theorem 3.2.5.
From the standpoint of a driver seeking to balance between accident risk and trip time, we can assess the pair O D( , ) in several

ways. Define:

= =O D
p O D
p O D

O D
p O D p O D
p O D p O D

T
T

A L
A L

( , )
( * ( , ))
( * ( , ))

, ( , )
( * ( , ))/ ( * ( , ))
( * ( , ))/ ( * ( , ))

.def

0

def

0 0 (4)

Informally, O D( , ) tells us how much longer (in time) a path is if we try to avoid accidents with strength , and O D( , ) tells us the
accidents per meter (APM) along p , where we normalize the accidents per meter by that of the time minimizing path.

The more accidents are penalized, the more p O D( , ) should deviate from p O D( , )0 (e.g., the absolute safest path between two

D.R. Carmody and R.B. Sowers Transportation Research Part C 108 (2019) 357–377

359



nearby intersections might conceivably follow a long detour to avoid historical accidents). In other words, one should seek safer paths
at the cost of longer (in time) trips. Thus the map p O DT( ( , )) and thus O D( , ) should be increasing.2 Similarly,

p O DA( ( , )) is decreasing, but we have no theoretical assurance that when we divide by path length, as in (4), the resulting
ratios are also decreasing. For a fixed O D p O D p O DA A( , ) , ( ( , )) ( ( , ))1 0 (accidents are decreasing in ), but if p O DL( ( , ))1 is
sufficiently small compared to p O DL( ( , ))0 , then >O D O D( , ) ( , )1 0 .

Remark 2.1. Since (3) reflects a discrete optimization problem parametrized by the continuous parameter , the map p O D( , )
will generically be constant over an interval (of values). For each [0, 1], define

= =p O D p O D{ [0, 1]: ( , ) ( , )},def

Also define : [0, 1] 2 as

=( ) (¯ ( ), ¯ ( )), [0, 1].def

Then

Fig. 1. Paths for different values of from node 2821304137 (green marker) to node 42442247 (red marker). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

2 for simplicity of exposition, when considering monotonicity, “increasing” should more accurately be interpreted as nondecreasing, and “de-
creasing” should more accurately be interpreted as nonincreasing.
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= arc length
arc length

pers( ) ( ( ))
( ([0, 1]))

def

is the percent coverage of the (¯, ¯ )-Pareto Front by (see Appendix A) and measures the normalized “size” of . This gives a
measure of robustness of the best path.

Numerically, we approximate by a piecewise-linear function, in which case arc length is a finite sum of distances in 2 (see
Appendix B). Theoretically, if is differentiable, arc length is defined as an integral against an arc length form. Most generally, arc
length is given by one-dimensional Hausdorff measure.

Fig. 1, for example, shows several paths from node =O 2821304137 to node =D 42442247. Some numerical exploration (using
results of Appendix B) shows that < < < <0.91 pers(1) 0.96, 0.04 pers(0) 0.09, and < <0 pers(0.7) 0.05. A traveller who is unsure of
her or his relative preference for travel time compared to historical accidents per meter might prefer the path p O D( , )1 from O to D, as
compared to p O D( , )0 or p O D p O D( , ); ( , )0.7 1 is the best path for a wider range of ’s.

Fig. 2 shows a plot of the average persistence over all trips of various values of [0, 1]. The global maximum persistence is
achieved at = 0.985, indicating that p O D( , )0.985 is on average a good choice of path for a decision maker who is unsure of their
preference for travel time or safety. Since we are effectively excluding links for which we do not have travel times, the accidents along
p O D( , )1 may in fact be smaller (and travel times larger) in reality than for our model; accident-free paths may significantly meander
in the larger graph corresponding to real travel times. Informally, more missing links may increase this effect, meaning larger values
of persistence at = 1.

Remark 2.2. In Fig. 12 (which is described in (13)), there are a few points which lie above the line =y 1, corresponding to O D( , )
trips for which > =O D O D( , ) 1 ( , )1 0 . For these few O D( , ) trips, O D( , ) thus fails to be decreasing in ; the safest path is
relatively short, even though it may take a longer time. Congestion being one reason why a short path may take a long time, it makes
sense that congested paths which are in fact the safest are also rare.

See Appendix C for a detailed discussion of the monotonicity of .
We are interested in large citywide statistics and datasets; a crucial computational tool is efficient shortest-path algorithms. For

any given trip, time, accidents, and length of trip are extensive quantities which can be written as sums of intensive quantities along
pieces of the path. Accidents per meter, which is a ratio of such extensive quantities, cannot in general be written as such a sum of
intensive quantities along the path (informally, a ratio of sums is not a sum of ratios). For computational efficiency, we thus compute
from the extremals p O D( , ) rather than trying to directly minimize accidents/meter.
We also note that the normalization of (4) means that the units of length (meter vs mile) cancel out.
We can capture the overall statistics of the city by averaging over all O D( , ) ; define

= =O D O D¯ 1 ( , ), ¯ 1 ( , ).
O D O D

def

( , )

def

( , ) (5)

Note that ¯ inherits the appropriate monotonicity in from O D( , ): an average of monotonic increasing functions is
monotonic increasing. However, since the O D( , )’s themselves are not assured to be monotone, we cannot guarantee monotonicity
of ¯ (again, see Appendix C for empirical results).

Tradeoff Plot 1 (APM vs Time). To quantify the macroscopic tradeoff between safety and time from a driver’s perspective, we
parametrically plot <{(¯ , ¯ ): 0 1}. This tells us how much time we would have to give up to achieve a certain reduction in
accidents/meter.

By basing all of our analysis on the cost function (2), we take advantage of a number of relatively nice properties. Given a cost
function which is additive over links, cheapest paths have the property that subpaths of the cheapest path are themselves cheapest
paths. This allows for efficient calculation of various cheapest-path algorithms (e.g., Dijkstra algorithms). Accidents/meter, on the

Fig. 2. Average persistence over all O D( , ) pairs of various [0, 1].
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other hand, is not additive; Fig. 3 shows an example where this subpath property thus fails for accidents/meter. The cheapest path
from A to D is the path A B D with an accident/meter cost of 61 accidents/20m=3.05 accidents/meter. On the other hand, the
cheapest path from A to B is the path A C B with an accident/meter cost of 100 accidents/20m=5 accidents/meter (compared
to 5.1 accidents/meter going directly from A to B); A C B is clearly not a subpath of A B D. Any greedy routing algorithm
will assign to node B the data from the path A C B, which will lead to the algorithm erroneously returning A C B D as
a cheapest path.

2.2. Accidents per vehicle-meter

A city planner might be interested in normalizing by traffic counts as an aid to studying how to best address large-scale mobility
questions. From that standpoint, risk along a road might be proportional to the length of the road and the number of vehicles on the
road; the ratio

×
accidents

vehicle count length (6)

quantifies this risk (in units of accidents per vehicle-meter or vehicle-mile).
We can study the risk factor (6) using calculations like in Section 2.1. For any link , define

=N( ) traffic count along ;def

for any path p, we can then define

= ×pVM N L( ) ( ) ( ),
p

def

(7)

the sum being over the disjoint links in p. This is the accumulated vehicle-meters along a path p, and should informally be
proportional to accident risk (which should increase with both distance travelled and traffic) along the path. It is additive along paths
as are the quantities of (1). To within fluctuations in N and L VM, of (7) scales linearly with the number of links in a path (whereas
multiplying total vehicle count along p and total length of p would lead to scaling which is approximately quadratic in the number of
links). For each O D( , ) , we can also compute

=O D
A VM

A VM
APVM ,

( )/ ( )

( )/ ( )
p O D

p O D

def ( , )

( , )0

which measures the accidents per vehicle-meter for p O D( , ), normalized by that of the travel-time minimizing path p O D( , )0 .
Finally,

= O DAPVM 1 APVM ,
O D

def

( , ) (8)

averages this normalized risk over O D( , ) . Normalization of risk by p O D( , )0 means that quantities like (8) are 1 if = 0.

Tradeoff Plot 2 (APVM vs Time). To quantify the macroscopic tradeoff between safety and time from an urban planning perspective,
we parametrically plot <{(¯ , APVM ): 0 1}. This captures the tradeoff between time and accidents per vehicle-meter for a
statistical sample of drivers.

Fig. 3. A graph with a non-optimal subpath of an optimal path.
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2.3. Traffic density

In order to get a rough comparison between plots involving accidents per meter and accidents per vehicle-meter, we can also
consider traffic density. For any path p, define

=p pD
N

( )
( )

number of links in
.p

(9)

Set

= =O D
p O D
p O D

O D O DD
D
D

; D D( , )
( ( , ))
( ( , ))

, ( , ) 1 ( , )
O D

def

0

def

( , ) (10)

If in fact every road would have the same number of cars, the accidents per vehicle-meter would be proportional to accidents per
meter, and

=
D

APVM ;

even in the absence of this equality, the average density function of (10) will allow us to make some comparisons as varies. We also
note that (9) depends on how links are defined; extraneous link structures (e.g., where a railroad crosses a road) can affect both the
numerator and denominator (and thus the ratio). As our interest in D is to suggest comparisons between and APVM, we do not
process the digraph to find and remove such extraneous link structures.

Tradeoff Plot 3. To quantify the macroscopic tradeoff between safety and traffic density, we parametrically plot <D{( ¯ , ): 0 1}.
This quantifies the relation between accidents/meter and traffic density.

3. Manhattan: calculations, results, and discussion

3.1. The datasets (mentioned in Section 1.3)

Let’s apply these ideas to the datasets listed in Section 1.3. Our model of the street structure of Manhattan Island will be that of
Open Street Map. According to Open Street Map, there are 4468 nodes (intersections) and 9683 links.

The data of Donovan et al. (2016) gives us hourly estimates of the travel times along different links in New York City. To reduce
computational time, we restrict the dataset by randomly selecting one day out of each workweek in 2012. The reduced dataset has a
datetime in the interval

[2012-1-6 00: 00: 00, 2012-12-26 23: 00: 00]

and contains 14,243,122 total traffic speed estimates. Further restricting this data to only those links which begin and end in
Manhattan, we obtain data for 5,633 (roughly 60%) of the 9,683 links in our graph. Links with no travel times are removed from the
graph, so those links are not used by Dijkstra’s algorithm. When computing averages as in (5), we average only over those O D( , ) pairs
joined by a finite cost path. In our dataset, 67,613 (roughly 50%) out of 138,631 total O D( , ) pairs are not joined by a finite cost path.

There may be several realistic reasons why (Donovan et al., 2016) does not have a complete set of estimates; either there was no
traffic on the link, or any “optimizing” taxi driver would have avoided it (due to, e.g., congestion). Assuming that travel times are
stationary on a daily basis, we can nevertheless average across days to get an hour-of-day estimate on each link. In other words, if the
dataset has estimates of the travel time of some link at 8 AM on two different days as 50.84 s and 30.0 s, we will define the travel time

Fig. 4. Estimated travel times (left) and speeds (right).
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on that link to be 40.42 s.
Fig. 4 shows how the estimated travel times and speeds (i.e., link distance, as given by Open Street Map, divided by estimated

time) vary throughout the hours of the day. The geographic distribution of the pace (the reciprocal of speed) is given in Fig. 5.
The accident data of NYPD (n.d.) contains 109, 093 accident reports within the time interval

[2014-01-01 00: 01: 00, 2017-12-29 23: 29: 00] (11)

We here take all the accident counts from NYPD (n.d.); one could alternately choose accidents of only a certain severity. The location
of these accidents is snapped to the nearest Open Street Map node. There are 108,658 weekday accidents in Manhattan in this file;
this amounts to 3.1 accidents/hour. There were only 3,732 unique accident nodes. Fig. 6 shows the count of accidents in the dataset
as a function of hour of day. Fig. 7 gives the geographic distribution of accidents. We note that works such as (Kieu et al., 2018) allow
one to statistically augment datasets such as accidents in ways which preserve observed features.

To assign accidents to links (as opposed to nodes), we say that the accidents at each node are assigned to all links ending in that
node (i.e., to exit a link, one has to pass through the accidents at the exit node). While this synthetically enlarges the accident count in
any snapshot of the data, the routed paths will see each link and node at most once, so the effective accident count is not changed
from the perspective of any driver.

The trip data of Donovan and Work (2016) contains 153,767 trips within the time interval

[2016-02-29 23: 00: 00, 2016-03-30 23: 58: 00].

There are 153,142 weekday trips (based on origin datetime) which begin and end in Manhattan; there are 138,632 unique origin-
destination pairs. Since Manhattan is formally an island, we will assume that it is a geodesically (for all c ) convex subset of the entire
world traffic graph (A directed subgraph H of a directed graph G is said to be geodesically convex with respect to a cost function c if
any c-shortest path in G which begins and ends in H in fact is entirely contained in H.).

In our analysis, we use taxi counts (available from Donovan et al., 2016) as an illustrative proxy for true traffic counts, but

Fig. 5. Pace (slower links have a higher pace value and are in red). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Accident counts.
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recognize that it is a potentially biased dataset. The function APVM could be readily modified when non-biased counts (possibly
available in private companies or from dedicated traffic counting sensors installed by municipalities) are available.

Fig. 8 contains a histogram of the duration of these trips and the distribution of trip origination by hour of day. Fig. 9 gives
geographic distributions of origins and destinations.

Note that the travel time data, the accident data and the trip data are from different years; we have assumed yearly stationarity of
traffic patterns.

In our parametric plots, we restrict to the finite set

= {0, 0.45, 0.61, 0.82, 0.87, 0.91, 0.94, 0.956, 0.967, 0.970, 0.978, 0.984, 0.988, 0.991, 0.996, 1} [0, 1].def
(12)

This collection of is chosen so that the points on Fig. 10 will be relatively evenly spaced.
To show the comparative aspect of our analysis, we compare tradeoffs in normalized accidents/meter and trip time by windowing

our three datasets (trips, travel times, and accidents) to morning rush hour, midday, evening rush hour, and evening/morning. See
Table 1 for precise definitions. We assume that risk is stationary in time over each of these subintervals of the day, so we normalize
the accident counts by the length of the relevant time interval (i.e., 2 accidents at a node during morning rush hour becomes 1
accident/hour) to approximate the accident rate (recall the definition of A in (1)).

3.2. Driver perspective

Plot 1 for this dataset is in Fig. 10. Normalization by the case = 0 in (4) means that every curve in Fig. 10 passes through (1, 1),
when = 0.

As expected, the curves are decreasing; if we are willing to increase time, the accidents/meter decrease. For most origins and
destinations there is a path which provides a safer (historically fewer accidents per meter) alternative to the time minimizing route.
Quantitatively, a 10% decrease in the number of accidents along a path can be achieved, on average, by only a 4% increase in travel
time compared to the time minimizing path. A curve with a steeper negative slope, such as the evening and morning curve, indicates
that there is a larger gain to be made in safety of a given path with relatively less given up in terms of travel time.

Fig. 7. Accidents (nodes in red have higher accident count). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8. Histogram of trip duration (left) and trip count by hour of trip origination (right).
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Fig. 11 gives a bit more insight into the monotonicity in Fig. 10. By definition of p O D( , ) as the argmin of (3), we know that the
trip time increases and the accident count decreases as we increase . Thus the ratio of accidents/trip time must decrease as
increases. Fig. 11 tells us that, on average, trip length (positively) covaries with trip time (both increase together). This suggests that
accidents/meter, as opposed to accidents/minute, will also decrease as is increased.

Combining Figs. 10 and 11, we also note that safer trips in general end up being longer; as increases, the points in Fig. 10 move
down (implying safer routing), and the points in Fig. 11 move up (implying longer trips). It follows that the safer trips will be longer;
this is natural as safer trips need to route around accident-prone areas (see Fig. 1).

Fig. 12 is a scatterplot of

O D O D O D{( ( , ), ( , )): ( , ) }.1 1 (13)

Fig. 9. Spatial distribution of origins (left) and destinations (right); nodes which are more frequent origins or destinations are in red. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Plot 1 for different time windows in Manhattan. Selected values of are highlighted.

Table 1
Time windows.

Label Time window

Whole day 00:00:00–23:59:59
Evening and morning 07:00:00–18:00:00
Morning rush hour 07:00:00–09:00:00
Midday 09:00:00–16:00:00
Evening rush hour 16:00:00–18:00:00
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Each point on the plot indicates the travel time (relative to that of the quickest path) when taking the safest (least number of historical
accidents/hr) path. The centroid of this scatterplot gives the corresponding point in Fig. 10 for = 1. This plot shows the variability
in the conclusion that, for most origin-destination pairs, the c1-cheapest path provides a reasonably fast alternative for drivers
interested in a safer route. As noted in Remark 2.2, a few points in Fig. 12 lie above the horizontal line =y 1, meaning that for the
corresponding O D( , ) , the safest path is short enough that the accidents/meter (as opposed to the accident count itself) is larger
than that of the time minimizing path. These paths might be very congested as both the travel time is longer (since for large we are
de-emphasizing travel time in constructing p O D( , )) and the path length is shorter. Assumedly, these trips would also show an
exception to the generally increasing trend of Fig. 11.

3.3. City planner perspective

Plot 2 for this dataset is in Fig. 13. Again, normalization means that all curves pass through (1, 1) for = 0. These curves,
however, are in general increasing, suggesting that the safest paths have low traffic counts (or at least taxi counts); low enough that if
we normalize the points leading to Fig. 10 by traffic counts, the curve becomes increasing (even though the curves of Fig. 10 were
decreasing). The decrease in traffic density along safer routes outweighs the decrease in accidents per meter. If the normalized traffic
counts on the safest paths are low, the traffic counts on the time minimizing paths should be high; most travellers indeed seek the
time minimizing path.

Plot 3, i.e., Fig. 14, gives more insight into the interaction of accidents/meter and traffic density. As usual, the curves are
normalized to pass through (1, 1) at = 0. Both accidents/meter and traffic density decrease as we increase , thus the plots in
Fig. 14 carve out a curve to the left and down as increases. The parametric plot is thus increasing, confirming that traffic densities
and risk (in accidents/meter) positively covary; more accidents/meter are seen with higher traffic counts. There are more people on
the quicker paths and less on the safer ones. Fig. 15 gives the same conclusion; safer trips take longer and encounter less traffic.

In fact, Fig. 14 suggests a linear relationship between the average traffic density function (10) and accidents/meter; the best fit
line is

= +normalized density 0.991{normalized accidents/meter 1} 1

Fig. 11. Normalized trip length as a function of normalized trip time.

Fig. 12. Scatterplot of O D O D( ( , ), ( , )).99 .99 for all O D( , ) .
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(recall that normalization requires that all curves go through (1, 1)) with correlation determination coefficient =r 0.9542 . This gives
us the sensitivity of normalized accidents/meter with respect to normalized taxi density;

= =change in normalized accidents/meter
change in normalized taxi density

1
0.991

1.01.
(14)

Fig. 13. Plot 2 for different time windows in Manhattan. Selected values of are highlighted.

Fig. 14. Plot 3 for different time windows in Manhattan. Selected values of are highlighted.

Fig. 15. Plot of D(¯ , ¯ ) for in each time window.
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3.4. Upper and central manhattan

The normalized nature of our analysis allows us to carry out comparative analyses on geographically different datasets. As an
indication of this, consider trips which are above the lower end of Central Park—specifically trips which are contained in the part of
Manhattan above the line determined by the (latitude, longitude) points (40.772619,−73.993321), (40.758382−73.959375) (i.e.,
59th St.); see Fig. 16. The space of paths contained in the subgraph corresponding to Upper/Central Manhattan (our abbreviation for
Upper and Central Manhattan) is smaller than the space of paths in all of Manhattan. With this reduction in allowable paths, one
might expect less of an ability to reduce accidents per meter as varies in the Upper/Central Manhattan data. To explain this further
and set up notation for this section, let GM be the directed graph corresponding to our model of all of Manhattan, and let G GU C M/
be the directed subgraph of vertices and edges which lie above the line in Fig. 16. Figs. 10 and 11 tell us that safer paths tend to be
longer, and hence meander more than faster paths. For a given pair of vertices O D( , ) in GU C/ , one might then expect that the faster
paths remain inGU C/ , while the safer paths do not. For a fixed O D G( , ) U C/ , the cheapest path inGM may in fact be cheaper than the
cheapest path restricted to GU C/ , so restricting paths to lie in GU C/ might increase ¯1 (Fig. 19 will support this).

About 20% (41,235 of 209,746) of the trips in our dataset start and end in Upper/Central Manhattan. In Figs. 3 19 and 20, we plot
various tradeoff curves during the morning rush hour for both Manhattan as a whole and for Upper/Central Manhattan. In Figs. 21
and 22 we plot various tradeoff curves during midday hours for Manhattan as a whole and for Upper/Central Manhattan.

Fig. 16. Line delineating Upper/Central Manhattan.

Fig. 17. Heat map of accidents in Upper/Central Manhattan during the morning rush hour.

3 To save space in the plots, we refer to Upper/Central Manhattan as “Upper Manhattan”.
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In particular, in Fig. 19, the curve for Upper/Central Manhattan is above the curve for Manhattan as a whole. For example, if one
is willing to increase trip time by 6%, one can only decrease accidents/meter by about 8% in Upper/Central Manhattan, while one can
decrease accidents/meter by about 11% in Manhattan as a whole. This suggests that accidents are more entwined with Upper/Central
Manhattan morning traffic than with traffic in Manhattan as a whole. This is supported by Fig. 20, where the slope of the Upper/
Central Manhattan curve is smaller than the slope of the overall Manhattan curve; any change in the number of taxis along a path
increases the number of accidents per meter along that path in more Upper/Central Manhattan than along a typical path in Man-
hattan as a whole. Several potential reasons might be:

Fig. 18. Heat map of accidents in Manhattan during the morning rush hour.

Fig. 19. Plot 1 for morning rush hour in Upper/Central Manhattan vs. all of Manhattan. Selected values of are highlighted.

Fig. 20. Plot 3 for morning rush hour in Upper/Central Manhattan vs. all of Manhattan.
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• Accidents are more evenly distributed over paths in Upper/Central Manhattan than Manhattan as a whole during the morning
rush hour. This can be visually inferred from the heat maps in Figs. 17 and 18. If all paths pass a similar number of accidents, it
may be difficult to find a safer route.
• Upper/Central Manhattan is not geodesically convex (as a subgraph of all of Manhattan; the definition of geodesic convexity was
given in Section 3.1). For 35% of the O D( , ) pairs in the graphGU C/ of Upper/Central Manhattan, the c1-minimizing path inGU C/ is
different than the c1-minimizing path in the graph GM of Manhattan as a whole. To break 35% up in detail, 13% of the O D( , ) pairs
have no finite cost path inGU C/ , but do have a finite cost path inGM . The other 22% have a cheaper (with respect to c1) path inGM
thanGU C/ . Because we only average over finite cost paths when computing ¯ , these 22% of O D( , ) pairs are what contribute to the
difference in ¯1 for the two curves in Fig. 19.
On the other hand, there are no finite-cost c0-minimizing paths inGU C/ which are longer than their counterparts inGM (though for
13% of the O D( , ) pairs there is a finite cost path minimizing c0 in GM , but no such optimal path in GU C/ ), confirming our intuition
that c0-minimizing paths between vertices in GU C/ tend to remain in GU C/ .

For the Upper/Central Manhattan midday dataset, we expect the normalized tradeoff between accidents and travel time to be less
than the corresponding tradeoff in Manhattan (as a whole) for the same reason as for the morning rush hour data; there are strictly
fewer route choices in Upper/Central Manhattan. Fig. 22 confirms this. As increases from 0 to 1, the curve for Upper/Central
Manhattan is (end-to-end) steeper than that of Manhattan as a whole; the same overall (vertical) variation of normalized traffic
density equates to a smaller change in accidents/meter in Upper/Central Manhattan than in Manhattan as a whole. One potential
reason for the difference between morning and midday behavior in Upper/Central Manhattan in Figs. 20 and 22 would be an increase
in route choice for the midday data in Upper/Central Manhattan. Because our travel time data has more entries in the midday time
window as compared to the morning rush hour window, more links in our graph are assigned a finite cost, and hence are viable
choices for Dijkstra’s algorithm. Indeed, there are 2.2 times as many finite cost trips in the midday data for Upper/Central Manhattan
as compared to the morning data for Upper/Central Manhattan. If this is indeed the reason, we would expect the analogue of Fig. 22
for the entire day’s data to look similar. Fig. 23 supports this.

3.5. Computational considerations

We carried this work out on an NVIDIA Geforce 1070 FE processor with 8 GB GDDR5 (256-bit) on-board memory plus 1920 CUDA

Fig. 21. Plot 1 for midday in Upper/Central Manhattan vs. all of Manhattan. Selected values of are highlighted.

Fig. 22. Plot 3 for midday in Upper/Central Manhattan vs. all of Manhattan.
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cores. The traffic network was modeled as a directed graph with 4,468 nodes and 9,683 links. The computationally intensive part of
the work is finding the cheapest paths (according to (2)) for each (O,D) pair (see Sabran et al., 2014).

For each origin-destination pair, we use Dijkstra’s shortest path algorithm to compute a shortest path. Because the trips in any
given window comprise less than 1% of the trip space (the 44682 possible origin destination pairs), this is much faster than using the
Floyd-Warshall algorithm to compute all shortest paths in the graph then specializing to the trips in our window. More specifically,
we use the Python package networkx’s Dijkstra algorithm, which uses a min-priority queue implemented via a binary heap. One can
achieve slightly better amortized runtime using a min-priority queue based on the Fibonacci heaps as developed by Fredman and
Tarjan (1987); for graphs of our size, however, bookkeeping considerations make a binary heap faster.

As we vary , we can parallelize the calculations by assigning the computations for each to a different processor. We use the
Python multiprocessing.Pool.map function to simultaneously compute a dictionary of cheapest paths with respect to the cost function
c for . Since our server has 16 processors and we compute for 16 values of , this reduces the computation time by a factor of
16.

4. Future work

The analysis developed here could be adapted to a number of datasets. With datasets from two different cities, we could build
comparative analytics (along the lines of Section 3.4). We could also investigate our various stationary assumptions. As weather
patterns change, transients in driving patterns may make the various tradeoffs become more pronounced. The accident data of NYPD
(n.d.) contains additional information detailing the cause of the accident; one could carry out comparative analyses for accidents of
different severity.

We might also investigate Fig. 14 for other cities; is a linear relation generally applicable, and if so, what would be the sensitivity
as in (14)? This would give another point of comparison.

We could also investigate why monotonicity fails, more particularly if there are any commonalities in the points above the line
=y 1 in Fig. 12. If so, this might suggest specific situations against which to test new safety policies.
It would also be interesting to see if “ best” paths become self-correcting. Drivers may avoid intersections known to be dangerous,

eventually leading to less accidents along those paths (the perspective of Section 2.2). A related direction would be to carry out an
analysis before and after safety policies (stop signs, traffic lights) have been implemented.

Appendix A. Bi-objective decision making

We here recall some aspects of a weighted-sum model as applied to the problem of choosing a “best” path which minimizes both
travel time and accidents/meter.

For a fixed O D( , ) , define the bi-objective 2-valued cost function

=p p pT AObj ( ) ( ( ), ( ))O D( , )
def

for all p O D( , ). Defining also the linear map

= +b t a t a t a( , ) (1 ) , ( , )def 2

from 2 , we have that

=c p b p p O D( ) (Obj ( )). ( , )O D( , )

for all O D( , ) and p O D( , ). Standard results Miettinen (1998) then imply that any paths which minimize c over any fixed

Fig. 23. Plot of D( ¯ , ¯ ) for in Manhattan and Upper/Central Manhattan for non time-windowed data.
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O D( , ) must occur on the Pareto optmal front of O DObj ( ( , ))O D( , ) . This simplifies some aspects of our problem.
To develop these thoughts, recall the partial order on 2 defined by Pareto dominance. For t a( , ) and t a( , ) in t a t a, ( , ) ( , )2 if

t t and a a , while t a t a( , ) ( , ) if t a t a( , ) ( , ) but either <t t or <a a .
For O D( , ) , the set

=O D t a O D t a O D t a t aPF ( , ) {( , ) Obj ( ( , )): there does not exist ( , ) Obj ( ( , )) with ( , ) ( , )}.O D O D
def

( , ) ( , )

of non-minorized points in O DObj ( ( , ))O D( , ) is the Pareto optimal front of O DObj ( ( , ))O D( , ) ; the preimage of the optimal front is the
Pareto optimal set

=O D O DPS , Obj PF ,O D
def

( , )
1

Extrema of (the linear function) b , when restricted to O DObj ( ( , ))O D( , ) , must then (Miettinen, 1998) occur at

O D O DObj ( ( , )) ext(conv(Obj ( ( , )))),O D O D( , ) ( , ) (15)

where, for any subset S of S, conv( )2 denotes its convex hull, S denotes its closure, and Sext( ) denotes the collection of extremal
points if S is convex. It follows that extrema of the composite function c must then occur on those parts of the Pareto optimal sets
which are in the pre-image of (15).

Averaging allows us to consider all trips simultaneously; an average is minimal only when the terms in the average are minimal.
Set

= ppObj( ) 1 Obj ( )
O D

O D O D
def

( , )
( , ) ( , )

for all = pp ( )O D O D( , ) ( , ) in the set

= ×× O D( , ).O D
def

( , )

This has Pareto optimal front

= × ×t a t a t a t aPF {( , ) Obj( ): there does not exist ( , ) Obj( ) with ( , ) ( , )}.def

and Pareto optimal set

=PS Obj (PF ).def 1

We then have that

= × O DPS PS ( , ),O D( , )

meaning that the average is indeed minimal when each path is minimal. Then p O D( ( , )) O D( , ) must be somewhere in the
Obj-preimage of

× ×Obj( ) ext(conv(Obj( ))),

The objective function Obj allows us to combine the optimizations of Section 2 over all O D( , )’s in into a single calculation.

Appendix B. Parametric plot

Assume that we have two functions 1 and 2 in C ([0, 1]), and we wish to numerically approximate the parametric plot

=G {( ( ), ( )): (0, 1]}.def
1 2

We wish to do so under the further assumption that 1 and 2 are computationally expensive to evaluate.
Let’s start with a sequence

= …I I I( , )N
def

1 2 (16)

of subintervals of (0, 1] such that

=I ( , ]n n n
def

1

for …n N{1, 2 }, where = < < … =0 1N0 1 . Define

= + <( ) ( ) ( )i i n
n

n n
i n

n

n n
n n

def 1

1
1

1
1

for each …n N{1, 2 }; we can then set
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=G ( ) {( ( ), ( )): (0, 1]}.i
def

2 (17)

With intervals as in (16), we can create a new collection of intervals by splitting the one which corresponds to the largest segment
of the graph of (17). Define

=n argmax | ( ) ( )| ;
n N i i n i n

def

1 {1,2} 1
2

if the argmax is not unique, we randomly choose one of the elements of the set-valued argmax. We then define

= +
2

n ndef 1

and consider a new sequence of intervals

= … …+
+T I I I I I I I( ) ( , , , , )n n n n N

def
1 2 1 1 (18)

where

= =+I I( , ] and ( , ].n n n n
def

1
def

Setting =0 def ( given by (16)), we can then iteratively define = T ( )d d( ) def ( 1) for …d {1, 2 }
We have that G ( )d( ) converges to G.

Theorem 4.1. We have that

=lim sup | ( ) ( )| 0.
d i i i

(0,1] {1,2}
2d( )

Proof. Let be the modulus of continuity of ( ( ), ( ))1 2 ;

=

<

( ) sup
, [0, 1]

| ( ) ( )| .
i i i

def
{1,2}

2

For intervals such as (16), define the approximate modulus of continuity

=( ) max | ( ) ( )| .
n N i i n i n

def

1 1 {1,2} 1
2

The widths of the In’s of (16) are

…{ , , }.N N1 0 2 1 1

The widths of the intervals of (18) is

… …+{ }, , , ,
2

, , .n n
n n

n n N N1 0 2 1 1 2
1

1 1 1

We further have that

= =( ) max | ( ) ( )| | ( ) ( )| ( )n N i i n i n i i n i n n n1 {1,2} 1
2

{1,2} 1
2

1 (19)

Thinking of the intervals of (16) as the first generation of parents, only one parent has a child in each generation, where (18) is the
next generation after (16). The d-th generation will then have widths

…{ }2
,

2
,

2
,p d p d

N N
p d

1 0
( )

2 1
( )

1
( )N1 2

where the p d( )n ’s are nonnegative integers and == p d d( )n
N

n1 . Since N is fixed (the number of intervals in 0), we must have that

=p dlim ( )
d n (20)

for at least one …n N{1 }.
Assume now that

+ = +p d p d( 1) ( ) 1n n (21)

(i.e., at generation d, one of the descendants of In has a child) then, analogous to (19),

( )
2

.d n n
p d

( ) 1
( )n (22)

Let n( ) be the set of d such that (21) holds. From (20), =n( ) and
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=
d

d n

p dlim

( )

( ) .n

Thus

=
d

d n

lim

( )
2

0.n n
p d

1
( )n

The continuity of ( ( ), ( ))1 2 implies that + =(0 ) 0, so

=
d

d n

lim

( )
2

0.n n
p d

1
( )n

Combining this with (22), we then have that

=
d

d n

lim

( )

( ) 0.d( )

(23)

Let’s now look at other parent intervals In, starting with the initial generation. From (23), we have that

<

¬ =
n N

n n

( ) min
1

| ( ) ( )| ,d

i
i n i n

( )

{1,2}
1

2

1/2

for some sufficiently large generation d in n( ). In other words, ( )d( ) is eventually smaller than the variation of the i’s between
other parent endpoints. On or before that generation, one of the other In’s must thus have had a child. Successive repetitions imply
that at least one of the other In’s must thus have an infinite number of descendents. Repeating this again, we see that all In’s must have
an infinite number of descendents. Consequently,

=
d

d n

lim

( )
2

0n n
p d

1
( )n

for all …n N{1, 2 }, and thus

=lim max
2

0.
d n N

n n
p d1

1
( )n (24)

If is as in (16) and ( , ]n n1 for some …n N{1, 2 }, then

= +

+

+

}

| ( ) ( )|

( ) ( )

( ) ( )

| ( ) ( )|

| ( ) ( )|

( ).

i
i i

i
i n i n

i i

i
i n i

i
i n i

n n

n n

{1,2}

2

1/2

{1,2}
1

2 1/2

{1,2}

2

{1,2}
1

2

1

1

n
n n

n
n n

n
n n

n
n n

n
n n

n
n n

n
n n

n
n n

1
1 1

1
1 1

1
1

1

1
1 1

where we have used Minkowski’s inequality and the fact that is nondecreasing. Thus

<
sup | ( ) ( )| max .

i
i i n N

n n
0 1 {1,2}

2

1/2

1
1

In the d-th generation, this becomes
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<
sup | ( ) ( )| max

2
.

i
i i n N

n n
p d

0 1 {1,2}

2

1/2

1
1

( )
d

n

( )

The claim then follows from (24). □

To terminate the iterative algorithm in finite time with some intended accuracy, let’s fix a threshold and say that the graph (17)
is -approximate if

=
max | ( ( ) ( )| | ( ( ) ( )| ;

n N i
i i n i n

n

N

i i n i n
1 {1,2}

1
2

1/2

1
1

2
1/2

i.e., if the distance between succesive vertices in (17) is (percent) of the length of (17). We terminate the iterative procedure of the
d( )’s when d( ) is -approximate.
To approximate persistence as defined in 2.1, we find a 0.05-approximate collection of , and use to find a piecewise linear

approximation of

{(¯ ( ), ¯ ( )): [0, 1]}.

Using this piecewise linear approximation to compute approximate arclength, we can give upper and lower bounds on the persistence
of a given .

Appendix C. Monotonicity of accidents per meter

As mentioned in Section 2.1, the function O D( , ) of (4) is not theoretically guaranteed to be decreasing for any given
O D( , ) . For a fixed O D( , ) , we are guaranteed that p O DT( ( , )) is increasing and p O DA( ( , )) is decreasing. We
are of course thus assured that p O D p O DA T( ( , ))/ ( ( , )) is decreasing. If p O DL( ( , )) increases with p O DT( ( , )), then

O D( , ) must also be decreasing. Fig. 11 empirically does show that T and L both vary in the same direction. We also note that
Fig. 10 suggests that ¯ is decreasing; as is parametrically increased along each curve, the points fall lower and lower in the
plot. To more directly study monotonicity of O D( , ), enumerate of (12) in increasing order. We then define

=O D
O D
O D

Mon ,
( , )
( , )i

def i

i 1

for each O D( , ) pair and then define

= =O D
O D
O D

Mon Mon1 , 1 ( , )
( , )i

O D
i

O D

def

( , ) ( , )

i

i 1

If O DMon ( , ) 1i for a given trip O D( , ), then O D( , ) is nonincreasing on { , }i i1 . If Mon 1i , then O DMon ( , ) 1i on
average. Fig. 24 shows that Monmax 1i i1 15 and thus O D( , ) should on average be decreasing for each O D( , ) .

Appendix D. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.trc.2019.09.020.

Fig. 24. Plot of Moni as a function of i to demonstrate monotonicity on average of O D( , ).

D.R. Carmody and R.B. Sowers Transportation Research Part C 108 (2019) 357–377

376

https://doi.org/10.1016/j.trc.2019.09.020


References

Alemi, F., Circella, G., Mokhtarian, P., Handy, S., 2019. What drives the use of ridehailing in California? Ordered probit models of the usage frequency of uber and lyft.
Transp. Res. Part C: Emerg. Technol. 102, 233–248. URL. http://www.sciencedirect.com/science/article/pii/S0968090X18318849.

Belin, M.-Å., Tillgren, P., Vedung, E., 2012. Vision zero–a road safety policy innovation. Int. J. Injury Control Safety Promot. 19 (2), 171–179.
Benouaret, I., Lenne, D., 2016. A composite recommendation system for planning tourist visits. In: 2016 IEEE/WIC/ACM International Conference on Web Intelligence

(WI), pp. 626–631.
Berjani, B., Strufe, T., 2011. A recommendation system for spots in location-based online social networks. In: Proceedings of the 4th Workshop on Social Network

Systems’, SNS ’11. ACM, New York, NY, USA, pp. 4:1–4:6. https://doi.org/10.1145/1989656.1989660.
Boriboonsomsin, K., Barth, M.J., Zhu, W., Vu, A., 2012. Eco-routing navigation system based on multisource historical and real-time traffic information. IEEE Trans.

Intell. Transp. Syst. 13 (4), 1694–1704.
Bruglieri, M., Mancini, S., Pisacane, O., 2019. More efficient formulations and valid inequalities for the green vehicle routing problem. Transp. Res. Part C: Emerg.

Technol. 105, 283–296.
Caliendo, C., Guida, M., Parisi, A., 2007. A crash-prediction model for multilane roads. Accident Anal. Prevent. 39 (4), 657–670.
Chen, Y., Chin, Y., 1990. The quickest path problem. Comput. Oper. Res. 17 (2), 153–161.
Dai, J., Yang, B., Guo, C., Ding, Z., 2015. Personalized route recommendation using big trajectory data. In: Data Engineering (ICDE), 2015 IEEE 31st International

Conference on. IEEE, pp. 543–554.
Dai, J., Yang, B., Guo, C., Jensen, C.S., Hu, J., 2016. Path cost distribution estimation using trajectory data. Proc. VLDB Endowment 10 (3), 85–96.
Dhaou, I.B., 2011. Fuel estimation model for eco-driving and eco-routing. In: Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE, pp. 37–42.
Dong, Y., Wang, S., Li, L., Zhang, Z., 2018. An empirical study on travel patterns of internet based ride-sharing. Transp. Res. Part C: Emerg. Technol. 86, 1–22. URL.

http://www.sciencedirect.com/science/article/pii/S0968090X17302954.
Donovan, B., Mori, A., Agrawal, N., Meng, Y., Lee, J., Work, D., 2016a. New York City hourly traffic estimates (2010–2013). https://doi.org/10.13012/B2IDB-

4900670_V1.
Fredman, M.L., Tarjan, R.E., 1987. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34 (3), 596–615. URL. http://doi.acm.org/

10.1145/28869.28874.
Fu, K., Lu, Y.-C., Lu, C.-T., 2014. Treads: a safe route recommender using social media mining and text summarization. In: Proceedings of the 22Nd ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems’, SIGSPATIAL ’14. ACM, New York, NY, USA, pp. 557–560. URL: http://doi.acm.org/
10.1145/2666310.2666368.

Galbrun, E., Pelechrinis, K., Terzi, E., 2016. Urban navigation beyond shortest route: the case of safe paths. Inform. Syst. 57, 160–171. URL. http://www.sciencedirect.
com/science/article/pii/S0306437915001854.

Gionis, A., Lappas, T., Pelechrinis, K., Terzi, E., 2014. Customized tour recommendations in urban areas. In: Proceedings of the 7th ACM International Conference on
Web Search and Data Mining’, WSDM ’14. ACM, New York, NY, USA, pp. 313–322. URL: http://doi.acm.org/10.1145/2556195.2559893.

Guo, C., Yang, B., Andersen, O., Jensen, C.S., Torp, K., 2015a. Ecomark 2.0: empowering eco-routing with vehicular environmental models and actual vehicle fuel
consumption data. GeoInformatica 19 (3), 567–599.

Guo, C., Yang, B., Andersen, O., Jensen, C.S., Torp, K., 2015b. Ecosky: Reducing vehicular environmental impact through eco-routing. In: Data Engineering (ICDE),
2015 IEEE 31st International Conference on. IEEE, pp. 1412–1415.

Donovan, Brian, Work, D., 2016b. New York City taxi trip data (2010–2013). https://doi.org/10.13012/J8PN93H8.
Haq, G., 2006. Vision zero: Adopting a target of zero for road traffic fatalities and serious injuries.
Johansson, R., 2009. Vision zero–implementing a policy for traffic safety. Saf. Sci. 47 (6), 826–831.
Kieu, T., Yang, B., Jensen, C.S., 2018. Outlier detection for multidimensional time series using deep neural networks, in ‘2018 19th. In: 2018 19th IEEE International

Conference on Mobile Data Management (MDM). IEEE, pp. 125–134.
Kumar, H., Singh, M.K., Gupta, M., Madaan, J., 2018. Moving towards smart cities: Solutions that lead to the smart city transformation framework. Technological

Forecasting and Social Change. URL: http://www.sciencedirect.com/science/article/pii/S004016251731394X.
Lee, C., Hellinga, B., Saccomanno, F., 2003. Real-time crash prediction model for application to crash prevention in freeway traffic. Transp. Res. Rec. J. Transp. Res.

Board 1840, 67–77.
Liu, J., Han, K., Chen, X.M., Ong, G.P., 2019. Spatial-temporal inference of urban traffic emissions based on taxi trajectories and multi-source urban data. Transp. Res.

Part C: Emerg. Technol. 106, 145–165.
Lord, D., Persaud, B., 2000. Accident prediction models with and without trend: application of the generalized estimating equations procedure. Transp. Res. Rec. J.

Transp. Res. Board 1717, 102–108.
Massaro, E., Ahn, C., Ratti, C., Santi, P., Stahlmann, R., Lamprecht, A., Roehder, M., Huber, M., 2016. The car as an ambient sensing platform [point of view]. Proc.

IEEE 105 (1), 3–7.
Miettinen, K., 1998. Nonlinear Multiobjective Optimization. Springer, US, Boston, MA.
Minett, C.F., Salomons, A.M., Daamen, W., Van Arem, B., Kuijpers, S., 2011. Eco-routing: comparing the fuel consumption of different routes between an origin and destination

using field test speed profiles and synthetic speed profiles. In: Integrated and Sustainable Transportation System (FISTS), 2011 IEEE Forum on. IEEE, pp. 32–39.
Nie, Y.M., Li, Q., 2013. An eco-routing model considering microscopic vehicle operating conditions. Transp. Res. Part B: Methodol. 55, 154–170.
Noulas, A., Scellato, S., Lathia, N., Mascolo, C., 2012. A random walk around the city: New venue recommendation in location-based social networks. In: 2012

International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, pp. 144–153.
NYPD, P.D., n.d. Nypd motor vehicle collisions. https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95.
O’Keeffe, K.P., Anjomshoaa, A., Strogatz, S.H., Santi, P., Ratti, C., 2019. Quantifying the sensing power of vehicle fleets. Proc. Nat. Acad. Sci. 116 (26), 12752–12757.
Rakha, H.A., Ahn, K., Moran, K., 2012. Integration framework for modeling eco-routing strategies: logic and preliminary results. Int. J. Transp. Sci. Technol. 1 (3),

259–274.
Sabran, G., Samaranayake, S., Bayen, A., 2014. Precomputation techniques for the stochastic on-time arrival problem, in ‘2014. In: Proceedings of the Sixteenth

Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, pp. 138–146.
Tingvall, C., Haworth, N., 2000. Vision zero: an ethical approach to safety and mobility. In: 6th ITE International Conference Road Safety & Traffic Enforcement:

Beyond’, vol. 1999, pp. 6–7.
United Nations-World Urbanization Prospects: The 2011 revision, 2011. http://www.un.org/en/development/desa/population/publications/pdf/urbanization/

WUP2011_Report.pdf.
Vansteenwegen, P., Souffriau, W., Oudheusden, D.V., 2011. The orienteering problem: a survey. Eur. J. Oper. Res. 209, 1–10.
Wang, J.Y., Dirks, K.N., Ehrgott, M., Pearce, J., Cheung, A.K., 2018. Supporting healthy route choice for commuter cyclists: the trade-off between travel time and

pollutant dose. Oper. Res. Health Care.
Yang, B., Dai, J., Guo, C., Jensen, C.S., Hu, J., 2018. Pace: a path-centric paradigm for stochastic path finding. VLDB J. Int. J. Very Large Data Bases 27 (2), 153–178.
Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S., 2014. Stochastic skyline route planning under time-varying uncertainty, in ‘2014. In: 2014 IEEE 30th International

Conference on Data Engineering (ICDE). IEEE, pp. 136–147.
Yang, B., Guo, C., Ma, Y., Jensen, C.S., 2015. Toward personalized, context-aware routing. VLDB J. Int. J. Very Large Data Bases 24 (2), 297–318.
Yang, B., Kaul, M., Jensen, C.S., 2014. Using incomplete information for complete weight annotation of road networks. IEEE Trans. Knowl. Data Eng. 26 (5), 1267–1279.
Zero, L., Bersani, C., Paolucci, M., Sacile, R., 2017. Multi-objective shortest path problem with deterministic and fuzzy cost functions applied to hazmat transportation

on a road network, in ‘2017 5th. In: IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS)’, pp. 238–243.
Zografos, K., Davis, C., 1989. Multi-objective programming approach for routing hazardous materials. J. Transp. Eng. 115.

D.R. Carmody and R.B. Sowers Transportation Research Part C 108 (2019) 357–377

377

http://www.sciencedirect.com/science/article/pii/S0968090X18318849
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0010
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0015
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0015
https://doi.org/10.1145/1989656.1989660
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0025
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0025
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0030
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0030
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0035
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0040
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0045
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0045
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0050
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0055
http://www.sciencedirect.com/science/article/pii/S0968090X17302954
https://doi.org/10.13012/B2IDB-4900670_V1
https://doi.org/10.13012/B2IDB-4900670_V1
http://doi.acm.org/10.1145/28869.28874
http://doi.acm.org/10.1145/28869.28874
http://doi.acm.org/10.1145/2666310.2666368
http://doi.acm.org/10.1145/2666310.2666368
http://www.sciencedirect.com/science/article/pii/S0306437915001854
http://www.sciencedirect.com/science/article/pii/S0306437915001854
http://doi.acm.org/10.1145/2556195.2559893
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0095
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0095
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0100
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0100
https://doi.org/10.13012/J8PN93H8
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0110
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0115
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0115
http://www.sciencedirect.com/science/article/pii/S004016251731394X
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0125
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0125
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0130
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0130
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0135
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0135
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0140
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0140
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0145
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0150
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0150
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0155
https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0170
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0175
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0175
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0180
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0180
http://www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf
http://www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0195
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0200
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0200
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0205
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0210
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0210
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0215
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0220
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0225
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0225
http://refhub.elsevier.com/S0968-090X(18)31630-9/h0230

	Tradeoffs between safety and time: A routing view
	Introduction
	Motivation
	Problem statement
	Datasets
	Related work and contribution
	Outline

	Setup and theory
	Optimization problem
	Accidents per vehicle-meter
	Traffic density

	Manhattan: calculations, results, and discussion
	The datasets (mentioned in Section 1.3)
	Driver perspective
	City planner perspective
	Upper and central manhattan
	Computational considerations

	Future work
	Bi-objective decision making
	Parametric plot
	Monotonicity of accidents per meter
	Supplementary material
	References




