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Abstract— We have developed and experimented with an
approach to teach low-level Java concurrency abstractions in our
first required course for CS majors, which assumes knowledge of
procedural programming. The driving problems are visualized
simulations of multiple physical objects in motion that may (a) be
confined to a shared space and (b) coordinate with each other. Such
simulations do not require any domain-specific knowledge such as
sorting and image processing for driving problems and exercises,
and their implementation demonstrates the benefits of object-
based programming. They allow focus on both the performance
and programmability benefits of concurrency, provide analogies
for an abstraction-independent explanation of concurrency
concepts, and can be used to incrementally motivate all low-level
concurrency abstractions and visualize the effect of using and not
using these abstractions. Layered simulation-based worked
examples illustrating the abstractions were presented and easily
understood in multiple offerings of a course that implemented this
approach. Students implemented non-trivial assignments based on
these abstractions, even when they were optional, did not face
major obstacles because of visual error feedback, and were excited
by concurrency as they felt it empowered them to implement
arbitrary applications early.

Keywords—education, simulations, animations, object-oriented
programming, thread creation, synchronized methods, wait, notify,
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1. INTRODUCTION

The motivation for teaching concurrency is relatively
straightforward. It is replete with concepts that are difficult to
self-learn and are the foundation for a variety of fields such as
high-performance computing, real-time systems, operating
systems, programming languages, distributed and cloud
computing, and software engineering. Recent advances in
computer hardware have increased the range of systems that
make practical use of concurrency, and thus, increased its
importance.

This increase has spurred interest in pedagogical methods for
teaching concurrency and the coupled concept of distributed
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computing, together often referred to as PDC (Parallel and
Distributed Computing). The National Science Foundation has
started a center to encourage such methods [1], which, in turn,
has produced a book on this topic [2].

Arguably, the research resulting from these efforts has only
scratched the surface in the field of concurrency education.
Teaching of sequential programming is still an active research
area, even though such programming has been extensively
taught ever since computing was invented. On the other hand,
concurrency has been taught mainly in niche, typically
nonrequired and/or graduate courses, such as operating systems
and real-time systems. Many recent efforts have suggested
adding concurrency earlier to courses that have traditionally
addressed only sequential programming. As there are many
ways to couple concurrency concepts with a course on
sequential computing, the design space of concurrency
education is larger than that of sequential-programming. Yet
another argument for more work in this area is provided by
Ghafoor et al [3], who estimate that less than 10% of the
universities and community colleges that offer CS/CE degrees
cover concurrency at the undergraduate level.

Our university traditionally covered concurrency only in one
undergraduate course — the operating system course — which is
not required and is typically taken by juniors and seniors. This
paper describes the author’s effort to introduce concurrency in
the first required course for CS majors, referred to as our target
course. It assumes knowledge of procedural programming.

In this paper, we focus on the contribution this effort makes
to the field of concurrency education. The novelty of a
pedagogical method can manifest itself in both the set of
requirements it attempts to meet and the approach used to meet
these requirements. In other words, the method can be
distinguished by both what it is trying to cover and how it is
meeting its goal. We address both aspects below.

We first develop a requirement space for describing a range
of practical requirements existing PDC pedagogical methods
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have been developed to meet. We then identify a new point in
this space that, to the best of our knowledge, no published paper
in this area has met. The remainder of the paper presents a key
idea in our work to meet our goal —using simulations of multiple
physical objects as driving problems in worked examples and
student exercises.

II. REQUIREMENT SPACE AND GOAL

Concurrency can be introduced in a special course on this
concept [4] or added to one [5-8] or more [9, 10] courses
addressing different topics/domains in computer science.

The evolutionary approach has been taken in many efforts,
and they can be distinguished by the topic of the course to which
concurrency is added. Some introduce concurrency in the very
first course on programming [5, 8]. Others have assumed prior
experience with programming and have targeted CS2 [7, 8] or
upper-level courses [11, 12]. Typically, CS2 is a data structure
course, in which many have introduced concurrency(7, 8].

TABLE L DOMAIN VS. CONCURRENCY ORIENTATION

Orientation

Concurrency Oriented

[4]
[5-10](this paper)

Domain-Oriented

TABLE IL DOMAINS/TOPICS EMBELLISHED WITH CONCURRENCY
Domain
Intro. Programming [5, 13]
Data Structures [7, 8]
Object-Based Programming | (this paper)
Upper-Level Courses [11,12]

A course on parallelism must not only introduce the notion
of concurrency but also abstractions for implementing it. Some
concurrency courses cover high-level/declarative abstractions
such as message-passing [5] and fork-join and reduce [6, §];
while some address low-level/procedural ones such as explicit
thread-creation [7, 13]. The low-level abstractions offer more
flexibility but require more code to program.

TABLE IIL RANGE OF CONCURRENCY ABSTRACTIONS
Abstraction-Level
Low- Threads, synchronization [7, 13] and
Level/Procedural this paper; Runnable interface,
coordination (This paper)
High- [5-8]
Level/Declarative

A related issue is the programming language in which these
abstractions are supported. These languages have included a
visual programming language called Scratch [5], C [4, 8],
Python [5, 6], and Java [7, 13].

TABLE V. LANGUAGES USED FOR PROGRAMMING CONCURRENCY

Language Kind
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Visual Scratch[5]

Procedural C[4, 8]

Object-based Python[5, 6]; Java [7, 13], this
paper

There are two complementary reasons for making a program
concurrent. The first is to make an algorithm faster but not easier
to program by executing parallelized tasks concurrently. The
second is to make an algorithm easier to program but not faster.
In this approach, the automatic context-switching offered by
concurrency abstractions relieves the programmer from
implementing it.

Most of the surveyed work has focused on performance,
discussing parallelization of a variety of tasks such as scanning
[6], sorting [6, 7], Monte Carlo Pi estimation [4], image
processing [3, 4] and printing [5], that can execute faster when
multiple cores/processors are available. Arguably, this
parallelization makes programming of these tasks more difficult
as it requires the additional steps of thread creation and
typically, synchronization and coordination.

A striking example of the dual approach is using parallel
communicating threads to make it easier to program a person
moving with a ball [5] — the person and ball can be made
separate threads that communicate with each other. As these
threads are closely coupled and represent one autonomous
activity, parallelization would reduce performance because of
the overhead of thread creation and message passing.

Other examples have taken a hybrid approach by targeting
multiple autonomous activities such as the Conway Game of
Life [4, 14], and the Frogger™, Tetris and Centipede games,
multiple independent ATM withdrawals [4, 13], and a single
server connected to multiple clients [15]. Parallelization both
saves programmers from implementing context-switching of
such activities and increases performance when multiple cores
are available.

TABLE V.
Metric

CONCURRENCT DIRIVING PROBLEMS

Driving Problems

Scanning [6]; Sorting [6, 7]; Monte
Carlo Pi estimation [4]; Image
processing [3, 4]; Conway Game of
Life [4, 14]; Frogger™, Tetris and
Centipede games [13], Objects in
Motion (this paper)

Performance

Programmability Single ball-mover animation [5];
Conway Game of Life [4, 14]; ATM
Withdrawals [4, 13],

Frogger™, Tetris and Centipede
games [13], Objects in Motion (this
paper)

Our target course assumes knowledge of the basic
procedural programming concepts of primitive types, arrays,
loops and procedures, and is taken by many freshmen. It does
not cover data structures, and goes beyond the basic concepts by
teaching object-based programming in Java [16]. We designed
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the concurrency addition to meet the following unique set of
requirements:

1. Integration with object-based programming - the topic of
the target course.

Coverage of all concurrency concepts provided by the Java
language - thread creation by implementing a runnable
interface or extending a thread class, synchronized
methods, wait, notify, notifyAll - but not the higher-level
Java library constructs such as fork-join and thread pools.
3. Focus on both performance and programmability benefits

of concurrency.

To the best of our knowledge, no other published method on
early concurrency meets requirements 1 and 2. Table III shows
that coordination (notify and notifyAll) is not addressed by
surveyed methods covering low-level concurrency abstractions.
Table IV shows that none of these methods has considered
adding concurrency to a course that focuses on object-based
programming and assumes knowledge of procedural
programming. In other words, we know of no other effort that
has experimented with teaching all Java language abstractions
in a course on object-oriented programming that focuses on both
programmability and performance benefits. We describe below
how we have met this unaddressed set of requirements.

2.

II1.

Ideally, a course introducing concurrency must have the
following four components.

AUTONOMOUS INTERACTING OBJECTS IN MOTION

1. An abstraction-independent explanation of the concepts of
interleaved and concurrent execution of multiple activities
within a process, and synchronization and coordination of
them.

Layered explanations of the behavior of a set of thread

abstractions to support such activities.

3. Layered worked-examples that illustrate these abstractions
by showing (a) how they can be programmed to implement
realistic driving problems, and (b) the (programmability,
performance and correctness) consequences of using and
not using the abstractions for the problem.

Layered student exercises to use these abstractions.
Courses on operating system take the further step of also
explaining the implementation of concurrency abstractions. The
challenge in early introduction of concurrency is to include these
four components without addressing the implementation of
thread abstractions. Our key idea to meet this challenge was
using as driving problems visual simulations of autonomous
interacting objects in motion. This idea has been implicitly used
in the design of several assignments (Table V). Here we
explicitly articulate and motivate it as a foundation for
concurrency analogies, driving problems, and exercises.

4.

A. Rationale

There are many reasons for choosing such objects in a course
introducing both object-based programming and concurrency.

Real-Life Analogies: These objects occur in real life; thus,
they can be wused for analogies to provide an
abstractionindependent explanation of concurrency.

Prerequisite Free: Their parallel computer simulations can
be motivated without requiring knowledge of other
computerscience concepts such as image processing.
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Demonstrate Benefits of Object-based Programming:
Simulations of physical phenomenon are particularly suited for
object-based programming (the first object-based language,
Simula-67, was targeted at simulations), the subject of our target
course.

Programmability and Performance: These objects represent
multiple autonomous activities; thus, their parallelization offers
both programmability and performance benefits.

Synchronization Illustration: By confining them to a shared
space, synchronization constructs — in our course, Java
synchronized methods - can be motivated and explained.

Coordination Illustration: By choosing cooperating objects,
coordination constructs — in our course, Java wait, notify and
notifyAll - can be motivated and explained.

Concurrency Visualization: The effect of using concurrency,
synchronization and coordination mechanisms correctly can be
visualized.

Layered, Incremental Introduction: It is possible to create
related driving problems and exercises that require concurrency
but not synchronization or coordination, and those that require
synchronization but not coordination, allowing these three
concepts to be introduced and implemented incrementally.

B. Analogies

Analogies involving physical objects in motion allowed us
to meet the goal of providing an abstraction-independent
explanation of concurrency. Two hands juggling three balls
(Figure 1(a)) corresponded to two processors executing three
threads. Preventing collision among three balls in a shared space
(Figure 1(a)), two cars in the same lane (Figure 1(b), vehicles at
an intersection (Figure 1(c)), and two cooperative runners
exchanging batons (Figure 1(f)) corresponded to safe access to
shared data by concurrent synchronized threads. Runners
(Figure 1(e)) and vehicles (Figure 1(b)) allocated to different
lanes corresponded to safe access to different data structures by
unsynchronized threads. Baton exchange between two
cooperating relay runners (Figure 1(f)) corresponded to thread
coordination to achieve some joint task.

(d)
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Fig. 1. Analogies involving Objects in Motion

C. Prerequisites and Layering of Worked Examples

All of our worked examples involve the animation of a space
shuttle from the origin of a Cartesian Plane to a destination
coordinate. (The icon for the shuttle remains horizontal through
its flight.) This animation is implemented by an animator object
that provides an animateFromOrigin method, which takes as
arguments a shuttle object and its destination. The method
moves the shuttle first in the Y direction and then in the X
direction by calling the animateYFromOrigin and
animateXFromOrigin  methods, respectively. In  some
coordinated examples, the animators make use of two different
objects, called “clearance managers”, responsible for notifying
waiting animators. Multiple implementations of the animator
and clearance managers are used in the examples, which are
related by inheritance. Also, the user-interface in the worked
examples was implemented using the Model-View-Controller
design pattern [16, 17]. Thread implementation through
subclassing of the Thread class and implementation of the
Runnable interface was covered. Therefore, the examples and
underlying concepts were introduced after interfaces,
inheritance and MVC are taught. With a different, less modular,
coding style, they could be taught after interface or inheritance.

D. Sequential vs Concurrent Execution

To illustrate the difference between sequential and
concurrent method execution, we created a sequential and
concurrent worked example. In the sequential example, a single
thread executes animateFromOrigin sequentially in two
instances of AShuttleAnimator to move two different shuttles.
In the concurrent case, two different threads execute the method
in two different animator instances controlling separate shuttles.

Figures 2 (a, b) and 3 (a, b) shows the difference in the
behavior of the two programs. In the sequential case, the X
coordinate of the left shuttle changes, while the right shuttle
remains stationary, as we transition from snapshot (a) to (b). In
the concurrent/interleaved case, the Y coordinates of both
shuttles change in snapshots (a) and (b), giving an appearance
of concurrent movement.

The console traces in Figure 2(c) and Figure 3(c) show the
difference in algorithms in the two cases. In the sequential case,
a single animator object (AShuttleAnimator@1901648626)
executes the Y and X Loops in the main thread created
automatically by Java. In the concurrent case, the main thread
uses the Java Thread object to create and start two threads,
[Shuttle Animation 1,5,main] and  [Shuttle Animation
2,5,main], respectively, which use two different animator
objects, to execute the animateFromOrigin method. As a result,
the traces produced by the two executions are interleaved.
Figure 3(c) also shows the asynchronous code execution
possible with thread creation — the parent thread terminates with
a message before the children it created finish execution.
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E. Synchronized vs Unsynchronized Concurrency

To illustrate the need for thread synchronization, we create
two instances of AShuttleAnimator that control a single shuttle,
taking it along the paths (y', y'%, ...) and (¥*, y?2 ...,
respectively. We fork from the main thread two threads that
concurrently execute the animateFromOrigin method in the two
animators.

a) Shuttle! at Position X'!, Shuttle? Stationary

b) Shuttle! at Position X'2, Shuttle? Stationary

Thread[main,5,main] started animating in Y Direction
in:AShuttleAnimator@1901648626

Thread[main,5,main] finished animating in Y Direction
in:AShuttleAnimator@1901648626

Thread[main,5,main] started animating in X Direction
in:AShuttleAnimator@1901648626

Thread[main,5,main] finished animating in X Direction
in:AShuttleAnimator@1901648626

Thread[main,5,main] started animating in Y Direction
in:AShuttleAnimator@2144912729

Thread[main,5,main] finished animating in Y Direction
in:AShuttleAnimator@2144912729

Thread[main,5,main] started animating in X Direction
in:AShuttleAnimator@2144912729

Thread[main,5,main] finished animating in X Direction
in:AShuttleAnimator@2144912729

Main terminates

c) Single Main Thread, Single Animator, Two Controller Shuttles
Fig. 2. Independent Serial Shuttle Animators

a) Shuttle! at Position Y'!, Shuttle? at Position Y2!

= |

b) Shuttle! at Position Y'2, Shuttle? at Position Y2!

Thread:Thread[main,5,main] has started Thread[Shuttle Animation
1,5,main]

Thread:Thread[main,5,main] has started Thread[Shuttle Animation
2,5,main]

Main terminates

Thread[Shuttle Animation 2,5,main] started animating in Y Direction
in:AShuttleAnimator@673226183

Thread[Shuttle Animation 1,5,main] started animating in Y

Direction in:AShuttleAnimator@2114748546

Thread[Shuttle Animation 2,5,main] finished animating in Y
Direction in:AShuttleAnimator@673226183

Thread[Shuttle Animation 2,5,main] started animating in X Direction
in:AShuttleAnimator@673226183

Thread[Shuttle Animation 1,5,main] finished animating in Y
Direction in:AShuttleAnimator@2114748546

Thread[Shuttle Animation 1,5,main] started animating in X Direction
in:AShuttleAnimator@2114748546
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Thread[Shuttle Animation 1,5,main] finished animating in X
Direction in:AShuttleAnimator@2114748546
(c) Two Animators, Two Created Interleaved Threads

Fig. 3. Independent Concurrent Shuttle Animators

Figure 4(a..d) shows that when the method is not
synchronized, the shuttle oscillates between the trajectories
computed by the animators taking y coordinates (y'!, y*!, y'?,
y** ,...). Figure 5(a..d) shows that when the method is
synchronized, the shuttle first follows the trajectory computed
by the first animator, taking Y positions (y'!, y'? ...), and then
the trajectory computed by the second animator, taking Y
positions (y*!, y*, ...). Figure 4(e) and 5(e) trace the fact that
in both cases the same algorithm executes, involving two
animators and threads. The difference is interleaving of Y
movements in the unsynchronized case — the second shuttle
starts movement in the Y direction before the first one finishes
movement in that direction.

F. Internal vs External Coordination

Thread coordination involves concurrent activities that are
related to each other and together accomplish some larger goal.
As mentioned earlier, in our analogies of Figure 1, they
correspond to runners racing competitively or cooperatively in
arace (Figure 1(e, f)).

The activities of a set of related threads may be coordinated
internally by each of the threads or be controlled externally by a
single thread. In our analogies, internal control corresponds to
two cooperating runners ensuring they coordinate their baton
exchange themselves, while external control corresponds to a set
of runners waiting for a whistle from a referee to start the race.
In our shuttle example, this corresponds to a set of shuttles going
on a joint mission. In the external case, their flights are
controlled by methods of an external air traffic controller object
being executed by a separate thread, or internally by the methods
of their animators executed by different threads. In both cases,
the animator methods perform blocking wait operations. In the
internal case, they also execute notify or notifyAll, while in the
external case, a thread manipulating the external controller
(which itself does not wait) executes the unblocking operations

G. External Coordination

To support external coordination, we built a special
visualized class called AClearanceManager, whose wait method
can be called in a synchronized method to block a thread. An
instance of this class displays the queue of threads that are
waiting to be notified. The class also provides a Proceed button
to interactively execute its notify method in a synchronized
method called proceed. We also implemented a special case of
this class, ABroadcastingClearanceManager, which provides an
additional Proceed All button to call notifyAll in a synchronized
method called proceedAll to unblock all waiting threads.

Figure 6 shows the use of a global AClearanceManager. Two
separate shuttles are controlled by two different animators,
which, this time, are instances of
AShuttleAnimatorWatitingForClearance. They are like the ones
we saw earlier, except that they execute the wait method in the
AClearanceManager at the start of their animateFromOrigin
method. Figure 6(a) shows them in the displayed queue. Figure
6(b) shows the effect of interactively pressing the Proceed
button. The first animator is removed from the queue and starts
moving its shuttle. Figure 6(c) shows that clicking the Proceed
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button again dequeues the second thread, which now starts
animating the second shuttle.

Figure 6(c) shows the behavior of the wait calls executed by
the animateFromOrigin method of the new animator. The
execution by the first (second) thread is blocked until the first
(second) execution of the notify call in the clearance manager
by the AWT (user-interface) thread.

i

e u
(b) At Pos y?! (d) At Pos y?!
Thread:Thread[main,5,main] has started Thread[Shuttle Animation
1,5,main]
Thread[Shuttle Animation 1,5,main] started animating in Y
Direction in:AShuttleAnimator@1817260044
Thread:Thread[main,5,main] has started Thread[Shuttle Animation
2,5,main]
Thread[Shuttle Animation 2,5,main] started animating in Y Direction
in:AShuttleAnimator@1817260044
Thread[Shuttle Animation 1,5,main] finished animating in Y Direction
in:AShuttleAnimator@1817260044
Thread[Shuttle Animation 1,5,main] started animating in X
Direction in:AShuttleAnimator@1817260044
Thread[Shuttle Animation 2,5,main] finished animating in Y
Direction in:AShuttleAnimator@1817260044
Thread[Shuttle Animation 2,5,main] started animating in X
Direction in:AShuttleAnimator@1817260044
Thread[Shuttle Animation 1,5,main] finished animating in X
Direction in:AShuttleAnimator@1817260044

(e) Two Threads, No Synchronization

(a) At Pos y'! (c) At Pos y'?

Fig. 4. Single Shuttle Controlled by Two Unsynchronized Animators

By

L u L i
(a)At Pos y'! (b) At Pos y'2 (c) At Pos y?! (d) At Pos y?2
Thread:Thread[main,5,main] has started Thread[Shuttle Animation
1,5,main]
Thread[Shuttle Animation 1,5,main] started animating in Y
Direction in:ASynchronizedShuttleAnimator@1890996505
Thread:Thread[main,5,main] has started Thread[Shuttle Animation
2,5,main]
Thread[Shuttle Animation 1,5,main] finished animating in Y
Direction in:ASynchronizedShuttleAnimator@1890996505
Thread[Shuttle Animation 1,5,main] started animating in X
Direction in:ASynchronizedShuttleAnimator@1890996505
Thread[Shuttle Animation 1,5,main] finished animating in X Direction
in:ASynchronizedShuttleAnimator@1890996505
Thread[Shuttle Animation 2,5,main] started animating in Y
Direction in:ASynchronizedShuttleAnimator@1890996505
Thread[Shuttle Animation 2,5,main] finished animating in Y
Direction in:ASynchronizedShuttleAnimator@1890996505
Thread[Shuttle Animation 2,5,main] started animating in X
Direction in:ASynchronizedShuttleAnimator@1890996505
Thread[Shuttle Animation 2,5,main] finished animating in X Direction
in:ASynchronizedShuttleAnimator@1890996505

e) Two Threads, With Synchronization

Fig. 5. Single Shuttle Controlled by Two Synchronized Animators

To illustrate notiifyAll, we created animators whose
animateFromOrigin  method performs a wait on
ABroacastingClearanceManager. As before, the method
executions by the two threads block. Figure 7(b) shows that
when the Proceed All button is pressed, both threads are
unblocked. Figure 7 (c) shows that the button press results in
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ABroacastingClearanceManager calling notifyAll in the AWT
thread, which causes all waiting threads to unblock from their
wait calls.

Proceed

‘Thread[f\nimatmn Thread O,Ei,main]ii
‘Thread[Animation Thread 1,6, main]

< I i

(a) Both Threads Waiting in Queue

Proceed

1: Thread[Animation Thread 1,6, main]

‘ il

(b) First Thread Dequeued by notify, Starting First Animation

Proceed

(c) Second Thread Dequeued by notify, Starting Second Animation

Thread[Animation Thread 0,6,main] before wait
Thread[Animation Thread 1,6,main] before wait
Thread[ AWT-EventQueue-0,6,main] after notify
Thread[Animation Thread 0,6,main] after wait

Thread[Animation ~ Thread  0,6,main] started animating in Y Direction
in:AShuttleAnimatorWatitingForClearance@ 1783146483
Thread[ AWT-EventQueue-0,6,main] after notify
Thread[Animation Thread 1,6,main]:after wait
Thread[Animation Thread 1,6,main] started animating  in
Y Direction in:AShuttleAnimatorWatitingForClearance@62182667

d) Traces of notify and wait calls
Fig. 6. Externally Coordinated Launch of a Single Shuttle at a Time

Proceed All
Thread[Animation Thread 0,6, main]

2: Thread[Animation Thread 1,6,main]
L e — 1]

(a) Both Threads Waiting in Queue

Proceed
Proceed All

(b) Both Threads Dequeued by notifyAll, Starting Both Animations

Thread[AWT-EventQueue-0,6,main]: after notifyAll

Thread[Animation Thread 0,6,main]: after wait

Thread[Animation Thread 1,6,main]: after wait
(c) notifyAll unblocks all waits

Fig. 7. Externally Coordinated Launch of Multiple Shuttles at a Time
H. Internal Coordination

As mentioned earlier, the coordination in Figures 6 and 7
corresponds to flight takeoffs being controlled by an external
agent such as an air traffic controller. Once in air, shuttles should
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be responsible for coordinating their trajectories. To simulate
such internal coordination, we implemented the ALock class,
which has a Boolean variable. It offers a lock operation that
waits if the Boolean is true and unlock operation that invokes
notify and sets the Boolean to false. We created a new kind of
animator, AControlledShuttleAnimator. Before (after) calling
animateY FromOrigin, the method calls the lock (unlock)
operation on a lock. We created three instances of this class that
use the same lock, and three threads to execute their
animateFromOrigin method on three different shuttles. Figure
8(a..d) shows the coordination among the three animators.

| el

(a) Three Shuttles Ready to Launch

- -

(b) First Animator Gets Lock for Y Axis and Launches First Shuttle

e

(d) Third Animator Gets Released Lock and Launches Third Shuttle

Thread[Animation Thread ©,6,main] waiting for
lock:lectures.animation.threads.wait_notify.lock.ALock@5145d7f@
Thread[Animation Thread ©,6,main] got
lock:lectures.animation.threads.wait_notify.lock.ALock@5145d7f@
Thread[Animation Thread ©,6,main] started animating in Y
Direction in:AControlledShuttleAnimator@1248334686 Thread[Animation
Thread 1,6,main] waiting for
lock:lectures.animation.threads.wait_notify.lock.ALock@5145d7f@
Thread[Animation Thread 2,6,main] waiting for
lock:lectures.animation.threads.wait_notify.lock.ALock@5145d7f@
Thread[Animation Thread ©,6,main] finished animating in Y
Direction in:AControlledShuttleAnimator@1248334686
Thread[Animation Thread ©,6,main] returning from releaselock
Thread[Animation Thread ©,6,main] started animating in X
Direction in:AControlledShuttleAnimator@1248334686

(e) Three lock operations, each unlock causes the oldest lock to unblock
Fig. 8. Internally-Coordinated Launch of Multiple Shuttles

The animateYFromOrigin method of all three animators
execute the lock operation of the shared instance of ALock. The
first animator gets the lock first, and keeps it until it reaches its
highest Y position (Figure 8(b)). At this point, the method
releases the lock, allowing the second waiting animator to start
animating in the Y direction (Figure 8(c)), which releases its
lock when it reaches its highest position, causing the last
animator to start moving its shuttle (Figure 8(d)). The trace of
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Figure 8(e) shows that each unlock causes the oldest lock
invocation to unblock.

1. Project and Experience

As mentioned earlier, our target course focuses on
objectbased programming, whose benefits are manifested in
large evolving programs. Therefore, the course requires a set of
layered assignments that together implement a semester-wide
project. The nature of the projects we have given is inspired by
the Alice programming environment [18], which allows novice
programmers to interactively implement and call procedures
that create and manipulate objects in a predefined 3-D virtual
environment. In our projects, students do not use a predefined
Alice environment; instead, they implement from scratch an
Alice-inspired project that provides commands to manipulate
objects in a 2-D virtual environment. The projects have varied.
For instance, one of the projects has been a Halloween
simulation of “trick or treat” [15]. The most recent project
simulates the bridge scene in the movie “Monty Python and the
Holy Grail” in which King Arthur and his knights attempt to
cross a bridge after answering questions posed by a guard.

A virtual environment is particularly well suited for
concurrency assignments involving objects in motion. We
illustrate using the Bridge Scene project. To exercise
concurrency, students create animators that make avatars of
Arthur, Galahad, Robin and Lancelot move simultaneously. To
exercise synchronization, they synchronize access by multiple
threads that manipulate the same knight. To exercise thread
coordination, taking liberties with the bridge scene, they create
threads and animators that make the knights clap to a beat set by
the guard. The concurrency abstractions can be used directly in
the implemented simulations or indirectly by end-users of the
simulation who interactively call commands to create and
coordinate threads.

Figure 9(a..c) shows the end-user entering commands to
create synchronized clapping. Figure 9(a) defines the beat
procedure to simulate a single beat, which makes the guard tuck
its arms in, sleep for 500ms, spread its arms out, call proceedAll
in ABroadcastingClearanceManager, and then sleep for 200ms.
Figure 9(b) defines the beats procedure to simulate multiple
beats, which calls beat 5 times. Figure 9(c) invokes the beats
procedure in a separate thread.

Before calling the beat procedure, the user calls an animation
method for each knight, executed by a separate thread, that
moves the knight’s arms in and out in response to notifications
from the clearance manager. Thus, when the beat procedure is
called, the knights and guard move their arms in unison — when
the guard moves his arms out (in), so do the knights, as shown
in Figure 9(d) (Figure 9(e)).

The author has taught the concurrency-augmented target
course once almost every year since Fall 2012. Concurrency,
synchronization, and coordination have been parts of the last
three assignments (A10, A11, A12), respectively, which are also
responsible for command parsing and interpretation (the bulk of
the assignments), implementation and use of generic types,
implementation and use of exception classes, and undo/redo. In
all of these offerings, A1-A9 were required. In different
offerings, some or all features of A10-A12 were made extra
credit based on the quizzes added to the course.

62

rogram

define beat {call guarddrmsin proceedAll sleep 500 call guarddrmsOut proceedAll sleep 200}

(a) Interactive Definition of a Single Beat

rogram

l Common A
define beats rsue.ﬂrs call beat

(b) Interactive Definition of a Beat Sequence
| Common  ASimulationinterpretervith SmaliCannedProgram

hread beats

(=

(e) Coordinated Guard and Knight Arms In

Fig. 9. Knights Clapping to a Beat Set by the Guard

Table VI shows two data points. In Fall 2012, all three
assignments were required, and almost all students who
submitted the last concurrency-unware assignment also
submitted the concurrency-aware ones. In Fall 2018, all three
were optional. Though students had less time and incentive to
implement the concurrency-aware assignments, almost half of
them did so. Our experience shows that (a) the visual approach
made it easy for students to understand concurrency and the Java
language abstractions for supporting it, (b) the concurrency
aspects of the assignments did not create major obstacles in any
of our offerings, as they were applications of the concurrency
patterns [8, 19] demonstrated in the worked examples and gave
visual feedback in case of errors, and (¢) students felt excited
by concurrency as they believed its knowledge empowered them
to implement any application. This excitement is consistent with
that reported in other work [13].
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TABLE VI REQUIRED VS OPTIONAL CONCURRENCY ASSIGNMENTS
Semester | A8 A9 Al10 All Al2
F2018 61 59 45 33 28
F2012 73 70 67 67 67

IV. SUMMARY AND FUTURE WORK

The contributions of this paper are (a) a five-dimensional
(Tables I to V) space that succinctly compares the goals of
existing work on concurrency pedagogy, (b) identification of a
new practical point in this space, (c) motivation of a visual
approach to support this point, (d) and layered worked examples
and project-based exercises that implemented this approach in
multiple offerings of our target course.

While we have implemented our approach in a singlemodule
course on Java object-based programming, the general idea is
applicable in a variety of contexts. The presentation of this idea
in this paper has shown no Java code. Thus, it can be applied to
a course taught in other object-based languages by
implementing the driving problems and clearance managers in
these languages. It can also be applied to a course in other
languages such as C by providing more labor-intensive code for
creating worked examples and student exercises. It is
particularly suitable for a multi-module introduction to
concurrency, wherein our worked examples and assignments
can be an additional module taught in Java or other languages.

It will be attractive to create such ports as future work, and
to use our current examples directly in the large number of
Javabased courses offered today that cover the prerequisite for
our concurrency module — interfaces or inheritance. Future work
can also address how the concurrency concepts and worked
examples should be learned by students — should they participate
in live lectures, watch videos, or do hands-on manipulation of
worked examples [5], or use some mix of these techniques? It
would also be useful to explore early introduction of starvation
and deadlock. Further work is needed to develop techniques for
automatic assessment of concurrent programs to both help
grading of finished exercises and provide guidance while they
are being developed
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