Autotuning of double dot devices in situ with machine learning

Justyna P. Zwolak,'>* Thomas McJunkin,> ¥ Sandesh S. Kalantre,>* J. P. Dodson,? E. R. MacQuarrie,?
D. E. Savage,” M. G. Lagally,®> S. N. Coppersmith,? % Mark A. Eriksson,?2 and Jacob M. Taylor! 34

! National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
2Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
3 Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
4 Joint Center for Quantum Information and Computer Science,

University of Maryland, College Park, Maryland 20742, USA
5 Department of Materials Science and Engineering,

University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
8School of Physics, The University of New South Wales, Sydney, New South Wales, Australia
(Dated: April 1, 2020)

The current practice of manually tuning quantum dots (QDs) for qubit operation is a relatively
time-consuming procedure that is inherently impractical for scaling up and applications. In this
work, we report on the in situ implementation of a recently proposed autotuning protocol that
combines machine learning (ML) with an optimization routine to navigate the parameter space. In
particular, we show that a ML algorithm trained using exclusively simulated data to quantitatively
classify the state of a double-QD device can be used to replace human heuristics in the tuning of
gate voltages in real devices. We demonstrate active feedback of a functional double-dot device
operated at millikelvin temperatures and discuss success rates as a function of the initial conditions
and the device performance. Modifications to the training network, fitness function, and optimizer
are discussed as a path toward further improvement in the success rate when starting both near and

far detuned from the target double-dot range.

I. INTRODUCTION

Arrays of quantum dots (QDs) are one of many candi-
date systems to realize qubits—the fundamental building
blocks of quantum computers—and to provide a platform
for quantum computing [1-3]. Due to the ease of control
of the relevant parameters [4-7], fast measurement of the
spin and charge states [8], long decoherence times [9-11],
and recent demonstration of two-qubit gates and algo-
rithms [12-14], QDs are gaining popularity as candidate
building blocks for solid-state quantum devices. In semi-
conductor quantum computing, devices now have tens
of individual gate voltages that must be carefully set
to isolate the system to the single electron regime and
to realize good qubit performance. At the same time,
even tuning a double QD constitutes a nontrivial task,
with each dot being controlled by at least three metallic
gates, each of which influences the number of electrons
in the dot, the tunnel coupling to the adjacent lead, and
the interdot tunnel coupling. The background potential
energy, which is disordered by defects and variations in
the local composition of the heterostructure, further im-
pedes this process. In order to reach a stable few-electron
configuration, current experiments set the input voltages
heuristically. However, such an approach does not scale
well with growing array sizes, is prone to random errors,
and may result in only an acceptable rather than an op-
timal state. Moreover, with an increasing number of QD
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qubits, the relevant parameter space grows exponentially,
making heuristic control even more challenging.

Given the recent progress in the physical construction
of larger arrays of quantum dots in both one and two
dimensions [15, 16], it is imperative to have a reliable
automated protocol to find a stable desirable electron
configuration in the dot array, i.e., to automate finding a
set of voltages that yield the desired confinement regions
(dots) at the intended positions and with the correct
number of electrons and couplings, and to do it efficiently.
There have been a number of recent proposals on how to
achieve these tasks, including computer-supported algo-
rithmic gate voltage control and pattern matching for
tuning [17-21] and a machine-learning-guided protocol
aimed at reducing the total number of measurements [22].
However, while these tuning approaches to a lesser or
greater extent eliminate the need for human intervention,
they are tailored to a particular device’s design and need
to be adjusted if used on a different one. Moreover, most
of these approaches focus on fine tuning to the single-
electron regime, assuming some level of knowledge about
the parameter ranges that lead to a well-controlled qubit
system.

Typically, the process of tuning QD devices into qubits
involves identifying the global state of the device (e.g.,
single dot or double dot) from a series of measurements,
followed by an adjustment of parameters (gate voltages)
based on the observed outcomes. The classification of
outcomes can be determined by a trained researcher,
identifying the location of QDs based on the relative ac-
tion of gates and the assembly of multiple QDs based on
the relative capacitive shifts. In recent years, machine-
learning (ML) algorithms, and specifically convolutional
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FIG. 1. Visualization of the autotuning loop. In Step 1, we show a false-color scanning electron micrograph of a Si/Si,Gei_s
quadruple-dot device identical to the one measured. The double dot used in the experiment is highlighted by the inset, which
shows a cross section through the device along the dashed white line and a schematic of the electric potential of a tuned double
dot. B; (1 =1,2,3) and P; (j = 1,2) are the barrier and plunger gates, respectively, used to form dots, while SB1, SB2, and
SP are gates (two barriers and a plunger, respectively) used to control the sensing dot. In Step 2, to assure compatibility
with the CNN, the raw data are processed and (if necessary) downsized to (30 x 30) pixel size. The processed image Vr is
analyzed by the CNN (Step 3), resulting in a probability vector p(Vz) quantifying the current state of the device. In the
optimization phase (Step 4), the algorithm decides whether the state is sufficiently close to the desired one (termination) or
whether additional tuning steps are necessary. If the latter, the optimizer returns the position of the consecutive scan (Step 5).

neural networks (CNNs), have emerged as a “go to” tech-
nique for automated image classification, giving reliable
output when trained on a representative and comprehen-
sive data set [23]. Recently, Kalantre et al. have pro-
posed a new paradigm for fully automated experimental
device control—QFlow—that combines CNNs with op-
timization techniques to establish a closed-loop control
system [24]. Here, we report on the performance of this
autotuning protocol when implemented in situ on an ac-
tive quantum-dot device to tune from a single-dot to a
double-dot regime. We also discuss further modifications
to this protocol to improve overall performance.

The paper is organized as follows: In Sec. II, we de-
scribe the experimental setup. The characteristics of the
quantum-dot chip used in the experiment are described
in Sect. IT A. Overviews of the ML and optimization tech-
niques implemented in the autotuning protocol are pre-
sented in Secs. IIB and IIC, respectively. The in situ
performance of the autotuner is discussed in Sec. III and
the “off-line” analysis in Sec. IV. We conclude with a dis-
cussion of the potential modifications to further improve
the proposed autotuning technique in Sec. V.

II. EXPERIMENTAL SETUP

We define “autotuning” as a process of finding a range
of gate voltages where the device is in a particular “global
configuration” (i.e., a no-dot, single-dot, or double-dot
regime). The main steps of the experimental implemen-

tation of the autotuner are presented in Fig. 1, with each
step discussed in detail in the following sections.

Step 0: Preparation. Before the ML systems are
engaged, the device is cooled down and the gates are
manually checked for response and pinch-off voltages.
Furthermore, the charge sensor and the barrier gates are
also tuned using traditional techniques.

Step 1: Measurement. A two-dimensional (2D) measure-
ment of the charge-sensor response over a fixed range of
gate voltages. The position for the initial measurement
(given as a center and a size of the scan in millivolts) is
provided by a user.

Step 2: Data processing. Resizing of the measured 2D
scan Vg and filtering of the noise (if necessary) to assure
compatibility with the neural network.

Step 3: Network analysis. Analysis of the processed
data. The CNN identifies the state of the device for Vz
and returns a probability vector p(Vz) [see Eq. (1)].
Step 4: Optimization. An optimization of the fitness
function §(Pyargets P(VR)), given in Eq. (2), resulting
either in a position of the consecutive 2D scan or decision
to terminate the autotuning.

Step 5: Gate-voltage adjustment. An adjustment of
the gate voltages as suggested by the optimizer. The
position of the consecutive scan is given as a center of
the scan (in millivolts).

The preparation step results in a range of acceptable
voltages for gates, which allows “sandboxing” by limit-
ing the two plunger voltages controlled by the autotuning



protocol within these ranges to prevent device damage,
as well as in establishment of the appropriate voltage
level at which the barrier gates are fixed throughout the
test runs (precalibration). The charge-sensing dot is also
tuned manually at this stage. The sandbox also helps
define the size of the regions used for state recognition.
Proper scaling of the measurement scans is crucial for
meaningful network analysis: scans that are too small
may not contain enough features necessary for state clas-
sification while scans that are too large may result in
probability vectors that are not useful in the optimiza-
tion phase.

Steps 1-5 are repeated until the desired global state is
reached. In other words, we formulate the autotuning as
an optimization problem over the state of the device in
the space of gate voltages, where the function to be opti-
mized is a fitness function § between probability vectors
of the current and the desired measurement outcomes.
The autotuning is considered successful if the optimizer
converges to a voltage range that gives the expected dot
configuration.

A. Device layout and characteristics

QDs are defined by electrostatically confining electrons
using voltages on metallic gates applied above a 2D elec-
tron gas (2DEG) present at the interface of a semicon-
ductor heterostructure. Realization of good qubit perfor-
mance is achieved via precise electrostatic confinement,
band-gap engineering, and dynamically adjusted voltages
on nearby electrical gates. A false-color scanning electron
micrograph of a Si/Si,Ge;_, quadruple-dot device iden-
tical to the one measured is shown in Fig. 1, Step 1. The
device is an overlapping, accumulation-style design [25]
consisting of three layers of aluminum surface gates, elec-
trically isolated from the heterostructure surface by de-
posited aluminum oxide. The layers are isolated from
each other by the self-oxidation of the aluminum. The
inset in Fig. 1 features a schematic cross section of the
device, showing where QDs are expected to form and a
modeled potential profile along a one-dimensional (1D)
channel formed in the 2DEG. The 2DEG, with an elec-
tron mobility of 40000 cm? V~'s~ ! at 4.0x 10 cm ™2, as
measured in a Hall bar, is formed approximately 33 nm
below the surface at the upper interface of the silicon
quantum well. The application of appropriate voltages
to the gates defines the QDs by selectively accumulating
and depleting regions within the 2DEG. In particular,
depletion “screening” gates (shown in red in Fig. 1) are
used to define a 1D transport channel in the 2DEG; reser-
voir gates (shown in purple in Fig. 1) accumulate elec-
trons into leads with stable chemical potential; plunger
gates (shown in blue and labeled P;, j = 1,2, in Fig. 1)
accumulate electrons into quantum dots and shift the
chemical potential in the dots relative to the chemical
potential of the leads; and, finally, barrier gates (shown
in green and labeled B;, ¢ = 1,2,3, in Fig. 1) separate

the defined quantum dots and control the tunnel rates be-
tween dots and to the leads. In other words, the choice of
gate voltages determines the number of dots, their posi-
tion, their coupling, and the number of electrons present
in each dot. Across the central screening gate, opposing
the main channel of four linear dots, larger quantum dots
are formed to act as sensitive charge sensors capable of
detecting single-electron transitions of the main channel
quantum dots. The measurements are taken in a dilution
refrigerator with a base temperature < 50 mK and in the
absence of an applied magnetic field.

B. Quantitative classification

To automate the tuning process and eliminate the need
for human intervention, we incorporate ML techniques
into the software controlling the experimental appara-
tus. In particular, we use a pretrained CNN to deter-
mine the current global state of the device. To prepare
the CNN, we rely on a data set of 1001 quantum-dot
devices generated using a modified Thomas-Fermi ap-
proximation to model a set of reference semiconductor
systems comprising of a quasi-1D nanowire with a series
of depletion gates the voltages of which determine the
number of dots, the charges on each of those dots, and
the conductance through the wire [26, 27]. The data set
is constructed to be agnostic about the details of a partic-
ular geometry and material platform used for fabricating
dots. To reflect the minimum qualitative features across
a wide range of devices, a number of parameters are var-
ied between simulations, such as the device geometry,
gate positions, lever arm, and screening length, to name
a few. The idea behind varying the device parameters
when generating training data set is to enable the use of
the same pretrained network on different experimental
devices.

The synthetic data set contains full-size simulated 2D
measurements of the charge-sensor readout and the state
labels at each point as functions of plunger gate volt-
ages (Vp,,Vp,) (at a pixel level). For training purposes,
we generate an assembly of 10010 random charge-sensor
measurement realizations (ten samples per full-size scan),
with charge-sensor response data stored as (30 x 30) pixel
maps from the space of plunger gates (for examples of
simulated single- and double-dot regions, respectively, see
the right-hand column in Fig. 6). The labels for each
measurement are assigned based on the probability of
each state within a given realization, i.e., based on the
fraction of pixels in each of the three possible states:

p(VR) = [pnone; Psp, pDD]
N —(|sD|+|DDJ|) [SD| DD[] (1)
N "N’ N

where |SD| and |DD| are the numbers of pixels with a
single-dot and a double-dot state label, respectively, and
N is the size of the image V% in pixels. As such, p(Vz)
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FIG. 2. A sample run of the autotuning protocol. (a) The measured raw scans in the space of plunger gates (Vp,, Vp,) show
data available to the autotuning protocol at a given time. (b) The change of the fitness value as a function of time. (¢) The
change in probability of each state over time as returned by the CNN. For an overview of the tuning path in the space of
plunger gates on a larger scan measured once the autotuning tests are completed, see Fig. 3.

can be thought of as a probability vector that a given
measurement captures each of the possible states (i.e.,
no dot, single dot, or double dot). The resulting proba-
bility vector for a given region Vr, p(Vz), is an implicit
function of the plunger gate voltages defining Vg. It
is important to note that, while CNNs are traditionally
used to simply classify images into a number of prede-
fined global classes (which can be thought of as a quali-
tative classification), we use the raw probability vectors
returned by the CNN (i.e., quantitative classification).

The CNN architecture consists of two convolutional
layers (each followed by a pooling layer) and four fully
connected layers with 1024, 512, 256, and 3 units, respec-
tively. The convolutional and pooling layers are used to
reduce the size of the feature maps while extracting the
most important characteristics of the data. The fully
connected layers, on the other hand, allow for nonlinear
combinations of these characteristics and classification of
the data. We use the Adam optimizer [28] with a learn-
ing rate n = 0.001, 5000 steps per training, and a batch
size of 50. The accuracy of the network on the test set is
97.7%.

C. Optimization and autotuning

The optimization step of the autotuning process (Step
4 in Fig. 1) involves minimization of a fitness function
that quantifies how close a probability vector returned
by the CNN, p(Vz), is to the desired vector, Pi, get-
We use a modified version of the original fitness func-
tion proposed in Ref. [24] to include a penalty for tuning

to single-dot and no-dot regions:

5(ptarget7p(v73)) = Hptarget - p(VR)HZ + ’Y(VR)’ (2)

where || - ||2 is the L? norm and the penalty function 7 is
defined as

PY(VR) = ag(pnone) + Bg(pSD)v (3)

where g(z) is the arctangent shifted and scaled to assure
that the penalty is non-negative [i.e., g(z) > 0] and that
the increase in penalty is more significant once a region
is classified as predominantly non-double dot (i.e., the
inflection point is at = 0.5). Parameters o and f are
used to weight penalties coming from no dot and single
dot, respectively.

For optimization, we use the Nelder—-Mead method [29,
30] implemented in Python [31]. The Nelder-Mead algo-
rithm works to find a minimum of an objective function
by evaluating it at initial simplex points—a triangle in
the case of the 2D gate space in this work. Depending
on the values of the objective function at the simplex
points, the subsequent points are selected to move the
overall simplex toward the function minimum. In our
case, the initial simplex is defined by the fitness value
of the starting region Vx and two additional regions ob-
tained by lowering the voltage on each of the plungers
one at a time by 75mV.

III. AUTOTUNING THE DEVICE IN SITU

To evaluate the autotuner in an experimental setup, a
Si/SizGe;_, quadruple quantum-dot device (see Fig. 1,
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FIG. 3. An overview of a sample run of the autotuning proto-
col in the space of plunger gates (Vp,, Vp,). The arrows and
the intensity of the color indicate the progress of the auto-
tuner. The palette corresponds to colors used in the fitness-
function plot in Fig. 2.

Step 1) is precalibrated into an operational mode, with
one double quantum dot and one sensing dot active. The
evaluation is carried out in there main phases. In the first
phase, we develop a communication protocol between the
autotuning software [32] and the software used to control
the experimental apparatus [33]. In the process, we col-
lect 83 measurement scans that are then used to refine
the filtering protocol used in Step 2 (see the middle col-
umn in Fig. 6). These scans are also used to test the
classification accuracy for the neural network.

In the second phase, we evaluate the performance of
the trained network on hand-labeled experimental data.
The data set includes (30 x 30) mV scans with 1mV per
pixel and (60 x 60) mV with 2mV per pixel. Prior to
analysis, all scans are flattened with an automated fil-
tering function to assure compatibility with the neural
network (see the left-hand column in Fig. 6). The ac-
curacy of the trained network in distinguishing between
single-dot, double-dot, and no-dot patterns is 81.9 %.

In the third phase, we perform a series of trial runs of
the autotuning algorithm in the (Vp,, Vp,) plunger space,
as shown in Fig. 2. To prevent tuning to voltages out-
side of the device tolerance regime, we sandbox the tuner
by limiting the allowed plunger values to between 0 and
600mV. Attempts to perform measurements outside of
these boundaries during a tuning run are blocked and a
fixed value of 2 (i.e., a maximum fit value) is assigned to
the fitness function.

We initialize 45 autotuning runs, out of which seven are
terminated by the user due to technical problems (e.g.,
stability of the sensor). Of the remaining 38 completed
runs, in 13 cases the scans collected at an early stage
of the tuning process are found to be incompatible with
the CNN. In particular, while there are three possible
realizations of the single-dot state (coupled strongly to
the left plunger, the right plunger, or equally coupled,
forming a “central dot”), the training data set includes
predominantly realizations of the “central dot” state. As
a result, whenever the single left or right plunger dot is

TABLE I. A summary of the performance for the experimen-
tal test runs (Niot = 14). Nexp denotes the number of exper-
imental runs initiated at position (Vp,,Vp,) (mV), Nsuc indi-
cates the number of successful experimental runs, and Pa—75
(%), Pa=100 (%), and Pa—y(s,) (%) are the success rates for
the 81 test runs with optimization parameters resembling the
experimental configuration (fixed simplex size A = 75 mV),
with the initial simplex size increased to 100 mV, and with
initial simplex size dynamically adjusted based on the fitness
value of the first scan, respectively. All test runs are per-
formed using the new neural network.

(VP17VP2) Nexp  Nsuc

Pa=75 Pa=100 Pa=y(s0)

(250,400) 1 1 852 100.0 93.8
(350,400) 6 6 741 95.1 95.1
(350,415) 1 0 753 86.4 96.3
(350,425) 1 1 556 86.4 85.2
(350,450) 3 2 3.7 185 34.6
(400,350) 1 1 49  69.1 93.8
(450,350) 1 1 17.3 1.2 235

measured, the scan is labeled incorrectly. When a se-
quence of consecutive “single-plunger-dot” scans is used
in the optimization step, the optimizer misidentifies the
scans as double dot and fails to tune away from this re-
gion. These runs are removed from further analysis, as
with the incorrect labels, the autotuner terminates each
time in a region classified as double dot (i.e., a success
from the ML perspective) which in reality is a single dot
(i.e., a failure for practical purposes). We discuss the
performance of the autotuner based on the remaining 25
runs.

While tuning, it is observed that the autotuner tends to
fail when initiated further away from the target double-
dot region. An inspection of the test runs confirms that
whenever both plungers are set at or above 375 mV, the
tuner becomes stuck in the plateau area of the fitness
function and does not reach the target area (with two
exceptions). Out of the 25 completed runs, 14 are initi-
ated with at least one plunger set below 375 mV. Out of
these, two cases fail, both due to instability of the charge
sensor resulting in unusually noisy data that is incor-
rectly labeled by the CNN and thus leads to an inconsis-
tent gradient direction. The overall success rate here is
85.7% (for a summary of the performance for each initial
point from this class, see Table I). When both plungers
are set at or above 375mV, only 2 out of 11 runs are
successful (18.2%), with all failing cases resulting from
“flatness” of the fit function [for a visualization of the fit-
ness function over a large range of voltages in the space
of plunger gates (Vp,, Vp,), see Fig. 7].

IV. “OFF-LINE” TUNING

Tuning “off-line” —tuning within a premeasured scan
for a large range of gate voltages that captures all possi-
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FIG. 4. Visualizations of the “ideal” (marked with dashed
green triangle) and the “sufficiently close” (marked with solid
magenta diamond) regions used to determine the success rate
for the off-line tuning. All considered initial regions listed in
Table I are marked with squares. The intensities of the colors
correspond to the success rate when using dynamic simplex
(a darker color denotes a higher success rate).

ble state configurations—allows for the study of how the
various parameters of the optimizer impact the function-
ing of the autotuner and the further investigation of the
reliability of the tuning process while not taking up ex-
perimental time. The scan that we use for off-line tuning
spans 125 mV to 525 mV for plunger P; and 150 mV to
550 mV for P,, measured in 2mV per pixel resolution.

The deterministic nature of the CNN classification
(i.e., assigning a fixed probability to a given scan) assures
that the performance of the tuner will be affected solely
by changes made to the optimizer. On the other hand,
with static data, for any starting point the initial simplex
and the consecutive steps are fully deterministic, mak-
ing a reliability test challenging. To address this issue,
rather than repeating a number of autotuning tests for
a given starting point (Vp,, Vp,), we initiate tuning runs
for points sampled from a (9 x 9) pixels region around
(Vp,,Vp,), resulting in 81 test runs for each point.

We assess the reliability of the autotuning protocol for
the seven experimentally tested configurations listed in
Table I [note that for point (250,400) mV, the gate val-
ues are adjusted when testing over the premeasured scan
to account for changes in the screening gates]. To quan-
tify the performance of the tuner, we define the tuning
success rate, P, as a fraction of runs that ended in the
“ideal” region (marked with a green triangle in Fig. 4) or
in the “sufficiently close” region (marked with a magenta
diamond in Fig. 4) with weights 1 and 0.5, respectively.
Moreover, in the network analysis step, we use a neu-
ral network with the same architecture as discussed in
Sec. II B but trained on a new data set that includes all
three realizations of the SD state. When using optimiza-

1.0
05
0.8
a
(V]
v
v
04 06 2
Y
o
>
=t
04 ©
©
03 <
a
0.2
0.2 .
i 0.0
0.15 0.25 0.35 045 v/, (V)

FIG. 5. A heat map of the probability of success when tuning
off-line over a set of N = 4 premeasured devices. The intensity
of the colors corresponds to the success rate, with a darker
color denoting a higher success rate.

tion parameters resembling those implemented in the lab-
oratory (i.e., fixed simplex of a size A = 75mV) and a
new neural network, the overall success rate is 45.2%
with standard a deviation (s.d.) of 35.5%. The sum-
mary of the performance for each point is presented in
Table I (for a comparison of the number of iterations be-
tween points, see Table II). Increasing the initial simplex
size by 25 mV significantly improves the success rate for
all but two points (see the Pa—199 column in Table I),
with the overall success rate of 65.2% (s.d. = 39.4%).
The Pa—j(s,) column in Table I shows the success rate
for tuning when the initial simplex size is scaled based on
the fitness value of the initial step g, such that tuning
from points further away from the target area will use a
larger simplex than those initiated relatively close to the
“ideal” region. The overall success rate here is 74.6 %
(s.d. =31.5%).

Finally, to assess the performance of the autotuning
protocol for a wider range of initial configurations, we
perform off-line tuning over a set of premeasured scans.
Using four scans spanning 100 mV to 500 mV for plunger
P; and 150 mV to 550 mV for P», measured in 2mV per
pixel resolution, we initiate N = 784 test runs per scan,
sampling every 10mV and leaving a margin that is big
enough to ensure that the initial simplex is within the
full scan boundaries. A heat map representing the per-
formance of the autotuner is presented in Fig. 5. As can
be seen, the autotuner is most likely to fail when initi-
ated with both plunger gates set to either high (above
400mV) or low (below 300 mV) voltage. While in both
cases the “flatness” of the fitness function contributes to
the tuning failure, the fixed direction of the initial sim-
plex further contributes to this issue. Adding rotation
to the simplex, i.e., varying both plunger gates when de-
termining the second and third steps in the optimization



(see B and C in Fig. 3), may help with the latter problem.

V. SUMMARY AND OUTLOOK

While a standardized fully automated approach to tun-
ing quantum-dot devices is essential for their scalability,
present-day approaches to tuning rely heavily on human
heuristic and algorithmic protocols that are specific to
a particular device and cannot be used across devices
without fine readjustments. To address this issue, we are
developing a tuning paradigm that combines synthetic
data from a physical model with ML and optimization
techniques to establish an automated closed-loop system
of experimental device control. Here, we report on the
performance of the proposed autotuner when tested in
situ.

In particular, we verify that, within certain constraints,
the proposed approach can automatically tune a QD de-
vice to a desired double-dot configuration. In the pro-
cess, we confirm that a ML algorithm, trained using ex-
clusively synthetic noiseless data, can be used to suc-
cessfully classify images coming from experiment, where
noise and imperfections typical of real measurements are
present.This work also enables us to identify areas in
which further work is necessary to improve the overall
reliability of the autotuning system. A new training data
set is necessary to account for all three possible single-
dot states. The size of the initial simplex also seems to
contribute to the mobility of the tuner out of the SD
plateau. For comparison, in Table I we present the per-
formance of a tuner using the new network and a bigger
simplex size for the experimentally tested starting points.
In terms of the length of the tuning runs, at present, the
bottleneck of the protocol is the time it takes to perform
scans (about 5 min per scan) and the repeated iterations
toward the termination of the cycle (i.e., repeated scans
of the same region). This can be improved by orders
of magnitude by using faster voltage sources and read-
out techniques and by developing a custom optimization
algorithm. Regardless, the power of this technique lies
in its automation, allowing a skilled researcher to spend
time elsewhere.

These results serve as a baseline for future investigation
of fine-grain device control (i.e., tuning to desired charge
configuration) and of “cold-start” autotuning (i.e., com-
plete tuning without any precalibration of the device).
Finally, our work paves the way for similar approaches
applied to a wide range of experiments in physics.

To use QD qubits in quantum computers, it is neces-
sary to develop a reliable automated approach to control
QD devices, independent of human heuristics and inter-
vention. Working with experimental devices with high-
dimensional parameter spaces poses many challenges,
from performing reliable measurements to identifying the
device state to tuning into a desirable configuration. By
combining theoretical, computational, and experimental
efforts, this interdisciplinary research sheds light on how

modern ML techniques can assist experiments.
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Appendix A: Data processing

The model used to simulate the QD devices [27] does
not account for the noise present in a real measurement.
As a result, the data used to train the CNN classifier,
obtained by taking a numerical gradient of the sensor

Processed data
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FIG. 6. The relationship between the simulated, raw, and
processed data. The top row consists of sample scans with
single-dot regions and the bottom row of scans with double-
dot regions. The left-hand column shows the simulated data,
the middle column shows the raw acquired experimental data,
and the right-hand column shows the processed experimental
data (as “seen” by the CNN classifier).



TABLE II. The average (standard deviation in parentheses)
number of iterations when tuning off-line for varying config-
urations of the initial simplex A. In all cases, the average is
taken over N = 81 test runs for points sampled within 10 mV
around each experimentally tested point given by (Vp,, Vp,).

(Ver,Ve) A=75mV. A=100mV A = f(d)
(250,400)  12.7 (2.5) 122 (20) 126 (2.2)
(350,400)  14.0 (2.4) 13.6 (22) 135 (2.3)
(350,415)  13.2 (2.3) 14.1 (2.1) 134 (2.1)
(350,425)  12.9 (2.3) 13.9 (2.1) 136 (2.2)
(350,450)  11.6 (2.7) 13.3 (2.4) 139 (2.5)
(400,350)  13.9 (2.3) 14.0 (2.2) 133 (1.8)
(450,350)  14.5 (2.6) 15.0 (2.6)  15.0 (2.5)

data, lead to very clean data, with the background uni-
formly flattened and charge-transition lines clearly visible
(see the first column in Fig. 6). To assure compatibility
with the CNN classifier, the acquired experimental scans
need to be processed before the probability vector can
be assigned to it. Here, the data processing consists of
three steps: the numerical derivative, followed by thresh-
olding and resizing. To minimize noise, the derivative
is taken in the direction of measurement. The gradient
data is also tested against unexpected charge-sensor flip-
ping and, if necessary, reverted to assure positive values
at the charge-transition lines. An automated protocol
is implemented to normalize the data and to remove the
background noise. Finally, the data is resized to (30 x 30)
pixels resolution. The second and third columns in Fig. 6
show sample raw and processed data, respectively, for a
single- and double-dot image.

Appendix B: Effect of simplex size on off-line tuning

While varying the simplex size significantly affects the
performance of the autotuner, leading to an increase in
the overall accuracy for the tested points by nearly 40 %
(for details, see Table I), it does not affect the number

of iterations of the optimizer. In particular, the overall
average numbers of iterations for the three tested simplex
sizes are as follows: 13.3 (pooled s.d. = 2.5), 13.7 (pooled
s.d. = 2.3), and 13.6 (pooled s.d. = 2.3) for tuning with
an initial size of A = 75mV, A = 100mV, and A =
f(d0), respectively. Table IT shows the average numbers
of iterations executed by the optimizer for each tested
point.

Appendix C: Fitness function

We plot the fitness value for tuning to a double-dot
regime as a function of the plunger gate voltages for a
scan with experimental data. In particular, for each point
in the voltage space, as presented in Fig. 4, we calculate
the fitness value for a region centered at this point. This
allows us to represents the landscape over which the auto-
tuning optimization runs [a (171 x 171) pixels map]. One
can see the double-dot state forming a minimum near
the center of Fig. 7, which represents the target area for
tuning.

- 0.8

Fitness value

+ 0.5

- 0.3

VP1 (V)

0.25 0.35 0.45

FIG. 7. The fitness function over a sample device shown in
Fig. 4.
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