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Abstract—We show that the problem of code construction
for multiple access channel resolvability can be reduced to the
simpler problem of code construction for source resolvability.
Specifically, we propose a multiple access channel resolvability
coding scheme that involves randomness recycling, implemented
via distributed hashing, and block-Markov encoding, where
each encoding block is obtained as a combination of several
source resolvability codes. Our construction is independent of the
way the source resolvability codes are implemented and yields
explicit coding schemes that achieve the multiple access channel
resolvability region for an arbitrary discrete memoryless multiple
access channel whose input alphabets are binary.

I. INTRODUCTION

Applications of the concept of channel resolvability [1],
[2] include strong secrecy for the point-to-point [3], [4] and
multiple access [5], [6] wiretap channels, cooperative jam-
ming [5], semantic security for the point-to-point [7] and the
multiple access wiretap channel [8], and strong coordination
in networks [9].

Beyond existence results of channel resolvability codes
provided in the above references, several explicit constructions
of such codes have been proposed in the literature. Explicit
and low-complexity constructions based on polar codes for
channel resolvability have been proposed for binary symmetric
channels [10] and discrete memoryless channels whose input
alphabets have prime cardinalities [11]. Another explicit con-
struction based on injective group homomorphisms has been
proposed in [12] for channel resolvability over binary symmet-
ric channels. Low-complexity, but non-explicit, linear coding
schemes for channel resolvability over arbitrary memoryless
channels have also been proposed in [13]. As for multiple
access channel resolvability, two explicit constructions have
been proposed in [14] for symmetric multiple access channels,
one based on invertible extractors and a second one based
on injective group homomorphisms. Moreover, in [15], an
explicit construction based on polar codes is shown to achieve
the multiple access channel resolvability region for arbitrary
channels whose input alphabets have prime cardinalities.

In this paper, we show that the problem of code construction
for multiple access channel resolvability can be reduced to
the simpler problem of code construction for source resolv-
ability [16]. Specifically, our construction allows to construct
codes that achieve the multiple access channel resolvability
region for arbitrary channels with binary input alphabets [8]
from source resolvability codes used in a black box manner.

Note that explicit constructions of source resolvability codes
have, for instance, been provided in [11]. The main idea of our
construction is randomness recycling, implemented with dis-
tributed hashing, across a block-Markov encoding scheme that
involves a combination of several source resolvability codes.
The idea of block-Markov encoding to recycle randomness is
closely related to recursive constructions of seeded extractors
in the computer science literature, e.g., [17].

Finally, note that our proposed construction does not use the
same tools as the one used in [14] for multiple access channel
resolvability over symmetric multiple access channels, and that
it remains unclear whether the coding schemes in [14] could be
extended to achieve the multiple access channel resolvability
region of an arbitrary multiple access channel. Note also that
our proposed construction is independent of the way source
resolvability is implemented and is thus more general than
our previous construction in [15], which heavily relies on the
structure of polar codes.

The remainder of the paper is organized as follows. The
problem statement is provided in Section III. Our proposed
coding scheme and its analysis are provided in Section IV
and Section V, respectively. Finally, Section VI provides
concluding remarks.

II. NOTATION
The components of a vector XV of size N are denoted
with superscripts, i.e., X'V £ (X1 X2 ... XN). For two
probability distributions p and ¢ defined over the same alpha-
bet X, the variational distance between p and ¢ is defined

as V(px,qx) = Z|p(x) — q(z)|. For a,b € R, define
reX
[ b] £ [La], [b]] NN.

III. PROBLEM STATEMENT
Consider a discrete memoryless multiple access channel
(X xV,qz/xv,Z), where X = {0,1} = Y. and Z is a finite
alphabet. A target distribution ¢z is defined as the channel
output distribution when the input distributions are ¢x and
qy, i.e.,

Vze Z,q2(2) £ > azixy Gla,y)ax @)y (v). (D)

reEX yey

Definition 1. A (2NF1 2NE2 N code for the memoryless
multiple access channel (X x Y, qz|xy,Z) consists of



e Two randomization sequences S1 and Sy independent
and uniformly distributed over S; = [1,2NF1] and
Sy = [1,2NE2], respectively;
o Two encoding functions fin : S1 — XN and fon :
82 _>yN’.
and operates as follows. Transmitters 1 and 2 form fi n(S1)
and fa,n(S2), respectively, which are sent over the channel

(X x YV, qz1xv, 2).

Definition 2. (R, R2) is an achievable resolvability rate pair
for the memoryless multiple access channel (X x Y, 4z|Xy> Z)
if there exists a sequence of (2NT 2NB2 N codes such that

NE}I}’}OOV(ﬁZI:N, qzin) =0, where qz1:n = Hf\/:l qz with qz

defined in (1) and Vz''N € ZN,
521:N(21:N) = Z Z qulexl:NylzN (21:N|

51€S1 52€82 1
f1.n(51), f2,n(52)) SIS

The multiple access channel resolvability region R, is
defined as the closure of the set of all achievable rate pairs
and has been characterized in [8].

Our objective is to show that the construction of multiple
access channel resolvability codes that achieve R, reduces to
the simpler problem of constructing source resolvability codes.

IV. PROPOSED CODING SCHEME TO ACHIEVE R,

We first review in Section IV-A the notion of source
resolvability codes which are used in a black box manner in
our construction of MAC resolvability codes. We explain in
Section IV-B that the general construction of MAC resolv-
ability codes can be reduced to two special cases. Finally,
we provide a coding scheme for these two special cases in
Sections IV-C, IV-D.

A. Review of source resolvability

Definition 3. A (2V® N) source resolvability code for
(X, qx) consists of

o A randomization sequence S uniformly distributed over
S £ [1,2NE];
o An encoding function ey : S — XN ;

and operates as follows. The encoder forms XUN 2 ~(S)
and the distribution of X'V is denoted by pxi:~.

Definition 4. R is an achievable resolution rate for a discrete
memoryless source (X,qx) if there exists a sequence of
(2NE N source resolvability codes such that
lim V(pxin,gx1nv)=0
Ni+w (Px1nv, gx1n) )
where qyi1n = Hf\;l qx. The infimum of such achievable
rates is called source resolvability.

Theorem 1 ( [1]). The source resolvability of a discrete
memoryless source (X,qx) is H(X).

B. Reduction of the general construction of MAC resolvability
codes to two special cases

To achieve the multiple access channel resolvability region
it is sufficient to achieve
Rxy 2 {(R1,Rs) : I(XY;Z) < Ry + Ry,
I(Y;Z) < Ra},

R

q9z>

by [15]. We consider two cases to achieve Ry y for some
fixed distribution pxpy .

Case 1: I(XY;Z) > I(X;Z) + I(Y; Z). In this case, it is
sufficient [15] to achieve the set of rate pairs

D £ {(Ry,Ry) : Ry € [I(X;2),1(X; Z|Y))],
Ry = I(XY;Z) — Ry}

with rate-splitting using the following lemma.

Lemma 1 ( [15] ). As in [I8, Example 3], we choose
f:Yx Y=Y (uv) = max(u,v), and split (Y, py)
to form (¥ x Y, pu.pv.),€ € [0,1], such that for any € > 0,

Pf..v.) = Py, for fixed (y,u),prw. v.)u. (ylu) is a contin-
uous function of €, and

U—o = 0 = V=1, 2
U€:1 = f(U6:17 ‘/6:1)) (3)
Ve=o = f(Ue=0, Ve=o)- €]

When the context is clear we do not explicitly write the
dependence of U and V with respect to € by dropping the
subscript €. Then, we have 1(XY;Z) = Ry + Ry + Ry,
where we have defined the functions

Ry :em I(X; Z|U), from [0,1] to RT,
Ry : e I(U; Z), from [0,1] to RT,
Ry :e— I(V; Z|UX), from [0,1] to RT.

Moreover, € — Ry (€) is continuous and [I(X; Z),1(X; Z|Y)]
is contained in its image.

Case 2: I(XY;Z) = I(X;Z) + I(Y; Z). In this case, it is
sufficient [15] to achieve the rate pair (I(X;Z2),1(Y; Z)).

C. Encoding Scheme for Case 1

Fix a point (R1, R2) in D. By Lemma 1, there exists a joint
probability distribution gy xyz over U x V x X x Y x Z such
that Ry = I(X; Z|U), Ry = Ry + Ry with Ry = I(U; Z)
and Ry = I(V; Z|UX). We provide below a coding scheme
that will be shown to achieve the point (R, Rz).

o The encoding at Transmitter 1 is described in Algorithm 1
and uses
- A hash function Gx : {0,1}" — {0,1}"* chosen
uniformly at random in a family of 2-universal hash
functions [19], where rx will be defined later.
— A source resolvability code for the discrete mem-
oryless source (X,gx) with encoder function ey

and rate H(X) + &, where ¢ £ 2(64(N) + &),



0.4(N) = log([U|[V]|X|+3),/ % (3 +1og N), £ > 0,
such that the distribution of the encoder output px1:n
satisfies V(px1:~v,qxun) < 0(N) where 6(N) is
such that limy_, 1o, 6(N) = 0.

In Algorithm 1, the hash function output Ei, i€ [2,k],

with length rx corresponds to recycled randomness from

Block ¢ — 1.

o The encoding at Transmitter 2 is described in Algorithm 2
and uses
— Two hash functions Gy : {0,1}Y — {0,1}"v,
Gy : {0,1}¥ — {0,1}"v chosen uniformly at
random in families of 2-universal hash functions,
where ry and ry will be defined later.
— A source resolvability code for the discrete mem-
oryless source (U, qy) with encoding function €f;
and rate H(U) 4 %, such that the distribution of
the encoder output pri.~ satisfies V(pyin, gpin) <
O(N).

— A source resolvability code for the discrete memory-
less source (V,qy) with encoding function eX; and
rate H(V) 4+ %, such that the distribution of the
encoder output py.nv satisfies V(pyiv, gyin) <
O(N).

In Algorithm 2, the hash function outputs lNDi and E, xS
[2, k], with length ry; and ry, respectively, correspond
to recycled randomness from Block ¢ — 1.

The dependencies between the random variables involved in
Algorithms 1 and 2 are represented in Figure 1.

Algorithm 1 Encoding algorithm for resolvability of Trans-
mitter 1 in Case 1
Require: A vector £y of N(H (X)+e€;) uniformly distributed
bits, and for ¢ € [2, k], a vector E; of N(I(X;UZ)+¢€1)
uniformly distributed bits.
1: for Block i =1 to k do
2:  if ¢ =1 then
3 Define XV £ eX(F;)
4. elseif i > 1 then
5 Define E; £ Gx(X})
6 Define X}V 2 ¢X(E,|

|E;), where || denotes con-

catenation
7. end if
8  Send X}V over the channel
9: end for

D. Encoding Scheme for Case 2

Consider a joint probability distribution ¢xyy £
qz)xypxpy such that I(XY;Z) = I(X;Z) + I(Y; Z). We
provide an encoding scheme that will be shown to achieve the
point (R1, Re) = (I(X; 2),1(Y; 2)).

e The encoding at Transmitter 1 is the same as in Algo-

rithm 1 except that F; is now a vector of of N(H(X)+
€2) uniformly distributed bits, and for i € [2,k], E;
is a vector of N(I(X;Z) + e2) uniformly distributed

Algorithm 2 Encoding algorithm for resolvability of Trans-

mitter 2 in Case 1

Require: A vector Dy of N(H (U)+¢;) uniformly distributed
bits, and for ¢ € [2, k], a vector D; of N(I(U; Z) + €1)
uniformly distributed bits. A vector Fy of N(H (V) +€;)
uniformly distributed bits, and for ¢ € [2, k], a vector F;
of N(I(V;UZX) + €1) uniformly distributed bits.

1: for Block ¢ =1 to k do

2: if 1 =1 then
3: Define U} £ €% (Dy)
4 Define ViV £ eX (Fy)
5. elseifi > 1 then _ _
6: Define D; £ Gy(UEY) and F; £ Gy (VEY)
7: Define UMY £ e§(D;||D;) and VN £ eX (F|| F;)
8: Define YN £ f(ULN VIN) where f is defined
in Lemma 1
9: end if
10:  Send Y;**¥ over the channel
11: end for
Block i+1

E Block i

i

Fig. 1. Dependence graph for the random variables involved in the encoding
for Case 1. N;, ¢ € [1,k], is the channel noise correspgnding to ihe
transmission over Block . For Block i € [2,k], (Di, Dy), (Fy, Fy),
(E;, E;) are the random sequences used at the encoders to form U;, V;,
Xi, respectively.

bits, where e; £ 2(6%(N) + ¢) with 6% (N) 2

log(|X||1V|+3) %(2 +1logN), £ > 0.
o The encoding at Transmitter 2 is described in Algorithm 3
and uses

- A hash function Gy : {0,1} — {0,1}"" chosen
uniformly at random in a family of two-universal
hash functions, where ry will be defined later.

— A source resolvability code for the discrete memory-
less source (), qy) with encoding function e}, and
rate H(Y') + %, such that the distribution of the
encoder output pyi.~ satisfies V(py1n,gyrn) <
5(N).

The dependencies between the random variables involved in
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Fig. 2. Dependence graph for the random variables involved in the encoding
for Case 2. N;, ¢ € [1,k], is the channel noise cgrrespondiglg to the
transmission over Block 4. For Block i € [2, k], (E;, E;), (Fi, I;) are the
random sequences used at the encoder to form X, Y;, respectively.

the encoding for Case 2 are represented in Figure 2.

Algorithm 3 Encoding algorithm for resolvability of Trans-
mitter 2 in Case 2
Require: A vector F of N(H(Y)+é€2) uniformly distributed
bits, and for i € [2,k], a vector F; of N(I(Y;Z) + €2)
uniformly distributed bits.
1: for Block i =1 to k do
2. if i =1 then
3 Define YN 2 X (F))
4. elseif i > 1 them
5 Define F; £ Gy (V1Y)
6: Define Y,V 2 &Y (F||F;)
7
8
9

end if
Send Y, over the channel
: end for

V. CODING SCHEME ANALYSIS

We only focus on Case 1 and omit Case 2 due to space
constraints. _ _
_For convenience define Ey £ 0, Dy £ (), and
Fy £ (. Let pE DiF, X NULEN VLN Y LN 71N denote the
joint_ probability distribution  of ' the random variables
By, Dy, Fy, XEN UEN VUN YN and ZEN created in
Block i € [1,k] of the codmg scheme of Section IV. We
also define the output lengths of the hash functions Gx, Gy,
Gy as follows

rx 2 N(H(X|UZ) - €,/2),
H(U|Z) — €1/2),
HV|UZX) - e1/2).

Tu = N(
A
rv = (
To prove that randomness recycling is done as expected, we
need the following two supporting lemmas.
Lemma 2 ( [20]). Define A = [1,A]. Let (T;)aca be A
finite alphabets and define for S C A, Ts = Xaes Ta-

Consider the random variables TYN £ (TYN),ca and
ZV N defined over TN x ZN wzth probability distribution

QriNzun = vazl gr,z. For any € > 0, there exists a

subnormalized non-negative function WTLN Z1aN defined over
T x ZN such that V(qrin ziv, wrin 1. ~) < eand

VS C A, Hoo(’lUTé:NzlzN|qZI:N) > NH(Ts|Z) — Nos(N),
where 05(N) £ (log(|Ts| + 3))y/ % (A +1log(L)), and we
have defined the conditional min-entropy as [21],

Hoo(ngﬁNzl:N lgz1:n)
wTézNzl:N (t‘]é'N, Zl:N)

—1
o8 qz1:v (25N)

max
tiNeTd

VN esupp(gz1n)

Lemma 3 (Adapted from [22, Lemma 5]). Let X, = (X})ier
and Z be random variables distributed according to px,.z
over Xp x Z. For |l € L, let F; : {0,1}" — {0,1}"™,
be uniformly chosen in a family F; of two-universal hash
functions. Define sp = [1,cr 51, where s 2 ALl eL
and for any S C L, define rs = Y.._cs1i. Define also
Fr = (B)iec and

Fr(Xr) &

€S

(FL (X[ P (Xo)]- - [ FL(XL)) s

where || denotes concatenation. Then, for any qz defined over
Z such that supp(qz) C supp(pz), we have

V(ng (Xz),Fr,Z» pU;chpr)

< Z 27'5—Hoo(;l)xsz\qz),
SCL,540

where py,. and pp,. are the uniform distributions over [1,27<]
and |1, s] respectively.

Using Lemmas 2 and 3, one can prove the following result,
which shows that in Block i € [2,k], if the inputs X}%,
UEN, VEN of the hash functions Gy, Gy, Gy, respectively,
are replaced by X1V, UUN_ VN distributed according to
gxrxpenyeny 2 I, gxuv, then the output of these hash
functions are almost jointly uniformly distributed.

unif uni

Lemma 4. Let p5 " ,pp ", pp
tributions over {0, 1}’”" {0 1}ro,
have

unif I denote the uniform dis-

{0,1}"v, respectively. We

\Y (QGX(XI NGy (ULN)Gy (VIN)Z1N ;szfpszp;qu I:N)

S(ST( )7

where 01(N) is such that limpy _ o 67(N) = 0.

Using Lemma 4, one can prove the following lemma, which
shows that in each encoding block, the random variables
induced by the coding scheme approximate well the target
distribution.

Lemma 5. For Block i € [1,k],

V(ﬁUq}:N‘/;I:NXg:N}/iI:Nzg:N s qU1:NV1:NX1;Ny1;NZ1:N)



where 0;(N) is such that lim §;(N

N—~+oco

) =0,

Using Lemmas 4 and 5, one can prove, as stated in the next
lemma, that the recycled randomness in Block ¢ € [2,k] is
almost independent of the channel output in Block 7 — 1.

Lemma 6. For i € [2,k],
~ ~ ~ 1
V(pZilf\{EiDiFiapZilf\l’pEiDiFi) < 61( )(N)a

where 551)(1\/') is such that lim (5( (N)=0.

N—+oco

Using Lemma 6, one can prove the next lemma, which
shows that the recycled randomness in Block i € [2,k] is
almost independent of the channel outputs in Blocks 1 to ¢ —1
considered jointly.

Lemma 7. For i € [2,k], we have
~ ~ ~ c
v (pz;;g{lpiEiFi7pzi;ﬁlpDiEiFi) <),
where 51(0)(N) such that A}im 550) (N)=0.
— 00

Using Lemma 7, one can prove the next lemma, which
shows that the channel outputs of all the blocks are asymptot-
ically independent.

Lemma 8. We have

pzl N szl N

where (5;0)(N))j€[[2’k]] is defined in Lemma 7.

(k—1 sCONN
)jgﬁgggﬂ (N),

Using Lemmas 5 and 8, one can show, as stated in the
following lemma, that the target output distribution is well
approximated jointly over all blocks.

Lemma 9. For block i € [1,k], we have

~ (&)
\Y . 1:k < +
(pzll;'N7qZ kN) k (]H’ﬁa)}iﬂ 6] (N) ]Irﬁa);]] (S ( )> ,

where (5§C)(N))j€[[2,k]] is defined in Lemma 7 and
(05(N))jeq ) is defined in Lemma 5.

Finally, one can show that the encoding scheme of Section
IV-C achieves the desired rate pair.

Lemma 10. Let ¢y > 0. For k large enough, the rate pair
(R1, Ry + Ry) is achievable and

lim Ry =I(X;ZU) + €,

N—+o00

lim Ry =I(U;Z)+ eo,
N—+o00
NLITEQQR\/—I(V ZUX) + €.

VI. CONCLUDING REMARKS

We showed that the problem of code construction for
multiple access channel resolvability can be reduced to the

simpler problem of code construction for source resolvabil-
ity. Our approach allows to construct codes that achieve
the multiple access channel resolvability region for arbitrary
channels with binary input alphabets from source resolvability
codes. The crux of our construction is randomness recycling
implemented with distributed hashing across a block-Markov
encoding scheme.

ACKNOWLEDGMENT

This work was supported in part by NSF grant CCF-
1850227.

REFERENCES

[1] T. Han and S. Verdd, “Approximation theory of output statistics,” IEEE
Trans. Inf. Theory, vol. 39, no. 3, pp. 752-772, 1993.

[2] Y. Steinberg, “Resolvability theory for the multiple-access channel,”
IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 472487, 1998.

[3] M. Bloch and J. Laneman, “Strong secrecy from channel resolvability,”
IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8077-8098, 2013.

[4] M. Hayashi, “General nonasymptotic and asymptotic formulas in chan-
nel resolvability and identification capacity and their application to the
wiretap channel,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1562—
1575, 2006.

[5] A. Pierrot and M. Bloch, “Strongly secure communications over the
two-way wiretap channel,” IEEE Trans. Inform. Forensics Sec, vol. 6,
no. 3, pp. 595-605, 2011.

[6] M. Yassaee and M. Aref, “Multiple access wiretap channels with strong
secrecy,” in Proc. of IEEE Inf. Theory Workshop 2010, pp. 1-5.

[7]1 Z. Goldfeld, P. Cuff, and H. Permuter, “Semantic-security capacity for
wiretap channels of type II,” IEEE Trans. Inf. Theory, vol. 62, no. 7,
pp. 3863-3879, 2016.

[8] M. Frey, 1. Bjelakovic, and S. Stanczak, “The MAC Resolvability
Region, Semantic Security and Its Operational Implications,” arXiv
preprint arXiv:1710.02342, 2017.

[91 M. Bloch and J. Kliewer, “Strong coordination over a line network,” in
Proc. of IEEE Int. Symp. Inf. Theory, 2013, pp. 2319-2323.

[10] M. Bloch, L. Luzzi, and J. Kliewer, “Strong coordination with polar
codes,” in Proc. of the Annual Allerton Conf. on Communication,
Control, and Compputing, 2012, pp. 565-571.

[11] R. Chou, M. Bloch, and J. Kliewer, “Empirical and strong coordination
via soft covering with polar codes,” IEEE Trans. Inf. Theory, vol. 64,
no. 7, pp. 5087-5100, 2018.

[12] M. Hayashi and R. Matsumoto, “Secure multiplex coding with depen-
dent and non-uniform multiple messages,” IEEE Trans. Inf. Theory,
vol. 62, no. 5, pp. 2355-2409, 2016.

[13] R. Amjad and G. Kramer, “Channel resolvability codes based on
concatenation and sparse linear encoding,” in Proc. of IEEE Int. Symp.
Inf. Theory, 2015, pp. 2111-2115.

[14] R. Chou, M. Bloch, and J. Kliewer, “Low-complexity channel resolv-
ability codes for the symmetric multiple-access channel,” in Proc. of
IEEE Inf. Theory Workshop, 2014, pp. 466—470.

[15] R. Sultana and R. Chou, “Explicit low-complexity codes for multiple
access channel resolvability,” in Proc. of the Annual Allerton Conf. on
Communication, Control, and Computing, 2019, pp. 116-123.

[16] T. Han, “Information-spectrum methods in information theory,” Appli-
cations of Mathematics, 2003.

[17] S. Vadhan, “Pseudorandomness,” Foundations and Trends®) in Theoret-
ical Computer Science, vol. 7, no. 1-3, pp. 1-336, 2012.

[18] A. Grant, B. Rimoldi, R. Urbanke, and P. Whiting, “Rate-splitting
multiple access for discrete memoryless channels,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 873-890, 2001.

[19] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
Journal of computer and system sciences, vol. 18, no. 2, pp. 143-154,
1979.

[20] R. Chou, “Secret sharing over a public channel from correlated random
variables,” in Proc. of IEEE Int. Symp. Inf. Theory, 2018, pp. 991-995.

[21] R. Renner, “Security of quantum key distribution,” International Journal
of Quantum Information, vol. 6, no. 01, pp. 1-127, 2008.

[22] R. Chou and A. Yener, “Secret-key generation in many-to-one networks:
An integrated game-theoretic and information-theoretic approach,” IEEE
Trans. Inf. Theory, vol. 8, pp. 5144-5159, 2019.



	Introduction
	Notation
	Problem Statement
	Proposed coding Scheme to achieve R_q_Z
	Review of source resolvability
	Reduction of the general construction of MAC resolvability codes to two special cases
	Encoding Scheme for Case 1
	Encoding Scheme for Case 2

	Coding Scheme Analysis
	Concluding Remarks
	References

