Empirical Software Engineering (2020) 25:1136-1167
https://doi.org/10.1007/510664-019-09786-7

®

ALFAA: Active Learning Fingerprint based Anti-Aliasing = check for
for correcting developer identity errors in version updates
control systems

Sadika Amreen' - Audris Mockus” - Russell Zaretzki® - Christopher Bogart? -
Yuxia Zhang?3

Published online: 3 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

An accurate determination of developer identities is important for software engineering
research and practice. Without it, even simple questions such as “how many developers does
a project have?” cannot be answered. The commonly used version control data from Git is
full of identity errors and the existing approaches to correct these errors are difficult to vali-
date on large scale and cannot be easily improved. We, therefore, aim to develop a scalable,
highly accurate, easy to use and easy to improve approach to correct software developer
identity errors. We first amalgamate developer identities from version control systems in
open source software repositories and investigate the nature and prevalence of these errors,
design corrective algorithms, and estimate the impact of the errors on networks inferred
from this data. We investigate these questions using a collection of over 1B Git commits
with over 23M recorded author identities. By inspecting the author strings that occur most
frequently, we group identity errors into categories. We then augment the author strings with
three behavioral fingerprints: time-zone frequencies, the set of files modified, and a vector
embedding of the commit messages. We create a manually validated set of identities for a
subset of OpenStack developers using an active learning approach and use it to fit super-
vised learning models to predict the identities for the remaining author strings in OpenStack.
We then compare these predictions with a competing commercially available effort and a
leading research method. Finally, we compare network measures for file-induced author net-
works based on corrected and raw data. We find commits done from different environments,
misspellings, organizational ids, default values, and anonymous IDs to be the major sources
of errors. We also find supervised learning methods to reduce errors by several times in
comparison to existing research and commercial methods and the active learning approach
to be an effective way to create validated datasets. Results also indicate that correction of
developer identity has a large impact on the inference of the social network. We believe
that our proposed Active Learning Fingerprint Based Anti-Aliasing (ALFAA) approach will

Communicated by:Communicated by: Daniel Méndez

< Sadika Amreen
samreen @vols.utk.edu

Extended author information available on the last page of the article.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09786-7&domain=pdf
mailto: samreen@vols.utk.edu

Empirical Software Engineering (2020) 25:1136-1167 1137

expedite research progress in the software engineering domain for applications that involve
developer identities.

Keywords Software repository mining - Identity disambiguation - Random forest
classification - Record linkage - Behavioral fingerprinting - Social network analysis

1 Introduction

Software engineering, especially empirical software engineering, relies on various mea-
sures of software developer activity to fit models of developer productivity (Mockus 2009b;
Edberg and Bowman 1996), project lead times (Petersen and Wohlin 2011), and code qual-
ity (Nagappan et al. 2008). The recently popular software engineering domain of Mining
Software Repositories (MSR) focuses on measuring software development based on data
available in version control and issue tracking systems. The basic software engineering
questions of developer productivity, project lead time, and the source code quality are inves-
tigated and modeled using measures of individual developers (such as project team size),
developer actions (code changes and issues), level of developer experience, and interactions
among developers. Complex industry tools are built based on data from version control
systems (Czerwonka et al. 2013; Mockus and Herbsleb 2002).

All this research and tools assume and require an accurate determination of developer
identity in order for the research results to be valid, models to be accurate, and industrial
tools to work correctly. While mature software development organizations tend to keep
good records of developer identity in their issue tracking and version control systems, this
is not the case for open source projects or less mature software development groups. In fact,
for outsiders, it is not even clear how many people participate in an open source project
even though the project’s version control system is public. Recent software engineering
research heavily relies on plentiful data in open source projects. Unfortunately, the version
control systems used in such research and tools do not represent developer identities accu-
rately (Bird et al. 2009; German 2004; Mockus 2014). Errors include incorrect and missing
values, such as multiple or erroneous spellings, identity changes that occur over time, group
identities, and other issues Furthermore, even very small identity errors may strongly affect
the downstream analysis (Zhu and Wei 2019).

The literature utilizing data from software repositories has to address this issue and
includes topics spanning from developer collaboration (Wolf et al. 2009; Martinez-Romo
et al. 2008), the contributions of companies to open source software projects (Jergensen
et al. 2011; Zhou et al. 2016), predicting faults in software (Pinzger et al. 2008), measuring
developer productivity and expertise (Cataldo et al. 2008; Mockus 2009b), among numer-
ous other examples. These issues have been recognized in software engineering (German
and Mockus 2003; Bird et al. 2006) and beyond (Cohen et al. 2003). To cope, studies in the
software engineering field tend to focus on individual projects or groups of projects where
the number of IDs that need to be disambiguated is small enough for manual validation and
devise a variety of heuristics to solve this formidable problem.

The existing approaches to correcting developer errors tend to be not scalable and is
often time consuming. An important reason for that is the the lack of ground truth or the
absence of validated identity corrections. This typically requires manual validation and an
intensive iterative adjustment of heuristics used to correct the errors. This makes it impossi-
ble to correct millions of developer identities in billions of code commits in the open source
ecosystem (Ma et al. 2019).

@ Springer



1138 Empirical Software Engineering (2020) 25:1136-1167

Another major problem with existing identity correction approaches is the lack of clarity
of how to make these heuristics more accurate or easier to tailor to a specific dataset with-
out an extensive amount of effort. This is partly due to the lack of clear understanding of
what types of identity errors are common and why they are introduced. Finally, the identity
correction approaches rely primarily on string similarity of the spelling of developer names
and email. It would seem that traces of developer activities can also be used for identity
resolution as, for example, gait can be used to identify a person.

We try to address these shortcomings, as the following research questions:

1. What are the most common reasons for identity errors in version control data?
Are there alternative measures to name and email similarity that can help correct
identity errors?

3. Isit possible to design a scalable approach that can improve upon matching techniques
used in research and commercial efforts within a software engineering domain?

4. What is the impact of identity errors on actual collaboration networks among
developers?

In summary, we find several types of and reasons for identity errors (e.g.,synonyms
and homonyms); we introduce innovative behavioral fingerprints in addition to traditional
string matching techniques that improve the accuracy substantially; we introduce a super-
vised learning approach called ALFAA (Active Learning Fingerprint-based Anti-Aliasing)
to identity matching in software engineering domain that is highly accurate and scalable,
easy to apply, and can, in principle, increase in accuracy as additional training data are
collected and utilized. Furthermore, we propose and demonstrate the use of active learn-
ing (Sarawagi and Bhamidipaty 2002) to produce a highly accurate predictor with minimal
effort spent on creating the training dataset.

We compare the accuracy of ALFAA on 16K OpenStack contributors to a commercially
funded effort and to one of the recent research methods. We also demonstrate that it scales
to a larger dataset of 2 million contributors to several large software ecosystems. Finally,
we assess how identity errors affect file-induced developer collaboration networks (Wang
et al. 2012). We find that typos, application defaults, organizational IDs, and the desire for
anonymity are the primary cause of errors in developer identity within a very large body
of over 1 billion commits. The proposed behavioral fingerprints improve the accuracy of
the predictor even with a limited training sample. We find that the commercial and recent
research-based identity resolution methods for the OpenStack problem have much lower
accuracy than our proposed method and that the errors in the actual identity data in Open-
Stack strongly impact the social network measures. The identity errors represent a real
problem that is likely to affect results of many analysis or development tools, but these
errors can be addressed even for very large datasets using the proposed approach.

The novelty of our contribution first involves behavioral fingerprinting that includes
Doc2Vec method to find similarities among commit messages, thus providing authorship
likelihood measures even for commits with empty or generic author string. Second, we pro-
pose the use of machine learning methods in identity resolution within software engineering
context that improve accuracy to a level comparable or higher than manual matching. This is
a radically different approach from the current state of the art of manually designed heuris-
tics. The trained models can be further improved simply by adding larger training sample
instead of requiring effort intensive design and application of customizable heuristics. Mod-
els and data will be shared upon publication. Third, we propose to use active learning to
minimize effort to generate training samples. Fourth, we identify several new sources of
errors in developer identity. Fifth, we evaluate accuracy of our approach on a large sample of

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1139

16K OpenStack contributors and compare it to a commercial method and a recent research
method on an extremely large sample of 2M contributors in large ecosystems. We manually
validate the performance and find ALFAA to have significantly lower lumping errors.

The remainder of this article is organized as follows. Section 2 discusses the current state-
of-the-art practices in the domain of identity disambiguation. Section 3 discusses the data
collection process and its overview. Section 4 discusses the nature of errors associated with
developer identities as well as their reasons. Section 5 discusses the approach in solving the
identity disambiguation problem by correcting synonym errors and reports the results we
obtained. Section 6 compares the results produced by ALFAA to a commercial effort and
recent research method. Section 7 demonstrates the impact of identity errors on networks
by using a developer collaboration network and finally, Section 9 summarizes findings and
provides conclusions. In addition, the following sections answer each of the research ques-
tions — Section 4 answers RQ1, Section 5 answers RQ2, Section 6 answers RQ3 and finally,
Section 7 answers RQ4.

2 Related Work

The issue of identity resolution through disambiguation or de-anonymization falls under
the broader field of “Record Linkage”. The first mathematical model for record linkage
introduced in 1969 by Ivan Fellegi and Alan Sunter (Fellegi and Sunter 1969), is used to
identify duplicates when unique identifiers are unavailable. This model serves as the basis
of many record linkage methods practiced today.

2.1 Relevance of Identity Resolution

Identity resolution has been investigated in many fields such as on patent data (Ventura
et al. 2015) to link records of the companies, organizations and individuals or government
agencies to which a patent is assigned, on US census data (Winkler 2006), synthetic census
data (Cohen et al. 2003) and in the construction of web services that integrate crowd-sourced
data such as CiteSeer (Lawrence et al. 1999).

With the proliferation of online activities such as collaboration in software development,
identity resolution techniques have also become important in the field of empirical soft-
ware engineering research (German and Mockus 2003; Bird et al. 2006) to disambiguate
identities of people in a software ecosystem. Communication and coordination activities
are central to development of large software projects. These activities logged on the mail-
ing lists, issue trackers etc. are public for Open Source Software development and these
serve as useful traces of communication and coordination between participants. These data
can be mined for various purposes such as to build social diversity dataset from thousands
of GitHub projects (Vasilescu et al. 2015), to assess a contributor’s total activity within
projects (Gharehyazie et al. 2015) in Open Source Software and across platforms (Xiong
et al. 2017) and in mailing lists (Wiese et al. 2016). We discuss some of the applications as
follows, outlined in existing research, where correct identity of developers is critical.

— Data Consolidation: when trying to combine information from different types of data
sources in a coherent way where the available data concerning persons involved in
a project may be dispersed across different repositories (Goeminne and Mens 2013;
Robles and Gonzalez-Barahona 2005). This can affect other studies that require
consolidated statistics on users.

@ Springer



1140 Empirical Software Engineering (2020) 25:1136-1167

— Code reuse and attribution: A study (Baltes and Diehl 2018) to understand code usage
and attribution required survey of users on using multiple platforms such as StackOver-
flow and GitHub aimed to answer questions such as how often code is reused but not
attributed. This required matching identities across platforms as users are likely to have
various representation of their IDs across platforms. These kind of studies are required
to address code maintenance and legal issues.

— Developer productivity measure: When a single individual uses multiple IDs, it
becomes hard to track the work of individuals such as developers working on various
projects on version control systems. This impacts productivity measures of developers
by showing lower than actual productivity since a single developers activity may have
been logged by more than a single ID, or alternatively, higher than actual productivity
because multiple individuals have logged their activity using a single ID. It is important
to understand the central/influential players in a network and resolving identities is key
to its determination.

— Understanding social connected-ness and influence in developer communities: The
information available in software repositories can be analyzed through a variety of sta-
tistical and social (graph-based) approach. One such application is in understanding
social connected-ness in developer communities (Thung et al. 2013). This kind of study
helps to identify influential developers and projects through analyzing collaborations
- developers connected through codes in version control systems, questions in mailing
lists, bug reports and fixes in issue trackers etc. It may be of interest to identify influ-
ential developers because their activities can act as guides to other people’s projects. It
may also help to identify the “teachers” in a developer community as active developers
frequently answer questions as well (Badashian et al. 2014).

— Assessing Contributions: Developers of many open source projects want to understand
contributions from different companies (to ensure that each member company con-
tributes its fair share). OpenStack even hired a commercial firm to address this problem
but, as we show in our analysis, they have not achieved very accurate results.

The issue of developer identities has been a serious problem in software repository min-
ing. It remains a challenging issue due to a number of reasons, particularly, due the large
volumes of poor quality data. This challenge is further enhanced by the fact that compli-
cated, labor intensive evaluation techniques are required to validate methods of resolution
as we will discuss in the following sections.

2.2 Existing Techniques of Identity Resolution

Approaches such as merging identities with similar name labels, email addresses or any
combination of these have been used in the past for disambiguation. However, Most of
these are still reliant on simple string matching heuristics. For example, an algorithm (Bird
et al. 2006) designed specifically to detect identities belonging to developers who commit
to code repositories and people participating in a mailing list uses string similarity based on
Levenshtein distance on first, last, and user name fields of developers and mailers coupled
with a threshold parameter. This assumes a name will be split into two parts using white-
space or commas as delimiters and user names can be derived from the email address string.
This algorithm was later modified to include more characters as separators, extended to
account for an arbitrary number of name parts and include more individuals from bug repos-
itories and then evaluated using different identity merge algorithms (Goeminne and Mens
2013). While these approaches are reported to perform well only through string matching

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 14

and thresholding, for example, work using more sophisticated heuristics such as Latent
Semantic Analysis (LSA) on names of GNOME Git authors which was also used for dis-
ambiguation (Kouters et al. 2012), fail to address issues where developer identity strings are
problematic, i.e. incomplete or missing.

Other research on the data from the U.S. patent and trademark (USPTO) (Ventura et al.
2015) database uses a supervised learning approach based on a large set (over 150,000)
of hand labeled inventor records to perform disambiguation. This, therefore, assumes an
availability of sufficient and reliable ground truth data to perform a supervised learning
approach. A major challenges we face with disambiguation is the lack of an adequate pool
of hand labeled data to use for supervised learning. Furthermore, these prior approaches
fail to address the problem of homonyms resolution i.e. where a single label may be used
by multiple identities. This is critical because excluding problematic nodes from a network
can radically alter the properties of the social network as well as nodes (e.g., developer
productivity, tenure with the project, etc).

The fact that there is insufficient ground truth for our dataset of developers from projects
hosted on GitHub causes a hindrance to employing any supervised learning approach
directly. Past research on de-duplication of authors in citations (Sarawagi and Bhamidipaty
2002) has leveraged a technique called active learning, which starts with limited labels and
a large unlabeled pool of instances, thereby, significantly reducing the effort in providing
training data manually. The active learning method uses an initial classifier to predict on
some unlabeled instances. The initial classifier produces some results (a higher fraction)
with high confidence and some others (a lower fraction) with lower confidence i.e. the clas-
sifier’s confusion region. This confusion region can therefore be extracted and manually
labeled for it to serve as the training data for the actual classifier.

In summary, the current state of art in software engineering remains based on designing
a set of matching heuristics with manual verification. At the same time, techniques used
in other fields need tailoring for the types of problems common in software engineering.
We propose an approach that combines information from identity string and behavioral
attributes and uses iterative supervised machine learning to achieve highly accurate identity
resolution for synonym errors. As the training set for the learner increases, the approach
should become even more accurate, since the proposed models can take advantage of the
richer training data.

2.3 lllustration of Impact of Identity Resolution on Estimates of Developer
Productivity

We used actual data for 25 open source developers who were selected using author’s pro-
fessional network. Colleagues were asked to use an online tool that constructs an activity
profile from commits made in public git repositories. Colleagues that we knew are very
active and others who we knew not to be very active in open source were included in this
sample. Each of the 25 participants confirmed the disambiguation results produced by the
method described in the paper. These 25 developers used from two to 17 (median of five)
distinct identities resulting in a total of 141 distinct identities. If we assume these develop-
ers to be working on the same project, that would lead to a dramatic (more than five times)
overestimation of the number of developers needed to accomplish the tasks done by these 25
people. In Table 1, we consider how the lack of disambiguation on this sample of developers
would affect measures of developer productivity. The first column shows anonymized user
ID, the second and fourth columns show the number of commits and productivity (commits
per year) made by that developer, and column three shows the number of distinct IDs (used

@ Springer



1142 Empirical Software Engineering (2020) 25:1136-1167

Table 1 Comparison of developer productivity with and without disambiguation of IDs

UserID NumCmt NumID Prod(True) Prod(Min) Prod(Max) chngMin(%) chngMax(%)

Userl 148 10 97.93 0.66 52.93 14,700 85
User2 23 4 20.09 2.62 9.60 666 109
User3 2,602 12 346.09 0.13 308.85 260,100 12
User4 1,057 5 219.87 0.20 200.73 105,600 9
User5 13,960 8 282.49 0.02 146.95 1,395,900 92
User6 2,743 5 198.89 0.43 145.52 45,616 36
User7 1,346 6 132.95 0.09 68.94 134,500 92
User8 121 2 37.15 4.29 32.85 764 13
User9 579 7 130.31 0.45 77.87 28,850 67
Userl0 398 10 71.73 0.19 34.57 39,700 124
Userll 200 17 18.13 0.09 6.70 19,900 170
Userl2 54 3 10.59 0.78 8.43 1,250 25
Userl3 497 5 75.23 0.45 43.14 16,466 74
Userl4 914 6 116.56 0.38 46.16 30,366 152
Userl5 183 4 40.33 0.22 20.05 18,200 101
Userl6 172 3 52.09 0.90 45.73 5,633 13
Userl7 193 4 35.23 0.36 20.08 9,550 75
Userl8 184 7 41.60 0.22 32.56 18,300 27
Userl9 39 4 2.03 0.05 1.35 3,800 50
User20 179 3 45.00 0.25 33.68 17,800 33
User2l 35 5 6.92 0.59 2.37 1,066 191
User22 3,504 3 556.91 0.79 545.62 69,980 2
User23 8,555 3 1284.79 160.09 894.47 702 43
User24 24 3 10.79 1.34 4.94 700 118
User25 39 2 10.81 3.88 6.92 178 56

by the developer) that were found in the open source version control systems. The next
two columns indicate the minimum and maximum productivity of the IDs belonging to that
developer. Instead of aggregating commits over all IDs belonging to the developer we cal-
culate the number of commits for each ID separately (the numerator) and the time-span of
these commits (the denominator). The last two columns shows by how many percent the
actual productivity exceeds that the minimum and maximum productivity obtained when
using a single ID belonging to the developer. As Table 1 shows, the lack of disambigua-
tion would result in severe underestimation of developer productivity. This suggests that the
disambiguation is essential in order to produce accurate measures pertaining to software
developers.

3 Data Sources
Version Control System (VCS) is an ubiquitous tool in software development and it tracks

code modifications (commits). Each time a new commit is made, the VCS records author-
ship, commit time, commit message, parent commit and the full folder structure after the

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1143

String Behavioral
Similarity Fingerprint

\
[ | A \

) (e (o) (] (o] (e
ANEAY

First Last User Domain
Name Name Name

Fig. 1 Extracted Components of Commits that are relevant to this study

commit. Author string in a commit consists of the author name (first and last) and their
email addresses. We determine files modified in a commit by comparing the full folder
structure prior to and after the commit. We have been collecting such data from projects
with public VCS since 2007 (Mockus 2009a) and currently have 1.5B commits made by
over 30M authors in over 60M VCS repositories. Figure 1 shows the information extracted
from commits that were required for the studies discussed in this paper.

We set out to find a subset of this data that includes a sizable set of projects where
we could compare the results not only to research-based methods but also to approaches
used in industry. We, therefore, selected the OpenStack ecosystem as it already had an
implementation of disambiguation by Bitergia, a commercial firm, which mapped multiple
developer IDs to an unique identifier representing a single developer as well as mapping
contributors to their affiliated companies.

OpenStack! is a set of software tools for building and managing cloud computing plat-
forms for both public and private clouds. It lets users deploy virtual machines and can
handle different tasks for managing a cloud environment on the fly.> We discovered 1,294
repositories that are currently hosted on GitHub and have 16,007 distinct author strings in
the associated commits. Moreover, to measure the scalability of our method, we selected
an even larger collection of projects from several large open source ecosystems having
approximately 2M developer identities.

4 Classifying Errors

In order to tailor existing identity resolution approaches (or create new ones), we need a
better understanding of the nature of the errors associated with the records related to devel-
oper identity. For example, in census data a common error may be a typo, a variation in
the phonetic spelling of a name, or the reversal of the first and last names, among others.
Previous studies have identified errors as a result of transliteration, punctuation, irrelevant
information incorporated in names, etc. (Kouters et al. 2012; Christen 2006). Furthermore,
complications are at times introduced by the use of tools. Author information in a Git com-
mit (which we study here) depends on an entry specifying user name and email in a Git
configuration file of the specific computer a developer is using at the moment. Once Git

Uhttps://www.openstack.org/
2https://opensource.com/resources/what-is-openstack

@ Springer


https://www.openstack.org/
https://opensource.com/resources/what-is-openstack

1144 Empirical Software Engineering (2020) 25:1136-1167

commit is recorded, it is immutable like other Git objects, and cannot be changed. Once a
developer pushes their commits from the local to remote repository, that author informa-
tion remains. A developer may have multiple laptops, workstations, and work on various
servers, and it is possible and, in fact, likely, that on at least one of these computers the
Git configuration file has a different spelling of their name and email. It is not uncom-
mon to see the commits done under an organizational alias, thus obscuring the identity
of the author. Some Git clients may provide a default value for a developer, for example,
the host name. Sometimes developers do not want their identities or their email address
to be seen, resulting in intentionally anonymous name, such as, John Doe or email, such
as devnull@localhost. Developers may change their name over time, for example, after
marriage, creating a synonym and other scenarios may be possible.

In order to correct this, we need to determine the common reasons causing errors to be
injected into the system. We therefore, inspected authors strings from our collection (at the
time there was approximately 1B commits). The procedure used to determine the types of
identity errors was as follows. First, we inspected random subsets of author IDs to under-
stand how or why these errors occur. We then inspected the most common names and user
names. The reviewer was tasked with identifying anything unusual in the name or email.
Third, we also consider errors encountered in the manual labeling effort during the active
learning phase as discussed in Section 5. The resulting anomalies were then grouped using
the open card sort method (Spencer and Warfel 2004). This is a technique of organizing
information in which a person, given a set of cards (i.e. IDs in this case) classifies them
into any number categories named and created by the person. In our case, this was done by
two people. Each person read the card (i.e. the IDs) and put them in separate bins represent-
ing a type of error. Initially, one of the persons, found three categories of errors (synonym,
homonym and missing data) while the other found two (synonyms and homonyms). Upon
careful inspection of the three categories and items belonging to the ‘missing data’ bucket,
‘missing data’ was merged into the homonym category because it was equivalent to a
homonym represented by an empty string. Using this approach we found that the errors
resulted in two primary categories: synonym and homonym errors.

— Synonyms: Synonyms errors are introduced through spelling mistakes, capitalization
(or absence) of names, introduction of a middle name, last name change due to mar-
riage, abbreviation of a name, adding extra space(s), adding period, reversal of first
and last names, transliteration of non-ascii characters, irrelevant information incor-
porated into names. These errors can arise from one or a combination of the above
cases and are introduced when a person uses different strings for names, user-names or
email addresses. For example, ‘utsav dusad <utsavdusad @gmail.com>" and ‘utsavdu-
sad <utsavdusad@gmail.com>" are identified as synonyms. Spelling mistakes such as
‘Paul Luse <paul.e.luse @intel.com>" and ‘paul luse <paul.e.luse@itnel.com>" are
also classified as synonyms, as ‘itnel’ is likely to be a misspelling of ‘intel’.

— Homonyms: Homonym errors are introduced when an individual provides IDs that
cannot be tied to a single individual. For example, these may be identifications related
to generic roles (‘Admin’, ‘root’, ‘dev’), names of projects (‘Jenkins’, ‘Travis CI’,
‘Ubuntu’, ‘Openstack’, ‘Vagrant’), names of organizations (‘cisco’, ‘cmart’, ‘wal-
mart’). The ID may also be any string that seeks to preserve anonymity or are simply
placeholders injected by tools (‘nobody’, ‘your name’, ‘test’, ‘anonymous’, ‘me’,
‘John Doe’). Other examples include miscellaneous terms such as ‘Bot’, ‘EC2 Users’,
‘Server’ etc. For example, the ID ‘saper <saper @saper.info>’ may be used by multiple
entities in the organization. For example ‘Marcin Cieslak <saper@saper.info>’ is an

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1145

entity who may have committed under the above organizational alias. Homonym errors
are also introduced when a user leaves the name or email field empty, for example,
‘chrisw <unknown>’. A brief frequency analysis showed that the most frequent names
in the dataset such as ‘nobody’, ‘root’, and ‘Administrator’ are a result of homonym
errors as shown in Table 2

The findings for RQ1 are, therefore, shown in Fig. 2, with the various subcategories
and corresponding examples for the two broad categories (synonyms and homonyms) we
found the errors to belong to. We would like to note that in the remainder of this paper
we focus mainly on synonym resolution. While our method, especially the fingerprinting
part, is suitable for homonym resolution, the process requires a different experimental setup
(assigning authors to commit, not disambiguating author identities) that are beyond the
scope of this work.

5 Disambiguation Approach

Following traditional record linkage methodology and identity linking in software (Bird
et al. 2006) we first split the information in the developer ID into several fields and define
similarity metrics for all author pairs. We also incorporate the term frequency-adjustment
measure for each of the attributes in a pair. Finally, we add similarity between behavioral
fingerprints. We generate a table of these similarity measures for all 256,224,049 author
pairs generated from 16,007 developer IDs in the OpenStack dataset.

5.1 String Similarity Measures

Each author string is stored in the following format - “name <email>", e.g. “Hong Hui
Xiao <xiaohhui@cn.ibm.com>". We define the following attributes for each user.

1. Author: String as extracted from source as shown in the example above

2. Name: String up to the space before the first ‘<’

3.  Email: String within the ‘<>’ brackets

4. First name: String up to the first space, ‘+’, >, ‘_’, 7, . and camel case encountered
in the name field

5. Last name: String after the last space, ‘+’, *-’, *_’, ¢, . and camel case encountered in

the name field
6. User name: String up to the ‘@’ character in the email field

Additionally, we introduce a field ‘inverse first name’ whereby in the comparison
between two authors it is compared to the last name in the other record. We introduce this
field to make sure that our algorithm captures cases where authors reverse the order of their
first and last names. In the case where there is a string without any delimiting character in
the name field, the first name and last name are replicated. For example, bharaththiruveedula
<bharath_ves @hotmail.com> would have ‘bharaththiruveedula’ replicated in the first, last
and the name field. We calculate both Levenshtein and the Jaro-Winkler similarity as we
have seen in previous studies (Bird et al. 2006; Kouters et al. 2012), which are standard
measures for string similarity, for each author pair. To do this, we use an existing imple-
mentation of the measures in the RecordLinkage (Sariyar and Borg 2010) package in R,
namely the levenshteinSim() and jarowinkler() functions. In a preliminary investigation, we
found that the Jaro-Winkler similarity produces better scores which are more reflective of

@ Springer



Empirical Software Engineering (2020) 25:1136-1167

1146

Y0011 auou €16 A1deiou 7798 180 7886SC ugor S81v <yueiq>
€STll [rewr Sel umouyup) 8998 lojensiurupy 9109¢ MaIpuYy 861+ IojensiuIupy
TI9T1 urwpe 1LET = L6 g 01+8C X3y 91T J0TENSIUIPY WR)SAS
41541 swt 81SC 310 D1IMsoRWR @ ApogAue T6L6 uyy L9162 SHYD 709 Xy
9T8LI <yue[q> 965¢C wod d[durexa @nok %901 Suepm 6881€ [erueq €L09 PIINQ-WOISNO-NOWSPOU
Y£981 ojur 81¢ umouwyun 97801 o] Trise Apogou €69 (zoyine ou)
£8981 munqn v16S wod'snpooida @Iuopms 09581 munqn 66107 [PRYRIN 1€v81 munqn
8LLOT qnupis 8018 150Y[E20] @ [[NUASP 82193 Apogou 160S¥ piaeq 1€ Apoqou
yLSSE Apogou 956 auou@auou #00L9 1001 $6699 1001 0699 1001
SS9TL 1001 TSL91 <jue[q> S980%1 umouyjun L8OV umouyun 658071 umouyun
uno) QuIeu IS} juno) [rewuyq juno) Qureu 1se| juno) Qureu ISI1q uno) QWEeN

S[TEW pue soweu juonbaiy 1souw (] AU :MIIAISAQ BIeJ T d|qel

pringer

Qs



Empirical Software Engineering (2020) 25:1136-1167 1147

1. Spelling Mistakes 1. Generic Roles

O  paulluse@intel.com and paul.luse@itnel.com O Jenkins <Jenkins@hpcloud.net>
2. Upper/Lower cases 2. Names of Projects

o Utsav Dusad and utsav dusad o Ubuntu <Ubuntu@devstack>

3. Names of Organizations

o  cisco <cisco@ubuntu.(none)>
4. Words seeking anonymity

O  Anonymous <anon@example.com>
5. Miscellaneous

o  Owl Bot <info@bitergia.com>

3. Middle/Last name variations
o  Sergey Alexeev and Sergey

4. Transliteration -
O  Hal Daumé III and Hal Daume III

5. Abbreviation

o  Sergey A.and Sergey Alexeev
6. Extra space, no space, period etc.

O  Utsav Dusad and utsavdusad

Fig.2 Types of Synonym and Homonym Errors Discovered through Card-Sort

similarity between author strings than the Levenshtein score and, therefore, use this measure
in the proposed method. The Jaro Similarity is defined as

0, ifm=0
im: =411/ m m m—t
Sunj Z <7 +—+ 7> otherwise
3\ s1] |52 m

where s; is the length of string i, m is the number of matching characters and ¢ is half the
number of transpositions. The Jaro-Winkler Similarity modified the Jaro similarity so that
differences at the beginning of the string has more significance than differences at the end.
It is defined as

simy, = simj +Ip(l — sim;)
where [ is the length of a common prefix at the start of the string up to a maximum of four

characters and p (<= 0.25) is a scaling factor for how much the score is adjusted upwards
for having common prefixes.

5.2 Frequency Adjustment Score

If two developer IDs share an uncommon name, it provides greater confidence than the
IDs that share a more common name such as “John”. Denote N ('John’) as the number of
developers using this first name. If each developer produced the same number of commits,
then the conditional probability that one specific developer was an author of a randomly
selected commit (having author first name ‘John’) would be m This demonstrates
that common names do not provide strong evidence of a specific developer identity, while
the rare names do. In the extreme case, if there is only one developer with a particular name,
all commits containing that name should come from the same developer (the conditional
probability m = % would be 1). Furthermore, certain names like “nobody”
or “root” do not carry any information about the authorship and should be disregarded in
the similarity detection. This extra information, if properly encoded, could be exploited by
a machine learning algorithm making disambiguation decisions. We, therefore, count the

@ Springer



1148 Empirical Software Engineering (2020) 25:1136-1167

number of occurrences of the attributes for each author as defined in Section 5.1 i.e. name,
first name, last name, user name and email for our dataset. We provide this information to
the machine learning algorithm as a separate variable we refer to as frequency adjustment
score. We could provide two variables: an indicator variable that takes a value of one when
the name is fictitious and zero otherwise and another variable that contains the absolute fre-
quency of the specific attribute (.i.e., m). This approach would, unfortunately, double
the number of predictors and, in turn, slow the fitting procedure and increase the chances of
overfitting the data. To avoid that problem, we chose to combine these two variables into a
single predictor. Specifically, this variable depends on the absolute frequency of the string
in the corpus. The more frequent the string is, the smaller this score is. The algorithm can
then learn that for the perfectly matching names that are highly frequent the match does not
provide much evidence that they belong to the same person. Furthermore, we set this vari-
able for a pair of name, a first name, a last name, or a user name to exp(—10) if at least
one element of the pair belongs a string identified as potentially fictitious. exp(—10) was
chosen because we found the value to be much smaller than that for the most frequent non-
fictitious names. We further took the logarithm of the frequency adjustment score because
the resulting scores were distributed highly unevenly. In such cases a logarithm is useful is
when we are discussing measurements with a different orders of magnitude i.e. 100 vs 1,000
vs 1,000,000. The logarithm smooths our measurements so that it is easier for a user (or,
in our case, an algorithm) to distinguish between significant scores, similar to the Richter
scale in earthquake dynamics where each unit corresponds to a ten-fold increase in energy.
It’s more user friendly to score things -7 versus -8 as opposed to 10™ -7 vs 10" -8.

Specifically, we calculate the frequency adjustment score between author pairs, authors
ap and ap, for each of these attributes as follows:

1 . o
logyg ———— if a1 and a; are non-fictitious

fal X fa2

—10 otherwise

ffreq =

where f,1 and f, are the absolute frequency of names of authors a; and a, respectively.
We generate a list of 200 common strings of names, first names, last names and user names
and emails from the full data set of authors (the first 10 shown in Table 2) and manually
remove names that appear to be non-fictitious, i.e. names that could truly belong to a person
such as Lee, Chen, Chris, Daniel etc. This gives us a compilation of a set of fictitious names.

5.3 Behavioral Fingerprints

In addition to the spelling of the name and contact information, developers might leave
their individual signatures in the version control systems. For example, the way commit
messages are composed, the set of files are modified, or the time zones of the commits, may
all contain information that can be used to identify an individual. To capture such traces
of developer actions, we designed three similarity measures - (1) Similarity based on files
modified — two author IDs modifying similar sets of files are more likely to represent
the same person. (2) Similarity based on time zone — two author IDs committing in the
same time zone indicate geographic proximity and, therefore, have higher likelihood of
being the same individual. (3) Similarity based on commit message text — two author IDs
sharing writing style and vocabulary increase chances that they represent the same entity.
Operationalizations of these behavioral fingerprints are given below.

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1149

5.3.1 Files Modified

Each modified file is inversely weighted using the number of distinct authors who have
modified it (for the similar reasons common names are down-weighted as evidence of iden-
tity). The pairwise similarity between authors, a; and ay, is derived by adding the weights
of the files, Wy, touched by both authors. A similar metric was found to work well for
finding instances of succession (when one developer takes over the work of another devel-
oper) (Mockus 2009¢). The weight of a file is defined as follows where A ¢ is a set of authors
who has modified file f.

W= L here Ar=lal, .. a]l
Af? l 9 ’ n

Najay

Simga, = Z Wiy, where ng a, = | fa; N fa,

i=1
5.3.2 Time Zone

We discovered 300 distinct time zone strings (due to misspellings) from the commits and
created a ‘author by time zone’ matrix that had the count of commits by an author at a given
time-zone. All time zones that had less than 2 entries (authors) were eliminated from further
study. Each author was therefore assigned a normalized time-zone vector (with 139 distinct
time zones) that represents the pattern of his/her commits. Similar to the previous metric,
we weighted each time zone by the inverse number of authors who committed at least once
in that time-zone. We multiply each author’s time zone vector by the weight of the time
zone. We define author a;’s time-zone vector as:

Ct
Y\ aj
(Tzv)) = (At ) :

Here, (C fli) is the vector representing the commits of an author a; in the different time
zones t and (A;) is the vector representing the number of authors in the different time zones.
The pairwise similarity metric between author a; and author a; is calculated using the cosine
similarity as:

tzdayay, = cossSim(TZV,, TZV az)

where TZV,; and TZV,; are the authors’ respective vectors.
5.3.3 Text Similarity

We use the Gensim’s implementation’ of the Doc2Vec (Le and Mikolov 2014) algorithm
to generate vectors that embed the semantics and style of the commit messages of each
author. All commit messages for each individual who contributed at least once to one of
the OpenStack projects were gathered from the collection described above and a Doc2Vec
model was built. DocVec, unlike Word2Vec, allows to embed (estimate vectors) not only
for each word in the text, but for the document descriptors (tags or author IDs in our case)
as well. We used distributed memory version of paragraph vector with the vector size 200,

3https://radimrehurek.com/gensim/index.htm]

@ Springer


https://radimrehurek.com/gensim/index.html

1150 Empirical Software Engineering (2020) 25:1136-1167

Phase 1 | Phase 2 1 Phase3 ————

Attach Output:
5 ; ACTIVE « ”
fingerprint LEARNER CLASSIFIER Golden’

attributes Data
Supervised
Classifier
‘Clean’ clusters Transitive
by disaggregating Closure
Extract largest
clusters

Define Create

predictors pairwise

for string comparison
comparison Compare.
Linkage ()

\
’

Confusion
region
M1#M2
M2# M3
M1#M3

Get
canonical
label
manually

—————————————

\ ACTIVE LEARNER

N,

Fig.3 Concept of the Disambiguation Process

short window of three (since commit messages are quite short), negative sampling of 20,
hierarchical sampling, and removed words that were present in fewer than 15 commit mes-
sages. The 200-dimensional vector was short enough for quick computation, yet it was long
enough to encapsulate the variation of information in the commit messages.* Our earlier
experiments on commit messages found this set of parameters to yield satisfactory results
(of 80% accuracy for top on a sample of 600 commit messages done by 21 developers).
The resulting vectors for each of the 16,007 authors were used to calculate pairwise cosine
similarity between authors.

However, there are several potential drawbacks of these distance metrics. For example,
high scores for files touched may mean that two different individuals are working on the
same project thereby editing the same files at alternating times. High document similarity
may mean that the authors share similar vocabulary in the commit messages which may also
be influenced by the work on the same project. Fortunately, the machine learning algorithm
would discover these patterns from the training data and would find combinations of the
similarity scores (that may be either high or low), that correspond to true matches. As we
show later in the results, the behavioral similarity measures are important predictors for
disambiguation.

5.4 Data Correction

The data correction process can be divided into 3 phases as shown in Fig. 3.

1. Define predictors - Compute string similarity, frequency adjustment score, and behav-
ioral similarity

2. Active learning - Use a preliminary classifier to extract a small set from the large
collection of data and generate labels for further classification.

3. Classification - Perform supervised classification, transitive closure, extract clusters to
correct, and dis-aggregate incorrectly clustered IDs.

40n large and diverse bodies of text, a larger vector size of 300 is recommended (Rehufek and Sojka 2010)

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1151

5.4.1 PHASE 1: Define Predictors for the Learner

Once we have defined the attributes (name, first name, last name, email, username) for
which we want to calculate string similarity, we use relevant functions implemented in
the RecordLinkage library (Sariyar and Borg 2010) to obtain the Jaro-Winkler similarity
between each pair of attributes: authors’ name, first name, last name, user name, email and
the first author’s first name to the 2nd author’s last name (we refer to this as the inverse first
name). In addition to the string similarities based on these fields, we also include the term
frequency adjustment score, as is commonly done in record matching literature. The highly
frequent values tend to carry less discriminative power than infrequent email addresses or
names. Finally, we include three fingerprint metrics — files touched, time-zone, and com-
mit log text. The resulting data is used as an input to the next phase, i.e. the active learning
process.

5.4.2 PHASE 2: Active Learning

Supervised classification requires ground truth data and manual classification is time con-
suming. It is also error-prone - we found some differences between two raters and further
errors discovered in the Active Learning phase where the learner indicated manual classifi-
cation error that was verified by both raters. Since manual classification of all possible pairs
is impossible (it would require roughly 100 people each working 9000 hours to hand label
the Openstack collection we have now), it is necessary to identify a small subset of instances
so that the classifier would produce accurate results on the remainder of the data. Selecting
a random sample of pairs to compare for manual labeling is not likely to work either: in our
case, the chance that 2000 randomly selected pairs from 256M author pairs would belong
to the same person is close to zero (assuming, on average, two developer IDs per person,
2000 pairs would represent 107> fraction of the entire sample). Active Learning (Sarawagi
and Bhamidipaty 2002) is an idea that can be use to minimize manual classification effort.
In a nutshell, a variation in predictions of a preliminary classifier fitted on different sub-
sets of the classified data are manually resolved. It helps ensure that the pairs that are most
likely to be confused by the learner are added to the training data. The expensive manually
classified training data, therefore, is only collected where the initial classifier is not consis-
tent. As found in other work (Sarawagi and Bhamidipaty 2002), we also discovered that this
approach achieves very high accuracy with relatively few manually classified pairs.

Active Learning Design Details In order to seed the training set for the active learning
procedure, we have to resolve the problem of how to select a set of initial pairs for manual
labeling. If we randomly select authors, the fraction of matches obtained will be very low as
described above. To increase the proportion of matches in this seed data, we identify non-
homonym developer IDs where there were at least two distinct emails for the same name
(first and last) or where there were at least two distinct names for the same email. We then
sample 2,825 pairs from this set, so that either for each pair either name or email is the same.
This number was obtained by calculating the number of pairs we can manually validate in
a one week sprint working 2 hours per day. These 2,825 pairs were manually labeled as a
match (1) or a non-match (0). We found 2,016 matches and 809 non-matches in this set. We
also calculated the string similarity and behavioral similarity for each pair in this set. We
then randomly partitioned this data into ten parts and fit three classifiers on nine parts of
the data (each of these 9 parts had overlapping and different observations). Typical active
learning approach would then use these classifiers to predict matches on the data outside

@ Springer



1152 Empirical Software Engineering (2020) 25:1136-1167

Table 3 Confusion region from

the preliminary classifier Modell Model2 Model3
Link Link No-Link
Link No-Link Link
No-Link Link Link
No-Link No-Link Link
No-Link Link No-Link
Link No-Link No-Link

these pairs. However, since manual labels may be prone to errors, we add an additional step
of using these three models to predict matches on the data that has already been manually
labeled. Each classifier was used to predict outcomes for the all 2,825 pairs. As expected, the
three classifiers trained on different training subsets yielded slightly different predictions.
There were 2,345 pairs where all three learners did not agree (i.e at least one learner had
a prediction different from the other two). This is the confusion region of the learner, as
shown in Table 3. The predictions from the learners contained some instances where the
manual labels were incorrectly assigned. We made appropriate correction in the manually
classified data and the resulting set was used as the training data for the next iteration of the
active learner.

We used all 16 attributes (name, email, first name, last name, user name, inverse first
name, name frequency adjustment, email frequency adjustment, last name frequency adjust-
ment, first name frequency adjustment, user name frequency adjustment, files touched,
time-zone, and text similarity) in the initial Random Forest model. We obtained the impor-
tance of each predictor in this initial model and dropped the attributes with low importance
from all subsequent models.

5.4.3 PHASE 3: Classification

Once the labeled data set is created, we use it to train random forest models and perform
a 10-fold cross validation with results shown in Table 4. The classifier-predicted pair-
wise matches are completed via transitive closure to obtain the final predictor of identity
matches.> The result of the transitive closure is a set of connected components with each
cluster representing a single author. Once the clusters are obtained, we consider all clusters
containing 10 or more elements to investigate if multiple developers may have been grouped
into a single component. The resulting 20 clusters - 44 elements in the largest and 10 ele-
ments in the smallest cluster among these, were then manually inspected and grouped. This
manual effort included the assessment of name, user name and email similarity, projects
they worked on, as well as looking up individual’s profiles online where names/emails were
not sufficient to assign them to a cluster with adequate confidence. An example of cluster
reassignment is given in Table 5 where we dis-aggregated a single large cluster of 11 IDs to
3 smaller clusters. The first column is the author ID, the second is the cluster number the ID
was assigned to by the algorithm, the third column is the manually assigned cluster number
after dis-aggregation. We noticed that, the largest cluster of size of 44 in fact was based on

SWe found that more accurate predictors can be obtained by training the learner only on the matched pairs,
since the transitive closure typically results in some pairs that are extremely dissimilar, leading the learner to
learn from such pairs and, subsequently, produce many more false positives

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1153

Table 4 Confusion Matrix of 10-fold cross validation of the Random Forest Model: 1 represents a match
while O represents a non-match

0 1 0 1 0 1 0 1 0 1
0 549,609 4 548,179 3 549,469 2 551,136 5 550,108 5
1 0 992 2 1,110 0 1,082 0 1,039 3 1,014
0 549,204 1 549,402 1 547958 4 548,730 4 549,569 2
1 2 1,075 1 1,033 0 1,021 0 1,084 0 1,010

homonym ‘root’. Therefore, we dis-aggregated the entire cluster to form 44 single-element
clusters. The output of this phase is a cleaned data set in which we have corrected synonym
errors via machine learning and fixed some of the homonym errors by inspecting the largest
clusters. We use the corrected set as a reference or ‘golden’ data set representing developer
identities in the further analysis of OpenStack data.

5.5 Results

We evaluate the models using the standard measure of correctness - precision and recall
- using the true positive (#p), true negative (tn), false positive (fp) and false negative (fin)
outcomes produced by the models. An outcome is true positive when the model predicts a
match correctly. This means the model predicted a match between an ID pair, when the ID
pair is truly a match. An outcome is true negative when the model predicts a non-match
correctly. This means the model predicted a non-match between an ID pair, when the ID
pair is truly a non-match. An outcome is false positive when the model predicts a match
incorrectly. This means the model predicted a match between an ID pair, when the ID pair
is truly a non-match. Finally, an outcome is false negative when the model predicts a non-
match incorrectly. This means the model predicted a non-match between an ID pair, when
the ID pair is truly a match. We obtained an average precision of 99.9% and an average recall
of 99.7% from the 10-fold cross validation of the random forest model shown in Section 4.

Precision = L, Recall = .
tp+ fp tp+ fn

Table 5 Cluster cleanup through manual disaggregation
Author Identity Cluster# New Cluster#
AD <adidenko @mirantis.com> 22 1
Aleksandr Didenko <adidenko@mirantis.com> 22 1
Alexander Didenko <adidenko@mirantis.com> 22 1
Sergey Vasilenko <stalker@makeworld.ru> 22 2
Sergey Vasilenko <sv854h@att.com> 22 2
Sergey Vasilenko <sv@makeworld.ru> 22 2
Sergey Vasilenko <svasilenko@mirantis.com> 22 2
Sergey Vasilenko <xenolog@users.noreply.github.com> 22 2
Vasyl Saienko <vsaienko@mirantis.com> 22 3
vsaienko <vsaienko@cz5578.bud.mirantis.net> 22 3
vsaienko <vsaienko@mirantis.com> 22 3

@ Springer



1154 Empirical Software Engineering (2020) 25:1136-1167

Since record matching is a slightly different problem from traditional classification, pre-
vious work done on identity matching introduces two additional error metrics: splitting
and lumping (Smalheiser and Torvik 2011) as they are easier to interpret than standard
precision and recall for the domain of identity matching. Lumping occurs when multiple
developer IDs are identified to belong to a single developer. The number of lumped records
is defined as the number of records that the disambiguation algorithm incorrectly mapped
to the largest pool of IDs belonging to a given developer. Splitting (i.e. 1 - Recall) occurs
when an ID belonging to a single developer is incorrectly split into IDs representing sev-
eral developers. The number of split records is defined as the number of developer IDs that
the disambiguation algorithm fails to map to the largest pool of IDs belonging to a given
developer.

These two metrics only focus on the largest pool of IDs belonging to a single devel-
oper and ignores the other clusters of IDs corresponding to the same unique developer. To
address that the work in Ventura et al. (2015) modifies these measures to evaluate all pair-
wise comparison of author records made by the disambiguation algorithm. We follow the
latter approach and create a confusion matrix of the pairwise links both from the golden
data set and from the links created by the classifier:

fp

Splitting = _—
tp+ fn

n
P fn’ Lumping =

The cross-validation shows that 0.3% of the cases were split and 0.1% of the cases were
lumped. We use one of these models to predict links or non-links for our entire dataset of
over 256M pairs of records. The classifier found 31,044 links and we generated an addi-
tional 3,293 links through transitive closure. Therefore, we have 34,337 pairs linked after
running the disambiguation algorithm. Using this, we constructed a network that had 10,835
clusters that were later manually inspected and disaggregated using the procedure described
in Section 5.4.3. Finally, we were left with 10,950 clusters, each representing an author, with
14 elements in the largest cluster, corresponding to the highest number of aliases by a single
individual as shown in Table 6. The results extracted in each phase is illustrated in Fig. 4.

The results in Table 7 report the prediction performance where the prediction model
was fit with and without the behavioral metrics. The table allows us to answer RQ2 (do
behavioral metrics increase accuracy). We obtained seven times higher precision error that
increases from 0.1% to 0.7% and recall error increases 1.7 times from 0.3% to 0.5% when
behavioral metrics are dropped from the models.

We would like to stress that the tolerance for identity errors is extremely low. For exam-
ple in Zhu and Wei (2019), only 6% identity errors lead to about 20% error in counting

Table 6 Largest cluster corresponding to single entity with highest aliases after disaggregation

AuthorID AuthorID

Greg Holt <gholt@rackspace.com> tlohg <z-github@brim.net>

Greg Holt <greg@brim.net> tlohg <gholt@rackspace.com>

Greg Holt <gregory.holt@gmail.com> gholt <z-launchpad @brim.net>

Greg Holt <gregory_holt@icloud.com> gholt <z-github@brim.net>

Greg Holt <z-github@brim.net> gholt <gregory.holt+launchpad.net@gmail.com>
Gregory Holt <gholt@racklabs.com> gholt <gholt@rackspace.com>

gholt <devnull @brim.net> gholt <gholt@brim.net>

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1155

31,044 links

Prediction using predicted
RF model

+

OpenStack 10,835 clusters

IDs: 16,008

Manual
Dis-aggregation

A4

10,950 clusters

Avg: 16,008/10950 = >~ __
1.46 aliases A -

Remaining
non-links

Fig.4 Results from disambiguation from OpenStack developers

the number of developers and about 52% error in calculating the time of stay of developers
within a repository. As observed in Zhu and Wei (2019), developers who are more active
are much more likely to have identity errors. As a result, even small errors may get mas-
sively magnified. For example, in absolute terms, matching 256M pairs for the OpenStack
data (of about 16,000 authors), 0.1% error would mean 256,000 mis-classified links that
may also be magnified by a transitive closure of the the matched pairs. Therefore, one mis-
classification can easily cascade into much bigger problems. For research that relies on such
data, this poses a difficult problem. While the empirical study we conducted did not reach
the ideal level of zero errors, we expect that the proposed algorithm, after being trained with
sufficient amount of data, could potentially reach this highly desirable threshold. A mea-
sure of the importance of the features used in the classification shows that two out of the
three behavioral fingerprints were the second and third most important variables. The most
important feature was the name of the user. We look at the mean decrease in accuracy when
each of the features are dropped from the classification process, and removing the behav-
ioral fingerprints had the largest impact after removing the name feature. Mean decrease
in accuracy is impacted by the features in the following order (high to low): name, time-
zone, files-modified, email, first-name frequency adjustment, inverse first name, last-name
frequency adjustment, username, text-similarity, last-name and firstname.

An empirical study quantifying the impact is discussed in Section 7. In summary, the
answer to RQ2 is positive: the behavioral fingerprints increase the accuracy of synonym
resolution.

Table 7 Comparison of the Results with and without behavioral fingerprinting

Metric Without behavioral fingerprint (%) With behavioral fingerprint (%)
Precision 99.3 99.9
Recall 99.5 99.7
Splitting 0.4 0.3
Lumping 0.6 0.1

@ Springer



1156 Empirical Software Engineering (2020) 25:1136-1167

6 Evaluation

In this section we try to answer questions related to the accuracy of the manually labeled
training data and to compare our approach to two alternatives from the commercial and
research domains. It is important to note that we are evaluating our algorithm trained on a
small amount of training data and, as with other machine learning techniques, we expect it
to have higher accuracy with more training data that would be added in the future.

6.1 Accuracy of the Training Data

The absence of ground truth requires us to investigate the accuracy of the training data.
Two independent human raters (authors who are PhD students in Computer Science) were
presented with the spreadsheet containing 1,060 pairs of OpenStack author IDs and marked
it using the following protocol. Each rater was instructed to inspect each pair of author IDs
(full name and email) listed in the spreadsheet and supplemented by author’s affiliations
(see Section 6.2, the dates of their first and last commits in the OpenStack projects, and their
behavioral similarity scores. Each rater was instructed to mark author pair as a match (1)
if the two identities are almost certainly from the same person, a non-match (0) if they are
certainly not from the same person, and provide a number in between zero and one reflecting
the raters subjective probability that they are representing the same person. Each rater was
instructed to use the above mentioned information (listed next to the pair in the spreadsheet)
to make their decision and were instructed to search for developers on Github or Google if
they did not feel confident about their decision. For cases where both raters marked either
zero or one we found 1,011 instances of agreement and 17 cases of disagreement between
the two raters. By thresholding the 32 cases that had probability value greater than zero and
less than one to the nearest whole, we obtained 1,042 instances of agreement (98.3%) and
18 cases of disagreement (1.69%).

We also compare the ten-fold cross-validation predictions described above with the sec-
ond rater (whose input was not used for training). The numbers of disagreements between
the second rater and the predictions over ten folds ranged from 11 (1.03%) to 18 (1.69%)
(a mean of 15.18). The second rater had, therefore, similar or better agreement with the
prediction than with the first rater.

We thus have established the degree to which the two raters agree on the decision, but
not necessarily that either of the raters was correct. To validate rater’s opinions we, there-
fore, administered a survey to a randomly selected set of authors. The survey provided
respondents with a set of commits with distinct author strings. All commits, however, were
predicted to have been done by the respondent and each respondent was asked to indicate
which of the commits were the ones made by them. From a randomly selected 400 devel-
opers sixty-nine emails bounced due to the delivery problems. After 20 days we obtained
45 valid responses, resulting in a response rate of 13%. No respondents indicated that com-
mits predicted to be theirs were not submitted by them, for an error rate of 0 out of 45. This
allows us to obtain the bound on the magnitude of error. For example, if the algorithm has
the error rate of 5%, then we would have less than one in ten chances to observe 0 out of 45
observation to have errors.°

After establishing high accuracy of the training data we proceed to compare our approach
to an approach that was implemented by professional commercial effort.

6 Assuming independence of observations and using binomial distribution.

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1157

Table 8 Comparison of ALFAA against others

Set Assumed ground truth Comparison Precision Recall Split Lump
Training R1 R2 0.9861 0.9861 0.0139 0.0139
Set ALFAA ALFAA 0.9990 0.9970 0.0030 0.001
ALFAA R2 0.9936 0.9823 0.0177 0.0063
Full ALFAA Bitergia 0.9991 0.4688 0.5312 0.0004
OpenStack ALFAA Recent 0.9480 0.8891 0.1109 0.0487

6.2 Comparison with a Commercial Effort

Openstack is developed by a group of companies, resulting in an individual and collective
interest in auditing the development contribution of each firm working on Openstack. This
task was outsourced to Bitergia,” which is a company dedicated to performing software
analytics. We collected the disambiguation data on OpenStack authors produced by Bitergia.
The data was in a form of a relational (mysql) database that had a tuple with each commit
shal and developer ID and another table that mapped developer ID (internal to that database)
to developer name (as found in a commit). The Bitergia data had only 10,344 unique author
IDs that were mapped to 8,840 authors (internal database IDs). We first restricted the set of
commits in our dataset to the set of commits that were in the Bitergia database and selected
the relevant subset of authors (10,344 unique developer IDs) from our data for comparison
to ensure that we are doing the comparison on exactly the same set of authors. Bitergia
algorithm misses 17,587 matches predicted by our algorithm and introduced six matches
that our algorithm does not predict. In fact, it only detected 1,504 matches of over 22K
matches (under 7%) predicted by our algorithm. Bitergia matching predicted 8,840 distinct
authors or 41% more than our algorithm which estimated 6,271 distinct authors. As shown
in Table 8, it has almost 50 times higher splitting error than manual classification, though
it almost never lumps two distinct authors. We, therefore, conclude that the prediction done
by the commercial effort has substantially lower accuracy.

6.3 Comparison with a Research Study

Next, we compare our method to a recent research method® that was applied on data from
23,493 projects (Vasilescu et al. 2015) from GHTorrent to study social diversity in software
teams. From this point forward, we refer to that method as “Recent”. Method Recent starts
by creating a record containing elements of the name and email address as shown on the left
of Fig. 1. It then forms candidate pools of identities linked by matching name parts, then uses
a heuristic to accept or reject each pool based on counts of different similarity “clues”. The
authors then iteratively adapted this automatic identity matching by manually examining the
pools of matched emails and adjusting the heuristic. To ensure that the heuristics in Recent
were applied in a way consistent with their prior use, we asked the first author of the original
paper (Vasilescu et al. 2015) to run it on our datasets and adjust it analogously to how he
had adjusted for his own studies.” We first compare the results of Recent to our approach

7https://bitergia.com/
8https://github.com/bvasiles/ght_unmasking_aliases
9The author got much better results than we could obtained using their published code without modifications.

@ Springer


https://bitergia.com/
https://github.com/bvasiles/ght_unmasking_aliases

1158 Empirical Software Engineering (2020) 25:1136-1167

on the entire set of 16K OpenStack authors and then on a larger dataset described below.
Table 8 provides comparisons where the labels generated using method in the left column
to be the ground truth. The “Comparison” column compares all methods to the first model
from the 10 fold cross-validation which is considered to be the “assumed ground truth”. The
error is not zero for row ALFAA vs ALFAA, because it provides an average error over nine
remaining models from the 10 fold cross-validation. We see that there is a good agreement
between the raters: splitting error of 0.0139 and lumping error of 0.0139. The average ten-
fold cross-validation error of ALFAA on the Rater 1 labeled data is 4.63 (0.0139/0.003)
times and 13.9 (0.0139/0.001) times lower, though. The agreement between ALFAA and
Rater 2 is similar to that between Rater 1 and Rater 2, suggesting that ALFAA has captured
the heuristics implicit in the training set. Commercial effort has a much higher split error
but it almost never lumps distinct individuals together. The last comparison of ALFAA vs
Recent shows that ALFAA is 7.97 times more accurate than Recent with respect to splitting
(0.1109/0.0139), and 3.5 times with respect to lumping (0.0487/0.0139). This is possible
due to the large training sample that allows the Random Forest algorithm to devise a much
more accurate decisions on matching than could be possible through a manual design of a
heuristic.

We expect that this model will be used by other researchers and some of them may create
additional training data. In such cases, as the training set would increase, we expect the accu-
racy of the supervised learning to continue to increase, hopefully approaching extremely
low error rates.

6.3.1 Manual Validation of Results from Recent and ALFAA

We found that ALFAA produced 1,876,595 matches that were not identified by Recent.
Recent produced 363,818 matches that were not matched by ALFAA. In order to understand
and validate the differences we design an experiment to compare the results of Recent to
ALFAA generated from a set of 16,008 Openstack authors. As the size of the full data set
is too large for manual validation (over 256M pairs), we sample a small section of the data
for manual inspection. The sampling is done using the following procedure.

— Remove all self-matched observations from consideration i.e. where ID1 and ID2 are
identical

— Remove all observations that have positive outcomes i.e. match, for both ALFAA and
Recent

— Setl: Randomly sample 500 observations where ALFAA yields a positive outcome and
Recent does not

—  Set2: Randomly sample 500 observations where Recent yields a positive outcome and
ALFAA does not

— Combine Setl and Set2 and randomly extract 500 observations from the combined set
without replacement. Let’s call this Samplel. The remaining observations will be in
Sample?2. This step ensures that no bias is introduced when using human raters while
generating ground truth.

We created random samples of 1000 pairs of IDs until it had more than 50% cases where
email of ID1 was not identical to email of ID2 because recent automatically matched IDs
that had the same email. We sampled 500 observations from each of these two sets and
found that 418 observations in Setl and 312 in Set2 did not have identical emails. We used
two raters (all PhD students in Computer Science,) to label each observation as a match (1),

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1159

a non_match(0), and uncertain (0.5) keeping the following in mind besides the individual
rater’s judgment.

—  If first names and last names match and neither are homonyms label as 1.

— If names are somewhat similar (case difference, partial match, abbreviated etc.)
and emails indicate personal and work (deduced from email domains) label as 1
Example: jonathanramirez <jonathanramirezmeza@ gmail.com >,Jonathan Ramirez
<jonathan @Jonathan-BMP.iptvrhicrosoftcom>

— If name in ID1 matches username in ID2 label as 1 Example: Elliot Fehr
<elliot@weebly.com>, Elliot <elliotfehr@gmail.com>

— If a name has high empirical frequency (appears frequently in the dataset) label as 0.5

— If aname has high cultural frequency (known to be common in a nationality or culture)
label as 0.5

— If one or both of the ID(s) is/are homonym(s) label as 0.5 Example: coffeemug
<coffeemug @dell-desktop.example.com>, Slava Akhmechet<coffeemug @ZElyas-
MacBook-Pro.local>

— If there are multiple names present in the IDs, then label 0.5 Example: Jonathan
Berkhahn and Raina Masand <rmasand @pivotal.io>, Ruth Byers and Raina Masand
<rmasand @pivotal.io>

We selected all instances that were labeled as a match (1) or a non-match (0) by both
raters. In other words, we dropped all instances that were labeled a 0.5 by any one rater. We
extracted 534 such observations out of the 1000 labeled instances. There were 47 cases of
disagreement between the two raters with a Cohen’s Kappa of 0.722 which we conclude is
satisfactory as Cohen’s Kappa between 0.6 and 0.8 is considered to be substantial agreement
according to Landis and Koch (Hallgren 2012). We found 184 pairs from results produced
by ALFAA and 350 pairs from results produced by Recent in this set.

Rater 1 validation results for ALFAA: Out of the 178 pairs that were matched by
ALFAA, rater 1 found 7 instances where ALFAA wrongly matched a pair of IDs and
177 instances where ALFAA correctly matched a pair of IDs. This means that ALFAA
achieved 3.8% False Positive rate 96.2 True Positive rate from Rater 1.

Rater 1 validation results for Recent: Out of the 350 pairs that were matched by
Recent, rater 1 found 80 instances where Recent wrongly matched a pair of IDs and 270
instances where Recent correctly matched a pair of IDs. This means that Recent achieved
22.8% False Positive rate 77.14% True Positive rate from Rater 1.

Rater 2 validation results for ALFAA: Out of the 178 pairs that were matched by
ALFAA, Rater 2 found 28 instances where ALFAA wrongly matched a pair of IDs and
156 instances where ALFAA correctly matched a pair of IDs. This means that ALFAA
achieved 15.2% False Positive rate 84.8% True Positive rate from Rater 2.

Rater 2 validation results for Recent: Out of the 350 pairs that were matched by
Recent, rater 2 found 94 instances where Recent wrongly matched a pair of IDs and 256
instances where Recent correctly matched a pair of IDs. This means that Recent achieved
26.8% False Positive rate 73.14% True Positive rate from Rater 2.

In conclusion, ALFAA and Recent achieved an average false positive rate of 9.5% and
24.85% respectively. This shows that Recent is 2.61 times more prone to lumping error
than ALFAA. To be able to report the splitting error, we would need to conduct a similar
experiment by sampling from the set containing pairs that were labeled as a non-match (0)
by ALFAA and the set containing pairs that were labeled as a non-match (0) by Recent,

@ Springer



1160 Empirical Software Engineering (2020) 25:1136-1167

which is both time and labor intensive, and therefore, we keep it beyond the scope of this
paper.

6.4 Evaluation on a large set of Identities

To evaluate the feasibility of ALFAA on large scale we created a list of 1.8 million identities
from commits to repositories in Github, Gitlab and Bioconductor for packages in 18 soft-
ware ecosystems. The repositories were obtained from libraries.io data (Nesbitt and Nickolls
2017) for the Atom, Cargo, CocoaPods, CPAN, CRAN, Go, Hackage, Hex, Maven, NPM,
NuGet, Packagist, Pypi, and Rubygems ecosystems; extracted from repository websites for
Bioconductor,!? LuaRocks'! and Stackage,'? and from Github searches for Eclipse plugins.

The application of Recent algorithm mapped the 1,809,495 author IDs to 1,411,531 enti-
ties as the algorithm was originally configured (1.28 aliases per entry), or 1,052,183 distinct
entities after the heuristic was adjusted by its author, identifying an average of 1.72 aliases
per entry. Upon applying our own algorithm to this dataset, we mapped the set to 988,905
— identifying an average of 1.83 aliases per entity. It is important to note that we did not
incorporate any additional training beyond the original set of manually marked pairs and we
expect the accuracy to increase further with an expanded training dataset.

Notably, to apply ALFAA for 1.8M IDs, we need 3.2 x 10'2 string comparisons for each
field (first name, last name, etc) and the same number of comparisons for each behavioral
fingerprint. The full set of engineering decisions needed to accomplish the computation and
prediction is beyond the scope of this paper, but the outline was as follows. To compare
strings we used an allocation of 1.5 million core hours for Titan supercomputer at Oak Ridge
Leadership Computing Facility (OLCF).'? The entire calculation was done in just over two
hours after optimizing the implementation in pbdR (Ostrouchov et al. 2012) on 4096 16-core
nodes. The approach can, therefore, scale to the entire set of over 23M author IDs in over
1B public commits. To compare behavioral fingerprints we exploited network properties
(authors touch only a small number of all files) to reduce the number of comparisons by
several orders of magnitude. Finally, it took us approximately two weeks to train Doc2Vec
model on approximately 9M developer identities and 0.5B commits using Dell server with
800G RAM and 32 cores.

7 measuring Impact on Developer Collaboration Network

In this section of our work, we discuss RQ4, the impact of identity errors in a real world sce-
nario of constructing a developer collaboration network. More specifically, we measure the
impact of disaggregation (or split) errors by comparing the raw network to its corrected ver-
sion. To create the collaboration network (a common network used in software engineering
collaboration tools (Cataldo et al. 2006)), we start from a bipartite network of OpenStack
with two types of nodes: nodes representing each author ID and nodes representing each
file, we refer to as G. The edges connecting an author node and a file node represent the
files modified by the author. This bipartite network is then collapsed to a regular author

10https://www.bioconductor.org
https://luarocks.org
https://www.stackage.org/lts-10.5
Bhttps://www.olcf.ornl.gov/

@ Springer


https://www.bioconductor.org
https://luarocks.org
https://www.stackage.org/lts-10.5
https://www.olcf.ornl.gov/

Empirical Software Engineering (2020) 25:1136-1167 1161

collaboration network by creating links between authors that modified at least one file in
common. We then replace multiple links between the authors with a single link and remove
authors’ self links as well. The new network, which has 16,007 author nodes, depicts devel-
oper collaboration, we refer to as G’. We apply our disambiguation algorithm on G’ and
aggregate author nodes that belong to the same developer and produce a corrected network
which we refer to as G”. The network and its transformations are illustrated in Fig. 5.

To evaluate the impact of correction from G’ to G”, we follow prior work investigating
the impact of measurement error on social network measures (Wang et al. 2012). We look
at four node-level measurements of network error, i.e. degree centrality (Freeman 1978),
clustering coefficient (Watts and Strogatz 1998), network constraint (Burt 1992) and eigen-
vector centrality (Bonacich 1987). For each node-level measure we compute a vector M.
For example, in Figure 2, vector M has the degree centrality of G, G’ and G”. Similar to the
approach discussed in (Wang et al. 2012) we compute two vectors M2 and M2’ for graph
G” using each node level measure and compute Spearman’s rho between these two vectors.
We obtain Spearman’s rho for degree centrality to be 0.8619, clustering coefficient to be
0.8685, network constraint to be 0.8406 and eigenvalue centrality to be 0.8690. The corre-
lations below 0.95 for any of these measures are considered to indicate major disruptions
to the social network (Wang et al. 2012). In our case all of these measures are well below
0.95. We can also look at the quantiles of these measures: for example one quarter of devel-
opers in the corrected network have 210 or fewer peers, but in the uncorrected network that
figure is 113 peers. The eigen-centrality has an even larger discrepancy: for one quarter of
developers it is below 0.024 for the corrected and 0.007 (or more than four times lower) for
the uncorrected network. Therefore, to answer RQ4, we find that developer identity errors
have a high impact on collaboration networks.

8 Limitations

Our findings have a number of limitations. First, the proposed behavioral fingerprints may
not be optimal for authorship assignment and other types of fingerprints may lead to a more
accurate disambiguation. The results we got, however, show fairly high accuracy, suggesting
that the specific choices we made appear to be reasonable as it is not clear how much more
the accuracy can be increased. However, exploring other behavioral fingerprints should be
considered in future work.

Second, our training and validation data rely on manual labeling by raters and not actual
ground truth. To correct for the bias of individual raters, we used several raters to manually

Graph G Graph G’ Graph G”

:>:, (=)

A [1/3,2]
A[1,2,3] A [1,23] M2 [1,1]
M[1,2,1] M1 [1,1,0] M2’[1/0, 1]

Fig.5 Correcting Disaggregation Errors in a Developer Network

@ Springer



1162 Empirical Software Engineering (2020) 25:1136-1167

label the data and found that there was a high agreement among raters. To get to the actual
ground truth, we contacted a small sample developers via a survey asking them to identify
if the commits done by alternative IDs were in fact produced by them. We found low errors,
but the response rate to the survey was fairly low. Therefore, it may be possible that the
accuracy of the matches for the non-respondents of the survey may differ from what we
observe with the respondents.

There may be a sampling bias as well, i.e., the errors for OpenStack identities may differ-
ent from errors in the other projects and ecosystems. We, therefore applied our method and
compared with a recent state-of-the-art method on a much large sample of identities from
18 distinct software ecosystems and found that it performs well there. We conducted addi-
tional manual labeling of the data on the mismatches to determine which of the methods
was more accurate.

It is possible that identity errors may not impact research results much. We, therefore,
looked into the question if the identity errors actually lead to errors in commonly con-
structed social networks. We found that even relatively small rate of identity errors to have
a substantial impact on social network errors. While it would be ideal, to gauge the impact
of ALFAA versus Recent in this context, we feel that this question is better addressed in the
future work with additional analysis.

We mention in Section 4 that identity errors are can be classified broadly under
two parts — Synonym and Homonym errors. The synonym resolution requires match-
ing between pairs of authors, where the ground truth can be somehow determined based
on the similarity of names, emails or other sources. It is harder to correct homonym
IDs - for example it is impossible for a human rater to determine whether “anonymous
<anonymous@gmail.com>" is the same as “Greg Holt <gregory.holt@gmail.com>"
solely based on these two strings. Therefore, a modified approach is required for resolving
homonyms. The proper identity of author needs to be determined for each commit sepa-
rately (as multiple commits with the same homonym belong to distinct individuals). Using
behavioral fingerprints of each commit (that has a homonym as an author ID) can help iden-
tify the most likely author. However, such experiment needs a careful design and ground
truth has to be obtained at the resolution of each individual commit.

Finally, it is not clear if the proposed method would generalize to other domains or scale
well. For example, would it work with data generated from tools other than Git? It is difficult
to answer such questions without further studies, but given that the supervised learning
approach was already being used in other domains suggest that the answer may be positive.

9 Conclusions

Through this work we have proposed a new approach (ALFAA) for correcting identity errors
in software engineering context and apply it on OpenStack ecosystem. We find it to be
several times more accurate than a commercial effort and a recent research method. More
importantly, ALFAA does not rely on hand-crafted heuristics, but can, in contrast, increase
its accuracy by simply incorporating additional training data. In fact, it is designed to work
with the minimum amount of manual validation effort through the active learning approach.

To answer RQ1, we examined a very large collection of commits and found that the iden-
tity errors were substantially different from the types of errors that are common in domains
such as administrative records (drivers licenses, population census), publication networks,
or patent databases. Using Open Card-Sort approach we found that there are two primary

@ Springer



Empirical Software Engineering (2020) 25:1136-1167 1163

types of errors (synonym and homonym errors) and further six sub-types within synonym
errors and five within homonyms. These sub-types may be superimposed in some instances.
While the data appears to have fewer phonetic spelling errors, it does contain similar typos.
Additional errors involve template names or usage of names that imply desire for anonymity
as well as missing data. Furthermore,the fraction of records with error appears to be much
higher than in the other domains.

To answer RQ2 we summarize additional code commit information as behavioral fin-
gerprints or vector embeddings of the very high-dimensional space represented by files
modified, the times of these modifications, and the word embeddings of the commit
messages. Such behavioral fingerprints can provide information needed to disambiguate
common instances of homonyms due to tool templates or desire for anonymity.

To answer RQ3 we compared of our disambiguation approach with a commercial effort
and with a recent research method. We found that our approach yielded several times lower
errors, suggesting that it does represent a real improvement over the state of practice. Finally,
to answer RQ4, we assessed the impact of measurement errors on the resulting networks.
We found that use of uncorrected data would lead to major differences in resulting networks,
thus raising questions about the validity of results for research studies that rely on such
networks.

Our replication scripts and data are shared in a public repository.!* We hope that with
additional training data contributed, the models we share would become more accurate and
that the proposed method and associated tool will make it easier to conduct research and to
build tools that rely on accurate identification of developer identities and, therefore, lead to
future innovations built on developer networks.

Acknowledgments This research material is based on work supported by the National Science Foundation
(NSF) grants IIS-1633437 and IIS-1901102. We would like to thank our collaborators at the Open Source
Supply Chains and Avoidance of Risk (OSCAR) team at the University of Tennessee and from the Institute
for Software Research (ISR) at the Carnegie Mellon University for their valuable feedback on this work.

References

Badashian AS, Esteki A, Gholipour A, Hindle A, Stroulia E (2014) Involvement, contribution and influ-
ence in github and stack overflow. In: Proceedings of 24th annual international conference on computer
science and software engineering, pp 19-33. IBM Corp

Baltes S, Diehl S (2018) Usage and attribution of stack overflow code snippets in github projects. Empir
Softw Eng 24:1-37

Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A (2006) Mining email social networks. In: Proceed-
ings of the 2006 international workshop on mining software repositories, MSR *06. ACM, New York,
pp 137-143. https://doi.org/10.1145/1137983.1138016

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009) The promises and perils of mining
git

Bonacich P (1987) Power and centrality: A family of measures. Am J Soc 92(5):1170-1182.
https://doi.org/10.1086/228631

Burt RS (1992) Structural holes. Harvard University Press, Harvard

Cataldo M, Wagstrom PA, Herbsleb JD, Carley KM (2006) Identification of coordination requirements:
implications for the design of collaboration and awareness tools. In: Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work, pp 353-362. ACM

4https://github.com/ssc-oscar/ALFA A-Replication

@ Springer


https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1086/228631
https://github.com/ssc-oscar/ALFAA-Replication

1164 Empirical Software Engineering (2020) 25:1136-1167

Cataldo M, Herbsleb JD, Carley KM (2008) Socio-technical congruence: a framework for assessing the
impact of technical and work dependencies on software development productivity. In: Proceedings of
the Second ACM-IEEE international symposium on Empirical software engineering and measurement,
pp2-11. ACM

Christen P (2006) A comparison of personal name matching: Techniques and practical issues. In:
6th IEEE international conference on data mining - workshops (ICDMW’06), pp 290-294.
https://doi.org/10.1109/ICDMW.2006.2

Cohen WW, Ravikumar P, Fienberg SE (2003) A comparison of string metrics for matching names and
records. In: KDD Workshop on data cleaning and object consolidation

Czerwonka J, Nagappan N, Schulte W, Murphy B (2013) Codemine: Building a software development data
analytics platform at microsoft. IEEE Softw 30(4):64-71

Edberg DT, Bowman BJ (1996) User-developed applications: An empirical study of application quality and
developer productivity. J Manag Inf Syst 13(1):167-185

Fellegi IP, Sunter AB (1969) A theory for record linkage. J Am Stat Assoc 64(328):1183-
1210. https://doi.org/10.1080/01621459.1969.10501049. https://www.tandfonline.com/doi/abs/10.1080/
01621459.1969.10501049

Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215-
239. https://doi.org/10.1016/0378-8733(78)90021-7. http://www.sciencedirect.com/science/article/pii/
0378873378900217

German DM (2004) Mining cvs repositories, the softchange experience. In: Ist international workshop on
mining software repositories, pp 17-21. Citeseer

German D, Mockus A (2003) Automating the measurement of open source projects. In: Proceedings of the
3rd workshop on open source software engineering, pp 63—67. University College Cork Cork Ireland

Gharehyazie M, Posnett D, Vasilescu B, Filkov V (2015) Developer initiation and social interactions
in oss: A case study of the apache software foundation. Empirical Softw Eng 20(5):1318-1353.
https://doi.org/10.1007/s10664-014-9332-x

Goeminne M, Mens T (2013) A comparison of identity merge algorithms for software repositories. Sci Com-
put Progr 78(8):971-986. https://doi.org/10.1016/j.scico.2011.11.004. http://www.sciencedirect.com/
science/article/pii/S0167642311002048

Hallgren KA (2012) Computing inter-rater reliability for observational data: an overview and tutorial.
Tutorials in quantitative methods for psychology 8(1):23

Jergensen C, Sarma A, Wagstrom P (2011) The onion patch: migration in open source ecosystems. In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering, pp 70-80. ACM

Kouters E, Vasilescu B, Serebrenik A, van den Brand MGJ (2012) Who’s who in gnome: using lsa to merge
software repository identities. In: 28th IEEE international conference on software maintenance (ICSM).
IEEE

Lawrence S, Giles CL, Bollacker K (1999) Digital libraries and autonomous citation indexing. Computer
32(6):67-71. 10.1109/2.769447

Le Q, Mikolov T (2014) Distributed representation of sentences and documents. In: Proceedings of the 31
st international conference on machine learning, vol 32. JMLR, Beijing. https://cs.stanford.edu/quocle/
paragraph_vector.pdf

Ma Y, Bogart C, Amreen S, Zaretzki R, Mockus A (2019) World of code: An infrastructure for mining
the universe of open source vcs data. In: Proceedings of the 2019 international conference on mining
software repositories

Martinez-Romo J, Robles G, Gonzalez-Barahona JM, Ortuno-Perez M (2008) Using social network analysis
techniques to study collaboration between a floss community and a company. In: Russo B, Damiani
E, Hissam S, Lundell B, Succi G (eds) Open source development, communities and quality. Springer,
Boston, pp 171-186

Mockus A (2009a) Amassing and indexing a large sample of version control systems: towards the census
of public source code history. In: 6th IEEE working conference on mining software repositories. IEEE.
papers/amassing.pdf

Mockus A (2009b) Succession: Measuring transfer of code and developer productivity. In: Proceedings of
the 31st international conference on software engineering, pp 67-77. IEEE Computer Society

Mockus A (2009c) Succession: Measuring transfer of code and developer productivity. In: 2009 international
conference on software engineering. ACM Press, Vancouver. papers/succession.pdf

Mockus A (2014) Engineering big data solutions. In: ICSE’ 14 FOSE, pp 85-99. http://dl.acm.org/authorize?
N14216

Mockus A, Herbsleb JD (2002) Expertise browser: a quantitative approach to identifying expertise. In:
Proceedings of the 24th international conference on software engineering, pp 503-512. ACM

@ Springer


https://doi.org/10.1109/ICDMW.2006.2
https://doi.org/10.1080/01621459.1969.10501049
https://www.tandfonline.com/doi/abs/10.1080/01621459.1969.10501049
https://www.tandfonline.com/doi/abs/10.1080/01621459.1969.10501049
https://doi.org/10.1016/0378-8733(78)90021-7
http://www.sciencedirect.com/science/article/pii/0378873378900217
http://www.sciencedirect.com/science/article/pii/0378873378900217
https://doi.org/10.1007/s10664-014-9332-x
https://doi.org/10.1016/j.scico.2011.11.004
http://www.sciencedirect.com/science/article/pii/S0167642311002048
http://www.sciencedirect.com/science/article/pii/S0167642311002048
https://cs.stanford.edu/ quocle/paragraph_vector.pdf
https://cs.stanford.edu/ quocle/paragraph_vector.pdf
http://dl.acm.org/authorize?N14216
http://dl.acm.org/authorize?N14216

Empirical Software Engineering (2020) 25:1136-1167 1165

Nagappan N, Murphy B, Basili V (2008) The influence of organizational structure on software quality. In:
2008 ACM/IEEE 30th international conference on software engineering, pp 521-530. IEEE

Nesbitt A, Nickolls B (2017) Libraries.io open source repository and dependency metadata.
https://doi.org/10.5281/zenodo.808273

Ostrouchov G, Chen WC, Schmidt D, Patel P (2012) Programming with big data in r. URL http://r-pbd.org

Petersen K, Wohlin C (2011) Measuring the flow in lean software development. Software: Practice and
experience 41(9):975-996

Pinzger M, Nagappan N, Murphy B (2008) Can developer-module networks predict failures? In: Proceedings
of the 16th ACM SIGSOFT international symposium on foundations of software engineering, SIGSOFT
’08/FSE-16. ACM, New York, pp 2—-12. https://doi.org/10.1145/1453101.1453105

Rehutek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of
the LREC 2010 workshop on new challenges for NLP frameworks. ELRA, Valletta, pp 45-50

Robles G, Gonzalez-Barahona JM (2005) Developer identification methods for integrated data from various
sources. In: Proceedings of the 2005 international workshop on mining software repositories, MSR 05.
ACM, New York, pp 1-5. https://doi.org/10.1145/1082983.1083162

Sarawagi S, Bhamidipaty A (2002) Interactive deduplication using active learning. In: Proceedings of the
8th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’02. ACM,
New York, pp 269-278. https://doi.org/10.1145/775047.775087

Sariyar M, Borg A (2010) The recordlinkage package: Detecting errors in data. The R J 2(1):61-67. https://
journal.r-project.org/archive/2010-2/RJournal 2010- _Sariyar+Borg.pdf

Smalheiser NR, Torvik VI (2011) Author name disambiguation. Annual Review of Information Science and
Technology 43(1):1-43. https://doi.org/10.1002/aris.2009.1440430113. https://onlinelibrary.wiley.com/
doi/abs/10.1002/aris.2009.1440430113

Spencer D, Warfel T (2004) Card sorting: A definitive guide. Boxes and Arrows, pp 2

Thung F, Bissyande TF, Lo D, Jiang L (2013) Network structure of social coding in github. In: 2013 17th
European conference on software maintenance and reengineering, pp 323-326. IEEE

Vasilescu B, Serebrenik A, Filkov V (2015) A data set for social diversity studies of github teams. In: Pro-
ceedings of the 12th working conference on mining software repositories, pp 514-517. ACM. https://dl.
acm.org/citation.cfm?id=2820601

Ventura SL, Nugent R, Fuchs ER (2015) Seeing the non-starts: (some) sources of bias in past disambiguation
approaches and a new public tool leveraging labeled records. Elsevier

Wang DJ, Shi X, McFarland DA, Leskovec J (2012) Measurement error in network data: A re-classification.
Soc Netw 34(4):396-409

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440-442.
https://doi.org/10.1038/30918

Wiese IS, da Silva JT, Steinmacher I, Treude C, Gerosa MA (2016) Who is who in the mailing list? comparing
six disambiguation heuristics to identify multiple addresses of a participant. In: 2016 IEEE international
conference on software maintenance and evolution ICSME), pp 345-355, 10.1109/ICSME.2016.13

Winkler WE (2006) Overview of record linkage and current research directions. Tech. rep., Bureau of the
Census

Wolf T, Schroter A, Damian D, Panjer LD, Nguyen THD (2009) Mining task-based social networks to
explore collaboration in software teams. IEEE Softw 26(1):58-66. 10.1109/MS.2009.16

Xiong Y, Meng Z, Shen B, Yin W (2017) Mining developer behavior across github and stackoverflow. In:
The 29th international conference on software engineering and knowledge engineering, pp 578-583.
https://doi.org/10.18293/SEKE2017-062

Zhou M, Mockus A, Ma X, Zhang L, Mei H (2016) Inflow and retention in oss communities with commercial
involvement: A case study of three hybrid projects. ACM Transactions on Software Engineering and
Methodology (TOSEM) 25(2):13

Zhu J, Wei J (2019) An empirical study of multiple names and email addresses in oss version control
repositories. In: Proceedings of 16th international conference on mining software repositories (MSR).
IEEE/ACM

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.5281/zenodo.808273
http://r-pbd.org
https://doi.org/10.1145/1453101.1453105
https://doi.org/10.1145/1082983.1083162
https://doi.org/10.1145/775047.775087
https://journal.r-project.org/archive/2010-2/RJournal_2010-_Sariyar+Borg.pdf
https://journal.r-project.org/archive/2010-2/RJournal_2010-_Sariyar+Borg.pdf
https://doi.org/10.1002/aris.2009.1440430113
https://onlinelibrary.wiley.com/doi/abs/10.1002/aris.2009.1440430113
https://onlinelibrary.wiley.com/doi/abs/10.1002/aris.2009.1440430113
https://dl.acm.org/citation.cfm?id=2820601
https://dl.acm.org/citation.cfm?id=2820601
https://doi.org/10.1038/30918
https://doi.org/10.18293/SEKE2017-062

1166

Empirical Software Engineering (2020) 25:1136-1167

@ Springer

Sadika Amreen (Ph.D.) is a recent graduate in Computer Science
from the University of Tennessee. Her research focus is on mining
software repository data and using machine learning to help improve
the quality of such data. She is currently a data scientist at Pricewa-
terhouseCoopers LLP, designing solutions for text processing using
machine learning techniques.

Audris Mockus (Ph.D.) is the Ericsson-Harlan D. Mills Chair Pro-
fessor of Digital Archeology and Evidence Engineering in the
Department of Electrical Engineering and Computer Science of the
University of Tennessee. He studies software developers’ culture and
behavior through the recovery, documentation, and analysis of digital
remains which reflect projections of collective and individual activity.

Russell Zaretzki (Ph.D.) is a Heath Faculty Fellow and Associate
Professor of Business Analytics & Statistics at the University of Ten-
nessee. He works on a wide range of problems in computational
statistics. His main interest is statistical methodology utilizing sim-
ulation including frequentist methods like the bootstrap, Bayesian
inference based on Monte Carlo Markov Chain methods along, as
well as the theory behind these methods.



Empirical Software Engineering (2020) 25:1136-1167 1167

Christopher Bogart (Ph.D.) is a systems scientist at Carnegie Mellon
University. His research interests focus on understanding the effects
of different tools and practices for programming, debugging, and
collaborative development.

Yuxia Zhang is a PhD candidate in the School of Electronics Engi-
neering and Computer Science, Peking University. She received the
BS degree in software engineering from Northwest University in
2015. Her research interests include Mining Software Repositories
and Open Source Software Ecosystems, mainly focusing on the
commercial participation in Open Source. She can be contacted at
yuxiaz@pku.edu.cn.

Affiliations

Sadika Amreen' - Audris Mockus’ - Russell Zaretzki® - Christopher Bogart? -
Yuxia Zhang?

Audris Mockus
audris @utk.edu

Russell Zaretzki
rzaretzk @utk.edu

Christopher Bogart
cbogart@andrew.cmu.edu

Yuxia Zhang
yuxiaz@pku.edu.cn

University of Tennessee, Knoxville, TN, USA
2 Carnegie Mellon University, Pittsburgh, PA, USA
Peking University, Beijing, China

@ Springer


mailto: audris@utk.edu
mailto: rzaretzk@utk.edu
mailto: cbogart@andrew.cmu.edu
mailto: yuxiaz@pku.edu.cn

	ALFAA: Active Learning Fingerprint based Anti-Aliasing for correcting developer identity errors in version control systems
	Abstract
	Introduction
	Related Work
	Relevance of Identity Resolution
	Existing Techniques of Identity Resolution
	Illustration of Impact of Identity Resolution on Estimates of Developer Productivity

	Data Sources
	Classifying Errors
	Disambiguation Approach
	String Similarity Measures
	Frequency Adjustment Score
	Behavioral Fingerprints
	Files Modified
	Time Zone
	Text Similarity

	Data Correction
	PHASE 1: Define Predictors for the Learner
	PHASE 2: Active Learning
	Active Learning Design Details

	PHASE 3: Classification

	Results

	Evaluation
	Accuracy of the Training Data
	Comparison with a Commercial Effort
	Comparison with a Research Study
	Manual Validation of Results from Recent and ALFAA

	Evaluation on a large set of Identities

	measuring Impact on Developer Collaboration Network
	Limitations
	Conclusions
	References
	Affiliations


