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Abstract

We present an algorithm that uses the distribution of photon arrival times to distinguish speckles from incoherent
sources, like planets and disks, in high-contrast images. Using simulated data, we show that our approach can
overcome the noise limit from fluctuating speckle intensity. The algorithm is likely to be most advantageous when
a coronagraph limits the coherent diffraction pattern in the image plane but the intensity is still strongly modulated
by fast-timescale uncorrected stellar light, for example from atmospheric turbulence. These conditions are common
at small inner working angles of highly corrected adaptive optics images and will allow probing of exoplanet
populations at smaller angular separations. The technique requires a fast science camera that can temporally resolve
the speckle fluctuations, and the detection of many photons per speckle decorrelation time. Because the algorithm
directly extracts the incoherent light, standard differential imaging postprocessing techniques can be performed
afterwards to further boost the signal.

Key words: methods: data analysis – methods: statistical – planets and satellites: detection – techniques: high
angular resolution – techniques: image processing
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1. Introduction

Direct imaging is a challenging exoplanet discovery and
characterization technique due to the extreme contrast (<10−4

for ground-based targets) and small angular separations (1″)
between the planetary companion and its stellar host. Despite
this, adaptive optics (AO) and coronagraphy have enabled the
discovery of planets up to ∼106 times fainter than their host
stars (Marois et al. 2008; Lagrange et al. 2010; Kuzuhara et al.
2013; Macintosh et al. 2015; Keppler et al. 2018). Imaging an
exoplanet requires subtracting the light of its host star in the
form of the point-spread function (PSF). If this background
were static and could be subtracted perfectly, exoplanet
imaging would be limited only by the photon shot noise of
the bright host star. Instead, high-contrast imaging is limited by
uncontrolled scattered and diffracted light, which produces a
coherent speckle halo in the image plane (Guyon 2005).

Fast atmospheric speckles average down over an observa-
tion, while slower, quasistatic speckles must be removed using
postprocessing techniques. Angular differential imaging (ADI,
Marois et al. 2006) exploits the rotation of the Earth, and hence
the field-of-view of an altitude-azimuth telescope, to distin-
guish diffraction speckles from astrophysical sources. Spectral
differential imaging (SDI, Racine et al. 1999; Marois et al.
2000; Sparks & Ford 2002) uses the scaling of diffraction
speckles with wavelength. Since the initial development of
ADI and SDI, a variety of postprocessing algorithms have

refined their approaches to dig deeper into the stellar PSF (e.g.,
Lafrenière et al. 2007; Soummer et al. 2012; Marois et al.
2014).
The time variability and chromaticity of quasistatic speckles

limit the performance of ADI and SDI (Gerard et al. 2019).
Both techniques also suffer at small separations where
exoplanets are more likely to hide. The speckle spectral
dispersion used by SDI is proportional to the separation: close
to the star, it becomes smaller than the planet’s PSF. For ADI,
the arclength traced by the companion’s sky rotation is
proportional to the separation. Furthermore, the precision of
the background estimate for PSF subtraction is limited by low
counting statistics at small separations (Mawet et al. 2014).
Even without these issues, the variability induced by speckle
fluctuations can dominate the photon noise and be well above
the shot noise expected from the total number of photons.
Stochastic Speckle Discrimination (SSD) is a postprocessing

technique for planet detection designed to reduce the additional
noise caused by speckle fluctuations by temporally resolving
the intensity variations in the focal plane. It relies on the
difference in shape between the on-axis and off-axis intensity
distributions (Soummer & Ferrari 2007; Gladysz et al. 2008) or
the difference between various moments or combinations
thereof (Gladysz & Christou 2009; Gladysz et al. 2010) to
enhance the signal of faint companions hidden in stellar light.
The first algorithm (Gladysz & Christou 2008) compared the
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empirical intensity distribution at the location of a suspected
companion to a theoretical probability density function of a
speckle. The difference between distributions was quantified
and translated to a confidence level associated with the
detection decision. The moment-based approach compared
only the parameters of measured distributions (Gladysz &
Christou 2009; Gladysz et al. 2010) or their combinations.
Expressions involving these parameters are chosen so that
stellar light is suppressed while light from a companion is
amplified. SSD-like approaches have been shown to reduce
speckle noise from even fast atmospheric speckles and improve
the contrast limit for the detection of substellar companions
(Frazin 2016; Meeker et al. 2018; Stangalini et al. 2018).
In this paper, we present an improved version of SSD to

exploit noise-free photon-counting cameras like MEC, the
Microwave Kinetic Inductance Detector (MKID) Exoplanet
Camera (Meeker et al. 2018; Walter et al. 2018) on Subaru
Telescope’s SCExAO instrument (Lozi et al. 2018). Our
approach statistically distinguishes a combination of constant
and speckle intensity (both ultimately from the bright star) from
incoherent light (from a planet or disk). At small separations,
where ADI and SDI are least effective and the scientific
questions are most pressing (Mawet et al. 2012), we expect
SSD to offer strong improvements in the limiting detection
contrast. This paper describes the new photon-counting SSD
technique and demonstrates its performance on simulated data.

We organize the paper as follows. In Section 2 we detail the
simulation of photon lists to emulate the data expected from
photon-counting cameras like MEC. Section 3 describes a
formal extension of previous SSD analysis techniques with
millisecond images using a maximum likelihood algorithm. We
simulate the performance for various atmospheric conditions,
planet brightnesses, and effective exposure times. Section 4
presents the new photon-counting SSD algorithm that estimates
the incoherent light from a companion or disk directly from
individual photon arrival timestamps. We demonstrate the
algorithm on a simulated telescope image. We discuss the main
results in Section 5, and conclude with Section 6.

2. Simulating Photon Arrival Times

2.1. Modeling the Stellar Speckle Intensity

The statistics governing the off-axis intensity distribution of
coherent light with a partially developed speckle pattern have
been studied at length. Originally derived by Goodman (1975)
and verified experimentally by Cagigal & Canales (2001) and
Fitzgerald & Graham (2006), the probability of getting an
instantaneous intensity I given Ic and Is is governed by the
Modified Rician (MR) distribution, defined as

r = -
+

I I I
I

I I

I
I

I I

I
,

1
exp

2
, 1c s

s

c

s

c

s
MR 0

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ∣ ] ( )

where I0[x] denotes the zero-order modified Bessel function of
the first kind. The parameter Ic represents the intensity of the
“constant” part of the diffraction pattern, i.e.,the PSF of a star
without the atmosphere, while Is is the intensity of the seeing
halo which manifests as a “speckle” pattern (Canales &
Cagigal 1999; Aime & Soummer 2004; Soummer et al. 2007).
Typically, the AO system attempts to confine all the speckles

into the constant diffraction pattern. A coronagraph can remove
or transform this coherent portion out of the image plane. For
all of the calculations in this paper we assume that the Strehl
ratio, and by extension Ic and Is, remain constant.
Speckle intensity is correlated temporally. In the limit of

Kolmogorov atmospheric turbulence and frozen flow, the
speckle decorrelation time can be thought of as the wind
crossing time across the telescope pupil. In reality, the
turbulence is not Kolmogorovic, the atmospheric turbulence
evolves, and there are often multiple turbulence layers with
different wind speeds and directions (Roddier et al. 1982;
Macintosh et al. 2005). Other high speed processes such as
dome seeing, telescope vibrations from wind buffeting, or the
AO loop itself can further complicate the speckle temporal
power spectrum density (PSD) (Stangalini et al. 2016). This
may result in a faster speckle decorrelation time, a temporal
PSD described by multiple exponential timescales, or possibly
a dependence on the position in the focal plane.
For the purposes of creating the simulated data in this paper,

we characterize the speckle PSD as a simple exponential decay
with a characteristic speckle lifetime of τs=0.1 s to roughly
match empirical data in the near-infrared (Fitzgerald &
Graham 2006; Goebel et al. 2018; Meeker et al. 2018). The
speckle lifetime can change drastically depending on the
atmospheric conditions but our results here can be qualitatively
understood in those cases by scaling all parameters in time. A
core condition for the SSD technique is for many photons to
arrive in a single speckle decorrelation time: if this is satisfied,
individual speckle fluctuations can be probed without relying
on prior knowledge of the true speckle temporal PSD.

2.2. Modeling an Incoherent Source

For high levels of AO correction that minimize the variations
in instantaneous Strehl the light from a companion can be
approximated as a delta function with a Poisson intensity
distribution (Gladysz et al. 2008). This works well for faint
sources where only the core of the PSF is visible. By ignoring
variations in the Strehl we simplify our model; incoherent
Poisson sources are parameterized by an intensity Ip and can be
readily injected into images with the relevant photons uniquely
identified in simulation. Any incoherent Poisson sources will
be represented by this term including binary companions,
planetary companions, extended sources, dark current, and read
noise. For the coherent stellar light, in the case that Is=0, the
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MR distribution reduces to a Poisson distribution with intensity
Ic and will be indistinguishable from Ip. In the demonstrations
that follow, we identify Ip as an injected planetary companion.

The intensity fluctuations associated with speckles elevate
the noise floor above the typical shot noise, i.e., it is harder to
measure the planet’s intensity when it is embedded in a boiling
speckle field. If the speckle temporal information is margin-
alized over, then we show in the Appendix that the total
variance of temporally correlated intensities obeying MR
statistics combined with photon shot noise is

s
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The variance of the measured intensity is inversely proportional
to the total integration time, Ttot, as expected. This is the long
exposure (texp?τs) photon noise limit faced by all PSF
subtraction techniques like ADI and SDI. In the limit that
2τsIs=1, this variance reduces to pure shot noise on the
number of photons. For high-contrast imaging, typical para-
meters might be τs=0.1 s, Is=50 s−1, and 2τs Is=10, in
which case the noise from speckle fluctuations will dominate.
In Section 4, we show that this noise can be overcome by
temporally resolving individual fluctuations in the speckle
background.

2.3. Generating Mock Photon Lists

We have developed code1 for quickly generating mock
photon lists with an optional injected planet, corresponding to
the output of a single MKID-like pixel which is single photon
counting with low noise. The photon lists obey the following
rules:

1. The underlying intensities are MR distributed, but are
correlated in time with dá + - á ñ ñ µI t I t t I 2( ) ( )

d t- texp s[ ].
2. Ic, Is, and Ip are independently specified by the user, such

that Ic and Is govern the MR statistics of the stellar
intensity and Ip is the mean count rate of a Poisson
source. The total intensity should have an expectation
value of á ñ = + +I I I Ic s p.

3. Due to the intrinsic dead time in an MKID, photons are
removed from the list if they arrive within τ0 of the
previous valid photon’s arrival time.

The procedure for generating photon timestamps begins with
creating a correlated list of random numbers that follow a
Gaussian distribution. The random numbers are transformed to
a uniform distribution ranging from 0 to 1, and finally
transformed again to a MR distribution. The correlated MR
sequence defines the intensity in photon counts for a small

(=τs) time bin (we used 200 μs), and a Poisson draw on that
“instantaneous” intensity determines the number of photons
that will finally be placed into that bin. The photons are
distributed according to a uniform distribution in each bin. For
simplicity, we assume neighboring pixels to have uncorrelated
photon lists.
Since MKIDs do not have the same dark current or readout

noise as conventional semiconductor detectors we do not add
any additional noise. However, during high count rates photons
can be lost due to a firmware triggering lockout that acts as a
non-paralyzable dead time (van Eyken et al. 2015). We use
τ0=10 μs to match the latest firmware implemented on MEC.
This dead time formulation could be used with quasi-photon-
counting EMCCDs to account for photon pile-up.

Figure 1. Top: a 30s mock photon list simulated using the parameters
Ic=300, Is=300, Ip=0 photons/s with τs=0.1 s, is binned into 0.01s
exposures to form a light curve. Middle: The same photon list is binned by
three different exposure times and used to plot intensity histograms. The best-fit
modified Rician functions are overplotted. The distribution changes shape as
the bin size is varied; the corresponding fitted parameters also change. The
histograms for 0.01 and 0.1s exposure times have been scaled by factors of 5
and 10 respectively. Bottom: the likelihood is marginalized over Ip for the three
different exposure times to illustrate how the best-fit parameters evolve with
bin size. The darkest area in the plot represents the maximum likelihood and
determines the best-fit values of Ic and Is. The same photon list was used for all
plots.
(A color version of this figure is available in the online journal.)

1 Part of the MKID Pipeline python package available at https://github.com/
MazinLab/MKIDPipeline.
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3. SSD with Short Exposure Images

Past efforts have been successful in detecting the position of
(real or synthetic) faint companions in high-contrast images.
Gladysz & Christou (2008) and Meeker et al. (2018) fit
histograms of light curves (see top/middle of Figure 1) and
discriminate planets by extracting parameters of hypothesized
distributions using e.g., the method of moments and comparing
those parameters, or their combinations, to the rest of the field.
For example, a large Ic/Is ratio can be used as a merit function
because faint companions can masquerade as static speckles.
Stangalini et al. (2018) use a discriminator from a direct
recurrence quantification analysis of the light curves to search
for companions. Gladysz & Christou (2009), Gladysz et al.
(2010) also fit histograms of the light curves but use a
deconvolution of the modeled probability distribution functions
to further extract the companion’s photometry.

In this section we extend previous work by extracting the
position and photometry of astrophysical sources (point or
extended sources) using a maximum likelihood algorithm.

3.1. Maximum Likelihood Model for Discrete
Light Curves

We model the intensity in the focal plane with three
parameters Ic, Is, and Ip and calculate their most likely values
with an algorithm operating on the light curve. This allows for
a direct detection of the non-stellar intensity, Ip, in the form of a
point-source like a planet or an extended source like a
protoplanetary disk. Furthermore, we can naturally introduce
photon noise from a low-intensity photon-counting regime. By
allowing the MR distribution in Equation (1) to suffer a
Poisson-Mandel transformation (Cagigal & Canales 1999;
Aime & Soummer 2004), the discrete stellar intensity
distribution becomes
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where Ln is the nth Laguerre polynomial. The units of intensity
for this section are number of photons per exposure time, texp.
If a planet (or some other source that is incoherent with the star)
exists in the field, the intensity distribution at that location will
be the discrete convolution of på with the planet’s independent
probability distribution pp. To simplify, we assume the
incoherent source has a Poisson probability distribution,

= -p m I I I mexpp p p p
m[ ∣ ] [ ] ! with average intensity Ip. The

likelihood of the ith bin of a light curve containing k photons

given Ic, Is, and Ip is
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The likelihood of the entire light curve is =  i i. We use a
L-BFGS-B optimizer to find the most likely values of Ic, Is, and Ip.
The maximum likelihood estimate of the intensity distribu-

tion is overplotted onto the light-curve histograms for three
different exposure times in the middle panel of Figure 1. The
bottom panel shows the likelihood functions marginalized over
Ip for these three exposure times.

3.2. Performance of Millisecond Imaging SSD

To understand the performance of this millisecond imaging
SSD algorithm and the extent to which it can improve
exoplanet detections, we produce receiver operator character-
istic (ROC) curves (Tanner & Swets 1954; DeLong et al. 1988;
Krzanowski & Hand 2009; Jensen-Clem et al. 2017). We
achieve this by generating an ensemble of mock photon lists
with the same nominal values of Ic, Is, and Ip=0 and
calculating maximum likelihood estimates (MLE) to build up a
distribution of Ip corresponding to the signal-absent hypothesis.
Next we inject a planet with Ip>0 and calculate MLEs to
build a distribution for Ip corresponding to the signal-present
hypothesis. These distributions are shown in the left column of
Figure 2. By choosing a detection threshold, we can calculate a
true-positive rate and false-positive rate from the signal-present
distribution and signal-absent distribution respectively. The
ROC curves in the right column of Figure 2 are generated by
varying the detection thresholds.
The right column of Figure 2 demonstrates the performance

of the millisecond imaging SSD algorithm for different
exposure times. The shape of the discrete intensity distribution
can change depending on exposure time, which systematically
affects the resulting MLEs for Ic, Is, and Ip along with their
uncertainties. In some cases there is a significant probability for
the most likely value of Ip to be equal to zero. In the case that
Ic?Is, the MLE’s ensemble probability can be multimodal
with a significant peak at » +I I IMLE True Truep c p. Both
these behaviors appear for the same reason: when there is little
modulation by Is of photons associated with Ic, then Ic becomes
difficult to distinguish from Ip. However, the total flux is still
accurately recovered.
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Figure 2. Performance of our millisecond imaging SSD algorithm (Section 3) compared to our photon-counting SSD algorithm (Section 4). Left panels: histograms of
the maximum likelihood estimates of Ip, computed using 3·105 30s mock photon lists. Maximum likelihood estimates for Ip are calculated for various effective
exposure times and for the case with (solid line) and without (Ip=0, dashed line) an injected planet. The y-axis in the left column is arbitrary. The probability
distributions are used to calculate the true/false-positive rates for the receiver operator characteristic (ROC) curve (right). The vertical dotted line at 1/20,000 (for the
20,000 pixels in MEC) roughly indicates the maximum tolerable false-positive rate. The full photon-counting SSD algorithm (blue lines) described in Section 4
outperforms the cases with nonzero exposure times.

(A color version of this figure is available in the online journal.)
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We find that there exists an optimal camera frame rate that
leads to the most precise probability distribution for Ic, Is, and
Ip. For exposure times that are too short (texp=δt, the photon
inter-arrival time) the correlation between subsequent photon
arrivals is lost because frames are interpreted as an unordered
set containing only 0 or 1 photons. For exposure times that are
too long (texp?τs) the speckle temporal information is
averaged over. This tends to artificially decrease the Is
component of the speckle intensity directly in exchange for
increasing the Ic component (see Figure 1 bottom). For those
that use Ic/Is as a merit function this means the part of the
image without a planet will be polluted making it harder to
discriminate the location of a companion.

4. SSD in the Photon-counting Regime

4.1. Maximum Likelihood Model for Photon Arrival
Times

In the previous section the most precise extraction of the
model parameters Ic, Is, and Ip required the use of an optimal
exposure time. Since this optimal exposure time is dependent
on the speckle intensity as well as the speckle decorrelation
time, the optimal exposure time will vary across the image.
Conversely, if a single exposure time is chosen there may be a
systematic loss of precision across some portions of the image.
In order to avoid this pitfall, we develop the posterior
probability for Ic, Is, and Ip directly from the set of photon
inter-arrival times.

We start by considering the (normalized) probability density
for the next inter-photon arrival interval, δt, given a fixed
intensity I:

d = d-p t I Ie . 6I t[ ∣ ] ( )

The speckle field intensity is not fixed but varies in time with
the MR probability density described in Equation (1). At a
fixed point in time, the probability density of the next photon
arrival time given Ic and Is becomes

òd d r=
¥

p t I I p t I I I I dI, , , 7c s c s
0

MR[ ∣ ] [ ∣ ] [ ∣ ] ( )

where we have integrated the Poisson probability density from
Equation (6) over all possible instantaneous stellar intensities, I.
Intensities are considered to be in units of photons per second.
We assume here that the speckle lifetime is much longer than
the time it takes a photon to arrive, τs?δt.

With a set of photon inter-arrival times, {δti}, we want the
relative probability that a δt is realized. At moments that
happen to have higher instantaneous intensities the number of
short δtiʼs will be increased. Thus, the relative probability of a
photon inter-arrival time being in our data becomes
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Finally, we consider the case that light incoherent with the star,
such as from a planet, is in the field. We consider only the
simplest case in which this source has constant intensity Ip and
is governed by Poisson statistics. In this case, the relative
probability of δt given Ic, Is, Ip is
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which can be evaluated analytically. We then find the
normalization constant by setting
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Equation (10) accounts for the non-paralyzable detector dead
time, τ0, intrinsic to MKIDs by replacing the lower limit of
integration with τ0. In Equation (9), we set the likelihood equal
to zero for δt<τ0. It is convenient to use the change of
variables,
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As in Section 3, we assume that AO performance remains
stable so that Ic and Is remain constant over the course of
observations.
Equation (12) for the photon-counting SSD algorithm

replaces Equation (5) from Section 3. We use a Newton
conjugate-gradient search to find the maximum of the log-
likelihood space and recover the best estimates for Ic, Is, and Ip.
The photon-counting SSD algorithm consistently outper-

forms the millisecond imaging SSD algorithm from Section 3,
which marginalizes over temporal information via the exposure
time (see Figure 2). In Figure 3 we show the performance of the
photon-counting SSD algorithm under conditions given by
various combinations of Ic and Is, and with various planet
brightnesses Ip. The algorithm performs well with a high true
positive detection rate even for the case when Ic and Is are both
large. However, the performance suffers in the case of Ic?Is.
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Figure 3. Performance of our photon-counting SSD algorithm. Left panels: histograms of the maximum likelihood estimates of Ip, computed using 3·105 30s mock
photon lists for each set of parameters. The ±σ for the long exposure photon noise limit (Equation (2)) is shown with an error bar. The y-axis in the left column is
arbitrary. The probability distributions are used to calculate the true/false-positive rates for the receiver operator characteristic (ROC) curve (right panels). The vertical
dotted line at 1/20,000 (for the 20,000 pixels in MEC) roughly indicates the maximum tolerable false-positive rate. The algorithm performs well with a high true
positive detection rate even for the case when Ic, Is are both large. However, the performance suffers in the case of Ic?Is (row 2).
(A color version of this figure is available in the online journal.)
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Figure 4. Performance of our photon-counting SSD algorithm on simulated telescope images. Panel (a) shows the average intensity of simulated photon lists in each
pixel; panels (c), (f), and (i) show the parameters used. Panel (b) subtracts stellar flux from (f) and (i) from the average intensity, (a), illustrating the speckle variance in
a long exposure image. Panel (b) represents the theoretical limit of perfect PSF subtraction in a single exposure subject to MR intensity fluctuations. The photon-
counting SSD algorithm results in the maximum likelihood estimates shown in (d), (g), and (j). Using a priori knowledge of the Ic parameter (we used a Gaussian prior
of True I I3 Truec c· ) we generate the maximum a posteriori (MAP) estimates shown in (e), (h), and (k). The planet signals extracted from the MAP Ip estimate in
(e) are not significantly improved compared to the MLE Ip in (d). However, the SSD results in (d) and (e) both extract the planet better than the perfect PSF subtraction
shown in (b). All images represent 30s of data on a magnitude J=10 star with an 8.2m telescope; all units are photons/second.
(A color version of this figure is available in the online journal.)
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As in millisecond imaging SSD, Ip and Ic become indis-
tinguishable in this limit.

4.2. Maximum A Posteriori Estimation

Prior knowledge of a parameter can improve the estimates of
Ic, Is, and Ip. In our case, we commonly have information on the
Ic parameter which corresponds to the static or quasistatic
speckle PSF either from a telescope model or measured on a
reference star. For such situations, the log likelihood function
in Equation (12) can be modified with a Gaussian prior as

s - -  I I Ilog log
1

2
13c c c

2( ) ( ) (( ˜ ) [ ˜ ]) ( )

where sI Ic c˜ [ ˜ ] is the prior on Ic. The new estimates of Ic, Is,
and Ip become maximum a posteriori (MAP) estimates.

4.3. Performance on Simulated Telescope Image

We evaluate the performance of the photon-counting SSD
algorithm on a simulated 30s telescope image without a
coronagraph. We identify Ic as the Airy-ring pattern of a
diffraction limited telescope with a circular unobstructed
aperture, Is as the seeing halo from atmospheric speckles with
a Strehl ratio of 0.7, and Ip as a series of injected planets at
various brightnesses and separations. The faintest planet’s total
intensity is 40photons/s, for a contrast of 5·10−5 with the
host star, and is separated by 3.5λ/D. Assuming a 5% end-to-
end throughput on an 8.2m telescope, the stellar magnitude in
the near-infrared is approximately J=10. We assume a
speckle decorrelation time of τs=0.1 s and detector dead time
of τ0=10 μs.

Each pixel has an independent 30s photon list generated from
the “True” Ic, Is, and Ip shown in panels (c), (f), and (i)
respectively of Figure 4. Spatial correlations in the photon lists
are ignored for simplicity. The average intensity realized for each
pixel is shown in Figures 4(a). (b) is the average intensity minus
the expected light from the star, +I ITrue Truec s( ), which
illustrates the best possible long exposure PSF subtraction
(compare the background variance to Equation (2)). The MLE Ic,
Is, and Ip are shown in Figures 4(d), (g), and (j) respectively. In
Figures 4(e), (h), and (k), we calculate the MAP estimates. We

used the True I I3 Truec c· as a Gaussian prior on Ic; in
practice one could use a telescope model or a reference PSF. The
central black dot with radius 1.22λ/D is not a coronagraph but
simply obscures the on-axis light for convenience.
Comparing Figures 4(d) to (b) shows that the MLE Ip from

the photon-counting SSD algorithm recovers the injected
planets better than a perfect stellar PSF subtraction (i.e.,
subtraction of the true Ic and Is). Figures 4(d) and (e) show that
the MAP estimate for Ip is not significantly better than the MLE
Ip (although the MAP estimate for Ic is more precise). This is
surprising because the MAP estimate includes a prior on Ic that
should help discriminate between Ic and Ip. That this is not the
case indicates we can take full advantage of the photon-
counting SSD algorithm without prior knowledge of the
telescope PSF.
For the central pixel of each planet, we used 105 independent

photon lists to calculate the signal-to-noise ratio = á ñ -IS N p(/

á ñ á ñIBackground std. dev. p) ( ) where the á ñBackground is
estimated by not injecting a planet. These are recorded in
Table 1. The long exposure photon noise limit is also recorded in
Table 1 where the estimated Ip is equal to the total flux minus the
light from the star, +I ITrue Truec s( ). While the results are
from the simulated ensemble, they match the results from
Equation (2). Table 1 is representative of 30s of data, but the
S/N will scale with Ttot . For a 2 minute exposure, all values in
Table 1 should be scaled up by a factor of 2. The S/N was
calculated using only the central pixel for convenience but
would be larger if the surrounding pixels were considered.

5. Discussion

While it remains impossible to beat the photon shot noise
N , Figure 4 shows that the photon-counting SSD algorithm

can beat the long exposure (texp?τs) photon noise limit
described by Equation (2). Table 1 quantifies the improvement
in the S/N as a factor of 3 in the case of faintest planet
(5·10−5) at the nearest separation (3.5 λ/D). This is possible
because the speckle fluctuations are temporally resolved
(texp=τs) and individual speckles are probed by multiple
photons (δt=τs). In the case that the fluctuations from stellar
speckles dominate the variance of the total intensity

Table 1
Companion SSD Signal-to-noise Ratio

Separation=3.5 λ/D Separation=6.5 λ/D Separation=9.5 λ/D Separation=12.5 λ/D

Contrast MLE MAP Limita MLE MAP Limita MLE MAP Limita MLE MAP Limita

4·10−4 4.8 5.3 2.3 6.8 7.0 3.8 7.6 8.3 5.7 7.0 9.4 8.8
2·10−4 2.8 3.0 1.2 4.0 4.0 1.9 4.9 4.9 2.9 5.6 5.9 4.5
1·10−4 1.6 1.7 0.6 2.3 2.3 1.0 2.8 2.8 1.4 3.5 3.5 2.3
5·10−5 0.9 0.9 0.3 1.3 1.2 0.5 1.6 1.5 0.7 2.0 2.0 1.1

Note.
a Detection limit for a 30s long exposure with perfect PSF subtraction of the stellar light.
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(2Is τs?1), fast, noiseless detectors like MKIDs or EMCCDs
are needed to dig beneath the noise. This can occur in high-
contrast imaging at separations between 1 λ/D>r< seeing
radius but is especially important at 5 λ/D where ADI and
SDI start to lose their effectiveness (depending on spectral
coverage, sky rotation, and AO performance).

SSD will benefit ADI and SDI by reducing speckle noise
from the data that is fed into those algorithms. ADI processing
can be approached the same way as usual, but instead of using
raw images one would use the Ip images produced with SSD.
The modulation of the planet location will be unaffected by
SSD. Similarly for SDI, the algorithm would be given Ip maps
at various wavelengths. This approach would require wave-
length information for each detected photon, which is an
intrinsic feature of an MKID detector.

Our SSD algorithm does not perform well when Ic?Is as
seen in Figure 3. In this regime there is little modulation of the
static speckle intensity Ic by the atmospheric speckle field Is,
and as a result Ic starts to become indistinguishable from the
Poisson distributed Ip. This can be greatly mitigated with a
coronagraph and possibly active speckle nulling (Martinache
et al. 2014) which directly reduce Ic in the image.

On a space-borne telescope atmospheric speckles are not a
concern, implying that the image-plane intensity will have
different temporal behavior from ground-based observatories.
While our SSD algorithm relies on the intensity following a
MR distribution, in general any distribution can be used so long
as it is known. It may also be possible to modulate speckles in a
controlled way using onboard AO.

6. Conclusions

In this paper we exploit photon arrival time statistics with a
SSD algorithm to distinguish planets from speckles. We first
extend previous work with a formalized maximum likelihood
algorithm operating on light curves with fixed, albeit fast,
exposure times. We find that the likelihood space can
sometimes result in bimodal behavior in the case of Ic?Is.
Additionally, the choice in exposure time can systematically
skew the MLE of Ip and inflate its variance. More generally,
with a fixed exposure time, the performance will change as a
function of parameters Ic, and Is. This is a problem because Ic
and Is can change with observing conditions as well as with
separation from the host star.

To overcome these difficulties, we have developed a new
photon-counting SSD algorithm that calculates the maximum
likelihood for Ip directly from the individual photon arrival
times. With this approach the likelihood space becomes smooth
and unimodal and the precision is maximized. The planet
detection performance can be better by a factor of 2 than
perfect stellar PSF subtraction of a long exposure. This requires
fast noiseless detectors like MKIDs.

We have made several simplifying assumptions in our
analysis. We take the speckle temporal PSD of our simulated
data to be described by the single exponential timescale τs, we
assume Ic, Is, and Ip remain constant (ignoring variations to the
instantaneous Strehl), and we assume that the MR distribution
accurately describes the off-axis stellar intensity. Finally, we
ignore chromaticity. These assumptions represent avenues of
exploration for future work. The speckle temporal PSD can be
measured and used to more accurately simulate photon lists.
Since the instantaneous Strehl can be measured, a future
implementation of this algorithm might use that information in
a more sophisticated model for the incoherent light like in
Gladysz et al. (2008). This would require an understanding of
how Strehl variations effect Ic and Is.
SSD algorithms for highly corrected AO images are

ultimately constrained on two fronts. First, the photon arrival
time δt must be much shorter than the speckle decorrelation
time τs: we need many photons to characterize the properties of
a materialized speckle. Second, the performance degrades
when Ic is large but Is is small, because the incoherent planet
light masquerades as the static speckles described by Ic.
Fortunately, this can be improved with a coronagraph.
In return, SSD algorithms are most useful when Is is large,

which is often inescapable at small inner working angles.
Furthermore, the results are not directly dependent on
separation (although they are dependent on Ic and Is, which
are larger at small separations). This makes SSD a powerful
postprocessing technique at small inner working angles where
it can complement more established techniques like ADI and
SDI. At high speckle intensities, SSD can even outperform the
theoretical limits of a perfect implementation of ADI and SDI.

This work was supported by the National Science Founda-
tion grant 1710385 and NASA ROSES grant NNX15AG23G.
We would like to thank Michael Fitzgerald (University of
California, Los Angeles) for helpful comments during the early
stages of this work.

Appendix

We derive here the noise of a long (texp?τs) exposure
subject to speckle statistics. This is not simply photon shot
noise, but arises due to the fluctuations of the MR itself. We
consider a MR parametrized by Ic and Is with an exponential
decorrelation time τs. The basic statistics of the distribution are

á ñ = +I I I 14c s ( )

s = á ñ - á ñ = +I I I I I2 15I s c s
2 2 2 2 ( )

s
t

á - á ñ - á ñ ñ = -
-

I I I I
t t

exp . 16i j I
i j

s

2
⎡
⎣⎢

⎤
⎦⎥( )( )

∣ ∣
( )

where brackets, áñ, denote an ensemble average.

10

Publications of the Astronomical Society of the Pacific, 131:114506 (12pp), 2019 November Walter et al.



We wish to compute the variance of the mean intensity
measured over a finite time interval Ttot, which we divide into
N subintervals, each of length δt:

å=I
N

I
1

. 17
i

i ( )

Here, the overbar denotes a temporal average. The variance is

åå åá ñ - á ñ = -I I
N

I I
N

I
1 1

18
i j

i j
i

i
2 2

2 2

2

( )
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i j

i j2
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t
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N

t t
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2
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⎡
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⎤
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Now we will set ti=iδt. For the third step below, we use
δt/τs=1. More generally, we take d t 0,  ¥N :

åå ååt
d

t
-

-
= -

-
N

t t

N

i j t1
exp

1
exp

21
i j

i j

s i j s
2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∣ ∣ ∣ ∣

( )

å å åd
t

d
t

= - + - -
=

-

=

- -

=N

j t j t1
exp exp 1 22

i

N

j

N i

s j

i

s
2

0

1

0

1

0

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟ ( )

å t
d

d
t

d
t

= - -
-

- -
+

-

=

-

N t

N i t

i t

1
2 exp

exp
1

1 23

i

N
s

s

s

2
0

1⎛
⎝
⎜⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( ) ( )

åt
d

t
d

d
t

= - - -
=N t N t N

i t

N

2 2 1
exp

1
24s s

i

N

s1

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟ ( )

t
d

t
d

d
t

t
d

= - - -
+

+ -
N t N t

N t

N t N

2
2 1 exp

1 2 1
.

25

s s

s

s
2

2
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

( )

( )

Taking  ¥N , d t 0, and Nδt=Ttot, we have
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In the limit of a very short integration, Ttot=τs, the prefactor
is unity (as expected). For an integration time much longer than
the decorrelation time, Ttot?τs (as is more typical),
Equation (27) simplifies to

t
á ñ - á ñ » +I I

T
I I I

2
2 . 28s

s c s
2 2

tot

2
⎛
⎝⎜

⎞
⎠⎟( ) ( )

Assuming 2Isτs?1 (the inter-photon arrival time from the
speckle field is much shorter than the decorrelation time τs),
Equation (27) dominates over simple shot noise σ2=(Ic+
Is)/Ttot. Interestingly, setting the number of independent
realizations of the MR equal to Ttot/τs would miss the factor
of two in Equation (28). Adding shot noise back in, assuming
Ttot?τs, and including a component Ip incoherent with Ic and
Is, we have

s
t

»
+ + + +I I I I I I

T

2 2
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