
5

Kernel Foveated Rendering

XIAOXU MENG, University of Maryland, College Park
RUOFEI DU, University of Maryland, College Park
MATTHIAS ZWICKER, University of Maryland, College Park
AMITABH VARSHNEY, University of Maryland, College Park

(a) original scene, 31 FPS

(d) foveated scene (σ = 1.8, α = 4), 67 FPS(c) foveated scene (σ = 1.2, α = 4), 43 FPS

(b) foveated scene (σ = 1.8, α = 1), 67 FPS

foveafovea

fovea

Fig. 1. Results of kernel foveated rendering (KFR): (a) original full-resolution scene rendered at 31 FPS, (b)
foveated rendering with σ = 1.8, K(x) = x , rendered at 67 FPS, (c) foveated rendering with σ = 1.2,
K(x) = x4, rendered at 43 FPS, (d) foveated rendering with σ = 1.8, K(x) = x4, rendered at 67 FPS.

Foveated rendering coupled with eye-tracking has the potential to dramatically accelerate interactive 3D
graphics with minimal loss of perceptual detail. In this paper, we parameterize foveated rendering by embed-
ding polynomial kernel functions in the classic log-polar mapping. Our GPU-driven technique uses closed-
form, parameterized foveation that mimics the distribution of photoreceptors in the human retina.We present
a simple two-pass kernel foveated rendering (KFR) pipeline that maps well onto modern GPUs. In the first

Authors’ addresses: Xiaoxu Meng, xmeng525@umiacs.umd.edu, Augmentarium, Department of Computer Science and the
University of Maryland Institute for Advanced Computer Studies (UMIACS), University of Maryland, College Park; Ruofei
Du, ruofei@umiacs.umd.edu, Augmentarium, Department of Computer Science and the University of Maryland Institute
for Advanced Computer Studies (UMIACS), University ofMaryland, College Park;Matthias Zwicker, zwicker@umiacs.umd.
edu, Augmentarium, Department of Computer Science and the University of Maryland Institute for Advanced Computer
Studies (UMIACS), University of Maryland, College Park; Amitabh Varshney, varshney@umiacs.umd.edu, Augmentarium,
Department of Computer Science and the University of Maryland Institute for Advanced Computer Studies (UMIACS),
University of Maryland, College Park.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
2577-6193/2018/5-ART5 $15.00
https://doi.org/10.1145/3203199

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

https://doi.org/10.1145/3203199

5:2 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

pass, we compute the kernel log-polar transformation and render to a reduced-resolution buffer. In the sec-
ond pass, we carry out the inverse-log-polar transformation with anti-aliasing to map the reduced-resolution
rendering to the full-resolution screen. We have carried out pilot and formal user studies to empirically iden-
tify the KFR parameters. We observe a 2.8X − 3.2X speedup in rendering on 4K UHD (2160p) displays
with minimal perceptual loss of detail. The relevance of eye-tracking-guided kernel foveated rendering can
only increase as the anticipated rise of display resolution makes it ever more difficult to resolve the mutually
conflicting goals of interactive rendering and perceptual realism.

CCS Concepts: • Computing methodologies → Perception; Visibility;

Additional Key Words and Phrases: foveated rendering, perception, log-polar mapping, eye-tracking, virtual
reality, head-mounted displays

ACM Reference Format:
Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney. 2018. Kernel Foveated Rendering. Proc.
ACM Comput. Graph. Interact. Tech. 1, 1, Article 5 (May 2018), 20 pages. https://doi.org/10.1145/3203199

1 INTRODUCTION
Human vision spans a field of view of 135° × 160°, but the highest-resolution foveal vision covers
only the central 1.5°×2° [Guenter et al. 2012]. Patney et al. [2016b] have estimated that in modern
virtual reality head-mounted displays (HMD) only 4% of the pixels are mapped onto the fovea.
Therefore, foveated rendering techniques that allocate more computational resources for foveal
pixels and fewer resources elsewhere can dramatically speed up rendering [Levoy and Whitaker
1990] for large displays, especially for virtual and augmented reality headsets equipped with eye
trackers.

Araujo and Dias [1996] use a log-polar mapping to approximate the excitation of the cortex
in the human vision system. The classic log-polar transformation has been used for foveating 2D
images on the GPU [Antonelli et al. 2015]. However, to the best of our knowledge, direct use of
the log-polar mapping for 3D graphics has not yet been attempted on GPUs.

In this paper, we present a kernel foveated rendering pipeline for modern GPUs that parameter-
izes foveated rendering by embedding polynomial kernel functions in the classic log-polar map-
ping.This allows us to easily vary the sampling density and distribution, andmatch them to human
perception in virtual reality HMDs. In contrast to adaptive sampling in Cartesian coordinates,
which requires a complex interpolation process [Stengel et al. 2016] and the classic three-pass
foveated rendering pipeline [Guenter et al. 2012], KFR just needs a two-pass algorithm. In the first
pass, we carry out the kernel log-polar transformation and render to a reduced-resolution frame-
buffer using deferred shading [Duluk Jr et al. 2004; Hargreaves and Harris 2004]. In the second
pass, we apply the inverse kernel log-polar transformation to the reduced-resolution framebuffer
to map the final foveated rendering to the full-resolution display.

We have carried out user studies to empirically establish the parameters for kernel foveated
rendering that allow preservation of perceptually accurate foveal detail and lower peripheral detail.
We have validated our approach on 3D rendering of textured meshes as well as ray-marching
scenes.

In summary, our contributions include:
(1) designing the kernel log-polar mapping algorithm to enable a parameterized trade-off of

visual quality and rendering speed for foveated rendering,
(2) conducting user studies to identify the kernel foveated rendering parameters governing the

sampling distribution and density to maximize perceptual realism and minimize computa-
tion,

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

https://doi.org/10.1145/3203199

Kernel Foveated Rendering 5:3

(3) mapping kernel foveated rendering onto the GPU to achieve speedups of 2.8X for textured
3D meshes and 3.2X for ray-casting scenes for 3840×2160 displays with minimal perceived
loss of detail.

2 RELATEDWORK
Our work builds upon a rich literature of prior art on foveated images, videos, and foveated ren-
dering for 3D graphics.

Kernel log-polar
transformation

G-buffer
LP-buffer

(σ = 3.0)

Inverse kernel
log-polar transformation

& post anti-aliasing

Screen

Shading &
internal anti-aliasing

World position Bit tangent Normal

Texture coordinates Albedo map Roughness, ambient, and
refraction maps

Fig. 2. An overview of our KFR pipeline. We transform the necessary parameters and textures in the G-
buffer from Cartesian coordinates to log-polar coordinates, compute lighting in the log-polar (LP) buffer
and perform internal anti-aliasing. Next, we apply the inverse transformation to recover the framebuffer in
Cartesian coordinates and employ post anti-aliasing to reduce the foveation artifacts.

2.1 Foveated Images and Videos
The last few decades have seen significant advances in foveated rendering for 2D images and
videos.

Burt [1988] has generated foveated images with multi-resolution Gaussian pyramids. He takes
advantage of a coarse-to-fine scheme to adaptively select the critical information for constructing
the foveated image. Kortum and Geisler [1996] have developed one of the earliest eye-tracking-
based foveated imaging systems with space-variant degradation. Using 256× 256 8-bit gray-scale
images, they have achieved bandwidth reduction of up to 94.7% with minimal perceptual artifacts.
Other image foveation techniques include embedded zero-tree wavelets [Shapiro 1993], set par-
titioning in hierarchical trees [Said and Pearlman 1996], wavelet-based image foveation [Chang
et al. 2000], embedded foveation image coding [Wang and Bovik 2001], and gigapixel displays [Pa-
padopoulos and Kaufman 2013].

Video foveation has also been explored [Lee and Sanghoon 2000; Reeves and Robinson 1996;
Wang and Bovik 2005]. The filter bank method is used for video preprocessing before using stan-
dard video compression algorithms (e.g. MPEG and H.26x) [Lee and Sanghoon 2000; Lee et al. 2001,
2002]. Foveation filtering has been implementedwith the quantization processes in standardMPEG
and H.26x compression [Sheikh et al. 2003, 2002].

While previous work in foveation for images and videos provides strong foundations, most of
these methods cannot be easily generalized for interactive 3D graphics rendering onmodern GPUs.
A notable exception is the work by Antonelli et al. [2015], which uses log-polar mapping to speed-
up 2D image rendering on modern GPUs. However, their approach does not directly work with
3D graphics primitives and does not use kernel functions.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

5:4 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

2.2 Foveated 3D Graphics
Weier et al. [2017] have reviewed several approaches for foveated rendering including mesh sim-
plification in the areas of lower acuity [Hoppe 1998; Hu et al. 2010; Ohshima et al. 1996]. However,
these days shading has often been found to dominate the cost for rendering sophisticated scenes
on modern graphics pipelines [He et al. 2014; Vaidyanathan et al. 2014].

Ragan-Kelley et al. [2011] use decoupled sampling for stochastic super-sampling of motion and
defocus blur at a reduced shading cost. Guenter et al. [2012] present a three-pass pipeline for
foveated 3D rendering by using three eccentricity layers around the tracked gaze point. The in-
nermost layer is rendered at the highest resolution (native display), while the successively outer
peripheral layers are rendered with progressively lower resolution and coarser LOD.They interpo-
late and blend between the layers and use frame jitter and temporal re-projection to reduce spatial
and temporal artifacts.

Vaidyanathan et al. [2014] present a novel approach using a generalization of multi-sample anti-
aliasing (MSAA). They perform foveated rendering by sampling coarse pixels (2 × 2 pixels and
4 × 4 pixels) in the peripheral regions. This approach targets small-form-factor devices with high
resolution, such as phones and tablets rather than HMDs. It therefore presents two challenges for
HMDs: the effective pixel size in current HMDs is too large for MSAA, and gaze-dependent mo-
tions exaggerate the artifacts. Patney et al. [2016a; 2016b] address temporal artifacts in foveated
rendering by using pre-filters and temporal anti-aliasing. They also show that contrast preser-
vation greatly enhances the image quality by reducing the tunneling effect. Clarberg et al. [2014]
propose amodification to the current hardware architecture, which enables flexible control of shad-
ing rates and automatic shading reuse between triangles in tessellated primitives. He et al. [2014]
introduce multi-rate GPU shading to support more shading samples near regions of specular high-
lights, shadows, edges, and motion blur regions, helping achieve a 3X to 5X speedup. However,
this implementation of multi-rate shading requires an extension of the graphics pipeline, which
is not available on commodity graphics hardware. Swafford et al. [2016] implement four foveated
renderers.The first method reduces peripheral resolution.The second varies per-pixel depth-buffer
samples in the fovea and periphery for screen-space ambient occlusion. The third implements a
terrain renderer using GPU-level tessellation for the fovea. The final method varies the per-pixel
ray-casting steps across the field of view. Stengel et al. [2016] use adaptive sampling from fovea
to peripheral regions in a gaze-contingent rendering pipeline. To compensate for the missing pix-
els caused by sparsely distributed shading samples on the periphery, they use pull-push [Gortler
et al. 1996] interpolation to create the full foveated image. This strategy achieves a reduction of
rendertime of 25.4% (with speedup of 1.3X) and reduction of shading time of 41% (with speedup
of 1.7X). Sun et al. [2017] design a real-time foveated 4D light field rendering and display system.
Their prototype renders only 16%− 30% of the rays without compromising the perceptual quality.

Recently, deferred shading has been used for antialiasing foveated rendering. Karis [2014] op-
timizes temporal anti-aliasing for deferred shading, which uses samples over multiple frames to
reduce flickering. Crassin et al. [2015] reduce aliasing by pre-filtering sub-pixel geometric detail in
the G-buffer for deferred shading. Chajdas et al. [2011]’s subpixel anti-aliasing operates as a post-
process on a rendered image with super-resolution depth and normal buffers. It targets deferred
shading renderers that cannot use MSAA.

In this paper, we present a simple two-pass foveated rendering pipeline that maps well onto
modern GPUs. KFR provides gradually changing resolution and achieves 2.8X − 3.2X speedup
with little perceptual loss.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

Kernel Foveated Rendering 5:5

3 OUR APPROACH
Overall, our algorithm applies the kernel log-polar transformation for rasterization in a reduced-
resolution log-polar buffer (LP-buffer), carries out shading within the LP-buffer, and then uses the
inverse kernel log-polar transformation to render on the full resolution display. This is shown in
Figure 2.

(a) Cartesian Coordinates (b) Log-polar Coordinates, α = 1 (c) Log-polar Coordinates, α = 2 (d) Log-polar Coordinates, α = 3 (e) Log-polar Coordinates, α = 4

Fig. 3. Transformation from Cartesian coordinates to log-polar coordinates with kernel function K (x) =
xα . (a) is the image in the Cartesian coordinates, (b)–(e) are the corresponding images in the log-polar
coordinates with varying kernel parameter α . Matching colors in the log-polar and Cartesian coordinates
show the same regions.

(a) original scene (b) foveated, α = 1.0 (c) foveated, α = 4.0 (d) foveated, α = 5.0 (e) foveated, α = 6.0

Fig. 4. Comparison of foveated frame with different α (fovea is marked as the semi-transparent ring in the
zoomed-in view): (a) original scene, (b) foveated with α = 1.0, (c) foveated with α = 4.0, (d) foveated
with α = 5.0, and (e) foveated with α = 6.0. The lower zoomed-in views show that large α enhances the
peripheral detail; the upper zoomed-in views show that when α ≥ 5.0, foveal quality suffers.

In the classic log-polar transformation [Antonelli et al. 2015], given aW ×H pixel display screen,
and an LP-buffer of w × h pixels, the screen-space pixel (x ,y) in Cartesian coordinates is trans-
formed to (u,v) in the log-polar coordinates according to Equation 1,

u =
log∥x ′,y ′∥2

L
·w

v =
arctan

(
y′

x ′

)
2π

· h + 1 [y ′ < 0] · h
(1)

where, (x ′,y ′) represent (x ,y) with respect to the center of the screen as origin, L is the log-
distance from the center to the corner of the screen, and 1 [·] is the indicator function,

x ′ = x − W

2
, y ′ = y − H

2
, L = log

(

W2 , H2

2

)
(2)

1 [y ′ < 0] =

{
1 ,y ′ < 0

0 ,y ′ ≥ 0
(3)

Notice how the central dark green area in Figure 3 (a) is mapped to a relatively large region in
the left part of the log-polar coordinates in Figure 3 (b), while the peripheral regions of Figure 3
(a) are mapped to a relatively small part of Figure 3 (b).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

5:6 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

In the inverse log-polar transformation, a pixel with log-polar coordinates (u,v) is transformed
back to (x ′′,y ′′) in Cartesian coordinates. Let

A =
L

w
, B =

2π

h
, (4)

then the inverse transformation can be formulated as Equation 5,

x ′′ = exp (Au) cos (Bv)
y ′′ = exp (Au) sin (Bv)

(5)

To understand how the resolution changes in the log-polar space, consider r = ∥x ,y∥2 =
exp (Au). Now, dr represents the change in r based on u,

dr = A · exp (Au) du . (6)
Inversely, D is defined as the number of pixels in the LP-buffer that map to a single pixel on the
screen,

D =
du
dr =

1

A
· exp(−Au). (7)

Equation 7 shows the foveation effect of pixel density decreasing from the fovea to the periphery.
In this formulation, it is not easy to systematically alter the density fall-off function and evaluate
the perceptual quality of foveated rendering.

We propose a kernel log-polar mapping algorithm that allows us more flexibility to better mimic
the fall-off of photo-receptor density of the human visual system,

D =
exp

(
−wCσ · K−1 (u

w

))
Cσ · K−1′ (u

w

) . (8)

Here, the constant parameter C =
√
1 +

(H
W

)2 represents the ratio between screen diagonal
and screen width. σ = W

w represents the ratio between the full-resolution screen width and the
reduced-resolution LP-buffer width, σ2 = W 2

w2 represents the ratio between the number of pixels in
the full-resolution screen and the number of pixels in the reduced-resolution LP-buffer. Larger σ2

corresponds to more condensed LP-buffer, which means less calculation in the rendering process.
A more condensed LP-buffer also means more foveation and greater peripheral blur.

The kernel function K (x) can be any monotonically increasing function with K (0) = 0 and
K (1) = 1, such as the sum of power functions,

K (x) =
∞∑
i=0

βix
i , where

∞∑
i=0

βi = 1. (9)

Such kernel functions can be used to adjust the pixel density distribution in the LP-buffer.We use
K (x) =

∑∞
i=0 βix

i in this paper because the calculation of power functions is fast onmodernGPUs.
There may be other kernel functions worth trying, such as K (x) = sin(x · π

2) and K (x) = ex−1
e−1 .

For example, forC =
√
2 and K (x) = xα , the relationship between D and r under varying σ2 and

α is illustrated in Figure 5 1. Kernel functions can adjust the pixel density such that the percentage
of the peripheral regions in the LP-buffer increases as shown in Figure 3 (c), (d), and (e). This
makes it possible to increase the peripheral image quality while maintaining the same frame rates.
A comparison among different kernel functions is shown in Figure 6 with σ = 1.8 and C =

√
2.

The use of the kernel function reduces the artifacts in the zoomed-in peripheral view, improving
1The figure is the visualization of sampling rate rather than the true sampling map.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

Kernel Foveated Rendering 5:7

𝛼𝛼 = 1 𝛼𝛼 = 2 𝛼𝛼 = 3 𝛼𝛼 = 4

𝜎𝜎2 = 1

𝜎𝜎2 = 2

𝜎𝜎2 = 4

Density

Fig. 5. The relationship among σ2,K (x) = xα , and the sampling rate. The number of samples in each image
is proportional to σ2. We use a variant of the PixelPie algorithm [Ip et al. 2013] to generate the Poisson
samples shown.

the peripheral image quality. Meanwhile, as shown in Figure 4, when α ≥ 5.0, the sampling rate
of even the foveal region drops, affecting the visual quality of the fovea. A comparison among
different σ is shown in Figure 7 with fixed α = 4.0, C =

√
2.

3.1 Pass I: Forward Log-Polar Transformation
TheG-buffer for the deferred shading pipeline contains object and world-space coordinates, world-
space normals, texture coordinates, depth, and material-related information. In Pass I, we trans-
form the contents in the G-buffer from the Cartesian coordinates to the log-polar coordinates,
compute direct and indirect lighting at each pixel, and render to the reduced-resolution log-polar
(LP)-buffer.

Kernel Log-polar Transformation. For each pixel in screen space with coordinates (x ,y), foveal
point F (̊x , ẙ) in Cartesian coordinates, we change Equation 1 to Equation 10,

u = K−1
(
log∥x ′,y ′∥2

L

)
·w

v =

(
arctan

(
y ′

x ′

)
+ 1 [y ′ < 0] · 2π

)
· h

2π

(10)

Here,
x ′ = x − x̊ , y ′ = y − ẙ. (11)

K−1 (·) is the inverse of the kernel function, and L is the log of the maximum distance from fovea
to one of the four corners of the screen as shown in Equation 12,

L = log (max (max (l1, l2) ,max (l3, l4))) . (12)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

5:8 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

(a) α = 1

(b) α = 2

(c) α = 3

(d) α = 4

fovea

fovea

fovea

fovea

Fig. 6. Comparison of foveated rendering with varying α for 2560×1440 resolution. From left to right: origi-
nal rendering, kernel log-polar rendering, and the foveated rendering with zoomed-in view of the peripheral
regions. Here σ = 1.8, (a) classic log-polar transformation, i.e. α = 1.0, (b) kernel function with α = 2.0,
(c) kernel function with α = 3.0, and (d) kernel function with α = 4.0. The foveated rendering is at 67 FPS
while the original is at 31 FPS.

Here,
l1 = ∥x̊ , ẙ∥2
l2 = ∥W − x̊ ,H − ẙ∥2
l3 = ∥x̊ ,H − ẙ∥2
l4 = ∥W − x̊ , ẙ∥2

(13)

Lighting. In lighting calculation for traditional deferred shading, mesh positions, normals, depth
andmaterial information such as roughness, index of reflection, and normal maps are fetched from
the G-buffer [Duluk Jr et al. 2004; Hargreaves and Harris 2004]. Instead of obtaining information
from theG-bufferwith texture coordinates (x ,y), in our approach, we sample from the transformed
kernel log-polar texture coordinates (u,v). The reduced-resolution of the log-polar (LP) buffer
helps in reducing the lighting calculation to only those pixels that matter in the final foveated
rendering.

Internal Anti-aliasing. Due to the low-resolution of the LP-buffer, there may be artifacts in the
peripheral regions after the inverse transformation. However, we can directly perform denoising
in the log-polar space. To reduce artifacts in the peripheral regions, we use a Gaussian filter with
a 3 × 3 kernel for the right part of the texture (corresponding to the peripheral regions) in the

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

Kernel Foveated Rendering 5:9

(a) original

(b) σ = 1.2

(c) σ = 1.8

(b) σ = 2.4

fovea

fovea

fovea

fovea

Fig. 7. Comparison of foveated rendering with varying σ for 2560 × 1440 resolution. From left to right:
original rendering, kernel log-polar rendering, the recovered scene in Cartesian coordinates, and a zoomed-
in view of peripheral regions. Here, K (x) = x4, (a) full-resolution rendered at 31 FPS, (b) σ = 1.2 at 43 FPS,
(c) σ = 1.8 at 67 FPS, and (d) σ = 2.4 at 83 FPS.

ALGORITHM 1: Kernel Log-polar Transformation
Input:

Fovea coordinates in screen space: (̊x , ẙ),
pixel coordinates in screen space: (x ,y).

Output:
Pixel coordinates in the log-polar space: (u,v).

1: acquire fovea coordinates (̊x , ẙ)
2: for x ∈ [0,W] do
3: for y ∈ [0,H] do
4: x ′ = x − x̊
5: y ′ = y − ẙ

6: u = K−1
(
log∥x ′,y′ ∥

L

)
·w

7: v =
(
arctan

(
y′

x ′

)
+ 1 [y ′ < 0] · 2π

)
· h
2π

8: end for
9: end for

LP-buffer. Since the LP-buffer pixels correspond to the adaptive detail of foveated rendering, the
Gaussian filtering in the LP-buffer gives us higher-level of anti-aliasing in the peripheral regions.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

5:10 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

3.2 Pass II: Inverse Log-Polar Transformation
Pass II performs the inverse kernel log-polar transformation to Cartesian coordinates, applies anti-
aliasing, and renders to screen.

Inverse Kernel Log-polar Mapping Transformation. We can recover the Cartesian coordinates
(x ′′,y ′′), from the pixel coordinates (u,v) and the fovea coordinates (̊x , ẙ) using Algorithm 2.

Post Anti-aliasing. One of the crucial considerations in foveated rendering is mitigating tempo-
ral artifacts due to aliasing in the peripheral, high eccentricity regions. We apply temporal anti-
aliasing (TAA) [Karis 2014] with Halton sampling [Pengo et al. 2009] to the recovered screen-space
pixels after the inverse kernel log-polar transformation. We also use Gaussian filtering with differ-
ent kernel sizes η for different L (as defined in Equation 12) in post anti-aliasing. The kernel size η
is shown in Equation 14, which depends on the normalized distance between the pixel coordinate
and the fovea,

η = 3 + 2 ×
⌊ ∥x ′,y′ ∥2

eL − 0.10

0.05

⌋
. (14)

ALGORITHM 2: Kernel Log-polar Inverse Transformation
Input:

Fovea coordinates in screen space: (̊x , ẙ),
pixel coordinates in the log-polar coordinates: (u,v).

Output:
Screen-space coordinates (x ′′,y ′′) for pixel coordinates (u,v).

1: update L with fovea coordinates (̊x , ẙ) with Equation 12
2: let A = L

w , B = 2π
h

3: for u ∈ [0,w] do
4: for v ∈ [0,h] do
5: x ′′ = exp (A · K (u)) · cos (Bv) + x̊
6: y ′′ = exp (A · K (u)) · sin (Bv) + ẙ
7: end for
8: end for

4 USER STUDIES
We have carried out user studies to empirically establish the most suitable foveation parameter
values for σ and α that result in visually acceptable foveated rendering. To systematically investi-
gate this, we conducted a pilot study to examine a broad range of the two parameters, σ2 and α .
We used the results and our experience with the pilot study to fine tune the protocol and ranges
of σ2 and α for the final user study.

4.1 Apparatus
Our user study apparatus, shown in Figure 8, consists of anAlienware laptop with an NVIDIA GTX
1080, a FOVE head-mounted display, and an XBOX controller. The FOVE display has a 100° field
of view, a resolution of 2560 × 1440, and a 120 Hz infrared eye-tracking system with a precision
of 1° and a latency of 14 ms.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

Kernel Foveated Rendering 5:11

4.2 Pilot Study
Procedure. The session for each participant lasted between 35 − 50 minutes and involved four

stages: introduction, calibration, training, and testing. In the introduction stage, we showed par-
ticipants the FOVE headset, the eye trackers, and the XBOX controllers and discussed how to use
them.We did not provide any information about our research or the algorithm to avoid biasing the
participants towards any rendering. After the participant comfortably wore the HMD, we moved
forward to the calibration stage, where we ran a one-minute eye-tracking calibration program pro-
vided by the FOVE software development kit. In the training stage, we presented the participants
with 20 trials with different combinations of σ2 and α , to ensure that they are familiar with the
HMD and the controller.

Fig. 8. User study setup.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

σ2=1.00 σ2=1.44 σ2=1.96 σ2=2.56 σ2=3.24 σ2=4.00 σ2=4.84 σ2=5.76 σ2=6.76 σ2=7.84 σ2=9.00 σ2=10.24 σ2=11.56 σ2=12.96
α = 1 90.28% 80.56% 72.22% 58.33% 52.78% 47.22% 37.50% 22.22% 19.44% 5.56% 13.89% 9.72% 11.11% 9.72%
α = 2 87.50% 81.94% 76.39% 73.61% 52.78% 51.39% 45.83% 29.17% 13.89% 22.22% 18.06% 12.50% 4.17% 8.33%
α = 3 91.67% 90.28% 83.33% 68.06% 70.83% 61.11% 54.17% 38.89% 20.83% 26.39% 25.00% 13.89% 11.11% 11.11%
α = 4 94.44% 83.33% 70.83% 68.06% 73.61% 52.78% 50.00% 41.67% 26.39% 26.39% 20.83% 19.44% 8.33% 12.50%

pe
rc

en
ta

ge

Identical percentage under different α and σ

α = 1 α = 2 α = 3 α = 4

Fig. 9. The percentage of times that the participants considered the foveated rendering and the full-
resolution rendering to be the same for varying σ2 and α in pilot user study with 24 participants.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

5:12 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

Trials in the training and testing stages were identical. In each trial of our two-alternative forced
choice test, we presented participants with a pair of rendered scenes, each for 2 seconds and sepa-
rated by a black-screen interval of 0.75 seconds. One scene uses full-resolution rendering, and the
other uses KFR with different parameters σ2 and α . In each trial, we presented the KFR scene and
the full-resolution scene in a random order.The participant indicated whether the two images look
the same by pressing a button on the XBOX controller. We instructed the participants to maintain
their gaze at the center of the screen, even though our foveated renderer can use eye-tracking to
update the foveated image.

The testing stage had three sessions, each with 56 trials. The LP-buffer resolution reduction
parameter σ ranges from 1.0 to 3.6 with step size 0.2 (σ2 ranges from 1.00 to 12.96), and the
kernel sampling distribution parameter α ranges from 1 to 4 with step size 1. We rendered scenes
from the Sponza and Amazon Lumberyard Bistro datasets for different sessions. We allowed the
participants to have some rest between different sessions.

Participants. In the pilot study, we recruited 24 participants via campus email lists and flyers.
All participants are at least 18 years old with normal or corrected-to-normal vision (with contact
lenses).

Results and Analysis. We define PI as the percentage of the trials for which participants reported
the two images shown in a trial to be the same. The results of PI are shown in Figure 9. First, we
find that PI is inversely related to σ2. With increase in σ2, the LP-buffer gets smaller, thus reducing
the overall sampling rate in foveated rendering. Second, we notice that with the increase of α , PI
significantly increases for σ ranging from 1.2 to 2.8 (σ2 ranging from 1.44 to 7.84). This shows
that for the same σ , the perception of the quality of foveated rendering increases by the use of α
for kernel functions. Third, some participants reported that the length of the study led to visual
fatigue and that they were not sure about some of their responses.

Using the above observations, we modified the final user study to be shorter and more fo-
cused. First, to reduce the total time that participants are in the HMD, we used the fact that most
participants found foveated renderings different from the full-resolution rendering for σ > 2.4
(σ2 > 5.76). Since our goal is to accelerate rendering while maintaining perceptually similar qual-
ity, we reduced the range of σ to be between 1.2 to 2.4 (σ2 between 1.44 to 5.76) in the final
user study. Second, we observed that the participants quickly came up to speed within a couple
of trials in the training session. We therefore reduced the number of trials in the training session
from 20 to 5. This also allowed us to shorten the user study duration and maintain a high level of
visual attentiveness of the participants. Third, some of the participants reported that the rendering
time of 2 seconds was too short. To address this we increased the time of each rendering to 2.5 sec-
onds in the final study. Fourth, to continually check for the visual attentiveness of the participants,
we modified the final user study by randomly inserting 30% of the trials to be ”validation trials”
that had identical full-resolution renderings for both choices. If the participant declared these val-
idation renderings to be different, we would ask the participant to stop, get some rest, and then
continue. After making these changes, the total time participants spent in the HMD was reduced
from around 25 minutes in the pilot study to around 15 minutes in the final study.

4.3 Final User Study
Procedure. The introduction and calibration stages are the same as the pilot user study. The

training session includes five trials with different parameters. Each testing session involves 28
trials with multiple parameter combinations (parameter σ ranging from 1.2 to 2.4 with the step
size 0.2 (σ2 ranging from 1.44 to 5.76); and kernel parameter α ranging from 1 to 4 with the step
size 1) as well as additional ”validation trials”. Order of the parameters is fully counterbalanced.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

Kernel Foveated Rendering 5:13

Pe
rc

en
ta

ge

100.00%

Identical percentage under different α and σ

80.00%

60.00%

40.00%

20.00%

0.00%

σ2=1.44 σ2=1.96 σ2=2.56 σ2=3.24 σ2=4.00 σ2=4.84 σ2=5.76
α = 1 91.67% 88.33% 78.33% 66.67% 46.67% 31.67% 31.67%
α = 2 91.67% 96.67% 86.67% 75.00% 58.33% 51.67% 46.67%

α = 3 91.67% 90.00% 81.67% 85.00% 66.67% 61.67% 41.67%
α = 4 96.67% 96.67% 95.00% 80.00% 66.67% 56.67% 48.33%

α = 1 α = 2 α = 3 α = 4

Fig. 10. The percentage of times that participants considered the foveated rendering and the full-resolution
rendering to be identical for different σ2 and α in the final user study with 18 participants.

The participants are asked to rest after each session or if they do not pass a ”validation trial”. We
also changed the rendering-display time to 2.5 seconds.

Participants. We recruited 18 participants via campus email lists and flyers. All participants were
at least 18 years old with normal or corrected-to-normal vision (with contact lenses).

Results and Analysis. We report the percentage PI and the corresponding standard error in Fig-
ure 10. We make the null hypothesis (H0) that the foveated rendering results with the four kernel
functions are equally effective. As shown in Table 1, with a Cochran’s Q test [Patil 1975; Vinnikov
and Allison 2014], we have found that there exists a significant difference across the multiple α for
σ = 1.6, 1.8, 2.2 (σ2 = 2.56, 3.24, 4.84) with χ2(3) = 7.81,p < 0.05. The results with very small
σ = 1.2, 1.4 (σ2 = 1.44, 1.96) and very large σ = 2.4 (σ2 = 5.76) are not significantly different,
which are reasonable. For small σ2, the rendering result without kernel function is clear enough,
so there is little room for improvement. For large σ2, both the rendering results with and without
kernel function are blurry for the users.

Table 1. Cochran’s Q values at different σ2.

σ2 1.44 1.96 2.56 3.24 4.00 4.84 5.76
Cochran’s Q value 1.72 5.79 8.20 8.25 7.49 14.27 5.48

p value 0.631 0.122 0.042 0.041 0.058 0.002 0.139

To achieve visually acceptable results for foveated rendering, we use a threshold of 80% re-
sponses considering foveated rendering to be visually indistinguishable from full-resolution ren-
dering. To achieve the highest rendering acceleration, we look for the highest σ that met this
threshold. We therefore choose σ = 1.8 (σ2 = 3.24) and α = 4 as our desired parameters for the
interactive rendering evaluation.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

5:14 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

Table 2. Timing comparison between the ground truth and KFR for one frame. The resolution is 1920×1080.

Procedure Timing (ms)
Ground Truth KFR

Depth Pass 0.327 0.309
Shadow Pass 3.744 4.503
Defer Pass 2.985 3.034
SkyBox 0.039 0.039

Shading / Pass1 22.043 6.674
Pass2 N/A 0.090
Total 29.138 14.649

Total GPU Time 31.892 17.052

Table 3. Frame rate and speedup comparison for kernel foveated rendering at different resolutions with
σ = 1.8, α = 4.0.

Scene 3D Textured Meshes Ray Casting
Resolution Ground Truth Foveated Speedup Ground Truth Foveated Speedup
1920 × 1080 55 FPS 110 FPS 2.0X 20 FPS 57 FPS 2.9X
2560 × 1440 31 FPS 67 FPS 2.2X 10 FPS 30 FPS 3.0X
3840 × 2160 8 FPS 23 FPS 2.8X 5 FPS 16 FPS 3.2X

5 RENDERING ACCELERATION
We implemented kernel foveated rendering on NVIDIA GeForce GTX 1080, by using the deferred
shading pipeline of the Falcor engine [Benty et al. 2017]. We report results of our rendering accel-
eration for resolutions of 1920 × 1080, 2560 × 1440, and 3840 × 2160. Using the results from our
final user study, we selected the LP-buffer parameter σ = 1.8, and kernel parameter α = 4 for the
evaluations below.

3D Textured Meshes. We use the Amazon Lumberyard Bistro [Lumberyard 2017] scene with
physically-based shading, reflection, refraction, and shadows to simulate the complex shading ef-
fects as shown in Figure 11. The comparison of the break-down of rendering time between KFR
and the ground truth of deferred shading is shown in Table 2. We observed that the frame rate
increases for all resolutions as shown in Table 3, with a speedup of 2.0X − 2.8X .

Ray-casting Rendering. Rendering of high-resolution ray cast scenes can be an extremely time-
consuming process. We used the complex ray-casting scene with 16 different primitives by Íñigo
Quílez to evaluate the acceleration of kernel foveated rendering. Figure 12 shows a comparison of
the foveated scene and the ground truth. The frame rate increases for all resolutions as shown in
Table 3, with a speedup of 2.9X − 3.2X .

6 DISCUSSION
Here we compare our Kernel Foveated Rendering (KFR) pipeline with selected prior art, including:
Foveated 3D Graphics (F3D) [Guenter et al. 2012],Multi-rate Shading (MRS) [He et al. 2014], Coarse

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

Kernel Foveated Rendering 5:15

(a) original 3D geometries, 31 FPS (b) foveated 3D geometries (σ = 1.8, α = 4), 67 FPS

fovea

Fig. 11. Comparison of (a) full-resolution rendering and (b) foveated rendering for 3D meshes involving a
geometry pass with 1, 020, 895 triangles as well as multiple G-buffers at 2560 × 1440 resolution.

(a) original ray-marching scene, 10 FPS (b) foveated ray-marching scene (σ = 1.8, α = 4), 30 FPS

fovea

Fig. 12. Comparison of (a) full-resolution rendering and (b) foveated ray-marching scene with 16 samples
per pixel rendered at 2560 × 1440.

Pixel Shading (CPS) [Vaidyanathan et al. 2014], and Adaptive Image-Space sampling (AIS) [Stengel
et al. 2016].

As mentioned by [Stengel et al. 2016], both MRS and CPS pipelines require adaptive shading
features which are not yet commonly available on commodity GPUs and so they rely on software
simulator implementations. In contrast, F3D, AIS, and our KFR pipelines can be easily mapped
onto the current generation of GPUs.

The F3D pipeline has achieved impressive speedups of 10X − 15X in the informal user study,
and a factor of 4.8X − 5.7X in the formal user study. Nevertheless, the F3D approach uses three
discrete layers, while our KFR parameterizes the distribution of samples continuously in the log-
polar domain. F3D relies on specifically designed anti-aliasing algorithms including jitter sam-
pling and temporal reprojection, thus limiting F3D to simpler material models and less complex
geometry [Stengel et al. 2016]. In contrast, KFR could easily be coupled with the state-of-the-art
screen-space anti-aliasing techniques, such as TAA [Karis 2014] and recent G-buffer anti-aliasing
strategies [Crassin et al. 2015].

Both theAIS andKFR pipelinesmimic the continuously changing distribution of photo-receptors
in the retina. Nonetheless, there are three significant differences: complexity and evaluation of the
perceptual model, interpolation, and speedup. First, AIS uses four parameters from [Weymouth
1958] to approximatelymodel the linear degradation behavior of acuity with 30° eccentricity. How-
ever, these parameters have not yet been evaluated on how they affect foveation and perception
in HMDs or beyond 30° eccentricity. In contrast, KFR uses only two parameters: the reduced-
resolution LP-buffer parameter σ and the kernel parameter α in conjunction with a simple coor-
dinate transformation. KFR has established desirable values of α and σ through user studies in

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

5:16 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

head-mounted displays. Second, AIS relies on the pull-push interpolation [Gortler et al. 1996] to
fill the pixels that are missed due to variable sampling of silhouette features and object saliency. In
comparison, KFR uses the built-in GPU-driven mipmap interpolation which reduces the additional
interpolation cost. However, it is worth investigating how incorporating object saliency [Kim et al.
2010; Lee et al. 2005] could further improve the KFR pipeline. It is a challenge to compare mul-
tiple foveated approaches given the varying hardware and perceptual quality of the results. One
possibility is to compare the speedups as percentages of rendering time reduction with certain
reduction sampling rate. By rendering with 59% of the total amount of shaded pixels, AIS reports
an overall rendering time reduction of 25.4%, while KFR achieves 29.9% reduction on average. Like
AIS, KFR speedup also depends on the amount of time spent in shading; the greater the shader
computations, the higher will be the KFR speedup.

7 LIMITATIONS
Even though we have devised an efficient and effective foveated rendering pipeline, our system is
not without some limitations.

Foveation Parameters. As discussed in Hsu et al. [2017], the perceived quality of foveated ren-
dering systems is highly dependent on the user and the scene. As the initial step towards kernel
foveated rendering for 3D graphics, the user study in this paper is only designed for selected static
scenes.The foveation parameters may vary in dynamic scenes. Exploring the relationship between
user demographic (e.g., pupil size, contrast sensitivity, vision condition, and diopter) and display-
dependent parameters of KFR is a potential future direction.

Temporal Flickering. In the post-processing stage, we have applied TAA to tackle the tempo-
ral flickering problem. However, in fly-through of the scene with glossy objects, we notice that
view-dependent specular reflection changes before and after applying KFR. As shown in Figure 13,
foveation amplifies the specular reflection regions, and makes the specular highlights flicker more.

Other Mapping Algorithms and Kernel Functions. KFR makes intuitive sense as the log-polar
mapping has an initial resolution proportional to e−r , and the kernel functions can fine tune this
mapping. Our choice of kernel functions is not unique; other mapping algorithms with different
kernel functions could provide a better mapping to the human vision system.

8 CONCLUSION AND FUTURE WORK
In this paper, we have presented the kernel log-polar mapping model, user studies for finding the
best parameters, as well as a GPU-based implementation and quantitative evaluation of the kernel
foveated rendering pipeline.

First, we systematically vary the sampling rate and sampling distribution to better mimic the
distribution of photo-receptors in the human vision system by embedding the polynomial kernel
functions in the classic log-polar mapping. Second, we have carried out user studies, including a
pilot study and a final one, in virtual reality HMD with integrated eye tracking to determine the
best parameters for KFR. Finally, we evaluate our KFR pipeline through a quantitative evaluation
with physically-based deferred-rendering scenes and ray-marching scenes. We have observed that
our algorithm achieves a speedup of 3.2X for the procedural rendering scenes with ray-marched
primitives and 2.8X for the physically-based deferred-rendering scenes.

With high frame rates, our KFR pipeline allows rendering more complex shaders (e.g., real-time
global illumination and physically-based rendering [Pharr andHumphreys 2010]) in real time, thus
bringing higher power efficiency and better user experience for 3D games and other interactive

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

Kernel Foveated Rendering 5:17

fovea fovea

fovea fovea

(a) original scene 𝐹𝐹𝐼𝐼 (b) foveated scene 𝐹𝐹𝐼𝐼

(c) original scene 𝐹𝐹𝐼𝐼𝐼𝐼 (d) foveated scene 𝐹𝐹𝐼𝐼𝐼𝐼

Fig. 13. Temporal flickering issue. The original scene and the foveated scene of two consecutive frames (FI
and FI I). In FI , the specular reflection in the original scene as shown in the red and blue circles in the zoomed-
in view of (a) are amplified in the foveated scene as shown in the zoomed-in view of (b). In the next frame
FI I , the specular reflection in the original scene as shown in the pink circle in the zoomed-in view of (c) is
amplified in the foveated scene as shown in the zoomed-in view of (d).

visual computing applications. The work presented in this paper is the first step towards kernel
foveated rendering.

In future, we would like to apply our algorithm for interactively testing high-fidelity path-
tracing algorithms with the state-of-art noise reduction algorithms [Crassin et al. 2015; Moon et al.
2017; Selgrad et al. 2015]. Considering that current consumer HMDs have lens distortions [Pohl
et al. 2016], we also plan to explore warping from LP-buffer to ”lens undistorted” image directly
in order to provide substantial performance improvements.

ACKNOWLEDGEMENTS
We would also like to thank the anonymous reviewers for the insightful comments that greatly
helped improve this manuscript.

This work has been supported in part by the NSF Grants 14-29404, 15-64212, and the State
of Maryland’s MPower initiative. Any opinions, findings, conclusions, or recommendations ex-
pressed in this article are those of the authors and do not necessarily reflect the views of the
research sponsors.

REFERENCES
Marco Antonelli, Francisco D. Igual, Francisco Ramos, and V. Javier Traver. 2015. Speeding up the log-polar transform

with inexpensive parallel hardware: graphics units and multi-core architectures. J. Real-Time Image Process. 10, 3 (Sept.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

5:18 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

2015), 533–550. https://doi.org/10.1007/s11554-012-0281-6
H. Araujo and J. M. Dias. 1996. An introduction to the log-polar mapping [image sampling]. In Proceedings II Workshop on

Cybernetic Vision. 139–144. https://doi.org/10.1109/CYBVIS.1996.629454
Nir Benty, Kai-Hwa Yao, Tim Foley, Anton S. Kaplanyan, Conor Lavelle, Chris Wyman, and Ashwin Vijay. 2017. The Falcor

rendering framework. https://github.com/NVIDIAGameWorks/Falcor
Peter J Burt. 1988. Smart sensing within a pyramid vision machine. Proc. IEEE 76, 8 (1988), 1006–1015. https://doi.org/10.

1109/5.5971
Matthäus G. Chajdas, Morgan McGuire, and David Luebke. 2011. Subpixel reconstruction antialiasing for deferred shading.

In Symposium on Interactive 3D Graphics and Games (I3D ’11). ACM, New York, NY, USA, 15–22 PAGE@7. https:
//doi.org/10.1145/1944745.1944748

Ee-Chien Chang, Stéphane Mallat, and Chee Yap. 2000. Wavelet foveation. Applied and Computational Harmonic Analysis
9, 3 (2000), 312–335. https://doi.org/10.1006/acha.2000.0324

Petrik Clarberg, Robert Toth, Jon Hasselgren, Jim Nilsson, and Tomas Akenine-Möller. 2014. AMFS: adaptive multi-
frequency shading for future graphics processors. ACM Trans. Graph. 33, 4, Article 141 (July 2014), 12 pages. https:
//doi.org/10.1145/2601097.2601214

Cyril Crassin, Morgan McGuire, Kayvon Fatahalian, and Aaron Lefohn. 2015. Aggregate G-buffer anti-aliasing. In Pro-
ceedings of the 19th Symposium on Interactive 3D Graphics and Games (I3D ’15). ACM, New York, NY, USA, 109–119.
https://doi.org/10.1145/2699276.2699285

Jerome F Duluk Jr, Richard E Hessel, Vaughn T Arnold, Jack Benkual, Joseph P Bratt, George Cuan, Stephen L Dodgen,
Emerson S Fang, Zhaoyu Gong,Thomas YHo, et al. 2004. Deferred shading graphics pipeline processor having advanced
features. US Patent 6,717,576.

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The lumigraph. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’96). ACM, New York, NY, USA,
43–54. https://doi.org/10.1145/237170.237200

Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder. 2012. Foveated 3D graphics. ACM Trans. Graph.
31, 6, Article 164 (Nov. 2012), 10 pages. https://doi.org/10.1145/2366145.2366183

Shawn Hargreaves and Mark Harris. 2004. Deferred shading. In Game Developers Conference, Vol. 2. 31.
Yong He, Yan Gu, and Kayvon Fatahalian. 2014. Extending the graphics pipeline with adaptive, multi-rate shading. ACM

Trans. Graph. 33, 4, Article 142 (July 2014), 12 pages. https://doi.org/10.1145/2601097.2601105
Hugues Hoppe. 1998. Smooth view-dependent level-of-detail control and its application to terrain rendering. In Proceedings

of the Conference on Visualization ’98 (VIS ’98). IEEE Computer Society Press, Los Alamitos, CA, USA, 35–42. http:
//dl.acm.org/citation.cfm?id=288216.288221

Chih-Fan Hsu, Anthony Chen, Cheng-Hsin Hsu, Chun-Ying Huang, Chin-Laung Lei, and Kuan-Ta Chen. 2017. Is foveated
rendering perceivable in virtual reality?: exploring the efficiency and consistency of quality assessment methods. In
Proceedings of the 2017 ACM on Multimedia Conference (MM ’17). ACM, New York, NY, USA, 55–63. https://doi.org/10.
1145/3123266.3123434

L. Hu, P. V. Sander, and H. Hoppe. 2010. Parallel view-dependent level-of-detail control. IEEE Transactions on Visualization
and Computer Graphics 16, 5 (Sept 2010), 718–728. https://doi.org/10.1109/TVCG.2009.101

Cheuk Yiu Ip, M. Adil Yalçin, David Luebke, and Amitabh Varshney. 2013. PixelPie: maximal Poisson-disk sampling with
rasterization. In Proceedings of the 5th High-Performance Graphics Conference (HPG ’13). ACM, New York, NY, USA,
17–26. https://doi.org/10.1145/2492045.2492047

B Karis. 2014. High-quality temporal supersampling. Advances in Real-Time Rendering in Games, SIGGRAPH Courses 1
(2014), 1–55. https://doi.org/10.1145/2504435.2504447

Youngmin Kim, Amitabh Varshney, David Jacobs, and Francois Guimbretere. 2010. Mesh Saliency andHuman Eye Fixations.
ACM Transactions on Applied Perception 7, 2 (2010), 1 – 13.

Philip Kortum and Wilson S Geisler. 1996. Implementation of a foveated image coding system for image bandwidth re-
duction. In Electronic Imaging: Science & Technology. International Society for Optics and Photonics, 350–360. https:
//doi.org/10.1117/12.238732

Lee and Sanghoon. 2000. Foveated video compression and visual communications over wireless and wireline networks. Ph.D.
Dissertation. Dept. of ECE, University of Texas at Austin.

Chang Ha Lee, Amitabh Varshney, and David Jacobs. 2005. Mesh Saliency. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2005) 24, 3 (August 2005), 659 – 666.

Sanghoon Lee, M. S. Pattichis, and A. C. Bovik. 2001. Foveated video compression with optimal rate control. IEEE Transac-
tions on Image Processing 10, 7 (Jul 2001), 977–992. https://doi.org/10.1109/83.931092

Sanghoon Lee, M. S. Pattichis, and A. C. Bovik. 2002. Foveated video quality assessment. IEEE Transactions on Multimedia
4, 1 (Mar 2002), 129–132. https://doi.org/10.1109/6046.985561

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

https://doi.org/10.1007/s11554-012-0281-6
https://doi.org/10.1109/CYBVIS.1996.629454
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1109/5.5971
https://doi.org/10.1109/5.5971
https://doi.org/10.1145/1944745.1944748
https://doi.org/10.1145/1944745.1944748
https://doi.org/10.1006/acha.2000.0324
https://doi.org/10.1145/2601097.2601214
https://doi.org/10.1145/2601097.2601214
https://doi.org/10.1145/2699276.2699285
https://doi.org/10.1145/237170.237200
https://doi.org/10.1145/2366145.2366183
https://doi.org/10.1145/2601097.2601105
http://dl.acm.org/citation.cfm?id=288216.288221
http://dl.acm.org/citation.cfm?id=288216.288221
https://doi.org/10.1145/3123266.3123434
https://doi.org/10.1145/3123266.3123434
https://doi.org/10.1109/TVCG.2009.101
https://doi.org/10.1145/2492045.2492047
https://doi.org/10.1145/2504435.2504447
https://doi.org/10.1117/12.238732
https://doi.org/10.1117/12.238732
https://doi.org/10.1109/83.931092
https://doi.org/10.1109/6046.985561

Kernel Foveated Rendering 5:19

Marc Levoy and Ross Whitaker. 1990. Gaze-directed volume rendering. In Proceedings of the 1990 Symposium on Interactive
3D Graphics (I3D ’90). ACM, New York, NY, USA, 217–223. https://doi.org/10.1145/91385.91449

Amazon Lumberyard. 2017. Amazon Lumberyard Bistro, Open Research Content Archive (ORCA). http://developer.
nvidia.com/orca/amazon-lumberyard-bistro

Bochang Moon, Jose A. Iglesias-Guitian, Steven McDonagh, and Kenny Mitchell. 2017. Noise reduction on G-buffers for
Monte Carlo filtering. Computer Graphics Forum 36, 8 (2017), 600–612. https://doi.org/10.1111/cgf.13155

Toshikazu Ohshima, Hiroyuki Yamamoto, and Hideyuki Tamura. 1996. Gaze-directed adaptive rendering for interacting
with virtual space. In Proceedings of the 1996 Virtual Reality Annual International Symposium (VRAIS 96) (VRAIS ’96).
IEEE Computer Society, Washington, DC, USA, 103–110, 267. https://doi.org/10.1109/VRAIS.1996.490517

C. Papadopoulos and A. E. Kaufman. 2013. Acuity-driven gigapixel visualization. IEEE Transactions on Visualization and
Computer Graphics 19, 12 (Dec 2013), 2886–2895. https://doi.org/10.1109/TVCG.2013.127

Kashinath D Patil. 1975. Cochran’s Q test: Exact distribution. J. Amer. Statist. Assoc. 70, 349 (1975), 186–189.
Anjul Patney, Joohwan Kim, Marco Salvi, Anton Kaplanyan, Chris Wyman, Nir Benty, Aaron Lefohn, and David Luebke.

2016a. Perceptually-based foveated virtual reality. In ACM SIGGRAPH 2016 Emerging Technologies (SIGGRAPH ’16).
ACM, New York, NY, USA, Article 17, 2 pages. https://doi.org/10.1145/2929464.2929472

Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir Benty, David Luebke, and Aaron Lefohn.
2016b. Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph. 35, 6, Article 179 (Nov. 2016),
12 pages. https://doi.org/10.1145/2980179.2980246

T Pengo, A Muñoz-Barrutia, and C Ortiz-de solórzano. 2009. Halton sampling for autofocus. Journal of Microscopy 235, 1
(2009), 50–58. https://doi.org/10.1111/j.1365-2818.2009.03180.x

Matt Pharr and Greg Humphreys. 2010. Physically Based rendering, second edition: from theory to implementation (2nd ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

D. Pohl, X. Zhang, and A. Bulling. 2016. Combining eye tracking with optimizations for lens astigmatism in modern
wide-angle HMDs. In 2016 IEEE Virtual Reality (VR). 269–270. https://doi.org/10.1109/VR.2016.7504757

Jonathan Ragan-Kelley, Jaakko Lehtinen, Jiawen Chen, Michael Doggett, and Frédo Durand. 2011. Decoupled sampling for
graphics pipelines. ACM Trans. Graph. 30, 3, Article 17 (May 2011), 17 pages. https://doi.org/10.1145/1966394.1966396

T. H. Reeves and J. A. Robinson. 1996. Adaptive foveation of MPEG video. In Proceedings of the Fourth ACM International
Conference on Multimedia (MULTIMEDIA ’96). ACM, New York, NY, USA, 231–241. https://doi.org/10.1145/244130.
244218

A. Said andW. A. Pearlman. 1996. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE
Transactions on Circuits and Systems for Video Technology 6, 3 (Jun 1996), 243–250. https://doi.org/10.1109/76.499834

Kai Selgrad, Christian Reintges, Dominik Penk, Pascal Wagner, and Marc Stamminger. 2015. Real-time depth of field using
multi-layer filtering. In Proceedings of the 19th Symposium on Interactive 3D Graphics and Games (i3D ’15). ACM, New
York, NY, USA, 121–127. https://doi.org/10.1145/2699276.2699288

Jerome M Shapiro. 1993. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal
Processing 41, 12 (1993), 3445–3462. https://doi.org/10.1109/78.258085

Hamid R. Sheikh, Brian L. Evans, and Alan C. Bovik. 2003. Real-time foveation techniques for low bit rate video coding.
Real-Time Imaging 9, 1 (Feb. 2003), 27–40. https://doi.org/10.1016/S1077-2014(02)00116-X

H. R. Sheikh, S. Liu, Z. Wang, and A. C. Bovik. 2002. Foveated multipoint videoconferencing at low bit rates. In 2002 IEEE
International Conference on Acoustics, Speech, and Signal Processing, Vol. 2. II–2069–II–2072. https://doi.org/10.1109/
ICASSP.2002.5745041

Michael Stengel, Steve Grogorick, Martin Eisemann, and Marcus Magnor. 2016. Adaptive image-space sampling for gaze-
contingent real-time rendering. Computer Graphics Forum 35, 4 (2016), 129–139. https://doi.org/10.1111/cgf.12956

Qi Sun, Fu-Chung Huang, Joohwan Kim, Li-Yi Wei, David Luebke, and Arie Kaufman. 2017. Perceptually-guided foveation
for light field displays. ACM Trans. Graph. 36, 6, Article 192 (Nov. 2017), 13 pages. https://doi.org/10.1145/3130800.
3130807

Nicholas T. Swafford, José A. Iglesias-Guitian, Charalampos Koniaris, Bochang Moon, Darren Cosker, and Kenny Mitchell.
2016. User, metric, and computational evaluation of foveated rendering methods. In Proceedings of the ACM Symposium
on Applied Perception (SAP ’16). ACM, New York, NY, USA, 7–14. https://doi.org/10.1145/2931002.2931011

K. Vaidyanathan, M. Salvi, R. Toth, T. Foley, T. Akenine-Möller, J. Nilsson, J. Munkberg, J. Hasselgren, M. Sugihara, P.
Clarberg, T. Janczak, and A. Lefohn. 2014. Coarse pixel shading. In Proceedings of High Performance Graphics (HPG
’14). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 9–18. http://dl.acm.org/citation.cfm?id=2980009.
2980011

Margarita Vinnikov and Robert S Allison. 2014. Gaze-contingent depth of field in realistic scenes: The user experience. In
Proceedings of the Symposium on Eye Tracking Research and Applications. ACM, 119–126.

Zhou Wang and Alan C Bovik. 2001. Embedded foveation image coding. IEEE Transactions on Image Processing 10, 10
(2001), 1397–1410. https://doi.org/10.1109/83.951527

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

https://doi.org/10.1145/91385.91449
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://doi.org/10.1111/cgf.13155
https://doi.org/10.1109/VRAIS.1996.490517
https://doi.org/10.1109/TVCG.2013.127
https://doi.org/10.1145/2929464.2929472
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1111/j.1365-2818.2009.03180.x
https://doi.org/10.1109/VR.2016.7504757
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1145/244130.244218
https://doi.org/10.1145/244130.244218
https://doi.org/10.1109/76.499834
https://doi.org/10.1145/2699276.2699288
https://doi.org/10.1109/78.258085
https://doi.org/10.1016/S1077-2014(02)00116-X
https://doi.org/10.1109/ICASSP.2002.5745041
https://doi.org/10.1109/ICASSP.2002.5745041
https://doi.org/10.1111/cgf.12956
https://doi.org/10.1145/3130800.3130807
https://doi.org/10.1145/3130800.3130807
https://doi.org/10.1145/2931002.2931011
http://dl.acm.org/citation.cfm?id=2980009.2980011
http://dl.acm.org/citation.cfm?id=2980009.2980011
https://doi.org/10.1109/83.951527

5:20 Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney

Zhou Wang and Alan C Bovik. 2005. Foveated image and video coding. In Digitial Video Image Quality and Perceptual
Coding. 1–28.

M. Weier, M. Stengel, T. Roth, P. Didyk, E. Eisemann, M. Eisemann, S. Grogorick, A. Hinkenjann, E. Kruijff, M. Magnor, K.
Myszkowski, and P. Slusallek. 2017. Perception-driven accelerated rendering. Comput. Graph. Forum 36, 2 (May 2017),
611–643. https://doi.org/10.1111/cgf.13150

Frank W Weymouth. 1958. Visual sensory units and the minimal angle of resolution. American Journal of Ophthalmology
46, 1 (1958), 102–113. https://doi.org/10.1016/0002-9394(58)90042-4

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 5. Publication date: May 2018.

https://doi.org/10.1111/cgf.13150
https://doi.org/10.1016/0002-9394(58)90042-4

	Abstract
	1 Introduction
	2 Related Work
	2.1 Foveated Images and Videos
	2.2 Foveated 3D Graphics

	3 Our Approach
	3.1 Pass I: Forward Log-Polar Transformation
	3.2 Pass II: Inverse Log-Polar Transformation

	4 User Studies
	4.1 Apparatus
	4.2 Pilot Study
	4.3 Final User Study

	5 Rendering Acceleration
	6 Discussion
	7 Limitations
	8 Conclusion and future work
	References

