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Measurements of a permanenéutron electric dipole momer(EDM) potentially probe beyond-the-
Standard Model (BSM) sources of CP-violatioAt low energy the CP-violating BSM interactions are
parametrized by flavor-conserving CP-violating operators of dimension higher than f@ED calcu-
lations of the nucleon matrix elements of these operators are required to fully reconstruct the sources and
magnitudes of the different CP-violating contributions to the nucleon EDM. Herein we study the quark-
chromoelectric dipole momen{qCEDM) operatorand the three-gluon Weinberg operatoifhe non-
perturbative determinationysing lattice QCD, of the nucleon matrix elements ofthese CP-violating
operators is hampered by their short-distance behaldader renormalization these operators mix with
lower-dimensionabperatorswhich induces power divergences in the lattice spaciagthe continuum
limit is approached. We study the short-distance behavior of the qCEDM and the Weinberg operators using
the gradientflow. We perform a shortflow time expansion and determinen perturbation theorythe
expansion coefficients of the linearly divergetefms stemming from the mixing with the pseudoscalar
density and the topologicatharge,confirming the expectations of the operator prodwetpansionWe
introduce a new method to perform calculations at nonzero flow-time for arbitrary values of the external
momenta. This method allows us to work in four dimensions for most of the calculations described in this
paper,avoiding the complications associated with defining in generic d dimensionsWe show that
leading contributions in the external momenta can be reproduced by defising the t Hooft-Veltman-
Breitenlohner-Maison scheme.
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[. INTRODUCTION or any combination of these. The current experimental limit

I , .__for the neutron EDM [1,2], jdnj< 1.8 x 10726 e cm at
The nucleon electric dipole moment (EDM) is a physica 0% confidence level, leavesopen the possibility of a

quantity that, once measured, will provide a unique oppor= """ L .

tunity to detect and investigate beyond-the-standard mod minantBSM source 0 f CP-violation, which could be

(BSM) sources of charge and parity (CP) violation. In severalorders of magnitude Iargerthap Standard MerI
principle, there are multiple sources fora nonvanishing ;%g‘;?éi@if:ﬁ[ggg% ;)elgfenr;;e)v lews of EDMs in

nucleon EDM, including the Cabibbo-Kobayashi-Maskaw In addition to the Standard Modelcontributions to the

CKM k-mixi trix, th t h d i .
( ) quark-mixing matrix, the quantum chromo yamICSnucleon EDM from the CKM matrix [5] and from the 6

CD) 6 term, higher-di ional CP-violati tors, . . o
(QCD) 8 term, higher-dimensiona violating opera orSterm [6], BSM theories that contain complex CP-violating

couplings can induce a nonvanishing EDM at the one loop
I level. At low energies the BSM degrees of freedom are
rizik@nscl.msu.edu h h th . heir ff h h
fcjmonahan@wm.edu eavy enoug t af[ one can parametr!ze their effects t roug
*shindler@frib.msu.edu effective, higher-dimension CP-violating operators. In this
aper we consider two such operators, the quark-color
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Broadly speaking, there are three approaches to determirexternalmomentum atall orders,which maintains finite-
ing the relevant matrix elements:QCD sum rules [7,8];  ness at positive flow time throughout all of the calculations
chiral perturbation theory [9,10]; and lattice QCD. in this paper with the exception of those related to the
Lattice QCD provides the mostsystematic method to  renormalization of the flowed fermion propagatorin
calculate individual contributions from different CP-  Appendix C.
violating sourcesto the nucleon EDM in terms of the Herein we focus on the renormalization of the higher-
QCD fundamental degrees of freedomuark and gluons. dimensional CP-violating operators using the gradient
There is a long history of attempts to determine the nuclediow. First results appeared in [66-68Jand presently we
EDM from lattice QCD [11-19], and severaltechnical determine the leading contribution to the shoftow-time
difficulties have been encountered. expansion (SFTE)oefficients of the CP-violating oper-
The first difficulty arises from the fact that in Euclidean ators defined using the gradient flow. The renormalization
space the 6 term renders the QCD action compleskiich  and mixing, in the MS scheme, have been studied in
prevents the use of stochastic methods. The current Refs.[69-71] up to 2-loops for the qCEDM and up to
experimentabound on the neutron EDM implies a very  3-loops for the Weinberg operators in Refs. [72-75]. After
small value for 8 ~ 100, justifying a perturbative expan- describing our perturbative strategy for determining these
sion in 8. Correlators that include an insertion of the 8 terrogefficients,we focus on the leading linearly divergent
once the topologicalcharge has been properly renormal- expansion coefficients and some logarithmic terms.
ized, are theoretically well definedDespite the very poor The paper is organized as follows. We first introduce the
signal-to-noise ratio it is possible to determine the nucleomgradientflow and some technicaldetails relevanfor our
EDM induced by the 8 term using signal-to-noise improveperturbative expansion in Sec. Il. We calculate the expan-
ratios [6,20]. sion coefficients of the qCEDM, parametrizing the mixing
The second difficulty arises from the renormalization ofwith the pseudoscalar density and the topologiceharge
the relevant composite operators. In Ref. [21] we proposedensity, in Sec. I, and the corresponding coefficient of the
using the gradient flow [22-25] to renormalize the 8 term Weinberg operatolinduced by the mixing with the topo-
and the BSM CP-violating operators. We are currently  logical charge density, in Sec. IV. We summarize our results
pursuing this program and in Refs. [6,14,20,26] we inves-and our conclusions in SecdV.
tigated and calculated the nucleon EDM from the 6 term.  In Appendix A we detail our notations and conventions
The properties of the gradieniow have led to a wide including the d-imensional Dirac gamma matrices. In
variety of applicationsin lattice gauge theories. These Appendix B we list Feynman rules for the flowed vertices
applications include determining the fundamental parameand for the relevant operator$n Appendix C we use the
ters of QCD, such as the running coupling constant [27-3d&lculation of the quark propagatoras an example to
and the equation of state at finite temperature [35-40], elucidate the computational techniques for finite flow time.
extracted from a nonperturbative definition of the energy-

momentum tensorat finite lattice spacing [41-44]. The Il. THE GRADIENT FLOW
gradient flow has also provided an important tool for relative _ _ o _ .
scale-setting in lattice calculations [45,48]any of these In this section we give a brief introduction to the gradient

techniques have been applied in other theories [47-55]. flow, emphasizing the technicaldetails needed for our
Renormalization schemes based on the gradieffiow perturbahye expansion. The gradient rovy eq_uatlons define

include nonperturbative step-scaling approaches [56,57], the evolution of the bulk gauge and fermion fields»B tb

removing power divergences in nonlocal operators relevaffld X0x; tb respectivelgs a function of the flow time, t

to hadron structure [58,59],and defining regularization-  [23.,25]:

independentquark-bilinearcurrents [60,61]. Perturbative

calculations of the gradient flow have been carried out to 0tBy, % DGy b aDyd,By; o1p
three loops for certain quantities using automated pertur-
bation theory routines [44,62,63]and to two loops via 01X Ya D DyX = 000\ByX; o2p
numerical stochastic perturbation theory [64,65]. L B

Analytic loop-order calculations with the gradient flow OtX Va xlﬁulﬁu b agxd,By; o3pb

often introduce some difficulties related to dimensional

regularization.One method to avoid these complications Where

employs an expansion in the external momentum p to some

desired order. This can induce extraneousnonphysical Gy 7+ 0,B, - 0,B,p 2B; B,; 04p
infrared poles at fairly low orders in the external momen-

tum. (In the calculation of the Wilson coefficient ccp ~ @nd the covariant derivatives are

below, for example,these appear as early as O8p.) We

have used a novel combinatorial schemeto track the DG 72 0,Gvo b 72B; Gig; o5p
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DX % 83,pB,Px; XD, ¥%x&,-B,p: 36pP
The bulk fields are related via Dirichlet boundary con-
ditions to the boundary fields, that is, the integration
variablesof the functional integral defining the theory,

through

B.0x; t 74 0P V4 fOxP; o7b
X0x; t Va OP V2 woxb; o8b
X0x; t V4 Ob Yy oxb: 9P

The generalized gauge-fixing terms proportional to a
remove some technical complications associatedwith
perturbation theory [23-25]. The solutions of the flow
equations for g > 0 are related to the solutions atyd4 0

A% 31 - gbgB, b 2B,d, b B,By; 317p

A%, -61 - @bgB, - 26,B,pB,B,:  0618b
We can solve the integraform of the flow equations,
Egs. (10) and (11), by iteration, generating a tree expansion
of the bulk fields in powers of the boundary fieldsBulk
vertices are then connected by “flow lines,” which are flow-
time ordered and governed by the heakernel. We give
explicit expressionsfor the relevant Feynman rules in
Appendix B.
In pure Yang-Mills theory, all correlation functions
are finite at finite flow time, provided the boundary
theory is renormalized [24]. Fermions,however,require
an additional wave-function renormalization at finite flow
time, generally denoted by /Z[25]. The pole contribution
to this additional fermionic wave-function renormaliza-

by a flow-time dependent gauge transformation. We worktion first appeared in [25] and was reproduced in [43],

in Feynman gauge and takeyd 1 throughout this work.

through a next-to-leading-order perturbative calculation of

We solve the flow equations (1) and (2) in d-dimensiongy gy tbﬁ,x(‘SX; tbbi, and in [59], in the context of nonlocal

by casting them into the integral forms

Z
B.OX; tb ¥ dlyYsK,0x - y; tPAOYP
Z
t
b ) dsK,,0x —y; t — sPRy; sb; 410P
Z
X0x; tb ¥4 dlylLJox - y; tby dyP
Z
t
b dsJox-vy;t-sbXady; sb; 611b
0
Z p—
XOx; tb V4 ddypodyHox - y; tb
Z
t _ e
b dsxoy; sh%ox - y;t—-sb: 612b
0

Here K,,,0x; tP and JOx; tP are the heat kernels

eipx o, _ )
p2 faéuvp2 - pppvpetp bp uPv€ dotp g

Kuwox; th Va
p

613b
3 Z
Jox; tb YJox; tb 14 ePxeth?; 314b
p
615pb
and the interaction terms are
R, 74 228 0,B, - 2B, ,B, b 6a, - 1P4B4,B,
b 2B; V2B B; 316b

Wilson-line operators.In Appendix C we calculate the
finite contributions to this extra wave-function renormal-
ization that, to our knowledge, have notappeared in the
literature.The calculation in Appendix C also serves as a
sample calculation with flowed fermions fields.

Once the fermions have been renormalizechmposite
operators composed of fields at finite flow time are there-
fore finite and all scale dependencecarried by these
operators can be related to the flow time. In particular,
any potential power divergence in the cutoff of the theory is
removed. At small flow times, a short flow-time expansion
(SFTE) can be used to relate these composite operators to
linear combinationsof local renormalized operatorsat
vanishing flow time. The SFTE is an operator product
expansion in the neighborhood of vanishing flow time, with
coefficients, calculable in perturbation theory, that carry the
flow time dependence [76]The SFTE provides a pertur-
bative understanding of the way in which power divergen-
ces are removed and the form of the flow-time dependence
for which the power divergences are traded.

On the lattice, correlation functions involving higher-
dimension operators can be plagued by power-divergent
mixings with lower-dimension operatorsn large volume
calculations, the only accessible energy scale is the inverse
lattice spacing ~1=a,so the regularization and renormal-
ization of correlation functions may depend only on the
lattice spacingDisentangling the duatoles of the lattice
spacing, as cutoff and as energy renormalization scale, can
be arduous,particularly in the presence ofpower diver-
genceswhich must be removed nonperturbatively.

The gradient flow provides a workaround: the flow
renders all operators finite,and, in the continuum limit,
the scale of all flowed correlators is parametrized by the
flow time, |# « 1=t. The SFTE then provides a method to
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extract renormalized operatorsevaluated att ¥4 0 from once the Wilson coefficients are determined using one

finite operators calculated on the lattice at finite flow time,particular choice of external state, the resulting coefficients

t > 0. In other words, we calculate correlation functions ofcan be used with any other choice of externstate.

local operators at nonvanishing flow time and relate them to

physical correlation functions of boundary operators via a

SFTE. The challenge associated with the renormalization i QUAE\)TIL(OCLET/IOOI\Q/I?EI?\IL'F CTRIC

of the correlators att % 0 is traded for the difficulty of

determining the expansion coefficients in the SFTBne The effects of BSM physics at high energies can generate

advantage of the SFTE, however, is that we can perform theet of effective, dimension-six, CP-violating operators at

analysis in the continuumthus avoiding spurious chiral- the electroweak scale. The five-dimensional qCEDM oper-

symmetry breaking effects. In addition, the SFTE connectator, which induces the nEDM at low energies, arises from

operators atseveralvalues of the flow time in a gauge-  the effects of electroweak symmetry breaking on the CP-

invariant way. This is a significant advantage compared to/iolating Gluon-Higgs-Fermion operator [84[We define

standard techniques, based for example on RI-MOM the bare qCEDM to be

schemes, where determining the coefficients of the power _

divergentterms requiresa nonperturbative gauge-fixing Oc % keWG, Gy ; 620p

procedure [71,77-80]An alternative gauge-invariant way

to study power divergencesis to use coordinate space

renormalization methods [19,81-83]although this does 1

not provide a continuous probe of the fieldsn practice. Gy va éfo s Y59 621b
We consider our theory in continuum Euclidean

4-dimensionalspace-time For some gauge-invarianénd is a generalization of gys that preserves Hermiticity in d

local operator (BtP in an associative operator algebra witljimensions[71]. All operatorsin this paper carry an

where

basis B,defined atflow time t, the SFTE is [76] arbitrary normalization factorto simplify comparison to
X other results; in this case, ke is a complex number

60 I:hétlffg Cj 6tPOCR,60P; 819b normalizing Q.
0,B The calculation of a renormalized qCEDM matrix

element on the lattice is plagued by the presence of mixing
where the labelR denotes a renormalized operatdtere,  with the other CP-violating operators [71]. In particular the
the Wilson, or expansion, coefficientsdtP have absorbed mixing with the lower-dimensional pseudoscalar density
all flow time dependenceand the SFTE connects renor- _
malized operators in the bulk and on the physical boundary. P Y kpwysy ; 022b
The SFTE is valid only if all fields are renormalized and all

operators appearing in the SFTE are evaluated in correlaJ€nerates powedivergences in the lattice spacing aA
tion functions at nonzero physical distancesto avoid second lower-dimensionabperator that mixes with the

spurious and additional contact terms. qCEDM is the topological charge density (TCD)

If the renormalized operators at vanishing flow time do . . 1
not share the symmetriesof the flowed operator, their q % kg TreGGpy; Gy %EEHVGBGGB: 823p
expansion coefficients vanisMore specifically the form
of the SFTE and the operators contributing to the SFTE afiéhe chirality of the TCD, opposite to the qCEDM, ensures
dictated by the symmetries of the regulated theory. Thus, tiie mixing is proportional to the quark mass. Our perturba-
our regulator breaks certain symmetries, those symmetridive results confirm our expectations for the form of the
cannot be used to classify all the operators6Q R,60P power divergence and the mass dependence of the pseudo-
contributing to the right-hand side of the SFTE in scalar density and the TCD, respectively. We remark that, if
Eqg. (19). The leading contributions in the SFTE stem fronthe lattice QCD calculation is performed with chiral sym-
the lowest dimension operators and the renormalization metry breaking terms in the lattice action, chirality no longer
group equation satisfied by the expansion coefficients protectsthe mixing of the qCEDM and the TCD and
dictates theirasymptotic behaviorat short flow time. In  therefore a linearly divergentterm in the inverse lattice
general, OPE’s are linear and gauge-independent, so we gpacing 1=a can arise. Although other operators of the same
free to study the expansion in an arbitrary correlation dimension mix with the gqCEDM, as discussed in [71], here
function. Hence we are able, with the appropriate choice a¥e focus on the calculation of the SFTE coefficients of the
external probes, to study the SFTE termwise, order-by-  lower-dimensionapseudoscalar density and TCD opera-
order.Moreover,the Wilson coefficients of the SFTE are tors. Five- and higher-dimensionabperators will mix at
universal,that is, the coefficients are insensitive to our  most logarithmically in the flow time, so we neglect these at
choice of externalstates.This universality ensures that, the leading order.
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The SFTE for the qCEDM reads

-0

3Q:E0tB ™2 copOtPRA0P b g Otbad0b b ;  624b

where we have retained only the lowest-dimension oper-

I'?pg;ujéx;y;tb %%%%tbﬁ&méx;yﬂb b %L%tbﬁ%i@éx; y; Ob

be &qBtPlg, 50%; v; 0P

pbc ?;%tbléop ;0X; y; Ob:

Loty 028bp

ators in the expansion. For the remainder of this section we

will not include contributions from higher-dimensional
operators,such as the renormalized qCEDM itself. The
study of this logarithmic mixing will be considered in

future work. In perturbation theory it is possible to extract
the lowest-dimensional operator contributions by selectin

appropriate externasources [85].Working at Odgb, we

can extract the expansion coefficients of the pseudoscalafuarks does notvanish

The TCD vanishes at tree-level with two external quarks,
r%:qjéx; y; 0P % (and we obtain

c2oBth® _ox; y; 0P % 0: 629p

WOpy

gI'he tree-level of the pseudoscalar density with two external

1% 50 v; 0P = Ojmplying that

and TCD by selecting two-fermion and two-gluon sourcesthe expansion coefficientgdtb vanishes at leading order,

respectivelyWith these choices of externadtates,and at

0d8¢b in perturbation theory, higher-dimensional operators

do not contribute to the expansion coefficients.

A. Mixing with the pseudoscalar density

We start by extracting the coefficientfor the pseudo-
scalar densityChoosing a two-fermion external stateje
define, for any operator O, the connected correlation
functions [86]

[ yogdX; v; tP % hy oxbQodybi: 825pb
We may then distribute over Eq24), so that
M0.g0%: Vs tP VagpotPpg0x; y; 0P
b ccqOtPRg0x; y; 0P b 526P

where R once again denotesa renormalized quantity.
Expanding both the correlation functions and the Wilson
coefficients in powers of the renormalized couplingwe
find

81PR e
T y0,40% ¥; tP

Ve VapOtb b 8oapotb Y4l sox; y; 0P PGS w0x; y; 0P
b %%%%tb b §Cg1q%tb1/ oRex; y; 0b P51 Rex; v; 0b

¥ WO,y
bOdgPp ; 027p

c2%5tb % 0Applying this to Eq. (28b), we have
o1p e 1 op e 0 PR <. . .
Mo O Y:tP ¥ &0tPle ;6xy;0p b §i3tPIT6X; y; 0P
830

To extractcc,Otb atleading order,we choose an external
state with two gluons and define

Caoa0%; y; tB ¥4 hA&OxPOStHBYPi;

in analogy to Eq.(25). Applying the methods and results
from above,

631pb

1, 00 0P x. ... Ob-
0 Y CqOtblagy A0X; v; OP; 632ab

o1b

a0 A0%:Y; tP ‘/Ag%%tbligiAéx;y;Ob b %L%tblf\%:Aéx; y; OP;

032bb

becausethe tree-levelof the qCEDM with 2 external
gluons vanishesl,'f\%iAéx; y; tb % Oand c2x0tb % 0.The
tree-level contribution to the TCD does not vanish,

réA%iAax; y; Ob # 0,from which we deduce that the

leading order of the expansion coeﬁiciexiﬂ%tb vanishes,
cgeotb % 0.
To summarizeat O8¢P we obtain

rotb -0x; y; tb %?gl,pétblé()b -0x; y; OP;

YOcy WOpy 033ab

MaouadX; V; B %G BPRY \0x; y; Ob:  633bP

where the first term in the expansion of the left-hand side of

Eq. (26) vanishes because the correlat@(gcrqjéx; y; tP has
no tree-level contributions, that is, the first term in the
expansion ofthis correlatoris the one-loop contribution
proportional to g.

Equating terms order-by-ordeand neglecting higher-
dimensional operators we obtainp to Odd'b,

0 ¥ Q2pBtbY -8x; y; 0b b%%%tblioo:@éx; y; 0b; 0628ab

We are now in a position to extractch':étb.There are
three one-loop graphs that contribute to the left-hand side
of Eq. (33a), which we show in Fig. 1, and the correlator on
the right-hand side is simply the tree-levefor the pseu-
doscalar density.

We calculate these graphs to abirders in the external
momenta and flow time. The inclusion of the mass results
in a particularly cumbersome asymptotic analysis that lies
outside the scope of this paper; a nonzero external
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FIG. 1. Leading order contributions to the mixing of the pseudoscalar density with the qCEDM. In the Feynman diagrams above the
squared vertex with t is the qCEDM operator at flow time t. The Y vertex refers to the first order term in the expansion of the gradient
flow equation for fermions and the double line indicates the presence of a fermionic kernel. Details about the Feynman rules can be
found in Appendix B.

momentum is sufficient to regulate all infrared divergences.

The Feynman rules and mathematical details can be found Fo1bb

in Appendixes A, B, and C. Additional mathematical qu wép, P th % 0 034bb
details can be found in Ref.[87]. We expand in powers

of the quark mass and flow time to obtain

[ o050 B th 1P 8p; B2 th % 0 534ch
% 3i tC (;pr ! bp2 logd2pth p e - ﬂ
P _ _ There are symmetric counterparts for diagrams (a) and
Y5 p O8m; p?tb; 034aP  (b) so the sum of these contributions is
|
61!3 z z gipdx-zpP |p°c’)y -zb
Cpo,0% Vi tP %4 d'z ~y Vlzaocwép P tb p Z'wo 50p; P tP prwo 30p; ¥ S % m
Z .
ke C26F|3 1 11 gipdx-zb  gip®By-zP
1 o~ _ 2 _ 0 4
A O 4B 0 1PP l0go2pt b ¥ = Ziepbm 5ig9p m
k Fb 1 11
Y4 Bi ks gf (bp 2 logd2ptb b\ - " MoongdX: v OP; 035b

where we have omitted higher order corrections in flow time and quark masihe final expression for the expansion
coefficientreads

Fb 1 11
CcpOtb Y 6i ék 226 —p p? log 62ptP b \& — v b Oom; pt; ¢*b: a36P
|
We confirm the generalexpectationbased on symmetry B. Mixing with the topological charge density
and dimensional considerationthat the dominant contri- To calculate the expansion coefficient 6tb, following

butlop to the SFTE of the qCE[_)M is the p§eudoscglgr Eq. (33b), we need to calculate the one-loop contribution
density,which has a corresponding expansion coefficient _5;,,

that diverges linearly in flow time. The additionalterm ' a0,a0% Y; tP, stemming from the three Feynman diagrams
proportional to p* stems from the mixing of the qCEDM shown in Fig. 2. The graphs displayed in both 2(b) and 2(c)
with the Laplacian of the pseudoscaladensity. This  vanish underthe traces ofthe fermion loops, so we are
operator is in factexpected to contribute to the evolution again left to calculate a single Feynman graph. To calculate
of the qCEDM operator [71]. the d-dimensionaltraces overfermion loops one could
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@ o*r4 . ®) 92T

© 921—‘541()/)6(/ A

FIG. 2. Leading order contributions to the mixing of the TCD with the qCEDM.

employ the 't Hooft-Veltman-Breitenlohner-Maison We again confirm, following general chiral symmetry
(HVBM) scheme [88-90].Our conventionsand details  considerations,that the expansion coefficient for the
on the HVBM scheme can be found in Appendix A. This i§,CD has a logarithmic dependence on the flow time.
however, only necessarywhen these calculations are  Chiral symmetry enforces the presence & quark mass
performed by expanding near % 0. Starting atOdp?b,  factor multiplying the TCD and this factor arises naturally
this removes an essential IR regulator, the momentum, ariid our calculation.

introduces spurious divergences.The correlators listed Then, at small nonzero massthe qCEDM behavesto
below have been calculated by applying a new method leading-orderas

that includes all orders in momentao our results are IR

safe. The flow further removes all UV divergences, and th@Rétptw 6ig? < kc C,0FP

diagrams are finite in four dimensions. kp o41h
Following the methods outlined for the pseudoscalar 11
density,we obtain X 1 p p2 logd2ptb b« - — OR60P
k
a1ba 1 1 _ 2°C 1 _ R
["A0.A0P; P tb Y 2|k—6 E>/2Iog("32"pblz> bg-1 p 4ig k e E’/zlogéz%bb by — 10 go0pP
- 8-2k,P8°€yp,,p Y b OOMy; P?th; b ; 040p
637ab where the ellipsis indicates contributions from renormal-
Fo1pb ized higher-dimensional operators.
["A0.A0P; o’ tb % 0 037bb
Folbe 4
[ a0.n0P; PP tP % 0 037ch IV. WEINBERG OPERATOR
We therefore find Among the higher-dimensionaCP-violating operators
obtained by integrating out heavy quarks and Higgs
1P s tb bosons, there is a dimension six gluonic operator,
AOc AZX Y Weinberg’s three-gluon operator [72],
) . giPdx- zb1 ~ 51ba e|p°(’5y zb }
% d'z p;pop— Voo n0P; P tP——5— 50 Ow ¥ kyTrf%G,; Gp Gug 041p
Y 4| 141008 2tb - 11 8%PRax: v: 0b The Weinberg operator could potentially generate a large
) 54 B 9O P v AOAS: Y contribution to the nucleon EDM because it is purely
b 06m2 tb- a38p 9luonic and therefore nosuppressed by any smafuark
T mass factor or by a small CKM phase.
and To determine the SFTE of the Weinberg operatowe

need to isolate the lower-dimensiondl P-violating oper-

ke m . 4. ators with the same symmetry properties. In principle, the
Ceqdtb 4'%5411%,1/2'0962%'3 be-1p0Om=%t db:  pseudoscaladensity, multiplied by a mass factor, could
a contribute to the SFTE of the Weinberg,but its leading

contribution is O88P, because the first nonvanishing term

039pb
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of the correlator with the Weinberg operator and 2 external Thus the leading contribution to the expansion coeffi-
fermions arises athis order. . cient Gyq vanishes, {7 0. The next order in the coupling
As with the gqCEDM operator,we do not consider the ex :
I . . . pansion reads
contributions of operators with the same dimension as the
Weinberg operatorThe operators thatcould potentially
contribute to the SFTE of the Weinberg operator originate rf\1o'°va6x; y; tb %%gétblf\%p A0%; y; OP;  845p
from terms proportional to mCand the Weinberg operator )
itself. By choosing externalstates oftwo quarks or two s1b
gluons, we can ensure that the leading contributions ~ which allows us to determine c,,,6tP once we have

appearonly at higher order in the external scales,such  yaotermined the one-loop contribution ré1ol> 3x; y; tb.
as momentum and flow-time, or at higher order in the AOwA

coupling There are, once again, three Feynman graphs that contrib-
Expanding the Weinberg operator at short flow time, in gte,.whlch we ShOW.In Fig. 3. There are a large l‘)umber of
manner similar to the qCEDMwe obtain equivalent permutationsof the fields of the Weinberg
q operator, so to simplify our calculationswe employ a

0 relation valid for any alternating 2-tensor
OR0tP ™~ cy0tbgd0b b 042p

1
where we have considered only operators contributingto  A;A; A€o0 74 1—6iTr1/zg{30Y50€nv5A apAyAey  046P
the expansion coefficient cyy0tP. These considerations
confirm that the expansion coefficientontribution from

the QCEDM to the SFTE of the Weinberg operator starts which slightly generalizes the corresponding relation with
at O3¢b. Minkowski metric [73,74]. This relation decouplesthe

indices of A, so that the permutations of any fields that may
be contained in A become well-defined permutations on the
indices within the trace. It should be noted that this formula

51BR 51p b oA is available in d-dimensions, but upon evaluation we
I a0, A0t %4 %ﬁp b écwqétb%i%qAéx, y; 0P reproduce exactly the four-dimensional trace in the

We choose two gauge bosons as the exterstdte and
expand in powers of the couplingeading to

o01PR x . . . HVBM scheme,so it may only contract nontrivially with
bg rAOqAéx’ y: 0P b O5tp: 043b other four-dimensionabt}rluctu);es.'l' his leaves onIyX[hose
piecesof a dimensionally-regularized integrathat take
Equating order-by-order in the couplingye obtain values in the four-dimensional subalgebra.
In the calculation of the correlators involving the
0% q?\(,fétbli%: A0%; y; Ob; 044ab Weinberg operatorthe flow automatically regulates the

UV modes of the bulk gauge field, and the external

51b P51 momentum controls infrared divergences. Thus all integrals
MRoa0X ¥; tP Yaoth A0,A0%; Y; OP are finite in four dimensions. Inserting the field tensor G in

b CSJ;étbléA%': A0X; y; Ob: 644bb

place of A, we find a simple expression for the Weinberg
operator conducive to perturbative calculations:

FIG. 3. Leading order contributions to the mixing of the TCD with the Weinberg operator. In the Feynman diagrams above the square
vertex with t is the Weinberg operator at flow time t. The X vertex refers to the first order term in the expansion of the gradient flow
equation for gluons and the double curly line indicates the presence of a gluonic kernel. Details about the Feynman rules can be founc
Appendix B.
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OW % kwTrf1 2Cép; G/p éuvg
Ya 614ikwf 20T rY/oh0ye0erG 3eCh:Cey  647P

The Feynman rules for this operator are derived in
Appendix B. The calculation of the Feynman diagrams
in Fig. 3 leads to

fil)TAép; o tb

_9kwCy0AP 1.2 25
4k, o4mB 1P 3P 1090 P- T

- 0-2k,P8°€,p,p P b OOp2th;

Va

048ab

r,ig;;\ap; P tb
9 kwC0AP 1_ 5

“16k, o4mB t 18"
- 6-2k P8 €qp,p P Y p OOP2tP;

Ya

048bb

Faoa0p; P, tb % 0: 848ch

V. SUMMARY AND CONCLUSIONS

The nucleon electric dipole momerEDM) provides a
unigue opportunity to probe of sources of charge and parity
(CP) violation in the Standard Modednd beyond (BSM).
BSM theories that contain complex CP-violating couplings
can induce a nonvanishing EDM, and at low energies one can
parametrize the effects of the BSM degrees of freedom through
effective, higher-dimensional CP-violating operators.

We have calculatedat one loop in perturbation theory,
selected Wilson coefficients of the short flow time expan-
sion (SFTE) for two CP-violating operators: the quark
chromoelectric dipole moment (QCEDM) and the Weinberg
operator.We have studied the leading contributions gen-
erated by the pseudoscalardensity and the topological
charge density, and confirmed the general expectation that
the lowest-dimensionabperators generate the dominant
contributions atshort flow time.

For the gqCEDM, the Wilson coefficient of the pseudo-
scalar density is proportional to the inverse of the flow time,
1=t, and we have calculated the corresponding coefficient.
In addition, we have calculated the logarithmic contribution
to the qCEDM proportional to the topological charge
density.Our calculation confirms the generaxpectation
that chiral symmetry forces the contribution of the topo-
logical charge density to be proportional to the quark mass.

For the Weinberg operator,the leading contribution,

The second diagram has no logarithmic divergence in thewnich is proportional to the inverse of the flow time, stems
flow time; a kernel line appears in place of the gauge bosémm the topologicalcharge densityWe have determined
propagatorwhich generates two additional powers of the poth the coefficient of this 1=t term and additional
loop momentum. The third diagram vanishes, because twpgarithmic terms.

of the legs on the Weinberg operator are contracted, and thgurther, we have introduced a method of evaluation for

Weinberg operatoris antisymmetric with respectto its

flowed loop-integrals, which permits, in many applications,

fields. Summing these contributions and factoring out the the calculation of correlation functions in a naturafour-
tree-levelstructure for the TCD,we isolate the Weinberg  dimensionalsetting. We fully avoid artificial divergences

operator’s leading-order divergent behavior:

Rait0 45 5k Co0AP
ofots 8% ky 641rh
1.8 35
T b 5P logd2ptb b e 6 ORa0P
b : 349p

Our calculation again confirms the expectation thathe

related to the zero-momentum or zero-mass calculations,
while latently allowing for the study of these correlation
functions at any or all positive values of momentum or
mass. This also sidesteps the various problems that arise in
continuing the spacetime algebra to any arbitrary dimen-
sion. This is particularly useful for our considerations, since
the source of potential technical difficulties,ig pervasive
in CP-odd calculations yet well defined only in four
dimensions.

Our calculation is intended to provide a new framework
to study the ultraviolet behavior of CP-violating operators

leading contribution to the SFTE of the Weinberg operatogontributing to the electric dipole moment. Ideally, the
stems from the lowest-dimensional operator with the samgyiison coefficients should be determined nonperturba-

symmetry propertiesthe TCD generates the linear diver- tjvely and work in this

gence of the Weinberg operator at short flow time.
Similarly to the case of the qCEDM,the additionalterm
proportional to p 208380P stems from the mixing of the

direction is in progress [91].
Alternative strategies to pursue the same goals have been
recently proposed based on coordinate space methods [19]
and the RI-MOM scheme [71,80]. The one-loop calculation

Weinberg operator with operators involving derivatives of of the linearly divergent coefficients is also of practical
the topological charge density. These operators are in facimportance for the nonperturbative determination othe

expected to contribute to the evolution ofthe Weinberg
operator [80].

Wilson coefficient, by constraining the perturbative behav-
ior at small values of the gauge coupling.
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We consider this calculation a first step toward the N2 - 1 matrices defined above indeed generate SUSND.
nonperturbative renormalization of allP-violating oper-  This allows for quick computations of objects such as
ators contributing to the EDM. The next stepsin our
program are the nonperturbative determination of the linear f acdf bed 1, C 3APE: 5A4b
divergence in the Wilson coefficients and a perturbative
analysis that includes higher-dimensionabperatorsand

their corresponding Wilson coefficients. 2. Quantum chromodynamics
We work in d dimensions with a Euclidean metric, taking
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APPENDIX A: CONVENTIONS 0A6P

1. SUBNP conventions All calculations are performed on a QCD backgrounsl

First, we define the set of generators for the gauge groyRat for any local operatorO, correlation functions are
SUBNP.to be traceless and skew-Hermitianso that the  given by

algebra is defined by 7

R
YR V4 abote; oAl hOi%Zy' DWp;y;A; Og ®RWASE  sa7p

for the N2 - 1 generators £ € sudNP, and for structure
constants f 3¢, For any representationp: SUSNP —
GLO&CP, the trace over any two generators provides a natural 1 1

with the gauge-fixed Lagrangian

Killing form for sudNpP, normalized by the Dynkin index, L % w@® b mby bZGﬁVG;’jV b ZgéauAﬁbc’S@Asb
_ dimépbk _ .
To 4" Gimesuonietaz0pP Where C20pBdmooe =35 s the b 60,c7PO8 3, — f 2CACHED: 6A8P
quadratic Casimir invarianthus,we have H H H
Trit Sth Y Tpﬁab: 8A2p The generatorsof SUONP were chosento be skew-

Hermitian, so the covariant derivative is simply
We now turn our attention to two particular representa-

tions, the fundamental (F) and the adjoint (A) representa- Dy, 7% 0,pA,; A, Vs Aite 0A9P
tions, which have dimensions N and?\- 1, respectively.
In these casespur Casimir elements are @Fpb % R - when acting on objects in the fundamental representation,

1P=062NP and 6AP 2 Nso the Dynkin indices become where the coupling has been absorbed in to the fielgs, A
Tg Ya-1=2and T 5 ¥4 -N. Further, we can obtainan  When acting on objects in the adjoint representationit
explicit set of generatorsfor the adjoint representation assumes the form

by defining

D, %a0,b Y2A; - 0A10P
B8R, ¥ —f 2bc: A3 w74 Oub A
Clearly this definition is traceless and skew-symmetric, an-l(]qen the field strength-tensor is
it is trivial to prove that f2°¢ must be real Moreover,the

Jacobi identity for #°¢ implicitly satisfies (A1), so that the Gy % 0uA\ = 0uAy b Yoy A 6A11P
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3. Higher-dimensional gamma matrices Since this prohibits a smooth limit for d - 4, we conclude

This paper deals primarily with CP-odd operators, so thif'@t one of the above propertiesmust be sacrificed to
parity-violating vs is ubiquitous. To maintain algebraic F:ontlnue analy,tlcally to an arbitrary dimension. O.ur choice,
consistency in generic d dimensionsve follow 't Hooft, ~ introduced by ‘t Hooft and Veltman and systematized by
Veltman, Breitenlohner, and Maison [88-90] and split the Breitenlohner and Maison, relaxes the first condition
geometric algebra into two disjoint,orthogonalsubalge-  (A17), so that y anticommutes with the four-dimensional
bras, one containing the four-dimensional gamma matriced/bspaceand commuteswith the (d - 4)-dimensional
§,, anda second containing their (d - 4)-dimensional ~SubspaceThus
“evanescent” extensionsy,, where p % 1;2; ...; d.The ; A
d-dimensionalalgebra itselfis a direct sum of the sub- fys; V.9 72 vy, 74 0: 0A19P

algebrasdefined by the anticommutator
Furthermore, the trace in (A17c) is taken to be fundamen-

fyus w9 % 23 0A12P  tal, and the Levi-Civita symbol €, is strictly four-
dimensional,containing no evanescenicomponents.As
such, it is best to algebraically reduce expressions con-
taining €,,,¢ after the d — 4 limit is taken.As a form of

where the d-dimensional generalizationsof the gamma
matrices and metric tensor are given by

\TRAN A7 0A13p dimensional regularization, this scheme is manifestly
Lorentz invariantso that the reduction of tensor integrals
and is fairly straightforward. Moreover, the HVBM scheme
2 - maintains algebraic consistency in ourapplications;we
Ow %4 Qv b O OA14P have at most one instance gfiy any correlation function.
By definition, inner products between the two subalgebrad inally, to maintain Hermiticity in all -~ dimensions,we
vanish: generalize the “pseudotensor” g,,Ys /4374y, Y5 tO
[71,80]
YuVu 72 0; 0A15P
and the metric tensors have a trace equal to the dimension Gy %a %fo ws Y69 0A20pP

of the subspace to which they belong:

g““ Y 4 8““ id - 4 8A16b No_te that _the tilde here does not signify_ a four-dimensional
object as in the HVYBM scheme; rather it is an unfortunate
In the absence of y this simply reduces to the natural d- artifact of the literature. This modified version is central to
dimensionalgeneralization of the Dirac algebralVith ys,  the calculation of any correlation functions including the
however, there are some complications. In four dimensiorggjark chromoelectric dipole moment operator.
Vs is completely characterized by three properties:

fys; yig % 0; 0A17ab APPENDIX B: FEYNMAN RULES
Tr2AB Vi Tri2BA, 0A17bb We adopt the standard Feynman rules forQCD in d
Euclidean dimensiondisted here:
TriaWuYoYoVs V4 4€ o0 0A17ch _
p —WPrm e
. ) . . . t —P s = (ths) 6B1b
from which we find that, in d-dimensions, p? + m?2

0d - 2Pdd - 4PTkY,YoYs V4 O: 0A18b

6ab 5 2
—p, _ papﬂ - s p pﬁ — s
oS = g | [Jos + | g o8P
ab
L 3B3b
ae---- >----0 p
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_ fa,befcdE (00608 — Gandps)
4 face pbde (60603, — 6apdys)
4 fad,efbce (5(17555 — 5aﬂ5'¥5)

oB6P

= —1%,, 0B4p

\ =[G (p — @)y + 0y (@ — Ve + Oya(r — P)s] oB5b

|
n-interacting fields are defined with inward-directed
momenta p; ...; p, and that,unless stated otherwise (see
Sec.B 2), there is an implicit factor of 82mE&*¥dp, b

bp P that ensures momentum conservation.

1. Gradient flow

The nonlinearity of the flow equations produces extra
vertices, which must be included in perturbation theory. For
bosons,the vertices X% appear in the solutions of the
flow equation, where nis the number of gluon fields
involved. These flow vertices must always be connected to
a kernel line. Kernels, called so for their role as the integral
kernel of the solution to the flow equation,appropriately
carry the information within a bulk field to its higher-order
corrections.Diagrammatically a kernel line may be ini-
tiated at any vertex at positive flow time, replacing a bulk
field leg, and terminating at a flow vertex. Thus for
any interaction involving bulk fields with some functional
form AdtP, we will have correctionsstarting at Odgp
attached with a kernelline. Let 'dsb represerthe asso-
ciated flow vertex and allrelevantsubsidiary interactions

where fermions are represented by oriented straight linesinvolving all attached bulk fields. Then, representing a
gluons are represented by curly lines, and Faddeev-Popolosonic kernel as a double curly line, we define the
ghosts are represented by oriented dotted lines. Below w&eynman rule:

describe in more detail the Feynman rules for gauge bosons

and fermions atnonvanishing flow time.Some Feynman

rules for flowed fields, and similar details relevantto
perturbative calculationshave appeared already in the
literature [23-25,41,43,44,59-63].To keep this paper
self-contained and provide a future referenceye list all

the Feynman rules for flowed fields that we have used in
these calculationsglong with the relevant vertices arising

from our operators. We note that all vertices with

where
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~ b1, O, 2 02t _ —agpt 0y v2 1. For clarity, note also that the ordering of the
KOpky A 5 72Q0p° ~ pp,PE Pupve ™° OBOP  gtrycturesT and A above is only restricted by the
ordering of the fermionic fields contained within them.
is the bosonic kernel. Observethat it collapsestoa  Turning our attention to the vertices,we have ] X®20Pat
simple Gaussian in the “generalized Feynman gauge,” first order:
|

1 s £aoc
= ng b {(r —q)udup +2q,0, — 21,0, + (a0 — 1) (qudpu — Tp0pn) } - oB10b

|
The fields radiating out of this and all other flow vertices

are bulk fields at some positive flow time, which in Eq. (B8)

we denote as s, whereas the kernel is generated by a bulk o
field at a flow time that, in Eq. (B8), we denote t. The
second-order vertex i§X%30k

0B13p

The second line in (B12) is simply the NLO contribu-
tion to either of the two fields attached to the vertex
; X%20%p; q; —p - q¢. The initial factor of 2 accounts for

000000, » < B {f“bef“if’ (000 — 0uplow) the symmetry in choosing which of the B fields to expand.
e phee (5 56500 Since both fields include the same nonlinear corrections,
T pproy - TheTee either may be expandedso long as the resulis summed
P (Gudpr — Guad) }- over all of these redundancies.

Fermions have similar ruleslT'he fermionic kernels,

oB11b 2
Jox —y;tb % &P YR dpb;  J,pb Y4 &P™
The factors of 1=n! are placed within the vertex rules above bad
so that the kernel line hgs t_he_same Feynman rule regardigss _ yi tb % épéx—ybjtépb; J, Opb % e’t;  3B14b
of the flow vertex to which it is attached.There are no p

intrinsic higher-order verticesput these vertices may be

nested to the desired order, ensuring that proper symmetigroduce Feynman rules analogous to the bosonic kernel.
factors are included. For example, in the calculation a twd-=etting A and I be defined as before, and representing the
point Green’s function at positive flow time and at one-loofgrmionic kernel line by a double straight linewe have
order,we must account for all combinations up to Oge,.

Both vertices will contribute, along with the (at least) — /OC ds 0(t — $)A(t)J—s(p)D'(s) ,
p 0

second-order structure:

0B15ab
Z,
2 x ds,Kt <Op puo2X"’Zo'ﬁp q; - ql%q,pBbé q; sk
s 1s0
X dUR.,0p b a5 X0 / ds 0(t — 5)0() Jo—s (D) A(H)
xc’)ppq k;-p-q- klﬁ °Bdo—k; up 6B15bp
BE k; up; B12p
X Broppgp ki ub; 0 where the first rule applies to the flow-time evolution of the
¥ field while the second rule to thefield. The distinction
or, pictorially: between J and is purely formal; J acts from the left on ¥,
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while andJ acts from the right og. In the same manner as
the fermion propagator, the direction of the arrow indicates
the flow of fermion number fromy to x. Analogously to
what happens for the gauge bosons, the flow equations for
the fermion fields (12),(18) can be solved in an iterative
manner,generating higher-ordewrertices containing one
fermion field and n gauge field"Y*® The term linear in B

in the fermion flow equation produces %17

1 a D
= 0 {t%1"}. 0B19p

2. Operators

In this section we list the Feynman rules for the CP-

violating operators. The Feynman rules are flow-time
=it"{2¢, + (L —ao) 7}, OB16P  jndependentbut the fields connected to these vertices

may be flowed. The Feynman rules arising specifically

from the perturbative expansion othe flowed fields are

described in the previous subsectiomnly the tree-level

fields enter our operator Feynman rules.

There is some subtlety in the implementation of these

operators in perturbative QCD. A naive calculation of any
while the analogous term in the adjoint fermion flow  correlator with an odd number of CP-violating operators
equation producey®":1? will always vanish.This should actually be expectedll
correlation functions are calculated within a QCD back-
ground, so there may be no expectation values that violate
CP. We circumvent this problem by temporarily ignoring
momentum conservation; equivalently, we calculate all such
correlations functions pointwise in coordinate space, inte-
grating the point of interaction for our CP-violating oper-
ators over all spacetime only after we subtract off the desired
quantities [73,74,92]If momentum were to be conserved
throughout these calculations, all operators would project to
zero momentum at the onset, and structures Iygg,p{ppe
would contract to zero identically, trivializing the entire
calculation. This trick allows us to break translational

where the first diagram refers to the perturbative expansicty™Mmetry, giving the in and out = states different total
of the ¥ field and the second to the expansion o fred. momenta and subsequently different transformations under
The vertex ¥1:2Pis thoroughly simpler: the Lorentz group. After identifying the Wilson coefficients,

we dynamically restore the conservation of momentum by
integrating over all spacetime. In so doing, we also restore
the appropriate discrete symmetries. We are simply keeping

S track of the various structures that vanish perturbatively.
@ ) ) a. Topological charge density
Sup {t*, 17} oB18p

= —it"{2¢, — (1 — ) r,} , OB17P

o ———
q 2
gs O ¥ kyTrfG ,,Gpng
1
Lz = = 2 Ke€npBihGRo 5B20b

Since this term is quadratic in Bthere is no sign change P , . @ _ o7 sab
. . . . x4.on. oa Iy — 2/41(10 €aBurPudv
with respect to the direction of fermion flow, and®'2Pis “00000000_D0000000°

identical to Y°1:2P 6B21b
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Q
[

= 2k PG 8B25b

= —2Z'k:qfabceagwt(p +q+7)

00000000 RAQOAAA0,

=
o

oB22b
c. Weinberg operator
Ow ¥ kn Trf%Gy; G,p G
b. Quark chromoelectric dipole moment W W1 2Gor Gip G
- 4 kwf abcepvpoGSvGBTGST
401,
Oc % ke GB 5B23b 9 g4 T Tr0 0000, Y50 G5 GGt 0B26P

3 aoc
= ika beTy {O'auaﬁuo'wp’%} PuquTp
— 2%k, t%G, g 6B24p

oB27pb

3 N aoe pfca
yc = _ZZ]CW [f be pede (PuavTr{04a00301575} + 0S5, Tr {04y 00500875 }) oB28pb

+facefbde (Pury Tr{opaouyoss7s} + qusu Tr {0,80060 075 })
+.fadefbce (p/I,SyTr {0';1,(101/50—[3"/75} =+ q/ﬂ’qu {g/t;3o—uw0(1675}) }

APPENDIX C: SAMPLE CALCULATION: one-loop calculation at nonvanishing flow time and to
ONE-LOOP FERMION PROPAGATOR collectall the relevanttools for a perturbative calculation

. . . . . with flowed fermion fields. For a more complete discussion
In this appendix we discuss in some detail the one-loop

i . . of flowed perturbative calculationsye refer to [87].
calculation of the fermion propagator for flowed fermion The fermion propadator
fields. Results for the one-loop calculation of the propag

flowed fermion propagator have appeared in the literature 4
[25,43,59] with varying degree of detail. We use this Séx; y; t; sb ¥4 h x&wdskbi v eipéx—ybéap; t: sb; 8C1b
calculation as an example to elucidate features of a p
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can be expanded in powers of the bare coupling kernel lines. For this reason we write the decomposition of
% the fermion propagator as follows
Sép; t;sb % g*Sap; t; sb; 3C2b i i
kv0 $2p; t; sb 18°0%p; t; 0PF BpERp; 0; sb
. ) . x4 -
with a tree-levelexpression b %ﬁg%p; #3%0%8p: 0: sb
B -p26tpsb 1z
S6p; t; sb 13*%3 oC3p b $%%p; t; 0bf;Bp; sb b e 7dp; t; sb:
0C4b

The one-loop corrections can be calculated evaluating the

Feynman diagrams depicted in Eq9.C5a)—(C5h).There ) )

are eight nontrivial contributions to the flowed fermion ~ The functions rié;a%P; tb and fb%p; sb correspond to the
propagator,of which only five are topologically distinct  first-order expansionsof the external fields xox; tPand
[25]. The diagrams involving flow kernels presensome  xdy; sbrespectively though they are otherwise all but
new features compared to standard perturbative calcula- formally identical. The contribution I includes the first-
tions in QCD. While the standard one-loop diagram in  order expansion of both external fields. We list the
Eq. (C5a) has the usual structure with tree-level propagatorgividual contributions from each Feynman diagram in
on the external lines, the flowed diagrams cannot truncateeigs. (C5a)—(C5h) together with their evaluatioignoring
as easily, because they occurwith one or two external  external propagators for brevity:

|
o= o
p p

Co(F) ) [1 4 p? , 1 4 3 m3
_ _ 2 - _ - ol - o
=—g (in)? { L—&—log( 2 v +1]ip+4 e—l—log e 7E+2 mo+ R o + O(e),

_ 2 Ca(F)
‘b —gg (4)?

{1 + log (8mp’t) + 1} + O(e, t), dC5bb

€

é@%
Fgg(p; s)= ¢ m s =g Ca(F) ﬁ + log (8mu®s) + 1] + O(e, 9), dC5cb
&

p 0 (4m)?

o (pst) = o m s =0+0(), 8C5db
p ) p

Fgg (P§ S) = t ﬁgmb%\ s =0+ (9(5)’ 8C5eb
p &7 p

«
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2C2(F)

F(Q) —2¢2 anP?

4a(p’

[1 + log (8mp’t) + ﬂ + O(e, ), oC5fp

(4m)

F(z)( % = —2g5 CQ(FQ) {1 + log (8mu’s) + ;] + O(e, s), 0C5gb

I (pit, ) =

‘ gﬁ Ezf% -0+ O(s, 1), 3C5hp
P ) 1Y

where Rorg=p2b is a remainder that vanishes fc§ # p2. The calculation of the first diagran 28pp is identical to the
standard QCD quark self-energy with tree-level external quark propagators carrying the flow-time dependence. We regulat
the divergent integral with dimensional regularization with d %4 4 — 2€ and € > 0.

The next contributionproportional to r‘;?a%p; tb,contains a flow kernel and vertexEollowing the Feynman rules we
outline in Appendix B it is straightforward to write

4 Z

) t g 9’y g=opbaF?u
[520p; tb ¥4 —2igC,0Fp i dugP?ot-up

q@>pm30p b qF

In standard perturbation theory, the integrand would next be recast with Feynman parametrization, shifted, decomposed in
scalar integrals, and brought to a spherically symmetric form for integration in d dimensions. Specifically, the integrand
must be isotropic, so that the (d - 1)-dimensional surface may be integrated separately from the radial portion. This luxury
is not afforded to us, however, as in this case, the gluon propagator introduces an exponenti@PfaEtamhéch is only

linear in the momentum q. No Feynman parametrization and corresponding shift in the integration variable will fix this; the
exponentialis neither even nor odd.Our solution is to reparametrize the propagatarla Schwinger and to study the
Maclaurin series of the cross-term:

8ig? p mogb: oC6b

zZ zZ
-6pbqb2u X 3-20u p zPb
dze 6pbqb26ubzb1/ dze 8p2pq 2Pdupzb : 3C7b
3p b ql:? o o nl Pu P G, 9y,

where the sum over al},jis implied. The symmetry of this structure is now manifest; that is, terms of even n are even, and
terms of odd n are oddWe now let my —» 0, so that

z z Z

4n t * 2 2
du dze P othzPy p zB"  g79°02ubz 08mgb: AC8b
62n|:>P'2" . p . tthzﬂ p o

r520p; th Y 2@26%

Indeed, in the complete calculation of the flowed diagrams of Egs. (C5b)—(C5h), the mass only contributes at Odtb. This
allows for a concise demonstration of the techniques used in this article. In general the kernel diagrams do not contribute t
all orders in the same way as the standard QCD diagrams (C5a). The full renormalization requires a coalescence of four
semi-independent resummatiorfr this reason we only consider the leading §)gorrections and how they affect the
wave function renormalization of the flowed fields. The above integral employs the multi-jridedu; 1b; ...; P. Note
that the multi-index above is a 2n-tuple, because we neglect the mass and therefore the only term remaining outside of the
gluon propagator, i§ is even, and we may drop all odd n through the reindexation n - 2n. We have also rearranged the
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order of integrationln order to justify this, we invoke Tonelli: if the four integrals (including the sunan integral with

respectto the counting measure) in (C8) converge in some orddéinen we are free to choose any ordesjnce the full

integrand is strictly nonnegative, and all domains of integration are clearly measure spaces with o-finite measures. With th
in mind, we freely reorder the integralsgnd impose a posteriori restrictions on the integrals as we discover théhe
momentum integral may now be calculated. Due to Lorentz invariance, the only available structure with the total indicial
symmetry of the q is the appropriately normalized sum over all 62n - 1P!! products of n metric tensors, where the indices
are distributed according to albossible pairingsFor examplefor n %2 2, we find

z z

OO o}
f Zp 1 f 2p 1 6“1“26“3414 b H1M3 2“4 H1U4 2H3 f 2p I:; b
. 0q2pq, % foq?bq, % 454 b 2b q 09°PbodL; oC9

for some smooth function f.In general,we have

y4 4 4

féq2pq, %  fq2Pq, Y S fanbaaw 3C10b
q g 6dl:>

where 6dR, 74 z rr%% 22¢I>anls a Pochhammer k-symbognd the tensor

02¢-1P!NA

2nb,
§2n va apci 62j-18H0; 62jp oC11p
iva1 vl

is the generalization of the structure in (C9Each g is a permutation of the sef22n < N corresponding to one of the
d82n - 1P partitions without ordering of %22n into n two-element subsets. For clarity, inspect the indices in (C9); each term
splits the set f1; 2; 3; 4g into two unordered pairs, but the pairings are never the same. Indeed, any permutation of the indic
simply permutes the summands. Thus the commutativity under addition of the te?f;ﬁ'é’hpl&duces exact symmetry of
the product of vectors . Further,we integrate over the (d — 1)-sphere to isolate the radial integral:
z Z
C,OFR34mRB-d=2X 4n 2nb L.

p “otpzk, Ign
84mB  [od=2b _ adpzaznpp'zﬁén du = dzePTHOupz

Fg;za%p; tb V4 4%
x qd‘1dqe‘q2°2”pz'°6cﬁlj‘ b Odmyb: 3C12b
0

The radial part is a simple gamma function, and the momentagturate %;”E’ so that after some simplification, we have

zZ Z
C,0Fb 41'r|.f- 2-d=2X% 11 - dat p (B
r520p; tb % 2§—2 — . d dgeoP T F 5 1y Oamyb: 3C13p
P o4 ol g 90 9T g p g P OO0

where 1 pt and { V4 p2z. Forn = 1, every term is at least O81b,since the numerator then dominates near d % 4
Retaining only the n %2 0 term,

zZ. Z
Fb 4m2 242 < 1 -
r5a0p; th v 2@62—6% ;Tz'“? T da i dge o"PtPa20r p 7592 p 08my; b
C,0Fb 41'r|f- ee‘Tyée 21b
1 - 1b
4%6411% 52 b Odmg; T
Y g%(;f':; b logd8miftb b 1 p O8my; t; b 6C14b

as in (C5b). The error of Ogin is added here as a formality; it is absorbed into the Odtb term in the complete calculation.
The other graphs are calculated by similar meaasd we arrive atthe one-loop self-energy for flowed fermions:
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A C26Fb3

Z
S25x; y; t; sb % & Sim b log V208T#Fst p log 4;—5 -yveb1 pOdmg;s;t; gp: 6C15p

To renormalize the propagatollowing Ref. [25], we define the renormalized flowed fermion fields as
XrOX; tP V4 fzxéx; tb;  xgOX; tb ¥X0x; tbfz; 8C16b

so that the renormalized propagator reads

SROX; t; y; sk 4,B0x; t; y; sb: oC17b
If we impose the family of conditions
Sij2% AL oshr stb J,iflséOb oc18p
we obtain
C 6Fb 3 41
Z,- 920 2 bl g v208TFst p log p—f -VYeb1 pfﬁfF(ffﬂ b Oddp: 6C19p
SYAt;p2 V4P Y4 1=08TT stb
Expanding Z in powers of the bare coupling
X okk
Z, 1D B2z, 0C20p
A
we find
Fb
Z, Va1 bgggf B :Zb logddb —yp 1 p OdgiP: 0C21b

We note that if we choose the MS scheme we obtain the same result already obtained in Ref. [25], and that pole contributi
matches the results of [43,59]. The finite terms, which depend on the choice of renormalization condition, have not, to our
knowledge,appeared in the literature.
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