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ABSTRACT
The 2nd Annual WPI-UMASS-UPENN EDM Data Min-
ing Challenge required contestants to predict efficient test-
taking based on log data. In this paper, we describe our
theory-driven and psychometric modeling approach. For
feature engineering, we employed the Log-Normal Response
Time Model for estimating latent person speed, and the
Generalized Partial Credit Model for estimating latent per-
son ability. Additionally, we adopted an n-gram feature ap-
proach for event sequences. For training a multi-label clas-
sifier, we distinguished inefficient test takers who were going
too fast and those who were going too slow, instead of us-
ing the provided binary target label. Our best-performing
ensemble classifier comprised three sets of low-dimensional
classifiers, dominated by test-taker speed. While our classi-
fier reached moderate performance, relative to competition
leaderboard, our approach makes two important contribu-
tions. First, we show how explainable classifiers could pro-
vide meaningful predictions if results can be contextualized
to test administrators who wish to intervene or take action.
Second, our re-engineering of test scores enabled us to incor-
porate person ability into the estimation. However, ability
was hardly predictive of efficient behavior, leading to the
conclusion that the target label’s validity needs to be ques-
tioned. The paper concludes with tools that are helpful for
substantively meaningful log data mining.
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1. INTRODUCTION
With the 2nd Annual WPI-UMASS-UPENN EDM Data Min-
ing Challenge,1 the organizing consortium continued a young
series of data competitions featured by the Educational Data
Mining Society. The data challenge consisted in predict-
ing students’ behavior in a second test part using the log
data produced in a first test part. The organizer’s goal
was to identify students who will act inefficiently by rush-
ing through the second test half or not reaching the end of
the test [19]. Another central, and noticeably constraining,
secondary goal was that accurate classification should be
reached as early as possible during test administration (i.e.,
with as little log data as possible) [19].

In this paper, we report details on our theory-driven psy-
chometric contribution to the competition.2 Opposed to
data-driven analyses, a theory-driven one is characterized
by identifying potential mechanisms at play and an accord-
ing selection of methods, features, or both. The focus on
a theory-driven feature-engineering access rather than some
presumably more powerful deep-learning or other black-box
methodology traces back to our team’s psychometric back-
ground with strong experience in log data analysis. We be-
lieve that the theoretical understanding of underlying be-
havioral and cognitive processes that drive characteristics of
test-taking behavior such as efficiency is crucial for build-

1http://tiny.cc/CompAIED [2020-02-29]; also called Na-
tion’s Report Card Data Mining Competition 2019
2Our competition contributions have been submitted under
the name Team TBA (Centre for Technology-Based Assess-
ment | DIPF).



ing predictive models as requested in the given competi-
tion. Otherwise, the risk of integrating spurious associa-
tions into productive classifiers is high. Moreover, in the
present paper, we provide evidence that the validity of the
data challenge’s target label needs to be reassessed since
we could show that students’ ability was hardly associated
to the target label. Ability estimation was enabled by the
re-engineering of scores from the log data—a unique contri-
bution of the present paper. We suggest potential solutions
for identified issues.

Efficiency can be defined as the characteristic of producing
desired results without waste [13]. In the context of efficient
test taking, this corresponds to successful test taking with
minimum effort or time. Obviously, efficiency involves two
components, namely goal-reaching and resource-saving. As
we elaborate on in detail throughout the following sections,
the competition’s operationalization of efficiency strongly
emphasizes the latter component, but largely neglects the
former. This consideration is emblematic and shows the
value of a theory-driven and psychometric access to the
matter. We regard log data that is captured during test
administration as process data, which means it constitutes
“empirical information about the cognitive (as well as meta-
cognitive, motivational, and affective) states and related be-
havior that mediate the effect of the measured construct(s)
on the task product” [7]. Thus, log data from assessment
contexts is not just a by-product which is nice to have, but
it carries relevant information and can be drawn on for pur-
poses such as the one promoted in the competition.

With respect to classification performance, our competition
contribution ended up in the top quarter of leaderboard sub-
missions and was ranked eighth within the teams that sub-
mitted their code in time [20].

The paper first describes the setup provided by the compe-
tition organizers, then focuses on our approach for feature
engineering as well as classifier training, and closes with re-
porting and discussing results on the classifier’s performance
level as well as single features’ predictivity. The Conclusion
Section elaborates on the definition of efficient test taking
and discusses the state of the art for corresponding opera-
tionalizations. Please note that we use the terms task and
item interchangeably here, in accordance with each commu-
nity’s practice.

2. COMPETITION SETUP
2.1 Data
The competition data set [19] comes from the National As-
sessment of Educational Progress (NAEP), which is a US
national assessment conducted across 4th-, 8th-, and 12th-
grade students, including tests on a variety of subjects every
two years. Specifically, the data set provided for analysis
within the competition comes from the 2017 test for 8th-
grade students in mathematics. The test comprised two test
blocks (Block A and B) that were time limited to 30 min per
block.

The NAEP 2017 mathematics assessment was digitally ad-
ministered on tablet computers with keyboards [15]. The
test items covered several domains such as algebra or geom-
etry and were either presented as pure mathematics tasks or

as tasks applied in an everyday context. The items included
stimulus material (text and/or figures) and either a list of
responses to choose from (multiple choice), drag and drop
response elements, or one or more text fields for constructed
responses. The students were able to navigate between items
within the same test block. For some items, a virtual cal-
culator was available. The test environment also included a
virtual drawing tool, which allowed students to freely draw
and make handwritten annotations, a text-to-speech feature,
which could be used to listen to the tasks’ written materials,
and a help button offering the students information about
the handling of the test environment. Before the first item,
a screen with general instructions was presented, called di-
rections. After the last item, a review screen was presented
indicating the end of the test block. The students could
navigate from the review screen back to the items and on-
ward to the next test block. Students’ actions in this virtual
environment (i.e., clicking on elements or keystrokes when
typing a response) were recorded as log data events. The
data provided 42 different events (e.g., Enter Item, Click
Choice, Back), From this log data, it is possible to recon-
struct the course of each student’s test completion behavior.

For the competition, the organizers arranged the log data
into two sets. The first one was a training set, taken from
Block A with log data for ntrain = 1232 students across the
whole 30 min of Block A. The data set was accompanied
by the target label indicating whether students behaved ef-
ficiently in Block B (see next section). The second data set
was an evaluation set for which efficiency labels had to be
predicted by the contestants. This evaluation set comprised
log data stratified into three conditions: i) n10min = 411
students with 10 min of log data from the start of Block A;
ii) n20min = 411 students with 20 min of log data from the
start of Block A; iii) n30min = 410 students with complete
30 min of Block A. The competition organizers halved the
evaluation set so that the leaderboard displayed the teams’
prediction accuracy on one half of the evaluation set, and
the final evaluation was carried out on the remaining half.
The training and evaluation sets consisted of 438,291 and
301,924 event logs, respectively.

2.2 Target Label: Efficiency
The competition organizers categorized the students into
two groups. The value True indicated that a student com-
pleted Block B efficiently, while False indicated inefficient
student test-taking behavior in Block B. Students were la-
beled efficient when they met two criteria: “1) being able
to complete all problems in Block B, and 2) being able to
allocate a reasonable amount of time to solve each problem”
[19].

The definition of efficiency captures two key test-taking be-
haviors: students who go too slow, and as such fail to com-
plete all the items in a block, and students who go too fast
through the test, therefore not spending enough time on each
question. Students who are inefficient through being too
slow can easily be identified due to their failure to complete
all tasks. However, for students going too fast, “a reason-
able amount of time” can be difficult to operationalize. As
such, the organizers chose to impose an arbitrary threshold
for which students were evaluated on the total time taken
on a task, with “the 5th percentile as the cut-off for the



’reasonable amount of time’” [19]. This operationalization
led to labeling 39.6% of the students in the training data as
inefficient.

2.3 Evaluation Metrics
The objective of the competition was to develop a classifier
model that would predict student efficiency. The prediction
was evaluated against two key measures, the adjusted AUC
and an adjusted kappa. The AUC stands for Area Under
the Curve and comes from ROC analysis [4]. It compares
the false positive rate to the true positive rate of the model,
measuring how well the model predicts the correct outcome
versus an incorrect prediction. A value of AUC ≤ .5 would
indicate a model performing no better than random chance.
As such, the competition used an adjusted AUC measure,
AUCadj = (AUC− 0.5) ∗ 2.

The second measure, kappa, also captures classifier perfor-
mance by comparing how much two raters agree in classify-
ing a given set of data beyond chance. Conceptualized by
Cohen [3], it compares the observed accuracy to the expected
accuracy between two classifiers. As such, the value of kappa
needs to be above zero to indicate performance above ran-
dom chance. The competition utilized an adjusted kappa
value, κadj , in that they set the lower limit of kappa to 0.
For the evaluation of the models within the competition, an
aggregated score was made from AUCadj and κadj .

3. METHODS
In this section, we first describe a data transformation step
of splitting the three temporal conditions for feature ex-
traction and training. This turned out to be essential for
achieving appropriate classifier generalizability to the test
set. Next, we describe our feature engineering as well as
restrictive feature selection, and we close the section with
outlining how the strings were pulled together for building
an ensemble classifier for prediction.

All statistical analyses have been carried out using R 3.6.1
[16], with the package mlr 2.17.0 [2] for machine learning,
TAM 3.3-10 [18] for item difficulty and person ability es-
timation, and LNIRT 0.4.0 [6] for item time intensity and
person speed estimation.

3.1 Improving Generalizability by Separating
Conditions

Our early submissions of predictions to the leaderboard re-
vealed that the classifiers’ performance—though evaluated
by stratified, repeated cross-fold validation—would always
decrease substantially when being evaluated on the test set.
That is, the generalizability of these classifiers to the test
set was low, even when cross-validations testified to stable
out-of-sample classification.

The primary reason that we identified was that the train-
ing set contained 30 min of log data, whereas the test set
was split into three conditions with only the first 10 min,
20 min, or the full 30 min of log data available (see Section
2.1). Obviously, it is reasonable that feature realizations
and their indication for one class vary over (testing) time.
As an example, the time students take to work on single
tasks does not only vary by task characteristics, but is also

influenced by the task’s position within the test. Another
example is the log event of the timeout screen that limits
students’ time to 30 min. Naturally, this event is reasonably
predictive, but while it is available in the 30 min condition,
it is not in the 10 min or 20 min condition. Therefore, train-
ing sets for each condition were necessary for the classifiers
to generalize more properly to the test set.

For this purpose, we created three data sets: (i) the first
10 min of log data from the 10, 20, and 30 min conditions
for predicting test set cases with 10 min of log data, (ii) the
first 20 min of log data from the 20 and 30 min conditions
for test-set cases with 20 min of log data, and (iii) the full
30 min of log data for test-set cases with 30 min of log data.
For feature extraction, we combined the respective training
and test (sub)sets. This way, we maximized the available
information for norm-referenced features and parameter es-
timation procedures. Since we employed supervised learning
methods, the test sets were excluded from classifier training.

The result of splitting the conditions was that we constructed
three classifiers for each learning method and set of features.
Each case in the test set, however, was classified by only one
model, determined by the condition the test case belonged
to.

3.2 Feature Engineering
In this section, we describe the selection of engineered fea-
tures of which some ended up in at least one of the base
classifiers that formed the final ensemble bag. We start with
the two crucial psychometric models used for estimating stu-
dents’ speed and ability. Then we describe our approach of
extracting features from log data and deriving simple in-
dicators that we assumed would indicate efficient or inef-
ficient test behavior, using the software package LogFSM.
Finally, we describe the concept and operationalization of
rapid guessing as well as an adopted technique for repre-
senting log event sequences.

3.2.1 Latent Test-Taker Speed
Efficient test taking as operationalized in the competition
(see Section 2.2) is mainly characterized by test takers’ time
handling. If a student went relatively quickly through the
test (in Block B), they were labeled as inefficient. If a stu-
dent spent too much time on some tasks (in Block B), they
would not be able to complete all tasks and thus be labeled
as inefficient, too. Therefore, the most evident feature is
test-taker speed.

Test-taker speed can be inferred from the time spent on tasks
in a test. However, the time spent on a task is determined
by the characteristics of the task and the test-taker. On the
one hand, task characteristics, such as complexity, require
and evoke a shorter or longer time on task due to the task’s
inherent time intensity. On the other hand, some test takers
will have the tendency or skill to move faster through a
test than others; this characteristic is called test-taker speed.
Both time intensity and test-taker speed are not directly
observable and can only be estimated as latent variables.

A model that allows the separation of time on task into item
and person parameters is the Lognormal Response Time



Model [22]:

f(tip; τp,αi,βi) =
αi

tip
√

2π
exp

{
−1

2
[αi(ln tip − (βi − τp))]2

}
(1)

Response time distributions take values in the positive reals
and typically have long tails. The log-transformation hence
is a sensible way to approximate normality and is expected
to lead to better fit than a normal model on the raw response
times [22]. The lognormal model takes three parameters into
account and is based on the log-transformed time tip that
person p spent at item i. Item time intensity βi captures
item i’s tendency to evoke more or less time spent for com-
pleting it. Test-taker speed τp is a person’s tendency and
ability to spend more or less time on item completion. Be-
cause some items will show more homogeneous time distri-
butions than others, the dispersion parameter αi estimates
an item’s discriminatory power.

The parameters of interest are estimated in a Bayesian frame-
work using a Markov Chain Monte Carlo method with a
Gibbs sampler [22, 6]. We used expected a posteriori (EAP)
estimators of test-taker speed τp as features for predictive
modeling.

3.2.2 Latent Test-Taker Ability
The provided log data did not include task scores, so scores
were re-engineerd based on the log data and information
from released items available through the NAEP questions
tool [5]. To do this, unique item identifiers were mapped
to example items provided in the NAEP questions tool, a
public query tool used to showcase NAEP questions. The
mapping was verified by text-to-speech contents in the log
data. From this, the correct responses to items could be
coded for 14 of the 19 items included in the competition
data set. Using the 14 scored items, we estimated an inter-
mediate ability score for test takers. By identifying the top
100 test takers across the 14 items, we then used their re-
sponses to the remaining 5 unreleased items to identify the
most likely correct answer, thus inferring the correct scoring
for the data. With this complete set of scores, we applied a
Generalized Partial Credit Model [14] for estimating person
ability. Theoretically, such ability estimates together with
the speed estimates should be reasonably predictive of effi-
ciency as efficiency is defined by a trade-off between perfor-
mance and effort (see Section 1). The model is represented
by the following equation [14]:

Pjk|k−1,k (θp) =
exp [aj (θp − bjk)]

1 + exp [aj (θp − bjk)]
(2)

The equation models the probability of a person p with the
latent ability θp to respond to an item j by choosing the
kth response category. In this model, subsequent response
categories are ordered by their difficulty. The parameter bjk
represents the difficulty of an item’s response category and
aj constitutes the item discrimination (i.e., the degree to
which the item is capable of distinguishing between more or
less able test takers). We used Marginal Maximum Likeli-
hood for estimating model parameters. For person ability,
Weighted Likelihood Estimators [24] were used. This way,
test-taker ability θp can be directly used as a feature for

predictive modeling.

3.2.3 Simple Indicators of Students’ Work Process
The analysis of process indicators is based on the assump-
tion that latent characteristics of a test taker can be inferred
from attributes of their work process [7]. However, the cre-
ation of indicators is often retrospective, depends on the
specific assessment system employed, and is based on plau-
sibility and expert opinion about which indicators might be
of potential interest for a particular research question (e.g.,
time on task, number of page visits, or switching between
environments). With the intent to provide a tool to facil-
itate the creation of process indicators from log data, the
software package LogFSM [9] has been developed that can
be used in R. Instead of providing a list of generic indicators,
LogFSM requires the formulation of one or multiple theoret-
ical models that a test developer or researcher has about the
work process in a task. Afterwards, LogFSM reconstructs a
given set of log data according to the predefined theoretical
model(s). Attributes of the reconstructed work process then
serve as process indicators.

The procedure of LogFSM utilizes the concept of finite state
machines [10]. The work process is decomposed into a finite
number of states which represent sections of the theoreti-
cally defined response process. For example, a researcher
who wishes to distinguish process components in a math
assignment might define the states Task Reading, Task Pro-
cessing, Responding, and Reviewing that could alternatively
be collapsed into states of lower granularity like Stimulus
Processing and Task Answering. Practically, states are iden-
tified by events that represent test-taker interactions with
the assessment platform (i.e., log events). The occurrence
of such events can serve as the conditions that must be met
in order to change from one state to another one, which
is called transition. The interpretation of an event might
differ from state to state, which may result in differences
as to whether or not a transition is triggered. Depending
on the previous state of a test taker, for example, a radio
button click event might be interpreted as a first-time re-
sponse (Responding) or an edited response (Reviewing). In
summary, the interpretation of states and state sequences
is constituted by the interplay of visible components of the
assessment system (e.g., texts, images), the possibilities for
interactions (e.g., buttons, text fields), the contexts in which
events take place (e.g., accessing a calculator before or after
a response was given), and—most importantly—the prede-
fined assumptions about test-taking behavior and cognitive
operations (e.g., reading instructions, reconsidering an an-
swer) [10].

Finally, process indicators can be derived as attributes of
the reconstructed states (or the reconstructed sequence of
states) from log data that contextualize test-taking behavior
according to the theoretically assumed test-taking process.
The integration of the characteristics of a task, the available
log events, and the theoretical expectations about the test-
taking behavior assign a substantive meaning to an indicator
[10]. For example, an indicator that reflects how long a
student actually spends reviewing and checking a particular
response again can be defined as the total time in a state
Reviewing aggregated over multiple revisits of the task and
cleaned for the time in other states such as Responding.



For the competition’s data analysis, we specified five FSMs
to represent different attributes of students’ work process.
The states of theses FSMs represented students’ on-screen
page (26 states); attempting, processing or reviewing of one
of the 14 multiple-choice tasks (46 states) and tasks with
other response formats (19 states); students’ use of the text-
to-speech tool (4 states); and their use of the calculator and
the drawing tool (5 states). Figure 1 shows the last men-
tioned model as an example. We distinguished between hav-
ing the calculator active (state CalcOn), having the drawing
tool active (state textit), and both tools being inactive (state
textit). Transitions between states were triggered by the
log events described in Section 2.1. For example, the state
CalcOn was transferred to the state ToolsOff when the cal-
culator was closed. That is, when the student pressed the
calculator button (CloseCalculator), the drawing tool was
activated (ScratchworkModeOn), or the item was left (Exi-
tItem). Vice versa, when the drawing tool was activated,
students’ could not open the calculator, allowing for the
modeling of distinct states. Self-transitions were specified
to deal with, for example, double-clicks.

Several simple indicators were then derived as aggregated
attributes of the reconstructed states or sequence of states.
For example, the number of occurrences of the state CalcOn
across items reflects how often a student opened the calcula-
tor during the assessment. A summary of the derived simple
indicators and their descriptions is provided in Table 1.

3.2.4 Rapid Guessing
Compromised effort and persistence have been shown to be
identifiable by investigating rapid guessing behavior [25].
The concept of rapid guessing behavior is based on the as-
sumption that the amount of time that a test taker spends
on a task before responding is not sufficient to perceive the
task and develop a serious solution [21]. A rapid guess is
therefore defined as a response to a task with a response
time below a certain threshold.

For the definition of the thresholds, multiple approaches are
possible [26]. Following the competition’s operationalization
of inefficient test-taking behavior [19], the present work iden-
tified task-specific response time thresholds for rapid guesses
based on a 5th percentile cut-off value. This implies the as-
sumption that the slowest 5 percent of test takers on each
item showed rapid guessing behavior. This was in line with
the competition’s definition of inefficient test-taking behav-
ior and, thus, necessary for predicting the accordingly con-
structed target label. However, this is not state of the art
and the Discussion Section reviews alternative approaches.

On the basis of the identified rapid guesses, a response ma-
trix Xpj was constructed, indicating whether a response to
task j by person p was observed and identified as a rapid
guess. The entries in this matrix are specified as follows:

xpj =


NA if no response is observed

0 if a response is observed & a rapid guess

1 if a response is observed & no rapid guess

(3)

Xpj was then used to extract several rapid guessing indi-
cators. The indicators encompass a dichotomous grouping-

Table 1: Simple Indicators Serving as Features or
Used for Derived Feature Modeling

Indicator Description
Time on Screen Time a student spent on each task

within the test. This included the
directions, review, and help screens.

Tasks Attempted A count of the number of tasks at
which a student showed behavior
indicating they were attempting to
complete the task.

Tasks Completed A count of the number of tasks a
student had completed such that it
could be scored.

Tasks Incomplete A count of the number of tasks
which a student attempted, yet left
the response area with incomplete
information; e.g., only placing 3 out
of 4 drag-and-drop boxes into the re-
sponse area.

Timeout A binary variable indicating
whether a student received the
time-out screen, typically indicat-
ing that they failed to complete
all tasks within the time limit of
30 min.

Reviews A count variable indicating the
number of times a student visited
the review screen.

Too Fast A count variable indicating the
number of times a student was in
the fastest 5% of test respondents
for a given task.

Viewed/No Attempt A count variable for the number
of times a student viewed an item
without interacting with the item in
any meaningful manner.

Time on Directions A time variable capturing the total
amount of time spent on the direc-
tions screen.

Text to Speech A count variable indicating the
number of times a student utilized
the text-to-speech feature.

Help A count variable for the number of
times a student opened the help di-
alogue to seek assistance.

Calculator A count variable for the number of
times a student opened the calcula-
tor feature.

Drawing Tool A count variable for the number of
times a student opened the drawing
tool.



Figure 1: Exemplary Finite State Machine for Reconstructing Information from the NAEP Log Data

variable (whether a person showed at least one rapid guess),
the sum of rapid guesses, and an estimation of a latent rapid
guessing propensity [11]. For the estimation of the latent
rapid guessing propensity, a Rasch model [17] was selected:

P(Xpj = 1) =
exp (θp − σj)

1 + exp (θp − σj)
(4)

The Rasch model is similar to the GPCM presented in Sec-
tion 3.2.2, just reduced to the dichotomous case and keeping
the discrimination parameter constant. While the notation
of symbols and indices is generally continued here, σj repre-
sents an item’s difficulty (or propensity to evoke rapid guess-
ing) and Xpj denotes the observed response correctness (or
rapid guessing behavior), with x ∈ {0, 1}. For person pa-
rameter estimation, Expected A Posteriori estimates were
used.

3.2.5 n-Grams of Log Events
The occurrence of certain log events can indicate behaviors
or unobservable meta-cognitive, cognitive, or affective states
of interest. This is also true for combinations of such. In the
context of the competition, disengaged behavior might be a
precursor or indicator for (later) inefficient test taking. For
example, (a) whether a student uses the assessment system’s
drawing tool in a task that does not require its usage could
be indicative of inefficient test taking as could be (b) the
playing-around with the text-to-speech feature. For incor-
porating such predictive features, we adopted an approach
by He and von Davier [8] that borrows techniques from nat-
ural language processing and information retrieval.

At the core of the procedure [8], a student’s log events are
considered as n-grams of a sequence. n-grams constitute
all possible tuples of subsequent log events within a stu-
dent’s complete sequence of log events. For computational
as well as sample size reasons, it is common to limit anal-
yses to uni-, bi-, and trigrams. Hence, a sequence such as
ACAD (representing four log events) would be decomposed
into four unigrams (2 × 〈A〉, 〈C〉, 〈D〉), three bigrams (〈AC〉,
〈CA〉, 〈AD〉), and two trigrams (〈ACA〉, 〈CAD〉). We decided to
make each event task-specific; that is, the event Draw was
captured together with the task ID, for example, DrawTask4.
This way, events were contextualized. Varying by the 10, 20,
and 30 min conditions, we obtained 7448, 13,482, and 17,553
n-grams, excluding sequences that occurred in less than 15
students’ sequences.

Next, the frequency sfij of each n-gram i is computed for
each student j (i.e., sequence frequency). These frequencies
are then weighted by inverse sequence frequency (borrow-
ing from the term inverse document frequency), ISFi =
log(N/sfi), with N representing the total number of se-
quences, and log-normalized; that is (1 + log(sfij)) ∗ ISFi.
This way, sequences occurring across many test administra-
tions are scaled down in their importance and vice versa.
Also, higher frequencies are dampened by the log-transfor-
mation.

The weighted n-gram frequencies can then be checked for
their predictivity of, for example, efficiency, using a χ2-dis-
tributed statistic (details at [8, 12]). This revealed 841, 1259,
and 1190 significantly predictive n-grams (α = .05) for the
respective condition.

In a last step, we compressed the selected features in a
principal component analysis. Due to the need for a low-
dimensional feature space (see Section 3.3), we extracted
only a few components, retaining only 5% of the original
information. This resulted in 6, 9, and 14 components, re-
spectively, for the three conditions.

3.3 Feature Selection
We applied several different feature selection strategies. First,
we used random forests to obtain features’ importance for
predicting students’ efficiency in Block B. Second, we evalu-
ated the accuracy of predictions using different combinations
of features. Both strategies showed speed to be the most pre-
dictive feature in all conditions. However, the importance
of the other features differed depending on the data set and
combination of features.

Moreover, we frequently observed that if the addition of a
feature improved the classification performance on the train-
ing data substantially (evaluated by stratified, repeated ten-
fold cross-validation), it reduced the performance on the test
data significantly. Thus, low-dimensional models were al-
ways to be favored over high-dimensional ones. For our final
ensemble bag, the 10 and 20 min classifiers indeed turned
out—with one exception—to work best with only one single
feature: latent person speed. In the 30 min condition, more
features were selected for the final prediction. For a list of
the resulting features for all conditions, see the following
Section 3.4.2.



Table 2: Three Sets of Base Classifiers

Classifier Set (1): Speed & Test Completion
ML Speed #Complete #Incomplete #TooFast n-grams

10min SVM +
20min SVM + +
30min SVM + + + +

Classifier Set (2): Multiclass Speed & Test Completion
ML Speed #Complete #Incomplete #TooFast n-grams

10min mSVM +
20min mSVM +
30min mSVM + + + +

Classifier Set (3): Speed, Test Completion, & n-Grams
ML Speed #Complete #Incomplete #TooFast n-grams

10min JRip + +
20min SVM + +
30min SVM + + + + +

3.4 Prediction
3.4.1 Harvesting More Information: Multi-Label Clas-

sification
The binary target label split students into efficient and in-
efficient test takers. However, the competition’s definition
of inefficient behavior mixed two types of test takers: those
who are going too fast and those who are going too slow.
Since the two types have different feature realizations, the
learning algorithms have to optimize towards at least two
different conditions for the same class. Most algorithms’
optimization works better if they have less conditions to op-
timize for within each class.

Therefore, we used the latent test-taker speed feature for
further splitting the inefficient category into Going Too Slow
and Going Too Fast. This new target label with now three
instead of two classes was used for one set of classifiers (see
Section 3.4.2). For doing so, the latent speed estimated by
the Lognormal Response Time Model (see Section 3.2.1) dis-
tinguished between students going too fast and going too
slow. An analysis showed that substantial rapid guessing
behavior started at a threshold of about τ = 0 and, thus,
optimally divided the two inefficient groups. The resulting
target label identified about 23% of the test takers as go-
ing too fast and about 17% as going too slow, keeping the
original share of 60% of efficient test takers.

3.4.2 Three Sets of Base Classifiers
For the final prediction, we created three sets of base clas-
sifiers that were to be merged in an ensemble bag. Each
set followed a different idea, incorporated different features,
and was trained by a different learning algorithm. In turn,
each set contained three classifiers, with one of them tai-
lored to the 10, 20, and 30 min condition, respectively. We
experimented with different feature sets, learning algorithms
(common ones such as support vector machines, AdaBoost,
J48, neural nets, and others), and hyperparameters for each
base classifier. Table 2 shows which features and learning
algorithms were used in which classifier. Which features
were included and which learning algorithm was employed
was determined by resulting performance with respect to the
leaderboard. Due to the unstable performance in the test
set, no systematic hyperparameter tuning was carried out.

Our first set of classifiers used support-vector machines with
a radial kernel and C-classification for all three conditions

(with C = 1, γ = 1/n, ε = 0.001, shrinking). In the 10 min
condition, only speed was used for the prediction. In the
20 min condition, the number of completed items was added.
In the 30 min condition, all features that got through feature
selection (except n-grams, on purpose) were incorporated:
speed, number of completed items, number of incompleted
items, and items completed too fast.

Our second set of classifiers was designed similarly to the
first one, but with a multiclass support-vector machine and
the multiclass label distinguishing going-too-slow and going-
too-fast students (see Section 3.4.1). In the 10 and 20 min
conditions, speed was the only predictor of importance ac-
cording to the feature selection procedure. In the 30 min
condition, again, all features (except n-grams) were incor-
porated.

Our third set of classifiers differed from the other two sets in
that it incorporated one principal component of the n-grams
of event sequences (see Section 3.2.5). Apart from that, the
same set of features were used like in the second classifier
set. The 10 min condition made use of a propositional rule
learner instead of the otherwise employed support-vector
machine. The rule learner’s parameters were set to F = 3
folds, N = 2 as the minimal weight, maximum error rate of
included rules ≥ .5, and pruning was used.

3.4.3 Ensemble Bag
The three described sets of classifiers were combined in a
final ensemble classifier. We used the bagging approach by
averaging probabilities of a condition’s three base classifiers,
but favoring inefficient classifications. We chose to favor
inefficient classification since our base classifiers produced
not enough inefficient classifications. Therefore, we ended
up with one ensemble bag of classifiers for the 10, 20, and
30 min condition each.

4. RESULTS
The final evaluation of our prediction resulted in AUCadj =
0.27 and κadj = .19. In the leaderboard with all 82 com-
petitors, this corresponded to rank 25, with several teams
having submitted multiple results. In the final table, which
only included 13 teams that submitted their code in time,
our contribution was ranked eighth. The winner achieved
AUCadj = 0.34 and κadj = .22. The rather low performance
values, even for the winners, were accompanied with cor-
responding differences between the test and evaluation set,
resulting in substantial changes in the ranking and indicat-
ing rather unstable models being prone to changes in the
evaluation data. This is in line with the wavering perfor-
mance during testing we observed.

With respect to single features, two of them draw particular
interest: test-taker speed and ability. Figure 2 shows their
ROC curves. Obviously, the latent speed feature taken alone
predicts efficient test taking noticeably well (AUCadj = 0.36,
κ = .30 in a single-feature support-vector machine3). In
contrast, students’ ability does not capture a lot of relevant
information for predicting efficient test taking (AUCadj =
0.16, κ = .07 in a single-feature support-vector machine3).

3based on the 30 min training data and a stratified 10-times
tenfold cross-validation
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Figure 2: ROC Curves of Two Features: Speed (left)
and Ability (right)

The large overlap of distributions between efficient and in-
efficient test takers for the ability feature further shows that
the efficiency label does not contain much information about
test takers’ ability (right part of Figure 3). There is a small
difference in that inefficient students have lower ability val-
ues on average (∆ = −0.08, Cohen’s d = −0.20). While
the overlap of distributions appears somewhat similar for
the speed feature (left part of Figure 3), the long right tail
and prominence of faster inefficient test takers makes the
feature space more easily separable. The effect size of the
subgroups’ difference is remarkably higher (∆ = 0.12, Co-
hen’s d = 0.57).

Finally, the feature space which is formed by ability and
speed is plotted in Figure 4. The large majority of test takers
builds an indistinguishable cloud. The other main message
of this plot is, first, that very fast and less able test takers
were consequently classified as inefficient in Block B. More
surprisingly, second, a few test takers who were relatively
fast, but answered correctly (and were thus estimated as
relatively able) were classified as inefficient in Block B. It is
possible that these students changed their behavior in the
second test block. The other possibility is that the efficiency
label classifies these instances erroneously as inefficient.

5. DISCUSSION
In this paper, we present a theory-driven psychometric mod-
eling approach to predicting efficient test taking behavior in
the context of the NAEP Data Mining Competition for 2019.
The paper makes two important contributions, one to our
understanding of the data, another to the structure of the
competition.

The first major contribution is the value of theory-driven
psychometric modeling for feature engineering. Referring
back to Merriam Webster’s bipartite definition of efficiency
as the characteristic of producing desired results without
waste [13], it is interesting how task success is not incorpo-
rated into the competition’s conceptual specification of test
takers. The data patterns mirror the lack of the desired
results in the competition’s operationalization of the target
label, demonstrating the prominence of speed as the sole de-
terminant for the classification as efficient test taking. Re-
markably, the outstanding speed feature serves as the only
feature in some classifiers of our final ensemble bag that only

falls short of the winning contribution by ∆AUCadj = .07
and ∆κ = .03. Empirically, ability did not provide any
incremental increase in kappa or AUC beyond the speed
feature. As a result, the ability feature was not included
in any of the base classifiers after feature selection. It has
to be noted that, at the theoretical level, the definition of
efficiency only incorporates ability indirectly. That is the
case because students who do not reach the end of the test
cannot solve the corresponding items. Students who are go-
ing too fast are likely to fail as well. The resulting ability
estimates, which are based on item success, hence, are in-
directly incorporated in the efficiency label that is actually
based on speeding criteria exclusively. Nevertheless, this in-
direct impact was not large enough for granting substantial
predictivity to students’ ability for inferring their test-taking
efficiency as specified by the competition.

It is apparent that the presented predictive modeling’s per-
formance does not exceed a moderate level, if at all. This is
similarly true for the competition winners. While behavioral
predictions with temporal delay can always be excepted to
be weak, there seem to be multiple reasons inherent to the
provided data set and challenge behind the moderate pre-
dictive classification performance. From our point of view,
there are three major points that are worth following-up on
in discussions. The most prominent one is the data reduc-
tion to twenty and ten minutes of log data for two thirds
of the test data. The resulting leaderboard data evaluation
was dominated by the secondary goal of predictions with less
data. Also, since the different conditions shape the data and
derived features quite differently, the training of classifiers
had to be tailored to those.

The second important contribution is that the paper pro-
vides evidence that questions the target label’s validity. Us-
ing additional data sources from outside the information pro-
vided by the competition, we were able to re-engineer scores
for estimating test taker ability. Importantly, feature se-
lection led to excluding the ability feature, as it failed to be
predictive of the efficiency label. This was a strong indicator
for the suboptimal operationalization of efficiency.

This especially relates to the labeling of students as going too
fast. To identify test takers spending a reasonable amount
of time on a task, the competition organizers chose the 5th
percentile of response times within an item as the thresh-
old. Such a norm-oriented classification leads to labeling
a fixed number of test takers as inefficient at each item,
even when there are none or substantially less than 5 per-
cent. Instead, criterion-based classification would be worth-
while. However, if corresponding criteria are not available,
norm-oriented approaches would need to be combined with
a dynamic threshold to be determined for each item, as the
response time distributions of items typically differ consid-
erably. The high ratio of 40 percent of students labeled as
inefficient, which seems unreasonably high, is probably the
result of this purely norm-based decision.

One option for identifying an appropriate threshold consti-
tutes the visual inspection of distributions if little informa-
tion about items are available. Often, response time dis-
tributions are bimodal. The first, very early peak is then
typically associated with rapid guessing, while the second



− 0. 5 0. 0 0. 5 1. 0 1. 5

0 
1 

2 
3

L at e nt P er s o n S p e e d b y Effi ci e n c y

S p e e d

D
e
ns

it
y

I n effi ci e nt
Effi ci e nt

− 4  − 2 0 2 4

0.
0 

0.
1 

0.
2 

0.
3 

0.
4

L at e nt P er s o n A bilit y b y Effi ci e n c y

A bilit y

D
e
ns

it
y

I n effi ci e nt
Effi ci e nt

Fi g u r e 3: Di s t ri b u ti o n s of S p e e d (l ef t ) a n d A bili t y ( ri g h t ), S e p a r a t e d b y E ffi ci e n c y

− 4 − 2 0 2 4

−
0.

5 
0.

0 
0.

5 
1.

0 
1.

5

S p e e d – A bilit y R el ati o n s hi p a n d Effi ci e n c y

A bilit y

S
p
e
e
d

●

I n effi ci e nt
Effi ci e nt
T e st S et

Fi g u r e 4: S c a t t e r Pl o t of S p e e d a n d A bili t y, Di s ti n -
g ui s hi n g E ffi ci e n t a n d I n e ffi ci e n t T e s t T a k e r s

p e a k c o r r e s p o n d s t o t h e a c t u al r e s p o n s e ti m e m e a n of t h o s e
t e s t t a k e r s w h o di d n o t e x hi bi t r a pi d g u e s si n g b e h a vi o r.
T h e t h r e s h ol d w o ul d b e s e t af t e r t h e o b vi o u s e x ti n c ti o n of
t h e fi r s t p e a k [ 2 7]. F o r s e t ti n g a n a c t u all y a c c u r a t e t h r e s h-
ol d, m e t h o d s t h a t c o m bi n e r e s p o n s e ti m e, i t e m i nf o r m a ti o n,
a n d r e s p o n s e a c c u r a c y a r e c o n si d e r e d s t a t e of t h e a r t. F o r
a n o v e r vi e w s e e f o r e x a m pl e [ 2 6]. F u r t h e r, t h e i d e nti fi c a-
ti o n of t h r e s h ol d s s h o ul d b e g ui d e d b y c o nt e x t u al c o n si d e r-
a ti o n s, j u d gi n g f o r e x a m pl e w h e t h e r f al s e- p o si ti v e s o r f al s e-
n e g a ti v e s a r e m o r e a c c e p t a bl e i n t h e c o nt e x t of t h e t e s t.

A n a d di ti o n al a r e a of i nt e r e s t w a s t h a t t h e bi n a r y l a b el f o r
e ffi ci e n c y mi x e s t w o t y p e s of s t u d e nt s wi t hi n i t s i n e ffi ci e nt
v al u e: g oi n g t o o f a s t a n d g oi n g t o o sl o w. T hi s h a s i m pli-
c a ti o n s f o r t h e l e a r ni n g al g o ri t h m s t h a t h a v e t o o p ti mi z e
t h ei r p a r a m e t e r s t o w a r d s t w o di ff e r e nt c o n di ti o n s wi t hi n o n e
cl a s s. M o r e o v e r, f r o m a s u b s t a nti v e p e r s p e c ti v e, t hi s mi x e s
a t l e a s t t w o t y p e s of s t u d e nt s: t h o s e w h o a r e di s e n g a g e d —
t h u s, ei t h e r r u s hi n g o r m e a n d e ri n g p oi ntl e s sl y t h r o u g h t h e
t e s t — a n d t h o s e w h o a r e t o o t h o r o u g hl y w o r ki n g, p o o rl y
m o ni t o ri n g t h ei r p r o g r e s s, o r w h o a r e j u s t l e s s a bl e.

6. C O N C L U SI O N
O n e of t h e c e nt r al m e s s a g e s of t h e c o m p e ti ti o n i s t h a t p r e-
di c ti o n s of t e s t- t a ki n g e ffi ci e n c y a r e hi g hl y d e p e n d e nt o n t h e
d e fi ni ti o n, m e a s u r e m e nt, a n d e v al u a ti o n of e ffi ci e n c y i t s elf.
T h a t i s t r u e f o r t h e p r e s e nt e d a p p r o a c h, a s w ell a s f o r o t h e r
c o m p e ti ti o n e nt r a nt s, a s s e e n t h r o u g h t h e l e a d e r b o a r d t e s t
s e t e v al u a ti o n p h a s e. I n s u c h a c a s e, a n d if cl a s si fi e r s a r e
m e a nt t o b e p u t i nt o p r o d u c ti v e u s a g e, i t i s e v e n m o r e i m-
p o r t a nt f r o m o u r p oi nt of vi e w t o h a v e c o m p r e h e n si bl e m o d-
el s. I m a gi n e a h y p o t h e ti c al si t u a ti o n w h e n a t e a c h e r s e e s a
s t u d e nt b ei n g fl a g g e d o n a d a s h b o a r d af t e r 2 0 mi n of t e s t-
i n g. T h e fl a g i n di c a t e s t h e ri s k f o r i n e ffi ci e nt t e s t t a ki n g
l a t e r o n, b u t w e k n o w t h a t t h e fl a g’ s a c c u r a c y i s f ai rl y l o w.
I t i s vi t al t h a t t h e t e a c h e r i s i nf o r m e d a b o u t t h e b a si s of t h e
fl a g’ s d e ci si o n c ri t e ri a. A s w e h a v e s h o w n, t h e c o m p e ti ti o n’ s
t a r g e t l a b el cl a s si fi e d s o m e of t h e m o s t a bl e s t u d e nt s a s i n-
e ffi ci e nt w h o b y a bili t y a r e r e a s o n a bl y q ui c k i n c o m pl e ti n g
t h e t a s k s. T h e c o n s e q u e n c e s of a t e a c h e r g oi n g t o a s u c c e s s-
f ul, e n g a g e d s t u d e nt a n d t elli n g t h e m t h e y s h o ul d ai m a t
b ei n g m o r e e n g a g e d o r e ffi ci e nt i n t h ei r t e s t t a ki n g, w o ul d
b e r e a s o n a bl y di s r u p ti v e. I t c a n b e a s s u m e d t h a t s u c h a n



invasive and intrusive test administrator behavior would be
counterproductive and decrease, rather than improve data
quality. If however, the included features for predictions are
transparent, known, and understandable, the teacher could
communicate those and contextualize the flag accordingly.
A risk of more powerful black-box deep-learning classifiers is
that a small to medium share of more accurately classified
cases does not necessarily outweigh the resulting obscurity
of classification mechanisms. More generally, the effects of
the invasive disruption of a test administrator proactively
trying to motivate test takers on the standardization of the
assessment setting need to be studied. Moreover, before
using such a measure, classifiers would need to be checked
for biases towards certain subgroups in order to still ad-
here to standards of standardized assessments [1]. Overall,
we would recommend to refrain from using such predictions
with low to moderate accuracy in productive assessments as
long as the effects of changes in the test administration are
unknown.

Instead, the discussion section gives some insights into what
could improve the setup of a more proper training data set
for predictions. Mainly, a more representative definition of
efficiency might be necessary, one that reflects the current
scientific state of the art which factors in students’ ability.
Furthermore, the described psychometric and theory-driven
perspective, together with the referenced tools, can be help-
ful for mining log data from assessments at the large scale
while retaining the individual perspective. With the illus-
trated software package LogFSM, for example, we were able
to identify test takers who clearly showed consistent ineffi-
cient behavior, but were labeled as efficient, and vice versa.
These observations are constrained by the fact that the log
data of Block B was not available, yet served as the ba-
sis for the evaluation of the efficiency label. However, we
think that the number of these cases is too large for being
an effect of temporal instability only. We believe that these
analyses combined with more innovative machine learning
designs that the educational data mining community can
provide are promising for further improving the predictions
of test-taking efficiency.

7. LIMITATIONS
The paper already highlighted the presented study’s limi-
tations over the course of the different sections. On top of
the challenges inherent to the data competition, this study’s
main limitation constitutes the employment of baseline ma-
chine learning. Moreover, speed and ability have been esti-
mated separately, whereas a simultaneous estimation might
have been possible as well [23]. The selection of feature
sets and learning algorithms was optimized towards the test
set which turned out to provide rather unstable evaluations.
The conclusion of this paper is that the NAEP Data Mining
Competition for 2019 provided an important opportunity
to further develop complex conversations about how educa-
tional data mining and psychometric modeling can support
data quality of assessments by identifying disengaged test
taking behavior.
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