Geography and Sustainability 1 (2020) 59-69

journal homepage: www.elsevier.com/locate/geosus

Contents lists available at ScienceDirect

GEOGRAPHY &2...
SUSTAINABILITY

Geography and Sustainability

Article

Global pattern and change of cropland soil organic carbon during )
1901-2010: Roles of climate, atmospheric chemistry, land use and e
management

Wei Ren®*, Kamaljit Banger®, Bo Tao?, Jia Yang¢, Yawen Huang?, Hanqin Tian%*

2 Department of Plant & Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40506, USA

b Plant Agriculture - University of Guelph, Ontario N1G 2W1, Canada

¢ Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA

d International Center for Climate and Global Change Research and School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA

HIGHLIGHTS

e Century-scale dynamics in global crop-
land soil organic carbon (SOC) were sim-
ulated

e Storage and density of global cropland
SOC largely increased during 1901-2010

e Increased SOC from land management
partially offset SOC losses caused by cli-
mate change

ARTICLE INFO

Article history:

Received 4 February 2020

Received in revised form 27 February 2020
Accepted 28 February 2020

Available online 9 March 2020

Keywords:

Global cropland

Soil organic carbon
Climate change

Land management
Process-based modeling

GRAPHICAL ABSTRACT

Y ]

jﬁy % DLEM-A Output >
u} Integrated 3, o (" Tissue turnover
Crop residue, -4

7- ,q;g '.‘ £
pL j A C loss

Driving Forces
Climate -
Soils  +

R
Topography_

Cropping systéﬁ]s

Fertilizer use Cro;;land Soil
Irrigation Carbon stocks
Tillage l C loss
Manure use
p
&
(Tg Crgrid)
| |

o N .J?;\,Q lr\f’ 2%
MUINA o Kl

ABSTRACT

Soil organic carbon (SOC) in croplands is a key property of soil quality for ensuring food security and agricultural
sustainability, and also plays a central role in the global carbon (C) budget. When managed sustainably, soils may
play a critical role in mitigating climate change by sequestering C and decreasing greenhouse gas emissions into
the atmosphere. However, the magnitude and spatio-temporal patterns of global cropland SOC are far from well
constrained due to high land surface heterogeneity, complicated mechanisms, and multiple influencing factors.
Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse spatially-explicit
gridded environmental data to quantify the long-term trend of SOC storage in global cropland area during 1901-
2010 and identify the relative impacts of climate change, elevated CO,, nitrogen deposition, land cover change,
and land management practices such as nitrogen fertilizer use and irrigation. Model results show that the total
SOC and SOC density in the 2000s increased by 125% and 48.8%, respectively, compared to the early 20
century. This SOC increase was primarily attributed to cropland expansion and nitrogen fertilizer use. Factorial
analysis suggests that climate change reduced approximately 3.2% (or 2,166 Tg C) of the total SOC over the past
110 years. Our results indicate that croplands have a large potential to sequester C through implementing better
land use management practices, which may partially offset SOC loss caused by climate change.

* Corresponding authors.

1. Introduction

Soil organic carbon (SOC) represents the largest terrestrial C pool
(Jobbagy and Jackson, 2000) and a small change in its magnitude
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can provide significant feedbacks to atmospheric CO, concentration
(Jobbégy and Jackson, 2000; Smith et al., 2008; Tian et al., 2015). The
croplands account for approximately 10% of the global total SOC, as
estimated at a range of 128-165 Pg C (1 Pg C = 1015 g) (Watson et al.,
2000). Generally, average SOC values are relatively lower in croplands
than in natural ecosystems as a result of biomass removal/harvest and
some land management practices such as tillage (Drewniak et al., 2015).
Improving levels of organic C and fostering C sequestration in cropland
soils could have significant implications not only for food security and
soil health (Six et al., 2004; Six et al., 2002), but also for achieving
the less than 1.5°C global target of the Paris Climate Agreement. It has
been estimated that global croplands could sequester 0.90-1.85 Pg C/yr,
equivalent to 26-53% of the soil carbon sequestration target of 3.5 Pg
C/yr that the 4p 1000 Initiative has established for climate mitigation
(Zomer et al., 2017). Sustainably managing SOC might be a primary
means for achieving climate-smart agriculture, which aims to ensure
food security, mitigate, and adapt to climate change with minimal ad-
verse environmental effects (Bai et al., 2019; Branca et al., 2011; Huang
et al., 2018; Lipper et al., 2014; Ren, 2019). Therefore, it is urgent to ad-
vance our current understanding of the magnitude and patterns of crop-
land SOC as well as their environmental drivers, which is a prerequisite
for achieving the dual benefits of meeting increasing food demand and
mitigating future climate change (Lal, 2004; Lal et al., 2007; Paustian
et al., 1997) .

Cropland SOC storage is mainly determined by the balance between
C inputs in the form of residues and outputs from microbial respira-
tion (Davidson and Janssens, 2006; Paustian et al., 1997). This balance
in the C inputs and outputs is modified by changing climate, land-use,
and various agronomic management practices (Davidson and Janssens,
2006; Regnier et al., 2013; Tian et al., 2016). For instance, changing
climatic factors (e.g., temperature, precipitation, heatwave) reduce
cropland productivity and stimulate microbial activity, which may re-
sult in net SOC loss (Lobell et al., 2014; Tian et al., 2015). While increas-
ing CO, concentration enhances above and below ground plant biomass
(de Noblet-Ducoudré et al., 2004; Jastrow et al., 2005; Norby et al.,
2004) and is likely to promote cropland SOC storage (de Noblet-
Ducoudré et al., 2004; Jastrow et al., 2005; Lobell et al., 2014;
Norby et al., 2004; Ren et al., 2012; Tian et al., 2015). Unlike natural
ecosystems, agronomic management (such as nitrogen fertilizer use, ir-
rigation management, and tillage operations) may substantially change
cropland SOC storage by altering the biomass production and C enter-
ing into the soil (Banger et al., 2015a; Leff et al., 2004; Ren et al., 2012;
Tian et al., 2016). For example, Buyanovsky and Wagner (1998) re-
ported that cropland SOC storage increased during the 20t century pri-
marily due to higher-yielding crop varieties and agronomic management
that improved crop residues entering into the soils. Realistically quan-
tifying changes in cropland SOC necessitates considering both natural
factors (e.g., climate change) and human activities (e.g., cropland expan-
sion and management practices), and interactions among them, which
act simultaneously in reality.

Over past decades, global cropland SOC has been investigated using
a range of approaches, such as inventory-based method, empirical
modeling, and process-based modeling. However, the magnitude and
patterns of global cropland SOC are far from well constrained due to
high land surface heterogeneity, complicated mechanisms, and multiple
influencing factors. Large discrepancies were shown in estimates of
the magnitude and variations from various approaches (Jandl et al.,
2014; Ogle Stephen et al., 2010). Recent rapid development in soil
observations/measurements, high-resolution regional/global soil com-
piling, big-data assimilation, and process-based modeling provides
an opportunity to further examine changes in cropland SOC and the
relative contributions of various environmental factors at a large extent
and over a long period (Luo et al., 2009; Smith et al., 2019; Tian et al.,
2015). Here we use a process-based agroecosystem model (DLEM-Ag)
in combination with diverse gridded environmental data sources to
quantify the magnitude and tempo-spatial patterns of SOC storage in
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global croplands during 1901-2010. Specific objectives are to 1) investi-
gate the magnitude of and long-term changing trend in SOC storage; 2)
quantitatively examine the relative contributions of climate change and
land use/management practices in the context of global changes; and 3)
identify uncertainties and future needs. This study is built on our pre-
vious efforts that quantified C dynamics in croplands at regional scales
(such as China, India, and the United States, see the model description
section).

2. Methodology: model, input data and simulation protocol
2.1. The Dynamic Land Ecosystem Model and Its Agriculture Module

The Dynamic Land Ecosystem Model (DLEM) is a highly integrated,
process-based ecosystem model that couples major biogeochemical cy-
cles, water cycle, and vegetation dynamics to make spatially-explicit es-
timates of water, C, and nitrogen fluxes in terrestrial ecosystems at mul-
tiple temporal and spatial scales (Tian et al., 2010a; Tian et al., 2010b).
It consists of five core components, i.e., biophysics, plant physiology, soil
biogeochemistry, vegetation dynamics, and land use and management.
The DLEM model has been widely applied in investigating dynamic re-
sponses of terrestrial water, C and nitrogen cycling to multiple global
change factors such as climate, atmospheric composition (atmospheric
CO,, nitrogen deposition, and tropospheric ozone), land use change,
and agriculture management practices (e.g., harvest, rotation, irrigation,
and fertilizer use) at regional (such as China (Lu et al., 2012; Ren et al.,
2007; Ren et al., 2012; Tian et al., 2011), India (Banger et al., 2015a;
Banger et al., 2015b), Monsoon Asia (Tian et al., 2011a), tropical Asia
(Tao et al., 2013), the United States (Chen et al., 2012; Ren et al., 2016;
Yang et al., 2015b), and North America (Tian et al., 2015a; Xu et al.,
2012; Xu et al., 2010) and global scales (Pan et al., 2014; Tian et al.,
2015; Yang et al., 2015a; Zhang et al., 2016).

The DLEM-Ag was built on the framework of the DLEM for investigat-
ing changes in terrestrial biogeochemical processes in diverse agricul-
tural ecosystems and their interactions with other ecosystems (Ren et al.,
2012; Ren et al., 2016). It combines the features of crop models and
biogeochemical land ecosystem models and is characterized by cou-
pled biogeochemical cycles in an integrated atmosphere-crop-soil sys-
tem, feedbacks/interactions between agroecosystems and other natural
systems, multiple spatial-temporal scales, and multiple environmental
driving forces. The DLEM-Ag is capable of simulating SOC, plant produc-
tivity, crop yield, greenhouse gas emissions, and other hydrological and
biogeochemical (e.g., C, nitrogen, and phosphorus) processes in agroe-
cosystems (e.g., Banger et al., 2015a; Banger et al., 2015b; Ren et al.,
2011; Ren et al., 2012; Tao et al., 2013; Tian et al., 2016; Zhang et al.,
2016). It simulates crop growth, soil decomposition, soil water, temper-
ature, and nutrient flows in agroecosystems at a daily time step; and
meanwhile simulates the exchange of C, nitrogen, water, and energy
between agroecosystems and other natural systems.

Soil organic matter (SOM) dynamics in croplands are simulated us-
ing the classic first-order decomposition algorithm (Parton et al., 1994).
The SOM in the DLEM-Ag consists of dissolved organic matter (DOM),
four litter pools, three microbial pools, and two slow SOM pools. Litter
pools receive biomass from tissue turnover and crop residue. The C out-
fluxes from cropland soil include C losses by microbial respiration and
removal by soil erosion and leaching through time. The decomposition
rate of each SOC pool in agroecosystems is influenced by soil tempera-
ture, texture, water content, and nutrient availability. As shown in the
general conceptual framework of process-based agroecosystem models,
DLEM-Ag aims to simulate SOC dynamics in croplands as influenced by
direct, interactive, and long-term factors derived from natural and an-
thropogenic disturbances (Fig. 1). The detailed description of how the
model simulates the above-mentioned processes could be found in our
previous studies (Pan et al., 2014; Ren et al., 2012; Tian et al., 2010b).
Here, we provide a brief introduction of soil C decomposition, dissolved
organic C (DOC), and CH, fluxes related simulation processes.
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Fig. 1. Conceptual framework of crop soil carbon dynamics as influenced by long-term, interactive, and direct controls under natural and anthropogenic disturbances

2.1.1. Soil carbon decomposition

The sizes of soil C pools and the C fluxes transferred between pools
determine the source and loss of soil organic and inorganic C. There
are seven soil C pools (three microbial pools; two slow soil organic
matter pools, namely, native organic matter and passive soil organic
matter; one dissolved organic matter pool; and one dissolved inorganic
pool); one woody detritus pool; and two litter pools. All organic C in-
put, received from tissue turnover, manure, crop residue, and branch
fragmentation, are totally allocated to litter pools according to a car-
bon/nitrogen ratio. Then the C fluxes are transferred between pools
through biological decomposition, physical adsorption and desorption,
and leaching. The equations to estimate soil and litter decomposition use
first-order decay rate constants (k¢ p,,) (Liu et al., 2005; Parton et al.,
1993; Petersen et al., 2005). Gene_rally, heterotrophic respiration is a
critical process that largely determines the generation of soil DOC. In
the DLEM, the decomposition rate of each SOC pool is influenced by
soil temperature, soil water content, nutrient availability, and soil tex-
ture:

ke post = Kmax/365 X f(T) x f(W) x f(N) X f(clay) M
F(T) = 4.89 x e~ 3432H0IXTX(1-0.5XT/36.9) @
1—e=0/0sar
W 1—e~0rc/Osar 0.0044 0<0p 3
TW)=11.0044 - - Tosa =07 Jvar 0> 6. ®
. 1= glc/gsar
f(clay)=1-0.75P,,,/100 “)
avn—avn,,
1- Wpl’l avn > avn,,,
SINM)=+1 avn,, /2 < avn < avn, )
1+ 0A5aun,,p,—aun on < av /2
avn,y, aun = aURgp
f(NI)= 0.8+ 0.2avn/avn0p, 6)

where Kmax; is the maximum decay rate (year~1);f(T) is the average
soil temperature scalar; f(W) is the soil moisture scalar; f(clay) is the
soil texture scalar; f(NM) and f(NI) are different calculations of nitrogen
scalar f(N) in mobilization and immobilization, respectively. 6 is soil
water content (mm); T is air temperature (Celsius degree); 6, is soil
water content at field capacity (mm); O is soil water content at field
capacity at wilting point (mm); P, is the percentage of clay in soil
(%); avn is the available soil nitrogen (g N/m?); Ny is the optimum
available soil nitrogen (g N/m?).
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2.1.2. DOC leachate production

In the DLEM, litter and soil organic matter are the sources of DOC
leachate (Chantigny, 2003). Leaching of DOC is simulated with the fol-
lowing equations:

DOCC
R =SDOC x X —— 7
tehdoc Hlow X 566C + 1chbyy, @
DOCC = SDOC 8)
soil
SDOC = Cdec X fdoc—dec (9)
ﬁqOW — Asrun t drain (10)

0+ 9srun T Qdrain

where Rjgq,c is the leaching rate of dissolved organic C (g C/m?/day);
Ichbg,, is the soil desorption coefficient for DOC (g C/g soil); DOCC is
the concentration of dissolved organic C (g C/g soil); SDOC is the total
amount of dissolved organic C in soil (§ C/m?); Cg, is the total amount
of decomposed organic C for litter and all the SOC pools (g C/m?/day);
Sdoc—dec 15 the fraction of decomposed organic C that is dissolvable (%);
W, is the weight of soil from 0 to 0.5m (g); fflow is the runoff coefficient
for leaching; g, is the surface runoff (mm); q 4,4, is the drainage runoff
(mm).

In the DLEM, CH, production, consumption, and transport processes
are considered to estimate the land-atmosphere gas exchange. Dissolved
organic carbon is the only CH, production substrate considered in the
DLEM. The DOC comes from gross primary productivity (GPP), and de-
composition byproducts from soil organic matter and litters, which are
indirectly controlled by environmental factors including soil pH, tem-
perature and soil moisture content. CH, oxidation is determined by
CH, concentrations in the air or pore space of soil, as well as soil mois-
ture, pH, and temperature. We consider three pathways for CH, trans-
port from soil to the atmosphere (i.e., ebullition, diffusion, and plant-
mediated transport) (Tian et al., 2010c). It is assumed that methane-
related biogeochemical processes only occur in the top 50 cm of the soil
profile. Overall, the net CH, exchange between the atmosphere and soil
is calculated by the following equation:

F,

air, oxid

Fepy=Fp+ Fp+ Fp — —F, = Fyoit oxia (an

Where Fcyy, is the flux of CH, between soil and the atmosphere
(g C/m2/day); Fp is plant-mediated transport from soil pore water to
the atmosphere (g C/mz/day); Fp is the diffusive flux of CH,; from

rans, oxid
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water surface to the atmosphere (g C/m?/d); Fg is the ebullitive CH,
emission to the atmosphere; Fy; g is atmospheric CH,4 oxidation rate
(g C/m2/day); Fyign oxia is the CH, oxidation during plant-mediated
transport (g C/m?/day); Fy,y oxig is the CH, oxidation rate in soil pore
water.

2.2. Model Driving Forces

Spatially-explicit 0.5° gridded datasets at various time steps (daily
to annual) were developed to drive the DLEM-Ag model. These datasets
include climate, atmospheric CO,, nitrogen deposition, cropland dis-
tribution, and land management practices (such as irrigation, nitrogen
fertilizer, and rotation) for the period of 1901-2010. Daily climate data,
including maximum/minimum/mean temperature, precipitation, rela-
tive humidity, downward shortwave radiation, were derived from 6-
hourly CRU-NCEP data set version 7 that combines the monthly CRU
climate data and the daily NCEP/NCAR Reanalysis products (Wei et al.,
2014).

A dynamic cohort approach is adopted to represent land use
and land cover changes at the grid level based on multiple land
use/cover datasets, such as global water mask (Carroll et al., 2009),
time-series cropland distribution obtained from North American Car-
bon Program Multi-scale Synthesis and Terrestrial Model Intercompar-
ison Project (Wei et al., 2014) (derived from Synergetic Land Cover
Product (SYNMAP) (Jung et al., 2006) and land conversion datasets
(Hurtt et al., 2011), global potential vegetation map (Ramankutty and
Foley, 1999), global C4 percentage map (Still et al., 2003), and the
Global Lakes and Wetlands Database (GLWD) (Lehner and Doll, 2004).
We assume that each grid cell is initially covered by undisturbed poten-
tial vegetation and other land cover types (i.e., bare land, glacier, river,
lake, and ocean, etc.). When cropland expansion or shrinkage occurs
(e.g., from forest/grassland to cropland and vice versa), a new cohort
is formed, and the disturbed land area within the grid cell is then pro-
portionally subtracted from the undisturbed potential vegetation. Land
management practices data (e.g., cropping system, nitrogen fertilizer
use, and irrigation) were developed to examine biogeochemical pro-
cesses in cropland as well as their interactions with other vegetation
types. Global cropping system was categorized into nineteen types (e.g.,
wheat, corn, soybean, cotton, groundnuts, millet, barley, sorghum, and
rice). The distribution of main crop types was identified according to
the global crop geographic distribution map at a 5min spatial resolu-
tion (Leff et al., 2004) and country-level FAOSTAT agricultural census
as well as the regional-level census in China and India (Banger et al.,
2015a; Banger et al., 2015b; Ren et al., 2012; Ren et al., 2011; Tian et al.,
2011). The phenology information and rotation types (single, double,
and triple harvesting) were obtained from MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) LAI product calibrated against cen-
sus data and site-level observations (Banger et al., 2015a; Ren et al.,
2012; Xu et al., 2012). Nitrogen fertilizer amount data were estimated
based on FAOSTAT country-level data as well as more detailed data
(e.g., county-level) in China, India, and North America (Banger et al.,
2015a; Ren et al., 2012; Xu et al., 2012). The irrigation distribution was
developed by incorporating a global irrigation map and historical crop
geographic distribution map, and agricultural census (Klein Goldewijk
et al., 2011; Leff et al., 2004; Siebert et al., 2013).

Other datasets (such as atmospheric CO, concentration, nitrogen de-
position, soil properties, and topographic information) were the same as
those used in our previous studies (Pan et al., 2014; Tian et al., 2015;
Zhang et al., 2016).

2.3. Model Calibration and Performance Evaluation

In the previous studies, our model has been extensively calibrated
and validated against substantial field observations/measurements in
typical ecosystems, such as forests, grassland, wetland, and crop-
lands (e.g., Banger et al., 2015a; Liu et al., 2013; Ren et al., 2012;
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Fig. 2. Comparisons of the model estimated and observed soil organic carbon
(SOC) for major cropping systems across the world (dashed line is the regression
of observed data and modeled results, and the solid line is the 1:1 line. More
details of observations can be found in Supporting Information)

Tian et al., 2010a; Tian et al., 2011; Zhang et al.,2015). In particu-
lar, model simulated C fluxes (e.g., NPP) and pools (e.g., SOC) in crop-
lands have been calibrated and evaluated using site-level datasets in
China (Ren et al., 2012; Ren et al., 2011; Tian et al., 2011), India
(Banger et al., 2015a; Banger et al., 2015b), and the United States
(Chen et al., 2012; Tian et al., 2010a), and the detailed data source
of parameters can be found in the published papers (Banger et al.,
2015a; Ren et al., 2012; Tao et al., 2013; Tian et al., 2011). Given we
used different model driving forces from previous regional studies, we,
therefore, put a specific effort on calibrating and validating the sim-
ulated cropland SOC by collecting a series of site-level SOC observa-
tions across the globe (Fig. 2, Table S1). Generally, the model-simulated
SOC showed a good agreement with the field observations. However,
relatively large discrepancies occurred in some sites because the back-
ground information (such as time-series climate records and rotation
and management information) was incomplete and we had to use alter-
native datasets (e.g., deriving gridded global datasets) for driving the
model.

We also compared model-simulated cropland SOC with the estimates
from other studies (Table 1). For example, our simulated crop SOC
storage is 115.0 + 2.0 Pg C in the 2000s in the 50 cm soil profile.
Jobbagy and Jackson (2000) estimated that cropland SOC in the 40 cm
and 60 cm depth approximately accounts for 64% and 79% of total SOC
in the top 1 m soil profile. Therefore, our estimated total SOC is equiv-
alent to 141-175 Pg C in the 1m soil depth, which falls within the rea-
sonable range (128-165 Pg C) reported by IPCC (Watson et al., 2000),
and is comparable with estimates from IGBP-DIS (Global Soil Data
Task, 2014), Jobbagy and Jackson (2000), and Harmonized World Soil
Database (FAO et al., 2012), but lower than ISRIC SoilGrids (Hengl et
al., 2014) and Zomer (for 30cm soil profile) (Zomer et al., 2017). A re-
cent study used the process-based model to simulate the cropland SOC
change in the global main cereal cropping systems during 1961-2014,
and estimated a continuous increasing trend in cropland SOC storage at
an annual sequestration rate of 0.48 Pg C under the designed C input rate
(Wang et al., 2017). This result agrees well with our estimated annual
sequestration rate of 0.65 Pg C during 1901-2010 and an average rate
of 0.42 Pg C from 1961 to 2010, respectively. Comparisons show that
our estimated total cropland SOC is generally comparable to those from
inventory, process-based modeling, and empirical modeling, although
discrepancies exist due to differences in the study domain, data sources,
model structure, and assumption.
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2.4. Simulation Experiment Design

In this study, we designed eight simulation experiments for assess-
ing the magnitude and spatiotemporal patterns of global cropland SOC
over the past 110 years, and for analyzing the relative contribution of
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50 ol DD U O U OV YW — — oS © . .
S 18|22 82ER222RR |89 to each factor (ASOCjyr;) as the difference between the factor-specific
$ il experiment and the baseline.
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7|2 o ww oo~ - = 3. Results and Discussion
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g 2 © 3.1. Global environmental changes in global cropland during 1901-2010
S| = m 2
M =)
a8 9 . . . .
= |0 o S The global croplands have experienced substantial changes in cli-
:E & % ?1; mate (i.e., temperature and precipitation), atmospheric CO, concentra-
g Eo o | & ‘:" tion, nitrogen (NO, and NH3) deposition, and agronomic management
- £ 'T E 3 during 1901-2010 (Fig. 3). Mean annual air temperature showed sig-
8 g 898 q f g nificant inter-annual variations with a long-term increasing trend since
> . . . . .
g @ ceee ° %" = the late 1970s. North America experienced the highest increase in the
§ I s annual air temperature while the lowest increase occurred in Asia over
= i I :a; the past 110 years. Annual precipitation slightly increased in the global
2| L2 g croplands (0.58 mm yr~!) and varied across regions during 1901-2010.
3 % = ® § 9 For instance, mean annual precipitation decreased by 103.9 mm yr~! in
o . . . . .
E (S| VY o i ‘;‘ ::% Africa and 148.4 mm yr~! in Australia, respectively, in the 2000s com-
= AN oo AN AN . .
8 § —Ss=22 2 e _@ S pared to the 1900s, On the other hand, South America, North America,
% § o] and Asia experienced an increase in annual precipitation, ranging from
¢ 1|0 | BN 25.8 mm yr~! to 129.6 mm yr~!. The atmospheric CO, concentration
5 | & g D‘% § g increased from 296 ppm to 385 ppm during 1901-2010.
§ &% 9 2 I =i § During the study period, cropland areas have expanded due to the
- § ;9: - c’;' % ’_3) 3 § conversion of natural ecosystems across the entire globe (Figs. 3c, 4).
_.“E’ E« Slngazgrn SEE Y %0 g Spatially, substantial crop expansion happened in East and Southeast
R e TT 2=z 8 Asia, India, the Midwest US, Mexico, the southern part of South Amer-

ica, and parts of Europe. While decreases in croplands occurred in East-
ern US, parts of Central China, and Northern Europe. In addition to
changes in the total areas, global croplands experienced nitrogen enrich-
ment due to nitrogen fertilizers and atmospheric deposition (Fig. 3). For
instance, the nitrogen deposition rate increased nearly two folds from
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Table 2

Simulation experiment design.
Numerical  Climate CO, Nitrogen Land use change
experiments change change deposition

LC LMPs

Reference 1900 1900 1900 1900 1900
All 1901-2010  1901-2010  1901-2010  1901-2010  1901-2010
CLM 1901-2010 1900 1900 1900 1900
LCLUC 1900 1900 1900 1901-2010  1901-2010
co, 1900 1901-2010 1900 1900 1900
Ndep 1900 1900 1901-2010 1900 1900
LC 1900 1900 1900 1901-2010 1900
LMPs 1900 1900 1900 1900 1901-2010

Note: Simulation experiments include (1) Reference: all environmental factors keep
unchanged in 1900; (2) All: climate, carbon dioxide (CO,), Nitrogen deposition
(Ndep), and land-cover and land-use (LCLUC) change during 1901-2010; (3) Cli-
mate(CLM) - in which only climate changes during 1901-2010 while other factors
are kept constant in 1900; (4) LC and (5) LMPs only land cover and land manage-
ment practices (fertilizer, irrigation, etc.) change, respectively, while others factors
are kept constant in 1900.

a - 120 Fig. 3. Temporal changes in global climate, atmospheric
CO,, nitrogen deposition, land use and nitrogen fertilizer
use during 1901-2010
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Table 3

Geography and Sustainability 1 (2020) 59-69

The decadal mean of annual SOC, SOC change and accumulated SOC during 1901-2010 at continental and global scales.

Region North America  South America  Africa Asia Australia Europe Global Mean SOC (g C/m?)
Time period Decadal mean of the total SOC (Pg C/yr)
1900s 131+ 1.0 8.7 +0.2 22+01 9.7 + 0.6 04 +0.1 17.0 + 1.1 51.2 + 3.1 4,632+163
1950s 214 + 0.1 119+ 03 54 +04 210 £ 1.5 22 +0.2 249 + 0.9 86.9 + 3.4 5,988+76
1990s 239+ 04 154 + 0.2 7.9 + 0.1 341 £ 1.7 3.7+ 0.1 26.6 £ 0.3 111.7 £ 2.0 6,759+95
2000s 24.1+£03 15.8 + 0.1 83 +0.2 374 +£ 02 35+0.1 258 £ 0.2 115.0 + 2.0  6,895+80
Changing rate  0.100** 0.074* 0.066* 0.275* 0.035* 0.101* 0.65"
Total accumulated SOC (Pg C)
1901-2010 11.9 (17.8%) 7.1 (10.7%) 5.8 (8.8%) 285 (42.8%) 3.1 (4.6%) 102 (153%) 66.6 (100%)
** p<0.01

Changes in cropland area
(km*/grid)

- <o
o
[Jo-400
[ 400 - 800
I > 800

Ao e

3,500

7,000 14,000 Kilometers
1 ] 1 ] 1 |

W

Fig. 4. Spatial distribution of changes in global cropland area during 1901-2010

563 to 1020 mg N m~2 yr~! during 1961-2010 (Fig. 3b) because of
immensely increased human activities (Galloway et al., 2003). The av-
erage nitrogen fertilizer use rate in global croplands has increased from
nearly 0 g N m~2 yr~! in the 1900s to approximately 8 g N m~2 yr~!
in the 2000s (Fig. 3c). Across the globe, Asia and Europe experienced
relatively higher increases in nitrogen fertilizer use while other regions
such as Africa have seen few increases. These changes were far from uni-
form, resulting in different problems among regions—excessive fertiliz-
ers were used in some regions, while insufficient nutrient inputs failed
to provide adequate food production in others (Board on Sustainable
development, Policy Division, National Research Council, 2000).

3.2. Global cropland SOC storage and its long-term changes

The DLEM-Ag simulated results show that significant long-term in-
creases in SOC storage across the global cropland have occurred over the
past 110 years (Table 3, Fig. 5) (Mann-Kendall trend test, p < 0.001).
Decadal mean SOC was 51.2 + 3.1 Pg C in the 1900s, which increased
more than two folds to 115.0 + 2.0 Pg C in the 2000s under the com-
bined influence of multiple environmental factors (Table 3, Fig. 6a).
Similar to the magnitude, mean SOC density increased by 48.8% from
4632 +163 g C m~2 yr~! in the 1900s to 6895+80 g C m~2-yr~! in the
2000s (Table 3).

3.2.1. Crop expansion and management practices impacts
Our results suggest that the cropland expansion has contributed
to 89.7% of the increase in SOC storage across the global croplands
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(Fig. 6b). To meet food demands for the growing human population,
cropland areas have significantly increased at the expense of natural
ecosystems such as shrublands and forests (Figs. 3c, 4). Cropland use
changes reflected the magnitude and spatio-temporal patterns of the
global cropland SOC storage. For instance, Asia, where cropland areas
increased by 258.1 Mha, accumulated 28.5 Pg C, equivalent to 42.8% of
increased cropland SOC storage during the study period. In contrast, in-
creased SOC was less than 6.0 Pg C in Australia and Africa over the 110
years although the SOC magnitude in the 2000s was 4-9-folds greater
than that in the 1900s. Our simulation results show that most global
cropland areas gained SOC during 1901-2010, with higher increases
(> 2.5 Tg C/grid) in India and Northern Europe. Some regions ex-
perienced cropland SOC loss during the study period, including the
Midwestern United States, Southern Europe, Northeast China, North-
west India, and Southeast Brazil. The spatial patterns of SOC change
(Fig. 5) appeared to coincide with those of cropland area change
(Fig. 4). The temporal variations in the SOC storage (Fig. 6) were
also in line with the changes in the cropland areas (Fig. 3c). For
example, rapid crop expansions caused sharp increases in SOC in
the 1950s, while the shrinkge in cropland resulted in a SOC re-
duction in the 2000s, particularly in North America and European
regions.

In the LMPs simulation experiment, we examined the relative im-
portance of land management practices by excluding effects of crop ex-
pansion and natural environmental factors. During 1901-2010, LMPs
contributed to 7.5% of the total increase in global cropland SOC. In-
terestingly, we found the overall effects of land management prac-
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a. SOC change during 1901-2010 Fig. 6. Temporal changes in global cropland soil organic
carbon (SOC) simulated by the DLEM-Ag model. Blackline
120 and light grey area represent simulated estimations of crop
SOC from different simulation experiments. The line repre-
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Fig. 7. Relative contributions (%) of climate, atmospheric CO,, nitrogen fertilizer, and land cover change to the total changes in crop soil organic carbon (SOC) at

the continental level

tices (e.g., harvesting, straw return, fertilization) led to a small de-
crease in SOC storage before the middle 1930s. This decrease might
be partially attributed to removed crop biomass and nutrients (e.g., ni-
trogen) during the harvest, which led to the insufficient biomass and
nutrient return to soils, thus lower crop production and further soil
degradation, especailly when the nitrogen fertilize use rate was much
lower than the current level. Since the late 1930s, the overall effects
of LMPs showed a rapidly positive contribution to SOC accumulation
as the nitrogen fertilizer use largely increased, particularly after the
early 1960s (Fig. 3c). These changes are consistent with previous stud-
ies, which show that nitrogen fertilizers enhance SOC storage by im-
proving crop productivity and residues (Banger et al., 2010; Han et al.,
2016; Mandal et al., 2007; Wang et al., 2017). In our model simula-
tions, C inputs through residue return were dynamically enhanced as
the harvest index and crop production increased during 1901-2010.
Using the RothC model, Wang et al. (2017) also reported that global
SOC density largely increased under different scenarios of crop residue
retention.

3.2.2. Atmospheric CO, concentration and climate change impacts

In the global croplands, elevated atmospheric CO, concentration has
sequestered C by 5.6 Pg C, accounting for 8.4% of the total increase
in cropland SOC storage (ranging from 5.4% to 9.3% at the continen-
tal scale) (Figs. 6b and 7b). The elevated CO, concentration stimu-
lates the plant photosynthesis, thus increases above and belowground
biomass (Jastrow et al., 2000; Morgan et al., 2004). A meta-analysis by
Jastrow et al. (2005) found that SOC storage increased by 5.6% over 2
to 9 years due to the higher belowground biomass return to the soils.
Our model results have provided global estimates of SOC storage due to
rising CO, concentration at a century time scale.

Our DLEM-Ag simulated results suggest that climate variability and
change (CLM experiment) reduced SOC storage by 2.2 Pg C during 1901-
2010, partially offsetting the benefits from the elevated CO, concentra-
tion. Regional-scale studies have shown that net primary productivity
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reduces with rising temperature and climatic extremes (Lobell and Gour-
dji, 2012; Lobell et al., 2011; Pan et al., 2014; Tian et al., 2016), result-
ing in decreased biomass that entered into the soil. Furthermore, higher
temperature increases soil respiration (Davidson and Janssens, 2006)
and thereby decreases the SOC storage. This warming-induced carbon
loss was evident in North Amercica, which experienced the rapid warm-
ing trend (0.015 °C yr~1) and largest decreases in the total SOC storage
(0.62 Pg C) during 1901-2010 as simulated in this study. Our simula-
tion results also indicate that drought played an important role in re-
ducing SOC storage during the study period. For example, in contrast to
other continents, Australia and Africa saw decreasing trends in annual
precipitations and experienced larger reductions in SOC density under
the CLM simulation experiment, with approximately 969 g m~2 and
447 ¢ m~2 C loss, respectively.

Through assessing the overall SOC dynamics in the context of multi-
ple global changes (Table 2) and quantifying the relative contributions
of the major factors (Fig. 7), this study indicates that the vulnerabil-
ity of cropland soils to climate change might have been obscured by
intensive management pracitces (e.g., nitrogen fertilizer use) in some
regions. For example, historical climate change caused a large reduc-
tion in SOC storage in North America (NA) since the 1950s (Fig. 7a),
while increased nitrogen fertilizer use rates largely offset the nega-
tive effects of climate change (Fig. 7c). On the other side, this study
suggests that further climate change (e.g., temperature and precipita-
tion) would greatly weaken soil carbon sequestration if no appropri-
ate land management practices and other adaptation strategies were
applied to improve climate resilience and soil health. For example,
in Africa, insufficient nitrogen fertilizer inputs exhibited a relatively
lower contribution to the SOC storage while climate change signif-
icantly enhanced soil C losses (Fig. 7a, c¢). Applying more fertilizer
(e.g., nitrogen and phosphorus) might serve as one of the potential
climate adaption strategies for increasing crop production and crop
residue and accordingly enhancing SOC storage in Africa. However, this
strategy should be used with caution to avoid potential environmental
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problems, such as eutrophication, soil acidification, and atmospheric
pollution.

4. Uncertainty and Future Needs

To our best understanding, this study offers the first attempt to report
on the century-scale SOC dynamics in global cropland using a process-
based agroecosystem model. Our results provide an understanding of the
relative importance of the major environmental factors, such as climate
and land-use change in controlling long-term trend and spatial variabil-
ity in cropland SOC. The simulated total cropland SOC falls within the
reasonable ranges of existing estimates from inventory-based, process-
based model, and empirical approaches. We acknowledge that, how-
ever, some uncertainties exist in input data sets and model parameteri-
zation, which need to be addressed in future research. For example, our
land use and land cover maps cannot reflect some recent cropland use
change (such as cropland losses due to reforestation in China), which
potentially over-estimated total SOC. We greatly simplified land man-
agement practices without the consideration of some traditional and in-
novative agronomic practices (e.g., manure application and cover crops)
and natural disturbances (e.g., pest outbreaks). We also simply assumed
that nitrogen fertilizer use during the growing season remains the same
daily input rate, which influences the C assimilation, allocation, input
into, and loss from soils due to the carbon-nitrogen interactions. In ad-
dition, we did not consider changes in crop varieties limited by spatially
explicit datasets, which brought uncertainties into crop yield and SOC
simulations. These factors do affect SOC through changing the physical
environment and altering the plant growth and C, water, and nutrient
cycles that occur daily, seasonally and inter-annually, and thus have
enormous century-scale biological consequences. Therefore, more crop-
land management practices (including those for future climate adapta-
tion and mitigation) are needed to be integrated into the assessment
of cropland SOC dynamics. To accurately evaluate and predict crop-
land soil C dynamics, we calls for an integrated system framework that
considers feedbacks and interactions within and beyond agroecosystems
(e.g., legacy impacts on SOC due to land conversions between natural
systems and croplands). In the context of multiple global changes, an
assessment of soil C dynamics should consider the interplay of changes
in environmental, socio-economic, and political processes at local, na-
tional, and international levels.

5. Conclusions

Process-based agroecosystem models offer an effective tool to quanti-
tatively understand SOC dynamics in croplands as influenced by natural
and anthropogenic factors at diverse space and time scales. Our study
demonstrates that the DLEM-Ag model is capable of simulating the mag-
nitude and spatiotemporal patterns of SOC storage in global croplands,
and quantifying the relative contributions of multiple influencing fac-
tors. The simulated increases in the total cropland SOC were mainly
attributed to the rapid expansion of cropland during the study period.
Land management practices such as the nitrogen fertilizer use have en-
hanced the SOC density over the past 20 century. While climate change
led to a reduction of approximately 3.2% (or 2,166 Tg C) in global crop-
land SOC. In spite of uncertainties above-mentioned, the century-scale
responses of soil C dynamics to climate change and human activities are
helpful for further understanding of SOC’s vulnerability and resilience
to climate change in the context of global changes. The findings provide
a quantitative view of global patterns and controls of SOC dynamics in
croplands. The estimated increases in SOC due to nitrogen fertilizer use
illustrate that climate resilience could be promoted by improving nu-
trient use efficiency and choosing appropriate management practices.
Due to highly heterogeneous climatic and soil conditions, diverse crop-
ping systems, optimizing management practices for building a climate-
resilience system is highly region-specific. We, therefore, call for further
site-level controlled experiments and modeling studies into this issue.
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