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Abstract—Photovoltaic (PV) systems are becoming more vul-
nerable to cyber threats. In response to this emerging concern,
developing cyber-secure power electronics converters has received
increased attention from the IEEE power electronics society
(PELS) that recently launched a cyber-physical-security initiative.
This paper proposes a deep sequence learning-based diagnosis
solution for data integrity attacks on PV systems in smart grids,
including DC/DC and DC/AC converters. The multilayer long
short-term memory networks (MLSTM) are used to leverage
time-series electric waveform data from current and voltage
sensors in PV systems. The proposed method has been evaluated
in a PV smart grid benchmark model with extensive quantitative
analysis. For comparison, we have evaluated classic data-driven
methods, including K-nearest neighbor (KNN), decision tree
(DT), support vector machine (SVM), artificial neural network
(ANN), and convolutional neural network (CNN). Comparison
results verify performances of the proposed method for detection
and diagnosis of various data integrity attacks on PV systems.

Index Terms—solar inverter, smart grids, data integrity attack,
machine learning, deep learning

I. INTRODUCTION

POWER grids have become more vulnerable to cyber
threats than before [1]. In response to this emerging

concern, developing cyber-secure power electronics convert-
ers has received increased attention from the IEEE power
electronics society (PELS) that recently launched a cyber-
physical-security initiative. There are two main reasons: First,
to improve the operation efficiency and eliminate human inter-
vention, the power grid has been more and more connected,
resulting in increasing challenges in reliability, security and
stability. Second, a significantly increasing amount of dis-
tributed energy resources (DERs), such as solar photovoltaic
(PV) [2], that are typically power electronics converters are
being incorporated into smart grids.
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Data integrity attacks (DIA) attempt to insert or alter data
to mislead the victim systems to make wrong decisions [3]. A
considerable amount of literature works have been conducted
in providing analysis of DIA on legacy power systems, such
as DC microgrids [4], smart grids [5], etc.

To mitigate the vulnerability, model-based and data-driven
methods have been proposed [6]. However, model-based meth-
ods that rely on the accurate mathematical models of the
healthy systems are hard to be used in real applications
because of an unavoidable model-reality mismatch for the
complexity of power electronics-based smart grids. Data-
driven methods, on the other hand, employing measured
data without an explicit mathematical model, are currently
receiving attentions [7], [8]. To date, the grid security heavily
focuses on the system-level, and almost neglects the device-
level, particularly power electronics converters, which has
not been well addressed [9]. In our previous work [10], we
detected and diagnosed a variety of cyber-physical threats for
distribution systems with PV farms, including cyber attacks on
the solar inverter controller, cyber attacks on relays/switches,
and other faults (e.g., short circuit faults).

Here, we propose a data-driven deep sequence learning
method for automatic DIA diagnosis of smart grids with PVs.
Unlike our previous approach, we propose to use only one
voltage sensor and one current sensor at the point of common
coupling for PV systems to detect and diagnose more than
3000 cases of cyber attacks on DC/DC and DC/AC converters.
Here, we assume that the waveform sensor at the point of
common coupling (PCC) is secure and trustworthy. In real
applications, its communication channel can be encrypted to
ensure the security of waveform data. We propose to use mul-
tilayer long short-term memory (MLSTM) networks [11] to
handle intrinsic sequential characteristics of streaming sensor
data. Five data-driven methods are engaged as comparison
methods, which are K-nearest neighbor (KNN), decision tree
(DT), support vector machine (SVM), artificial neural network
(ANN), and convolutional neural network (CNN). Our contri-
butions can be summarized as follows:

• This is one of the first attempts to analyze the data
integrity attack impacts on solar farms using electrical
waveform data at PCC. We propose a well-suitable deep
learning strategy to solve the issue.

• We propose a novel deep learning framework to tackle a
variety of DIA on DC/DC and DC/AC converters in PV
systems (over 3000 attack scenarios);

• Both attack detection and diagnosis have been developed,
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Fig. 1: (a) Cyber attacks to a solar farm in a power grid; (b) Proposed data integrity attack detection and diagnosis workflow.
The streaming data are acquired from the waveform sensor annotated in (a); (c) Cyber-physical models of PV systems.

leading to sensitive attack awareness as well as accurate
attack type and seriousness analysis.

II. DATA INTEGRITY ATTACK DETECTION AND DIAGNOSIS

DIA disrupt the system by manipulating data or introducing
corruption. Attacks are assumed to happen between the end
devices (or sensors) and the control center, e.g., smart grid
measurement data can be attacked in conjunction with the
solar panel measurement data, as shown in Fig. 1(a). DIA
are usually defined as mixing the original data/measurements
vector with a malicious vector [4], [5]:

Z = α ∗W + Z0, (1)

where, Z is the compromised data vector that is eventually
used by the system, Z0 is the true measurement, W is a
general compromised data vector which can be independent or
determined by Z0, α is a multiplicative factor that defines the
weight of the attack vector. The proposed attack detection and
diagnosis workflow aims to achieve a real-time and effective
attack detection as well as identify the attack types and
seriousness when an attack occurs based on monitoring the
electric waveforms of the smart grid, as shown in Fig. 1(b).

A. Problem Formulation

The smart grid measurement at a certain time point is
influenced by the states of its previous time points. The electric
waveform is recorded for every time interval, which can be
represented using a time series model:

x(t) = G(x(t− δt), x(t− δt), . . .) + ε(t), (2)

where x(t) is the sensor reading at time t, G denotes the func-
tion that correlates the previous data samples to the present
x(t), δt is the system time interval, which is 1 ms in our
study, since 1 kHz sampling rate is adopted. In addition, ε(t)
is the residual error, defined as, ε(t) = F(λ1, λ2, . . .) + ε(t),
where, without losing generality, F is a function describing
controlling factors λk, which in our study indicate the critical
variables in the DC/DC and DC/AC controllers, ε is the
random noise with a zero mean.

B. Attack Detection Model

There are various states of PV systems, including the normal
state and under-attack states with various attack types. Because
it is difficult to accurately detect and identify various types of

attacks simultaneously, we propose to first focus on detecting
whether the PV system is under attack or not. We apply
the one-class detection as the attack detection model, which
has been widely applied for outlier detection to accurately
classify the normal and under-attack states [12]. Training one-
class detection model only requires normal data, which is an
advantage for a potentially large number of attacks.

Our proposed detection model is expressed as g(x(t)) =
sgn (G∗(x(t))− ρ), where x(t) denotes a vector of time series
of smart grid sensor data from t − L to t. G∗ is the trained
one-class model. ρ is the detection error threshold (DET), so
if the prediction error is larger than DET, it may indicate an

anomaly. And as a sign function, sgn(α) :=

{
1 if α > 0,

−1 if α < 0.
.

C. Attack Diagnosis Model

The attack identification is actually a classification model
based on a multi-classification model to identify attack types.
Nevertheless, the seriousness of the same type of attack is
also important, but has not been well explored. In addition,
the cross-entropy loss function often in practice means a
cross-entropy loss function for classification problems and a
mean squared error loss function for regression problems [13].
Therefore, to analyze not only the attack types but also the
seriousness, we propose a cross-entropy loss between the
empirical distribution defined by the training set and the
probability distribution defined by the model, following

J(θ) = −Ex,y∼p̂data log pmodel(y|x). (3)

D. Multilayer LSTM based Deep Sequence Learning

Since we try to model electric waveform data which have
complicated non-linear temporal characteristics, we leverage
the LSTM model. The structure of recurrent neural network
(RNN) utilizes the information memory at the previous time to
apply to the current sequence data prediction. However, RNN
training long sequences in a multi-layer network will generate
gradient disappearance and explosion [14]. While LSTM uses
the guided gates for selectivity, remembering both short and
long-term behaviors across many time series, which effectively
solves the problem of gradient diffusion and explosion. Fig. 2
shows the proposed MLSTM architecture, which not only
remembers sequential information but also carries out more
rigorous screening of time information. So we can generalize
the behavior complexity of the PV system without a huge
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dataset. Specifically, hyberparameters for MLSTM models are
batch size = 128, learning rate = 0.001, hidden size = 32,
optimizer = Adam, number of layers = 2 (detection) / 5
(diagnosis) , which are obtained through experiments and
trials. Note that CNN shares most of the hyperparameters of
MLSTM in our study.

Fig. 2: Proposed multilayer LSTM architecture.

III. CYBER ATTACK MODELING FOR PV SYSTEMS

To evaluate the proposed method, we simulate comprehen-
sive cyber attacks using a benchmark PV solar farm model,
which has been used in our previous work [10]. The main
power grid is modeled as an ideal voltage source, and the
load is linear. One rate voltage of 260V /25kV , 400kVA,
transformer connects the PV farm, which includes four DC/DC
converters and one DC/AC inverter, to the power grid. The
topology of one converter circuit is shown in Fig. 1(c).

Fig. 3: Electric waveforms (voltage and current) simulations
of a DC/AC controller attack.

Here, cyber attacks on the DC/DC controller sensor only
change the current and voltage of the PV panel. Following the
DIA model in Eq. (1), αV and αI represent fake measurement
coefficient of voltage and current in the PV panel. (αV , αI) ∈
[(0, 0), (2, 3), (2, 0.3), (0.5, 3), (0.5, 0.3)]. For the DC/AC con-
troller, the cyber attacks inject a time delay into sensor
feedback, tdelay ∈ [0, 4ms, 6ms, 8ms, 10ms, 12ms, 14ms].
Considering the uncertainty of cyber attacks, the attacks hap-
pened at different time are simulated in our model, such as
phase angles 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦. Besides, to
test the robustness of the proposed method towards different
conditions, we also consider the irradiation impact on the
power generation. The irradiation on the PV panel varies in
range of 900, 941, 967, 988, 1000 w/m2. Thus, more than
3,900 training samples are simulated. The waveform at the
point of common coupling is obtained to verify our proposed
method. The sampling frequency is 1 kHz, and 0.7 seconds(s)
data are captured for each scenario, which have 701 samples.

Fig. 3 demonstrates a DC/AC controller attack simulation,
where both voltage and current show obvious distortions. Be-
cause of various attack seriousness parameters, DIA result in
not only strong anomalies but also minor waveform distortions,
which makes the attack detection and diagnosis challenging.

IV. EVALUATION

A. Comparison Models

To validate the performances of the proposed MLSTM
method, classic machine learning and deep learning models,
such as KNN, SVM, DT, ANN, and CNN, are compared,
which are powerful data-driven methods with a wide range
of applications [13]. For the machine learning models, data
features, such as frequency, amplitude, phase angle (because
of AC waveform), spectrum properties, are extracted. For deep
learning models, data streams are managed to be fed into
models. We implemented them through Pytorch (1.3.1) [15]
and Sklearn (0.22.1) [16] on a Ubuntu 16.04 server (CPU: i7-
6850K, 3.60 GHz, RAM 64GB) armed with GPU (GeForce
GTX 1080 Ti). For the validation purpose, we utilize a 10-fold
randomized cross-validation with 80% training data and 20%
testing data for the model training. To quantitatively evaluate
method performances, we employ accuracy, precision, recall
and F1 score, which are obtained from the confusion matrix
for detection and classification evaluation [17]. And we adopt
an offline training and online testing strategy.

Testing
Training

Testing
Training

(a) (b)

Fig. 4: (a) CNN and (b) MLSTM loss curves in the attack
diagnosis with window length 100 (0.1 s).

B. Attack Detection Performance Evaluation

In the attack detection stage, all data-driven models are
trained under the one-class model structure, which is simple
with efficient computations. So, the attack detection model
has ensured its applicability in practice and thus achieves
a real-time manner. Table I shows the evaluation metrics:
accuracy, recall, precision, and F1 score. In addition, in order
to further characterize the model sensitivity, we also test the
analysis window with different window lengths. It is clear
that the proposed MLSTM achieves the best performances in
terms of all metrics, with only 2 layers. SVM cannot achieve
good performance, maybe because the data structure is too
complicated. KNN and DT show acceptable performances,
but not as good as CNN and MLSTM. Due to the shallow
model depth, ANN does not show ideal performances, while
CNN achieves very good performances also only with 2
layers. Compared with CNN, MLSTM achieves high detection
accuracy even when the window size is 50 (0.05 s), and with
longer analysis window length, MLSTM can even do better.
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TABLE I: Detection performance evaluation using metrics (Accuracy, F1, recall and precision).

Window Size 50 80 100 140 160 200
SVM 0.79/0.47/0.31/0.96 0.77/0.43/0.28/0.97 0.75/0.42/0.27/0.96 0.71/0.36/0.22/0.96 0.69/0.36/0.22/0.97 0.67/0.34/0.21/0.98
KNN 0.90/0.83/0.83/0.84 0.91/0.85/0.86/0.85 0.91/0.87/0.87/0.87 0.90/0.87/0.87/0.87 0.89/0.86/0.87/0.86 0.88/0.86/0.85/0.87
DT 0.92/0.86/0.81/0.92 0.92/0.86/0.82/0.92 0.91/0.87/0.86/0.88 0.91/0.89/0.91/0.87 0.93/0.91/0.92/0.91 0.93/0.92/0.94/0.89

ANN 0.85/0.85/0.81/0.85 0.91/0.91/0.90/0.91 0.91/0.91/0.90/0.91 0.85/0.85/0.85/0.86 0.82/0.82/0.80/0.82 0.75/0.73/0.70/0.78
CNN 0.93/0.93/0.91/0.93 0.97/0.97/0.97/0.97 0.97/0.97/0.97/0.97 0.94/0.94/0.93/0.94 0.95/0.95/0.95/0.95 0.97/0.97/0.97/0.97

MLSTM 0.97/0.97/0.96/0.97 0.98/0.98/0.97/0.98 0.98/0.98/0.97/0.98 0.97/0.97/0.97/0.97 0.97/0.97/0.96/0.97 0.98/0.98/0.98/0.98

TABLE II: Diagnosis performance evaluation using metrics (Accuracy, F1, recall and precision).

Window Size 50 80 100 140 160 200
SVM 0.95/0.12/0.11/0.12 0.94/0.03/0.02/0.09 0.95/0.11/0.11/0.12 0.93/0.01/0.01/0.11 0.93/0.01/0.01/0.14 0.93/0.08/0.08/0.08
KNN 0.95/0.02/0.02/0.02 0.94/0.01/0.01/0.01 0.95/0.02/0.01/0.02 0.93/0.01/0.01/0.02 0.93/0.01/0.01/0.01 0.92/0.01/0.01/0.01
DT 0.95/0.12/0.12/0.12 0.95/0.06/0.05/0.06 0.95/0.12/0.12/0.12 0.93/0.04/0.03/0.04 0.93/0.04/0.03/0.05 0.93/0.06/0.06/0.06

ANN 0.95/0.10/0.09/0.10 0.95/0.09/0.08/0.10 0.96/0.11/0.11/0.11 0.94/0.06/0.03/0.13 0.94/0.06/0.05/0.08 0.93/0.12/0.12/0.12
CNN 0.91/0.83/0.83/0.84 0.95/0.90/0.87/0.93 0.95/0.94/0.91/0.97 0.95/0.92/0.90/0.95 0.96/0.93/0.90/0.96 0.97/0.96/0.96/0.96

MLSTM 0.97/0.93/0.90/0.96 0.97/0.94/0.93/0.96 0.98/0.95/0.92/0.97 0.96/0.92/0.91/0.94 0.96/0.93/0.90/0.96 0.98/0.97/0.96/0.97

C. Attack Diagnosis Performance Evaluation

Different from attack detection where only normal and
abnormal data are labeled, attack diagnosis requires more
detailed data analysis. Because of the data unbalance that
normal condition has a large amount of available data while
each attach scenario only has limited available data, accuracies
of all data-driven models are high, but some have really bad
recall, precision and F1 scores, as listed in Table II. However,
MLSTM and CNN still show the advantages of deep learning
models even with 5 layers. Besides the slightly better per-
formances in terms of metrics compared with CNN, MLSTM
actually has another advantage. Fig. 4 displays the training and
testing performances of CNN and MLSTM with the same anal-
ysis window length. MLSTM shows a smoother loss curve,
which means it potentially has better model robustness and
stable performances. Notice that MLSTM demonstrates the
best performances when the analysis window size is 80 or 100.
Although the metrics achieved another peaks with window size
200, that would be clearly overfitting on interferences.

V. CONCLUSION

We propose a cyber security mechanism by combining a
one-class detection model and an attack diagnosis model,
which are tailored for electric waveform profiles of a solar
PV smart grid for real-time attack detection and identification.
First, an analysis was conducted on DIA on the smart grid
with solar PV farm embedded. Then, an MLSTM based
comprehensive approach was developed. We apply the one-
class detection model to detect whether a PV farm is under
attack or not. When it is detected to be under attack, we
identify the attack type by leveraging the attack diagnosis
model. The proposed mechanism has been evaluated using
a MATLAB Simulink solar farm model, and achieves much
improved attack detection and diagnosis performances.
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