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Abstract—The proliferation of electric vehicles (EVs) brings
environmental benefits and technical challenges to power grids.
An identification algorithm which can accurately extract indi-
vidual EV charging profiles out of widely available smart meter
measurements has attracted great interests. This paper proposes
a non-intrusive identification framework for EV charging profile
extraction, which is driven by deep generative models (DGM).
First, the proposed DGM is designed as a representation layer
embedded into the Markov process and used to model the joint
probability distribution of available time-series data. A novel
contribution is to approximate posterior distributions by neural
networks whose parameters are obtained by variational inference
and supervised learning. Second, the EV charging status is
inferred from the DGM via dynamic programming. Lastly, the
desired EV charging profile can be reconstructed by the rated
power of EV models and inferred status. Compared with the
benchmark Hidden Markov Models, the proposed framework can
better handle noise in data with less computational complexity
and better overall accuracy performances with smaller recall.
The proposed framework is validated by numerical experiments
on the Pecan Street dataset.

Index Terms—electric vehicles charging, energy disaggrega-
tion, load modeling, deep learning, statistical inference

NOMENCLATURE
T prior probability vector of initial EV charging status
e probability of initial EV charging status being
w;‘ estimated T;
1;; indicator function
A probability transition matrix
Ajj probability of EV charging status transits from ¢ to j
A% estimated A;;
N number of labeled data
Ny minibatch size

P EV charging profile

probability distribution of EV charging status at ¢
P, charging power of an EV charging profile P at ¢
T aggregate power consumption profile by AMIs
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Ty value of x at time ¢

Yt EV charging status at ¢

y§”) EV charging status of the n-th labeled data at ¢

z layer to represent the aggregate power consumption.

I. INTRODUCTION

The worldwide electricity demand profile is experiencing
a paradigm shift with increasing penetration of electrified
transportation. In the U.S., it is expected that transportation
electrification will drive domestic electricity demand rise
through 2050 [1], by when over 2.3 million new light-duty
electric vehicles (EVs) will be sold annually [2]. Across the
globe, many major economies have announced their intentions
to end the sale of internal combustion engine vehicles [3]
within several decades. The impact of high volume of EVs
on power grids has been extensively studied in literature [4].
In general, EVs have been considered as active loads which
could provide flexibility in terms of grid services [5] through
vehicle-to-grid (V2G) modes [6] or transactive controls [7].

In the literature, aggregated EV charging demands are mod-
eled as a stochastic part of the overall load model. However,
the uncertainty in individual EV charging profiles (i.e., start
charging time, initial state-of-charge (SOC), charging power,
and charging duration) [8] and traffic conditions [9] makes it
difficult to accurately derive real-time EV charging demand
models under various scenarios. Therefore, probabilistic dis-
tributions are typically assumed. In [10] and [11], the charging
start time is represented by the normal distribution. Similar,
a truncated normal distribution is suggested to represent the
arriving time and parking time at commercial buildings [12]
for EV charging duration. Furthermore, in [13], EV charging
duration is assumed to be exponentially distributed. Moreover,
the initial SOC is modeled as a random variable under log-
normal distribution [8]. However, it is questionable whether
these assumptions from locational models can be used in other
regions. For example, charging start times in rural residential,
urban residential, and commercial districts at different seasons
are unlikely to be the same. Therefore, in recent years, pilot
projects have been carried out globally to collect and analyze
EV charging profiles in the Netherlands [14], U.K. [15],
Australia [16], and California [17].

However, most of the historical data is only small-scale
and sampled at commercial charging stations. For residential
applications, it is costly to (intrusively) install additional
sampling devices into existing residential EV chargers and
(more importantly) unrealistic to sample and communicate
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EV charging information to system operators, another recent
research effort [18]—[22] focuses on utilizing widely-available
smart meter data to non-intrusively, locally, and reliably esti-
mate EV charging profiles in real-time to preserve privacy and
avoid unnecessary investment in additional infrastructure.

To conclude above discussions, it is of great interests for
system operators and planners to extract EV charging profiles
from smart meter data in a non-intrusive manner such that
1) unrealistic and uncertain assumptions (as pointed out in
the above discussions) can be alleviated; and 2) EV charging
profiles can be accurately extracted in real-time to support both
short-term system operations and long-term planning.

To our best knowledge, reference [19] is probably the first
to adopt non-intrusive load monitoring (NILM) and apply
benchmark algorithms such as the Hidden Markov Models
(HMMs) [23] to detect events and disaggregate EV charging
profiles from low-frequency smart meter readings. Reference
[20] presents an unsupervised algorithm to extract EV charging
loads non-intrusively from the smart meter data using indepen-
dent component analysis. Reference [21] aims at identifying
EV models to determine charging power. Finally, reference
[22] proposes a training-free non-intrusive algorithm based
on bounding-box fitting and load signatures. To summarize,
HMMs are probably the most popular identification models,
which are relatively easy to train but require detailed prior in-
formation of all appliances in the aggregated power consump-
tion profiles (and thus cannot tackle unknown appliances).
Moreover, computational complexity of an exact inference in
HMMs grows exponentially with the sequence lengths and
the number of appliances. Therefore, it is desired to design an
algorithm to mitigate the aforementioned issues.

This paper retains the Markov property in HMMs but only
utilizes one Markov chain to involve only the aggregated
and partial EV charging data points as known information.
Without involving other appliances’ power consumption data,
the computational complexity of an exact inference is greatly
reduced. Specifically, this paper proposes a deep generative
model (DGM)-driven inference framework for non-intrusive,
real-time identification of EV charging profiles. Firstly, the
joint probability distribution for available smart meter data
(which can actually be considered as time series) is modeled
by deep generative models (DGMs). A novel contribution
by this paper is to approximate posterior distributions by
neural networks whose parameters are obtained by variational
inference and supervised learning. Secondly, the EV charging
status is inferred from DGMs via dynamic programming.
Finally, the target EV charging profile can be reconstructed
according to the rated power of EV models and inferred status.

The main contributions of this paper are listed as follows.

o Compared to the existing literature in which most works
need to manually define features, the proposed DGM
with convolutional neural layers can automatically ex-
tract features and represent highly nonlinear features of
aggregated power consumption profile with less weights.

o Compared to the existing literature in which assumptions
on prior knowledge are typically made, the proposed
framework makes full use of smart meter data to extract
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Fig. 1. Overview of EV charging profile identification. (a): a sample
aggregated power consumption profile; (b): its corresponding EV charging
status (charging started at ¢s and ended at t.); and (c) its corresponding EV
charging profile.

EV charging profiles without any need of prior knowledge
in other appliances being used at the same time as EVs.
o Two different schemes with both transfer and non-transfer
learning settings have been studied, and results show
that the proposed framework possesses good robustness
against noise and error in data as well as generalization
capability to unseen data.
The remainder of this paper is organized as follows. Section
II defines the EV charging profile identification problem
considered in this paper and then formulates it with in the
architecture of NILM. Next, Section III reviews the framework
of HMM, which will be used as a benchmark algorithm.
Furthermore, Section IV proposes a DGM to model the joint
probability distribution of the available aggregated consump-
tion data, of which parameters are obtained by variational
inference and supervised learning. Section V utilizes dynamic
programming to perform exact inference of the DGM for the
EV charging status. Moreover, Section VI discusses numerical
validation setup and results. Finally, Section VII presents
conclusions and future work.

II. PROBLEM FORMULATION

The EV charging profile identification problem considered
in this paper is presented in Fig. 1, in which a sample
aggregated power consumption profile is shown in Fig. 1(a),
with its corresponding EV charging profile shown in Fig. 1(c).
Furthermore, Fig. 1(b) shows the corresponding EV charging
status (charging started at time t5 and ended at time t.).

A. Definitions

Given an aggregated power consumption profile x =
(x1,...,z7), ie., a timed sequence of a total of T power
consumption data points, determine its corresponding EV
charging profile P (or P(x) if the source power consumption
profile x is relevant). Note that the power consumption profile
is called aggregated as most smart meters measure the power
consumption of the whole household and thus include all
loads (i.e., aggregated). An EV charging profile is thus a
timed sequence (of the same length T") of EV charging power
consumption data points. In other words, the value P; of P at
time step ¢ denotes the amount of power by EV charging.
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Moreover, at time step ¢, the charging status y; of an EV
is binary, i.e., either ON (i.e., y; = 1 if P, is greater than
a pre-defined threshold P;,) or OFF (y; = 0 otherwise).
Furthermore, the probability of an EV at its y, is denoted
by p(y:). When y; = 1, p(y: = 1) = 1 and p(y; = 0) = 0.
When y; = 0, p(y; = 1) = 0 and p(y; = 0) = 1.

B. EV Charging Profile Identification as NILM

The objective of the EV charging profile identification
problem considered in this paper is to determine EV charging
profile P given aggregated power consumption profile z.
Therefore, the scope of this work falls within the framework of
a NILM problem. Most techniques used for NILM problems
in the literature consist of two sub-tasks: 1) classification and
2) reconstruction. The former task aims at classifying the load
operation status into known categories, and the latter task is
to reconstruct load consumption profiles using classification
results. For example, if the first task returns that the charging
status of a certain model of EV at time step ¢ is classified to
be ON (i.e., y; = 1) with rated power consumption around 6.7
kW (i.e., P, = 6.7), then the latter task would focus on re-
constructing its corresponding EV charging profile. Therefore,
this paper follows [21], [24] to assume that EV charging power
level and corresponding models can be identified separately
and mainly focuses on EV charging status classification and
converts the EV charging profile identification problem into a
binary EV charging status classification task.

Therefore, the EV charging profile identification problem
this paper aims to solve can be formulated as follows: given
an aggregated power consumption profile z = (z1,...,27),
determine y; of an EV at each time step t = 1,...,T. The
general procedure of how the proposed EV charging profile
identification problem is studied in this paper is presented in
Fig. 2. First of all, each generative process for time-series
data is modeled by a joint probability distribution in Step 1.
Secondly, each component (e.g., evidence and transition prob-
abilities) in the joint distribution from Step 1 is approximated
by a common parametric density function in Step 2. Thirdly,
parameters of the density function (in the joint distribution)
from Step 2 are learned by maximum likelihood estimation
in Step 3. Finally, the above-defined identification problem is
converted to a Bayesian inference process by the proposed
DGM in Step 4. The above steps are further specified in
Sections IV and V.

III. BENCHMARK ALGORITHM: HMMS

Hidden Markov Models (HMMs) are a widely acknowl-
edged tool for modeling time series, which have been utilized
for the EV charging profile identification problem in the
following manner. Given the aggregated power consumption
profiles and their corresponding EV charging profiles, their
joint probability distribution can be modeled by a standard
HMM [25]. The graphical illustration of such an HMM is
given by Fig. 3, in which an aggregated power consumption
profile x = (x1,...,xr) and its corresponding EV charging
status profile y = (y1, ..., yr) (depicted by nodes) are modeled
as random variables. Under this model, the aggregated power
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consumption at each step x; only depends on some unobserved
or latent EV charging status y;, which are depicted by direct
edges. Therefore, the former can be generated/emitted by the
latter. This conditional generative process can be modeled by
p(x¢|ye, 0), which is typically known as emission probability
[25]. The Markovianity is defined such that y, only depends
on y;_1. Note that the bottom representation layer (shown in
blue) in Fig. 3 is the proposed model, which will be discussed
in the next section.

Such an HMM can model the following joint probability
distribution reflecting the generative process of the time series
z and y:

T

T
p(.yl9) = pun|m) [ [T pelvi—1, A [T] p(welye. 0)]

Prior t=2 t=1

Transition Probability Emission Probability

ey
where ¢ = {7, A,0} denotes parameters of HMMs, 7 is the
categorical distribution of the initial status, A is the status tran-
sition matrix, and 6 is the mean and deviation if the emission
probability is Gaussian, which can be obtained by counting
frequencies through supervised learning. With ¢ learned, the
EV charging status y can be inferred by maximizing the a
posteriori (MAP) p(y|z, ¢) which can be solved by the Viterbi
Algorithm [26, p. 629], which is a well-known method for
exact inference.

IV. THE PROPOSED DGM: REPRESENTATION AND
PARAMETER LEARNING

This section presents in details the proposed DGM-driven
framework, which simplifies the classification complexity us-
ing only a single (but enhanced) Markov chain and utilizes
deep neural networks to approximate posterior probability
distributions with weights trained via supervised learning.

A. Representation Layer Embedded Markov Chain

A major innovation of the proposed framework for EV
charging status classification is to embed a representation layer
(denoted by z) into the Markov chain. The z can be seen as
abstract but meaningful features from any aggregated power
consumption profile x. As shown in Fig. 5, the left figure
shows a standardized aggregated power consumption profile
x, and the right figure shows the value of the corresponding
representation layer z. The motivation behind the proposed
representation layer can be summarized as follows.

« Firstly, although a single Markov chain can classify EV
charging status, the representation capability by raw,
aggregated power consumption profiles (i.e., inputs) is
relatively weak due to similar and ambiguous features;

o Secondly, nonlinear dynamics in raw time-series inputs
might present higher non-stationary variances and thus
fail to provide useful features;

o Finally, the learned likelihood distributions p(x|y: = 0)
and p(x¢|ly: = 1) from raw inputs may have significant
overlaps, which could cause mis-classification issues in
later steps. As illustrated in Fig. 4, the learned (Gaussian
mixture) likelihood distributions for p(z:|y: = 0) and
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STEP1: Model the generative
process for time series data
(Section 1V, Subsection A)

STEP2: Parameterize each

STEP3: Learn parameters

part in the joint distribution
(Section 1V, Subsection B)

in the joint distribution
(Section 1V, Subsection C)

STEP4: Infer variables
from the learned model

(Section V)

Fig. 2. The general procedure of the proposed identification algorithm under the architecture of NILM can be divided into four steps.
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Fig. 3. Graphical illustration of how aggregated profiles and EV charging
profiles are represented by an HMM (black) vs. the proposed representation-
layer-embedded Markov model (blue), which introduces an additional layer
of representations.
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Fig. 5. Tllustration of a sample standardized aggregated power consumption
profile (left) and its corresponding representation layer (right).

p(z¢|yr = 1) are represented by the blue and red lines
respectively and overlap in the dash rectangle area.

The proposed representation-layer-embedded Markov
model is illustrated by Fig. 3, which depicts the generative
process of x and y with z (depicted by nodes) also modeled as
a random variable. Considered as measurements, x can always
be observed, while y can only be partially observed and z
always cannot be observed. Compared with the conventional
HMM which only contains the upper and middle layers, the
proposed representation-layer-embedded Markov model adds
a representation layer with the same nodes as the HMM but
without directed paths from y to x, which models likelihood

distributions p(x;|y;). Both methods generate the same z and
y from different perspectives. The HMM assumes that x can
be generated by or correlated with y. Moreover, the proposed
model assumes that the feature z can generate y (depicted by
directed edges). Generating such a z needs to have a powerful
feature extractor, which is one of reasons to use deep neural
networks.

The two directed edges connecting y;—1 to y; and z to y;
meet the Markov property, i.e., current charging status only
relies on the previous charging status and representation layer.
The advantage of adding a representation layer is to alleviate
the above-discussed likelihood distributions overlapping issue
(as shown in Fig. 4), i.e., the proposed model learns the
posterior distributions p(z|z) and p(y|z) = Hthl p(ye|z)
instead of all p(z;|y:), which will be studied in details in
later sections.

B. Probability Distribution Approximation in DGM

In this work, a DGM is developed based on the proposed
representation-layer-embedded Markov model with the follow-
ing characteristics:

1) Deep: using deep neural networks to approximate dis-

tributions;

2) Generative: taking x as input to generate z and then

using z to generate a sequence of y,, which can be ab-
stracted into the following joint probability distribution

p(z,y, 2[¢) =

T T
p(x) pnlm) [[[p(wlye-1, )] p(zlz,0) [T] p(welz,0)]
Evidence  Prior t=2 Posterior of z =1

Posterior of y
2
where ¢ = {m, A, 6} denotes parameters of the proposed
representation-layer-embedded Markov model.

The probability distributions in the right-hand side of (2)
are discussed in details as follows.

1) p(y1|m): 7 € [0,1]? is prior probability distribution of
the initial EV charging status, in which m; = p(y1 = i),
i1 € {0, 1}, represents the probability that initially an EV is at
charging status i. With N labelled initial 4\™ n =1,..., N,
m; can be estimated by

Transition Probability

N (n)
\ Zat W f =1
™, = TN 3)
1—7"11\1, 1 if i = 0.

2) p(yelyi—1,A): A € R?*2 is the probability transition

matrix, in which A;; represents the probability that the EV
charging status transits from ¢ at £ — 1 to j at ¢:

Aij = p(yt = j|yt,1 = ’L) where Z,] S {07 1} (4)
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With N labelled yt(n), n=1,...,N, A;; can be estimated by

N T n 4 (n .
A — D one1 D=2 ]-ij(yt( ) — J‘y,g,)l =) 5)
1] N(T — 1) ,
where 13(y: = -|y.—1 = -) is an indicator function whose

output is 1 if and only if yt(") = j and yﬁ)l =1.

3) p(z|x,0) and p(y¢|z,0): Recall that an abstract but
meaningful feature, z is always unobservable. Therefore, the
true posterior distribution of z given x is unknown. This
paper follows [27], [28] to assume that p(z|z, §) takes on an
approximate Gaussian form, i.e., a multivariate Gaussian with
a diagonal covariance, given as

log p(z|x,0) = log N(2|p. (x), 0% (2)T) ©)

where p,(2) and o, (z) are the mean and standard deviation of
z, respectively. Because y; is a binary variable, it is assumed
that y; follows a Bernoulli distribution

log p(ye|z, 0) = log(py, (2)¥ (1 — py, (2))' %) (D)

where p,, (2) is the mean of y;, which can also be interpreted
as the probability that an EV is at ON charging status given
z at t, ie., py,(2) = pyr = 1|z,0). Thus the p(y|z,0)
is a multivariate Bernoulli distribution that is a product of
Bernoulli distribution of each y;.

In this work, deep neural networks (DNNs) [29, Ch. 6 and 9]
are used to approximate p(z|x, ) and p(y:|z, ). Compared to
linear regression models, DNNs can better extract features in a
robust manner (against noise and error in data) and generalize
to new data. Moreover, recurrent layers are often used in
DNNs to process time-series data. However, recurrent layers
have difficulties in handling long sequences, such as sequences
more than 100 time steps [29, Ch. 10]. Therefore, instead
of recurrent layers, this paper utilizes fully connected (FC)
and convolutional neural network (CNN) layers. The former
layer is the weighted sum of inputs transformed by nonlinear
activations into outputs. The latter layer employs convolution
operations to extract nonlinear features [30]. The CNN layer
is demonstrated in Fig. 6, where

e ConvlD is a one-dimensional (1D) convolutional layer
applied to time series. Its parameters consist of a set of
learnable filters, which can capture features such as the
spatial structure (e.g., change points) and local informa-
tion (e.g., magnitudes) of input time series. During the
forward pass, each filter is convolved from the beginning
of a time series towards its end, computing the dot
product between the entries of the filter and the input
and producing a feature map of that filter. For instance,
an example time series 1,1,2, —1,1, —2,1 with a filter
1,0, —1 is given in Fig. 6. The convolution operation can
be considered as the dot product, e.g., the first output
—1 after the convolution operation can be calculated as
1x141x0+2x(—1) = —1. Note that the output
—1,2,1,1,0 after the convolution operation is called a
feature map.

o UpSamplinglD is an operation to upsample (i.e., re-
peat and resize) the feature map. For instance, given
a feature map —1,2,1,1,0 as shown in Fig. 6, the
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output after the upsampling operation with factor 2 is
-1,-1,2,2,1,1,1,1,0,0.

o MaxPoolinglD is an operation to reduce the input size
by taking the maximum value of sliding windows in the
original input. For instance, considering the feature map
—1,2,1,1,0, the output after MaxPoolinglD with size
3 can be calculated as 2,2, 1, where the corresponding
sliding windows are [—1,2,1], [2,1,1], and [1,1,0].

The above three operations can be performed with or with-
out overlaps and paddings, which would imply different final
output sizes. The complete network architecture and parameter
settings of the proposed DGM are shown in Table I, which
presents approximation actions of p(z|z,6) and p(y|z,6) in
each layer. The approximation of p(z|z,6) is carried out
by two convolutional layers with the same padding, two
pooling layers with stride size of 2, and a FC layer for p.(x)
and log o, (x)%. Moreover, the approximation of p(y|z,0) is
conducted by a FC layer, two upsampling layers, and two
convolutional layers with the same padding. Since p,, (z) is a
probability, the sigmoid function is selected to be the activation
of the last layer.

Compared with FC layers, the proposed DGM can benefit
from convolutional layers. On one hand, convolutional layers
can automatically capture useful features from local patterns.
As shown in Fig. 7, an one-dimensional convolutional layer
with 16 filters is applied to a sample aggregated power
consumption profile to illustrate this advantage. Each subplot
shows the identical power consumption profile (lines in black),
EV charging operation status (lines in red), and feature map
outcomes of one filter (lines in blue). Each trained filter aims
at extracting both the spatial structure (e.g., change points)
and local information from the input and providing feature
maps for its downstream layer. In this illustration, filters #3,
#4, #6, #7, #8, #12, #13, and #16 can effectively extract
feature maps that match the EV charging status change points
(step changes in red lines). The other filters also introduce
positive impacts, but not as strong as these ones. For different
inputs, in general there would be a different subset of filters
that perform dominating roles. On the other hand, convolu-
tional layers with weight sharing can reduce the number of
neural network weights and indirectly prevent overfitting.

Remark I: The number of weights in convolutional layers
depends on the product of the number and the size of con-
volution filters (e.g., 16 x 3), while the number of weights in
FC layers relies on the product of the input and output size
(e.g., 360 x 50). In general, the latter is much larger than the
former. Therefore, given the same number of layers, a DNN
with more convolution layers requires less weights.

Remark 2: Though it is generally true that recurrent layers
perform better in capturing temporal information than convo-
lutional layers, they tend to have difficulties in handling very
long time series. Some recent results [30], [31] have shown
that convolutional layers can achieve better performances than
recurrent layers in some applications. Moreover, this paper
utilizes convolutional layers for different purposes, such as
extracting spatial structures. As a result, the temporal infor-
mation is not processed in the neural network part of the
proposed model. However, since the proposed DGM retains
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Fig. 7. Visualization of feature maps extracted from convolutional layers with sixteen filters.

TABLE I
THE PROPOSED DGM ARCHITECTURE AND PARAMETER SETTINGS
Layer Name H p(z|z,0) H p(y|z,0)
Input 1440 50
Layerl Conv1lD,16,3,ReLU FC,360,ReLLU
Layer2 MaxPooling1D,2 UpSampling1D,2
Layer3 Convl1D,1,3,ReLU Conv1D,16,3,ReLU
Layer4 MaxPooling1D,2 UpSampling1D,2
Layer5 FC,50/50,- Convl1D,1,3,sigmoid

*ConvlD denotes 1D convolution layer followed by number and size of
filters and an activation layer; MaxPoolingID denotes 1D max pooling layer
followed by size of the max pooling windows; UpSamplinglD denotes
1D upsampling layer followed by upsampling factors; FC denotes a fully
connected layer followed by number of neurons and an activation layer

the Markov property of HMMs, the corresponding temporal
information is addressed by transition probabilities. In other
words, convolutional layers with Markov property is proposed
here as an alternative of recurrent layers for time series.

C. Supervised Learning in DGM

With labelled dataset (X, )), 6 in (6) and (7) can be deter-
mined by maximum likelihood [26]. The marginal distribution
of each (z,y) € (X,)) is obtained from the joint distribution
(2) by marginalizing over the latent variable z

log p(x, 416) = log / p(z,y,2|6)dz ®)

Maximizing (8) could lead to complicated expressions with
no closed-form solutions since 1) the integral of the marginal

distribution is intractable when p(z|z,0) and p(y|z,0) are
approximated by DNNs with nonlinear hidden layers and
2) batch optimization is costly for large amount of data.
Following recent advances in variational inference [32], the
proposed DGM can be trained by maximizing the evidence
lower bound (ELBO) under data distribution. A lower bound
L(0|x,y) on the marginal distribution of (z,y) is given by

T
= log p(x) +logp(y1) + Y _ log p(yelyr—1)
= ©)
T
+ Z Ez~p(z|x,9) [Ing(yt|Za 9)] ;

t=1

L(0]z,y)

with proof given in the Appendix. Therefore, the ELBO under
data distribution x,y ~ pgqte can be written as

‘C(0|X’ y) = Ervywpdata [E(o‘x’ y)} : (10)
Then (6) and (7) can be trained by
0" = argmin —L(0|X,)) (11)
0

Since z is stochastic and thus gradients cannot be backpropa-
gated, reparameterization is used to sample z, i.e., given x and
a unit Gaussian noise € ~ N(0,1), z = u.(z) + €0, (x). Note
that the noises injected into the representation layer enables
the proposed DGM to learn continuous feature representations.
Note that such a sampling process of z is similar to the
variational autoencoder (VAE) [27]. Therefore, in this paper
the number of samples z is set to be 1 with a large minibatch
size N, in accordance with the experimental setting in the
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VAE. Based on (6), (7), and (11), it can be concluded that

N, T
0" = argmin — >3y tog py, (2)

np=1t=1

(12)
+ (1= ™)) log(1 — gy, (20™))) + Loss

where z(™) =y, (x("))4-e(") g (£(7)) and (™) ~ N(0,T),
(™) and y(™) are the ny-th instance from minibatch, (")
is generated from z("), and y,g"h) is the t-th element of
y(™). From (12), it can be seen that the training objective is
to minimize the binary multi-label classification loss. In this
paper, p(z|z,0) and p(y|z, #) are both differentiable functions
containing different neural layers composed of multilayer
perceptrons, convolution, max-pooling, upsampling, Rectified
Linear Units (ReLU), and sigmoid. Therefore, the gradient-
descent based training methods Adam [33] is applied, which
is fairly insensitive to the choice of hyperparameters.

Furthermore, this paper utilizes the minibatch training, also
known as the minibatch gradient descent, which is a variation
of the gradient descent algorithm that splits the training
dataset into small batches. The implementation flowchart of
the minibatch training in DGM is shown in Fig. 8. For each
batch, the forward propagation first generates z and outputs
tty, (2), and then the back propagation calculates model loss
and update model weights.

V. THE PROPOSED DGM: EXACT INFERENCE

Once the proposed model is trained with ¢*, the next step is
to infer EV charging status y* given aggregated consumption
profile  via maximizing a posteriori (MAP), i.e.,

y* = argmax p(y|z, ¢*), (13)
Yy

which is approximated (with z sampled from p(z|x, 6*)) by

T T
y* = argmaxlogp(y1) + > _logp(yelye—1) + Y _ log p(ye2)
Yy

t=2

(14)

Note that y* in (14) can be further inferred via DP in two

stages. For forward induction, at each time step ¢, the first step
is to solve the following

Fe(t,ye) = min{ Fe(t — 1,y 1)~ log p(y:|2)
Yt—1 (15)

—log p(ye|ye—1)}

where F(t,y,;) is the optimal cost function over time steps ¢
and t — 1 given y;, and F(1,y1) = —logp(y1) —log p(y12).
An example is shown in Fig. 9 to demonstrate the calculation
of F.(t,y:), where the values on the nodes are the cost
(or values of the negative logarithm of posterior) and the
values on the directed edges are the cost of transporting a
unit from one node to the other (i.e., the negative logarithm
of transition probability). Therefore, the overall process of
forward induction is to find the minimum cost. Note that the
complexity of this implementation is O(47T).

For backward induction, the second step is solve the fol-
lowing and find the minimum cost route,

7

yi—y = argmin{Fe(t — 1,3—1)—log p(y;|2)
Yt—1

(16)
—logp(y; lyi—1)}

where y;. = argmin,  [F(T,yr). The complexity of this
implementation is O(2T'). Fig. 10 shows four typical inference
results corresponding to (a) once-charging , (b) twice-charging
in day and night, (c¢) twice-charging in two nights, and (d)
multiple-charging, respectively. It can be observed that the
measured and inferred EV charging status are almost identical,
which validates the effectiveness of the proposed framework.
The incorporation of p(y;) and p(yt|y:—1) into the graph
enables the model to consider the past events at the expense
of increased computational complexity of inference.

VI. NUMERIC RESULTS

In this section, the proposed algorithm is validated on the
Pecan Street dataset [34], which consists of measurement
of circuit-level household electricity consumption data from
nearly 1,000 homes across the U.S. Each such home have
eight extra channels to record power consumption by major
appliances such as HVAC, refrigerators, and EVs.

A. Experiment Setup and Evaluation Metrics

The DGM in this paper is trained using Adam with an epoch
of 20, a mini-batch size of 100, and a learning rate of 0.001.
All neuron weights are initialized using Glorot initialization
[35]. After data pre-cleaning with removal of bad data points,
the aggregated power consumption profiles and EV charging
profiles are then standardized and binarized, respectively. The
main program is executed on an Intel i7-7820X 8-Core CPU
while the training of the proposed DGM including the forward
and backward propagation is implemented on a TITAN Xp
GPU using TensorFlow as the computational framework. It is
observed that the loss of the model goes to convergence as the
epoch increases, as shown in Fig. 11. To evaluate performance
of the proposed algorithm, the following classification metrics
are employed,

TP + TN
Accuracy = ,
TP + TN + FP + FN
TP
Recall = ———
TP + FN
.. TP
Precision = —,
TP + FP
Fl — 2 X Precision x Recall

Precision + Recall
where

o TP is the true positive indicator, i.e., is the number of
cases where the DGM classifies the EV charging status
as ON and the actual status is indeed ON;

o TN is the true negative indicator, i.e., the number of cases
where the DGM classifies the EV charging status as OFF
and the actual status is indeed OFF;

o FP is the false positive indicator, i.e., the number of cases
where the DGM classifies the EV charging status as ON
but the actual status is OFF; and

1949-3053 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Georgia. Downloaded on September 01,2020 at 18:33:11 UTC from IEEE Xplore. Restrictions apply.



Set epoch,,x

[ Start

[ End

epoch < epochy,,,

Shuffle historical
data (X,Y)

I}
Sample minibatch {(x™b), y("b))}ﬁ:,’:1 from (X,Y)

|

Output means {uz(x("h))}gl?:l and

standard deviations {az(x("b))};v::l from p(z|x, 0)

Sample noises {s(""’)},’\l’l‘:=1 from N(0,I)

l

N . o
Generate {z(“b)}n:=1 using reparameterization

l

Output {p,, (z")}>_, for t = 1:T from p(y|z,6)

l

0 can be updated for (14) using the Adam Algorithm
|
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40

\ 4
/

1

1

1

]

1
Al

logp(s = Oly: = YK

1N

1

1

1

\
(F-+-*0O
=fog (v = Oly; = 0
t=1 t=2""""" o3 t=T

F¢(3,0) =min{F(2,0) — logp(y3 = 0|y, = 0),
Fc(2,1) —logp(y; = Olyz = 1)}—logp(y3 = 0|2)

Fig. 9. Example demonstration of how to calculate F.(¢t = 3,y: = 0) where
the red sign highlights the possible minimum cost paths (the directed edges)
from the last time step (f = 2) to the current time step (¢t = 3).

o FN is the false negative indicator, i.e., the number of
cases where the DGM classifies the EV charging status
as OFF but the actual status is ON.

B. EV Charging Status Classification

There are 93 houses with EV charging activities in the Pecan
Street dataset, with one data point per minute per house. With
each aggregated power consumption profile defined to be of 24
hours, i.e., daily profiles. In this work, both transfer-learning-
based and non-transfer-learning-based settings are utilized for
the purpose of comparison on performances. The difference
between these two settings is that for non-transfer learning,
the set of houses used in training is typically the same as
the set of houses used in testing. On the contrast, for transfer
learning, the set of houses used in testing is typically different
from those used in training, which is a powerful method to
check whether a certain model can “transfer” knowledge from
one dataset to another.

For the non-transfer learning setting, to reduce bias and
variance caused by the source data and better evaluate the
effectiveness of the proposed DGM, the five-fold cross-

validation (i.e., all available data is first shuffled and divided
into five subsets, and each trial takes one subset for testing
and the other four subsets for training) [26] is performed. As
shown in Fig. 12, the box plot and the green triangle are used
to visualize the variance and mean of evaluation results for
the following three scenarios, respectively.

 The first scenario is the proposed DGM without any noise
injected into the test sets, denoted as “DGM w/o noise”;

o The second scenario is the proposed DGM with a Gaus-
sian noise (zero mean and half standard deviation, i.e.,
+0.5kW), denoted as “DGM w/ noise”;

o The third scenario is the HMM without any noise, de-
noted as “HMM w/o noise”.

It can be observed that the variance of evaluation results
is small for all five data partitions, and thus the proposed
DGM is reasonably stable. On average, the proposed DGM
increases accuracy, precision, and F1 by 8.20%, 134.39%,
56.43%, respectively, at the cost of reducing recall by 19.31%
compared with the HMM on the five different data partitions.
In terms of F1, the proposed DGM is better than the HMM
with better average performance of accuracy.

Furthermore, another comparative experiment is performed
to demonstrate the robustness of the proposed DGM against
noise in the data. From Fig. 12, the performance of the
proposed DGM could be slightly affected by noise and error in
the data (the accuracy, precision, recall, and F1 drop by 0.82%,
2.83%, 19.02%, and 13.61%). However, at a reasonable noise
level, the proposed DGM still greatly outperforms HMM.
Detailed evaluation results are provided in Table. II

For transfer learning setting, all data are split into the
training dataset of 73 households and testing dataset shown in
the first column of Table III. For household with dataid 6871,
it is an extreme case where there is no any EV charging events.
From Table III, it is shown that the proposed DGM increases
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Fig. 10. Selected typical examples of inference results including (a) once-charging, (b) twice-charging in day and night, (c) twice-charging in two nights,
and (d) multiple-charging, respectively. Each row shows the aggregated power consumption profile, the probability of an EV at ON, the optimal cost over
time steps ¢ and ¢ — 1 given y¢, the measured EV charging status profile, and the inferred EV charging status profile, respectively.

TABLE I
PERFORMANCE COMPARISON USING FIVE-FOLD CROSS-VALIDATION AND NON-TRANSFER LEARNING SETTING

H Trial 1 H Trial 2 H Trial 3 H Trial 4 H Trial 5 H Overall
0.9794 / 0.9801 / 0.9802 / 0.9794 / 0.9809 / 0.9800-+0.0006 /
Accuracy 0.9692 / 0.9724 / 0.9763 / 0.9728 / 0.9692 / 0.9720-+0.0027 /
0.9055 0.9077 0.9084 0.9061 0.9058 0.9057-+0.0011
0.7683 / 0.8369 / 0.8306 / 0.7751 / 0.8169 / 0.8056-0.0285 /
Precision 0.6348 / 0.8373 / 0.8275 / 0.7913 / 0.8233 / 0.7828+0.0756 /
0.3409 0.3494 0.3527 0.3466 0.3417 0.3437+0.0045
0.8318 / 0.7462 / 0.7613 / 0.8301 / 0.7894 / 0.791740.0035 /
Recall 0.8818 / 0.5548 / 0.6700 / 0.6224 / 0.4765 / 0.6411-0.1369 /
0.9822 0.9827 0.9820 0.9826 0.9819 0.9812--0.0004
0.7978 / 0.7879 / 0.7935 / 0.8006 / 0.8021 / 0.7964-0.0052 /
F1 Score 0.7370 / 0.6661 / 0.7394 / 0.6953 / 0.6021 / 0.6880-0.0509 /
0.5061 0.5155 0.5190 0.5124 0.5070 0.5091-0.0049

Note that top/middle/bottom numbers in each cell represent metrics of DGM w/o noise, DGM w/ noise, and HMM w/o noise, repsectively.

400
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[%)]
& 200+
-
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0 T T T T
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Fig. 11. Illustration of convergence of the training (black line) and validation
(blue line) losses as the epochs increase during training.

accuracy, precision, and F1 by 10.8%, 89% and 42.8% at the
cost of reducing recall by 17.2% compared with the HMM.
In terms of F1, DGM is better than HMM with high average
performance of accuracy.

Compared to HMMs, it can be observed that the proposed
DGM achieved better performance in accuracy, precision,
and FI but only received a lower score in recall under both
settings. That is because that HMMs cannot accurately classify
the EV charging status as “OFF”, i.e., HMMs classifies most
“OFF” statuses as “ON” wrongly while the proposed DGM
method can mitigate this issue of the HMM method at the cost

of classifying a small number of “ON” statuses as “OFF”.

C. EV Charging Profile Elements Analyses

Four houses (dataid 3036 (a), 370 (b), 1782 (c), and
2018 (d)) are selected according to their different F1 values
from high to low. Four elements of EV charging profiles
are extracted from measured and corresponding classified EV
charging status. Once the extracted results are collected, the
distribution of EV charging profile elements can be visualized
by Gaussian mixture. As shown in Fig.13, the distribution of
EV charging profile elements from measured and classified
results are represented by the blue and red lines respectively.
For each household, it can be seen that the red line is
almost identical to the blue line. That is, the distribution
of the measured elements can be well approximated by the
classified elements. Therefore, the proposed framework is
accurate and effective. According to the distribution of the
classified elements, it can be summarized that most households
charge their EVs after work around 6 p.m and also tend to
charge their EVs for one hour and once per day. So these
information can be further analyzed to achieve more accurate
EV charging profiles.
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TABLE III
PERFORMANCE COMPARISON USING TRANSFER LEARNING SETTING
Dataid Accuracy Accuracy Precision Precision Recall Recall F1 Score F1 Score
[HMM] [DGM] [HMM] [DGM] [HMM] [DGM] [HMM] [DGM]
370 97.49 98.54 74.50 95.49 98.04 83.28 84.67 88.97
545 94.63 98.68 50.86 95.64 96.40 79.93 66.59 87.08
1185 87.96 97.17 31.64 71.84 97.21 82.34 47.74 76.73
1782 85.85 97.70 28.40 86.04 98.23 70.94 44.06 71.77
2018 71.79 96.11 21.69 67.25 99.30 72.33 35.61 69.70
2335 88.90 96.30 20.48 43.48 96.52 86.88 33.79 57.96
2769 90.58 98.34 31.16 79.26 96.69 83.55 47.13 81.35
3036 98.09 99.28 79.74 96.55 97.11 92.98 87.57 94.73
3367 88.59 98.41 35.54 87.67 98.05 87.28 52.17 87.48
4373 93.40 95.00 67.21 95.96 94.86 63.71 78.68 76.58
4641 97.13 96.18 86.22 92.49 93.27 77.56 89.61 84.37
4957 89.28 98.38 30.25 86.72 99.77 77.05 46.42 81.60
5357 53.17 91.67 6.53 22.62 99.85 63.80 12.25 33.40
5749 92.53 98.34 49.72 84.18 99.87 95.40 66.39 89.44
5786 81.68 96.20 2.15 8.29 99.23 83.30 4.20 15.08
6139 93.16 98.56 45.36 86.13 96.48 89.22 61.70 87.65
6871 91.29 92.66 - - - - - -
7863 94.61 98.86 50.10 94.04 98.35 84.20 66.38 88.85
8197 67.49 98.11 12.94 79.00 99.62 83.06 22.90 80.98
8669 88.25 96.20 42.71 77.35 98.64 80.32 59.61 78.81
Overall || 87.59£10.58 | 97.03+2.05 || 40.384+24.03|| 76.32+£25.07|| 97.76+1.79 || 80.90+8.58 || 53.02+24.34|| 75.71+£20.15
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Fig. 13. The analysis of some example EV charging profile elements including start charging time, end charging time, duration, and charging times for four
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representative houses in terms of their F1 values, where the blue and red lines are the measured and classified distributions, respectively.
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VII. CONCLUSION

This paper proposed a DGM driven non-intrusive identifi-
cation framework for EV charging profile. With the capability
of complex density estimation by DGMs, the EV charging
status can be modeled and inferred from DGMs via DP. Then
EV charging profiles can be reconstructed according to the
rated power of EV models and inferred status. Experiments on
Pecan Street datasets were conducted to validate the feasibility
and effectiveness of the proposed framework. The numerical
results show that the proposed method can improve the overall
performance compared with the state-of-art HMMs, though a
decrease in the recall was observed. In addition, the proposed
framework can well handle noisy and unseen data and thus
possesses improved robustness and generalization capabilities.
For future research, the proposed framework can be extended
to more general multi-class multi-label classification tasks.

APPENDIX A
PrROOF OF ELBO (9)

Proof: Inserting (2) into (8) implies

T
log p(, 416) = log / p(@)p(n) T plelse1)

t=2

T
p(z|z, 0) H (yt|z,0)d

T

= log p(x) +logp(y1) + > _ log p(yelye—1)
t=2

T
+ Z log(Ezwp(z\m,O) [p(yt|za 9)])
t=1

17
According to Jensen’s Inequality, (17) implies
T
log p(x,y|0) > log p(x) +log p(y1) + Y _ log p(y:ly1—1)
t=2
T
+ ZEszp(z\a:,@) [logp(yt\z,ﬁ)} O
t=1
(18)
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