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Optimal Setting of Test Conditions and Allocation
of Test Units for Accelerated Degradation Tests

with Two Stress Variables
Guanqi Fang, Rong Pan, Senior Member, IEEE, and John Stufken

Abstract—Conducting accelerated degradation tests is an ef-
fective way to assess reliability of highly reliable products. In the
existing literature, most works deal with planning ADT with a
single stress variable; however, the situation of more than one
stress variable is commonly seen in engineering practice. To fill
the gap, in this paper, we provide an analytical approach to
address the design issue when two stress variables are in presence.
By using a linear mixed-effects model to describe the accelerated
degradation process, we demonstrate that the design problem can
be solved by, first, finding the optimal setting of test conditions
and allocation of test units for a “single-variable” case, and then
the initial solution is transformed to the test plan for the case of
two stress variables. The transformation is done by maintaining
the same value of the asymptotic variance of the estimated p-
th quantile lifetime, along with the consideration of reducing
the asymptotic variance of model parameters estimation. We
also discuss how to find compromise plans that satisfy practical
demands. Finally, the proposed framework is illustrated using a
real-world example.

Index Terms—Accelerated Degradation Tests (ADTs), C-
optimality, D-optimality, Fisher information, linear mixed-effects
model, optimal design, test planning

I. INTRODUCTION

A. Background

Life testing is a common engineering tool for assessing
reliability of industrial products. However, this method, which
needs sample time-to-failure data, is not efficient and, of-
tentimes, too costly for highly reliable items. Instead, by
collecting degradation measurements of an item’s performance
characteristic (PC), accelerated degradation tests (ADTs) can
be utilized to provide richer information than the traditional
life tests (Weaver et al., 2013). Under an ADT, a pre-specified
PC of an item, such as the wear resistance of a particular metal
alloy (Meeker and Escobar, 1998), is measured repeatedly
at some fixed intervals until test termination. This type of
experiment is usually conducted on a limited number of
test units. Furthermore, to acquire the degradation data more
efficiently, engineers usually expose these units to a harsh
environmental condition, such as high temperature, humidity,
and use rate, etc. Eventually, by fitting a statistical model to
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the data, product lifetime under the normal use condition can
be predicted. In recent years, a lot of works have been done
in the area of ADT data analysis, such as (Fang et al., 2020),
(Si et al., 2018), (Pan and Crispin, 2011), (Fang et al., 2018),
and (Pan et al., 2016), etc.

To design an ADT, test planners need to make decisions on
the total number of test units, measurement time schedules,
test stress levels, as well as the proportion of test units to be
allocated to each level (Boulanger and Escobar, 1994). These
decisions have an effect on the precision of lifetime prediction
and they may be constrained by test budget. In this paper, we
will investigate the method of designing an ADT plan in terms
of statistical efficiency so as to find the optimal setting of test
conditions and allocation of test units based on a broad class
of linear mixed-effects models. An industry example is used
to illustrate our proposed methods.

Three major contributions have been made in this paper.
First, we provide a methodology for finding the optimal setting
of test conditions and allocation of test units for ADTs with
two stress variables. The plans generated by our method
are more statistically efficient for estimating product lifetime
under the use condition. Secondly, we incorporate practical
constraints into the planning process and investigate the ro-
bustness of our proposed test plans. Thirdly, we demonstrate
a rigorous proof of the optimal allocation of test units as
being conjectured by Schwabe et al. (2014). This concludes
the theoretical exposition of the numerical result appeared in
the rejoinder by Weaver and Meeker (2014b).

The rest of the paper is organized as follows: Section I-B
introduces a motivating example of ADT provided by an
international standard. Then, a literature review about existing
works related to designing an ADT is made in Section I-C.
Section II introduces a modeling structure for ADT data
and provides the derivation of lifetime distribution. Section
III gives planning criteria and planning scope of our study,
followed by an optimization scheme we utilize. Section IV
provides relevant propositions and theorems we derive to
help design an ADT with two stress variables. Section V
further develops an in-depth study on the optimal allocation.
The results by applying the methodology to the motivating
example are given in Section VI. Section VII provides a Monte
Carlo simulation study and sensitivity analysis. Lastly, we
make conclusions and discussion in Section VIII. All detailed
derivations and proofs are provided in Appendix.
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B. A Motivating Example

Nowadays, people use many highly reliable electronic com-
ponents, such as hard disk drives (HDDs) and digital video
discs (DVDs). These optical media are continuously subject
to degradation processes during the course of “read” and
“written”, while ISO 10995 (2011) is such an international
standard providing guidelines for assessing their reliability and
predicting archival lifetime. In the standard’s documentation,
an ADT dataset for DVDs is described, where the error rate
(i.e., the max summed over 8 consecutive error correction
blocks, or Max PI Sum8 (CD Associates, 1998)) is monitored
and treated as the PC. Two stress variables – temperature and
relative humidity (RH) – are elevated to four stress levels,
while different measurement schedules are created for each
level. In each test cell, either 20 or 30 units are assigned. The
failure is defined as the error rate exceeding 280, and the 5th

quantile lifetime under use condition (250C and 50%RH) is to
be predicted. Figure 1 presents the degradation paths of the PC
of these test units measured in log scale. Table I demonstrates
the original design information provided by the standard. In
this paper, we will discuss how to find optimum test plans
using this example.
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Fig. 1: Degradation Paths of Optical Media.

TABLE I: Original Design Information.

Test Cell Temperature (0C) RH (%) Number of Units Measuring Time Interval (hrs) Termination Time (hrs)

1 85 85 20 250 1000
2 85 70 20 250 1000
3 65 85 20 500 2000
4 70 75 30 625 2500

C. Related Work

Numerous studies have investigated the experimental design
problems associated with ADTs. As early as 1994, Boulanger
and Escobar (1994) provided a complete methodology for
designing ADTs in terms of the four decisions mentioned
in the background section. In addition, Weaver et al. (2013)
gave a systematic study on degradation test planning based on
linear mixed-effects models. Following by Weaver and Meeker
(2014a), the study of ADT planning was proposed to minimize
the asymptotic variance of the estimated quantile lifetime. Fur-
thermore, Kim and Bae (2013) provided a planning procedure

to determine the total sample size and the inspection schedule
considering the cost constraint. Ye et al. (2019) discussed a test
unit allocation strategy for planning ADTs. All of these studies
are developed on the basis of general path models, which
are essentially under the framework of (non)linear mixed-
effects models. But there are also many papers discussing ADT
planning that are based on stochastic process models, such as
(Tsai et al., 2012), (Wang et al., 2017), (Zhao et al., 2018a),
and (Zhao et al., 2018b), etc.

However, most existing literature only consider a single
stress variable, which in fact is not commonly used in practice.
For instance, the motivating example provided by ISO 10995
utilizes two variables – temperature and RH. In this paper, we
will develop the method of finding an ADT plan to optimize
the setting of test conditions and the allocation of test units
when two stress variables are present.

II. DEGRADATION MODEL AND LIFETIME DISTRIBUTION

A. ADT Data Modeling

In an ADT, the monitored PC for each test unit is measured
periodically at pre-specified intervals under a certain level
of environmental condition until termination. Thus, after the
test, the data in terms of observations, measurement times
and test stress levels are obtained. To explain such rich
information contained in the dataset, we need to build a
statistical model that is able to 1) establish a relationship
between the measurements and actual degradation levels in
the presence of measurement errors; 2) incorporate the effect
brought by environmental stresses on product degradation; and
3) provide flexibility to account for the existing unit-to-unit
variability. Assume there are n test units and mi measurements
for each unit, let yi j, i = 1,2, . . . ,n, j = 1,2, . . . ,mi denote the
measurement on unit i at time point j. A monotone increasing
function, τi j = tγi j , is used to transform the time scale with
a pre-known parameter γ so as to linearize the degradation
paths. Then, a general regression model for the degradation
process can be represented by the following function:

yi j = D(τi j ; β, bi) + εi j,

where D(τi j ; β, bi) is the actual degradation level for unit i at
(possibly) transformed time τi j . The measurement errors εi j’s
are identically and independently distributed (i.i.d.) normal
variables with mean 0 and variance σ2. β = (β0, β1, η1, η2)

′

denotes the vector of fixed-effects parameters, where β0 and
β1 are the initial degradation level and degradation rate, re-
spectively. η1 and η2 are parameters to capture the acceleration
effect brought by stress variables. bi represents the vector
of the random effects of ith unit. Here, {bi} and {εi j} are
assumed to be mutually independent, which means that the
intrinsic unit-level variability is independent of measurement
errors produced by external instruments. Furthermore, we
assume that D(τi j ; β, bi) is decomposed as below:

D(τi j ; β, bi) = (β0 + b0i) + (β1 + b1i)τi j + (η1x1i + η2x2i) τi j,
(1)

where x1i and x2i are the standardized values of stress
variables. For instance, for the motivating example, x1i =
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1/TU−1/Ti
1/TU−1/TH and x2i =

ln RHi−ln RHU

ln RHH−ln RHU
, where Ti and RHi are

temperature in degrees Kelvin and RH in percentage placed on
unit i, respectively. TH and RHH are the highest controllable
temperature and RH for test chambers. TU and RHU are
temperature and RH under the normal use condition. Here, the
Erying relation is utilized to characterize the effect of stress
variables; but there are many other options depending on the
type of stress variables (Zhao et al., 2018b). The standardiza-
tion makes the design space of stress variables become a unit
square in the first quadrant (Seo and Pan, 2017). In addition,
we assume that bi = (b0i, b1i)

′ is a bivariate random variable,
which describes the varying initial degradation value before
test and the random degradation rate during test, respectively.
Specifically, bi is subject to a bivariate normal distribution
shown as

bi = (b0i, b1i)
′ ∼ BV N(0,V ),

where the mean is a bivariate vector of zeros and

V =

(
σ2

0 ρσ0σ1
ρσ0σ1 σ2

1

)
is the variance-covariance matrix. And we assume that the
elements in {b1, b2, . . . , bn} are mutually independent. This
implies that the test units are independent of each other.

Thus, if we denote β0i = β0 + b0i and β1i = β1 + b1i , then
the full model becomes

yi j = β0i + β1iτi j + (η1x1i + η2x2i) τi j + εi j, (2)

and let θ = (β0, β1, η1, η2, σ0, σ1, ρ,σ)
′ be the vector of param-

eters in this model.

B. Lifetime Distribution

For a degradation process, a failure also called “soft” failure
occurs when the degradation level passes a pre-specified
failure threshold, D f . Without loss of generality, we assume
the degradation path is trending up. Thus, if letting T be the
lifetime of a single unit, its probability distribution satisfies
the following:

FT (t) = P(T ≤ t)

= P
(
(β0 + b0) + (β1 + b1)τ + (η1x1 + η2x2) τ ≥ D f

)
= P

(
b0 + b1τ ≥ D f − β0 − β1τ − (η1x1 + η2x2) τ

)
= 1 − Φ(κ),

(3)

where

κ =
D f − β0 − β1τ − (η1x1 + η2x2)τ√

σ2
0 + τ

2σ2
1 + 2τρσ0σ1

,

and Φ is the cumulative distribution function (cdf) of the
standard normal distribution.

Note that for simplicity, we simplify the notation by remov-
ing i on b0i , b1i , x1i , and x2i . Also, we remain the notation
τ instead of t, where τ = tγ. The resulted normal cdf comes
from the conclusion b0 + b1τ ∼ N(0, σ2

0 + τ
2σ2

1 + 2τρσ0σ1).

III. ADT PLANNING AND OPTIMIZATION SCHEME

A. Planning Criteria

When engineers create an ADT plan, it is expected that this
plan should be able to provide sufficiently precise estimates
of model parameters as well as good evaluation of a specific
product population characteristic when applying extrapolation
to the use condition (Boulanger and Escobar, 1994). Therefore,
we adopt two common planning criteria as shown in the
following:
• D-optimality: A good design would result in relatively

small asymptotic variance of maximum likelihood es-
timates (MLEs) of model parameters, for which D-
optimality is one of such design criteria. Under this crite-
rion, the overall uncertainty in estimation is minimized;
and it is equivalent to maximizing the determinant of
Fisher information matrix. Thus, our objective can be
formulated as

min − det[I(θ)],

where I(θ) is the total Fisher information matrix, of
which the derivation is given in Appendix A.

• C-optimality: Since the ultimate goal of an ADT is
to predict the pth quantile lifetime t̂p under the use
condition, minimizing the variance of its estimate would
be a natural choice. In general, this criterion is called
C-optimality, which seeks to minimize the asymptotic
variance of a predetermined linear combination of model
parameters (Dean et al., 2015). The asymptotic variance
of t̂p can be approximated by the delta method, which
gives the following objective:

min AVar(t̂p) = c ′[I(θ)−1]c,

where c =
(
∂tp
∂β0

, . . . ,
∂tp
∂σ

) ′
. The derivation of tp and c is

provided in Appendix B and C, respectively.

B. Planning Scope

In order to satisfy the criteria above, care must be taken
when designing an ADT. As illustrated by Boulanger and
Escobar (1994), practitioners need to make four different
decisions: 1) choose stress levels for each environmental
variable, 2) decide the proportion of test units to be assigned
to each stress level, 3) select measurement schedule, as well
as 4) determine the total number of test units. In practice, the
number of test units is closely related to the total budget of
the experiment. Inspection on test units can also be expensive.
As a result, the measurement schedule is often pre-specified
by practitioners according to cost constraints. In this paper,
we mainly focus on the statistical efficiency of two-stress test
plans, thus the first two design concerns are addressed in our
study. It is assumed that the number of total test units is pre-
fixed. And we adopt an equally-spaced measurement schedule,
which is convenient and commonly used in engineering ap-
plications. The reader who is interested in the test unit and
measurement schedule planning is referred to references –
(Lim, 2015), (Tsai et al., 2016) and (Limon et al., 2019).
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Suppose there are L stress levels in total created by the two
stress variables. Denote a test plan

P =

(
ξ1 · · · ξ l · · · ξL
π1 · · · πl · · · πL

)
,

where ξ l = (x
l
1, x

l
2)
′ and πl are the values of the stress

variables for the lth stress level and the proportion of test
units allocated to that level, respectively. In such case, the
total Fisher information matrix under the test plan P, I(θ;P)
can be expressed as

I(θ;P) = n
L∑
l=1

πlIi(θ; ξ l),

where Ii(θ; ξ l) is the Fisher information matrix for a single
unit at the lth stress level,

∑L
l=1 πl = 1, and n is the total

number of test units.
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Fig. 2: A Sample Design Space.

In addition, practitioners would like to complete the ADT
in a time period they can tolerate; this is also the motivation
for conducting accelerated tests. Thus, to reduce the time
consumed on experiments as much as possible, a minimum
percentage of failure is set to be a%. We expect that this
amount of test units would fail at the lowest stress level at the
end of test period. This is equivalent to restricting possible test
conditions to a region D bounded by a minimum-stress level
line ` defined as

E[D(τ′; β, bi)] = β0 + β1τ
′ + (η1x1 + η2x2)τ

′ ≥ a%D f ,

where τ′ denotes the transformed test termination time. This
provides a constraint (η1x1 + η2x2 = a?) on the lowest stress
level, where a? = a%D f −β0

τ′ − β1.
Under these assumptions above, the initial design space

defined by the unit square in the first quadrant shrinks to
the region D. Figure 2 shows a sample design space, where
the blue solid line represents the minimum-stress level line `
and the region on its right is the design space D. The centers
of the three blue solid circles indicate a possible choice of
combinations of stress levels and the areas of the circles are
proportional to the allocation to each level, where an equal
amount of test units is assigned in this example.

C. Optimization Scheme

Based on the aforementioned planning criteria and scope,
we can formulate corresponding optimization problems shown
as below:

min − det

[
n

L∑
l=1

πlIi(θ; ξ l)

]
for D-optimality

c ′

(
n

L∑
l=1

πlIi(θ; ξ l)

)−1

c for C-optimality

s.t.
L∑
l=1

πl = 1

nπl ∈ Z>0 ∀l = 1,2, . . . , L
ξ l ∈ D ∀l = 1,2, . . . , L

Note that this objective function can be further simplified
(see Appendix D) to ease calculation. In this paper, we choose
the grid search method to find the optimal solution. In addition,
we will look for a design that treats C-optimality as the major
criterion while considers D-optimality as a secondary criterion.

IV. OPTIMUM AND COMPROMISE TEST PLANS

As stated in Section I-C, most existing research works about
ADT planning mainly focus on the situation in which there is
a single stress variable. Adding an additional stress variable
would lead to extra decision variables, thus making the opti-
mization problems become harder. As presented in Figure 2,
the design space is the region D when two stress variables are
incorporated into an ADT. To ensure the nonsingularity of the
Fisher information matrix, it is expected that units are tested at
three or more noncollinear stress levels; and we call this plan
a nondegenerate plan since all the parameters are estimable.
For instance, the plan demonstrated by the three blue solid
circles is such a one. As a comparison, a test plan with only
two or less stress levels is called a degenerate plan, which
only allows estimation of partial parameters.

Inspired by Escobar and Meeker’s work (1995) about ac-
celerated life tests, in this section, we provide a method to
reduce the two-variable planning problem to a degenerate
scenario, which can be treated as a “single-variable” case in a
similar way. Then we split the result to achieve a C-optimality
nondegenerate plan with the consideration of D-optimality as
a supplement in the meantime.

A. The Optimum Plan under a Single-variable Case

Before looking at test plans with two stress variables, we
first revisit the scenario with a single variable only. The
existing work provided by Weaver and Meeker (2014a) mainly
utilizes numerical optimization methods to find the optimum
test plan and it takes advantage of the general equivalence the-
orem to verify global optimality. In the following proposition,
we provide a theoretical proof to show that the optimal setting
of test conditions always lies at the lowest and highest stress
levels for the single-variable case.
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(a) Degenerate Plan.
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(b) Nondegenerate Plan.
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(c) Compromise Plan.

Fig. 3: Various Test Plans.

Proposition 1: For an ADT with a single stress variable,
consider a test plan

Ps =

(
xH xL
πH πL

)
,

where the two stress levels satisfy x?L ≤ xL < xH ≤ 1 and x?L
is the minimum allowable stress level. Then, given any fixed
value of πH (πL) ∈ (0,1), AVar(t̂p) achieves its minimum when
xL = x?L and xH = 1.

Proof of this proposition is given in Appendix E.

B. The Optimum Degenerate Plan

Then, we consider two-level degenerate plans for the two-
variable case. To allow extrapolating to the use condition, the
two stress levels must be on a fixed line `d with slope s
that passes through the origin. Figure 3a indicates possible
degenerate plans, in which s ranges from 0 to ∞. The two
extreme scenarios (i.e. represented in red dashed lines) are
essentially single-variable cases. The scenario represented in
the blue dashed line with slope 1 presents the case where
(β0, β1, η1 + η2, σ0, σ1, ρ,σ)

′ is the complete set of estimable
parameters. Thus, the degenerate plan can be seen as a “single-
variable” case such that the acceleration function η1x1 + η2x2
diminishes to (η1 + sη2)x1, or equivalently (η1/s + η2)x2.
Following Proposition 1, it can be easily seen that, when
the lower stress level ξL is the intersection of `d and the
minimum-stress level line ` and the higher stress level ξH is
the intersection of `d and the boundary of the design space
D, AVar(t̂p) achieves its minimum given any fixed value of
πH (πL) and s. Moreover, in the following corollary, we show
that among the infinite number of choices for s,0 ≤ s < ∞,
AVar(t̂p) achieves its minimum when s = 1.

Corollary 1: For an ADT with two stress variables, consider
a two-level degenerate test plan

Pd =

(
ξH ξL
πH πL

)
,

where the two stress levels are on a line `d with slope s
that passes through the origin. The lower stress level ξL is

the intersection of `d and the minimum-stress level line `.
The higher stress level ξH is the intersection of `d and the
boundary of the design space D. Then, given any fixed value of
πH (πL) ∈ (0,1), AVar(t̂p) achieves its minimum when s = 1.

Proof of this corollary is given in Appendix F. Then, the
following corollary follows directly from Corollary 1.

Corollary 2: Among the infinite number of choices for s,0 ≤
s < ∞, the optimum two-level degenerate plan to minimize
AVar(t̂p) is unique with test conditions placed at the two stress
levels ξH = (1,1)′ and ξL = (

a?

η1+η2
, a?

η1+η2
)′, i.e. when s = 1.

πH (πL) is chosen such that the test plan minimizes AVar(t̂p).
Note that the optimum allocation can be found using the

grid search method mentioned in Section III-C.

C. The Optimum Nondegenerate Plan

Although a degenerate plan is not directly useful in practice,
it does provide a means for finding nondegenerate plans. As
explained later, we can split a degenerate plan to obtain a
corresponding nondegenerate plan while maintaining the same
value of AVar(t̂p) achieved. Meanwhile, with the consideration
of minimizing the asymptotic variance of parameters estima-
tion, the split should be done in a proper way as shown in the
following theorem.

Theorem 1: Consider a two-level degenerate test plan

Pd =

(
ξH ξL
πH πL

)
,

where the lower stress level ξL is the intersection of the
minimum-stress level line ` and a fixed line `d with slope
s that passes through the origin. The higher stress level ξH
is the intersection of `d and the boundary of the design space
D. Further define a corresponding nondegenerate split plan

Pn =

(
ξH ξL1 ξL2
πH πL1 πL2

)
,

where the two lower stress levels ξL1 and ξL2 are on ` and
πL = πL1+πL2. Let AVard(t̂p) and AVarn(t̂p) be the asymptotic
variance of t̂p for the degenerate and nondegenerate plan, re-
spectively. Then, a) AVarn(t̂p) ≥ AVard(t̂p), where the equality
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holds when πL1ξL1 + πL2ξL2 = πLξL; b) det(I(θ;Pn)) is
maximized when the split is done as wide as possible (i.e.
until the two lower levels reach the boundaries of D) while
maintaining the value of AVarn(t̂p).

Proof of this theorem is given in Appendix G. Note that
this theorem holds for any value of s, 0 ≤ s < ∞; but the
optimum nondegenerate plan is resulted in when s = 1. Figure
3b provides a graphical explanation for finding the optimum
nondegenerate plan. Initially, the optimum degenerate plan
(i.e. represented in the blue solid circle and the blue dashed
circle on the blue dashed line with s = 1) is found using
Corollary 2. Then, to maintain the same value of AVard(t̂p)
achieved, the units allocated to the lower stress level should
be split along the minimum-stress level line according to the
proportions specified by Theorem 1. In fact, there exist an
infinite number of optimum nondegenerate plans, where the
results represented in the two red solid circles and the two blue
solid circles are two possible splits. However, to minimize the
asymptotic variance of parameters estimation, the plan with
three blue solid circles located on the boundaries of D should
be selected.

D. Compromise Plans
Although the optimum plan provides good estimation pre-

cision, it may suffer from model uncertainty when the as-
sumed acceleration model deviates significantly from the truth
(Meeker and Escobar, 2014). For instance, if there exists an
interaction effect between the two stress variables, the current
optimum plan is not able to capture this effect since it has
only three non-collinear factor levels, which is insufficient for
estimating the extra parameter associated with the interaction
term. To provide test plans robustness to such model deviation,
compromise plans are often created. Similar to the single-
variable case, one could allocate a fixed proportion of units
(say 20%) at the middle point between an optimized ξH
and ξL . One could also split the units along a line that is
parallel with the minimum-stress level line to create a 5-level
compromise plan. The red dashed and solid circles in Figure
3c present such idea.

V. AN IN-DEPTH STUDY ON OPTIMAL ALLOCATION

As implied by Proposition 1, once the design space D is
specified, the optimal setting of test conditions can be arranged
at the lowest and highest stress levels. In terms of the determi-
nation of allocation, Schwabe et al. (2014), in their discussion
paper on (Weaver and Meeker, 2014a), proposed a closed-
form solution to find the optimal allocation, of which formulas
are associated with test conditions only. They suggested that
the optimization problem for C-optimality is equivalent to the
optimal extrapolation design problem proposed by Klefer and
Wolfowitz (1964). Later, in the rejoinder, Weaver and Meeker
(2014b) responded to this comment by conducting a numerical
study, which verified this claim. Here, we provide a complete
theoretical exposition of this conjecture.

Theorem 2: For an ADT with a single stress variable,
consider a test plan

Ps =

(
xH xL
πH πL

)
,

where the test conditions have been standardized and x?L is the
minimum allowable stress level. Then, given any fixed value
of xU < x?L ≤ xL < xH ≤ 1, AVar(t̂p) under xU achieves its
minimum when

πH =
xL − xU

xH + xL − 2xU
and πL =

xH − xU
xH + xL − 2xU

.

As a special case of the use condition, i.e. xU = 0,

πH =
xL

xH + xL
and πL =

xH
xH + xL

.

Proof of Theorem 2 is given in Appendix H. Then, based
on this theorem, it is easy to extend it to the case of two stress
variables.

Corollary 3: Following Corollary 2, Theorem 1, and The-
orem 2, the optimum two-level degenerate plan to minimize
AVar(t̂p) under the use condition is unique with solution

P?d =
©­­«

1 a?

η1+η2

1 a?

η1+η2
a?

η1+η2+a?
η1+η2

η1+η2+a?

ª®®¬ .
Then, the corresponding optimum nondegenerate split plan is
given by

P?n =

(
(1,1)′ ξL1 ξL2
a?

η1+η2+a?
πL1 πL2

)
,

where the two lower stress levels, ξL1 and ξL2, are on the
minimum-stress level line ` and satisfy πL1ξL1 + πL2ξL2 =
πLξL and πL1 + πL2 =

η1+η2
η1+η2+a?

.
Thus far, one can see that we have already found the closed-

form solution to the two-stress variable plan with the optimal
setting of test conditions and allocation of test units. Although
the optimal allocation of test units is found analytically by
this theorem, in practice we still recommend to apply the
grid search method to find the exact allocation due to the
integer constraint and also to accurately assess the estimation
precision.

VI. REVISITING THE MOTIVATING EXAMPLE

In this section, we demonstrate the proposed methods to
plan an ADT with two stress variables by revisiting the
motivating example.

A. Planning Information

Suppose that the goal is to develop a test plan to evaluate the
5th quantile lifetime of the optical media under the use con-
dition. As specified by Model (2), we assume the degradation
process is described by the following model:

yi j = (β0 + b0i) + (β1 + b1i)τi j + (η1x1i + η2x2i) τi j + εi j,

where yi j = ln(Measurement) and τi j = tγi j . The planning
information is as follows:
• Like the original experiment, 90 units are planned to be

tested and 5 repeated measurements for each unit will be
taken. For illustrative purposes, we assume measurement
is taken every 250 hours until 1,000 hours for each unit.
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• The failure threshold is D f = ln(280). Our objective
under C-optimality is to minimize AVar(t̂0.05), i.e. the 5th

quantile lifetime under the use condition.
• 850C (i.e. x1 = 1) and 85% (i.e. x2 = 1) are the maximum

allowable testing temperature and RH, respectively. The
normal use condition is defined as temperature 250C and
RH 50%, i.e. x1 = 0 and x2 = 0.

• Since the test plan depends on the unknown model
parameters, we utilize the following pilot planning values
θ? = (2.663,0.001,0.056,0.018,0.707,0.002,−0.100,0.247)′
and γ = 0.7. Figure 4 indicates the approximately
linearized degradation paths after power transformation.

• We assume that a minimum 80.77% of the failure
threshold needs to be achieved by the termination time,
which implies that a minimum-stress level line 0.056x1+
0.018x2 = 0.014 is present.
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Fig. 4: Approximately Linearized Degradation Paths of
Optical Media.

B. Degenerate Plans

Before seeking the optimal design with both stress vari-
ables, we first study the degenerate plans. They also contain
two single-variable cases: a) temperature is the only varying
variable with RH setting at 50%, and b) RH is the only varying
variable with temperature setting at 250C.

Table II demonstrates the degenerate test plan with s = 1
and the two single-variable cases with optimal allocations. We
also provide a plot indicating the value of AVard(t̂p) versus
the slope s in Figure 5. It turns out the degenerate plan with
s = 1 generates the minimum AVard(t̂p). As already shown in
Corollaries 1 and 2, this result comes with no surprise. Also
the result of the optimal allocation matches the conclusion of
Theorem 2.

C. Nondegenerate Plans

Next, we generate nondegenerate plans according to Theo-
rem 1. Table III presents two nondegenerate plans after two
possible splits. As shown in this table, the two plans have
approximately the same value of AVarn(t̂p), which is also
approximately equal to AVard(t̂p) of P?

d
in Table II; but the

1.00e+07

1.25e+07

1.50e+07

1.75e+07

0 1 2 3 4 5

s

A
V

a
rd

(t^ p
)

Fig. 5: AVard(t̂p) of Degenerate Plans versus Slope s.

TABLE II: Degenerate Plans.

Type Stress Levels & Allocation AVard (t̂p )

Single-variable Case a) Ps =

(
1 0.2500

18/90 72/90

)
9.3462 × 106

Degenerate with s = 1 P?
d
=

©­«
1 0.1892
1 0.1892

14/90 76/90
ª®¬ 8.3469 × 106

Single-variable Case b) Ps =

(
1 0.7778

39/90 51/90

)
1.0701 × 108

best choice is P?n with a lower value of −det(I(θ;Pn)) since
it spreads out units to the boundaries the most. The values of
AVarn(t̂p) approximately match the conclusion of Theorem 1
with a little variation due to the integer constraint of allocation.
Also the results of the optimal allocation match the conclusion
of Corollary 3.

TABLE III: Nondegenerate Plans.

Type Stress Levels & Allocation AVarn(t̂p ) −det(I(θ; Pn))

Nondegenerate Pn =
©­«

1 0.1000 0.2000
1 0.4670 0.1560

14/90 8/90 68/90
ª®¬ 8.3485 × 106 −1.0924 × 1035

Nondegenerate P?n =
©­«

1 0 0.2500
1 0.7778 0

14/90 18/90 58/90
ª®¬ 8.3475 × 106 −1.3113 × 1036

In addition, we provide some illustrative examples by setting
test conditions at the extreme points of the design space.
To provide better interpretation of the results, we report
the relative efficiency (RE) in percentage for C-optimality.
RE is defined as RE = AVar(t̂p;P?n )/AVar(t̂p;Pn), where
AVar(t̂p;P?n ) is the value of AVarn(t̂p) under the optimum
nondegenerate plan and AVar(t̂p;Pn) is the value AVarn(t̂p)
for any other ordinary plan. From Table IV, it can be seen
that the best plan is still plan P?n , where the test conditions
are set at the highest level and the other two lower levels on
the minimum-stress level line. For plans 1 and 5 in Table IV,
the two lower stress levels and the use condition are on a line.
In such cases, having the two lower levels is similar to the case
of a test with a single stress variable. As a result, a single unit
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TABLE IV: Illustrative Examples for Nondegenerate Plans.

Plan Stress Levels & Allocation AVarn(t̂p ) RE

1 Pn =
©­«

1 0 0
1 1 0.7778

1/90 39/90 50/90
ª®¬ 1.0815 × 108 7.72%

2 Pn =
©­«

1 0 0.2500
1 1 0

15/90 15/90 60/90
ª®¬ 8.5043 × 106 98.16%

3 Pn =
©­«

1 0 1
1 1 0

30/90 30/90 30/90
ª®¬ 1.9272 × 107 43.31%

4 Pn =
©­«

1 0 1
1 0.7778 0

38/90 35/90 27/90
ª®¬ 1.5335 × 107 54.43%

5 Pn =
©­«

1 0.2500 1
1 0 0

1/90 71/90 18/90
ª®¬ 9.3961 × 106 88.84%

allocated to the highest level is enough in order to make all
parameters estimable.

D. Compromise Plans

Finally, a compromise plan, Pc is created by fixing a 20% of
the units (i.e. 18 units) at the middle point – ξM = (0.6,0.6)′.
Let AVarc(t̂p) be the asymptotic variance of t̂p for Pc . Un-
doubtedly, this 4-level compromise plan would offer a larger
value of AVarc(t̂p) than the AVarn(t̂p) value achieved by P?n .
Again, given the existing conclusion of Theorem 1, the units
allocated at the middle point can be split into two portions; and
the split should be done until the two resulted test conditions
reach the boundaries of D. As a consequence, this 5-level
compromise plan maintains the same value of AVarc(t̂p), but
obtains a lower −det(I(θ;Pc)). Table V gives the results.
Comparing it with Table IV, one can also see that some
estimation precision is lost by introducing additional stress
levels to the original optimum plan.

TABLE V: Compromise Plans.

Plan Type Stress Levels & Allocation AVarc (t̂p ) −det(I(θ; Pc ))

4-level Pc =
©­«

1 0 0.2500 0.6000
1 0.7778 0 0.6000

11/90 15/90 46/90 18/90
ª®¬ 9.2048 × 106 −1.0159 × 1036

5-level Pc =
©­«

1 0 0.2500 0.7929 0.4714
1 0.7778 0 0 1

11/90 15/90 46/90 7/90 11/90
ª®¬ 9.2048 × 106 −1.6513 × 1036

VII. SIMULATION STUDY AND SENSITIVITY ANALYSIS

A. Simulation Study

To compare different test plans derived in this paper and to
assess the adequacy of large-sample (i.e. asymptotic) approxi-
mations, we conduct a Monte Carlo simulation study using
the assumed model and the planning information specified
in Section VI-A. On each simulation replication, data are
randomly generated by either the optimum nondegenerate plan

or the 5-level compromise plan, as presented in Table III and
V, respectively. Then, model parameters are estimated by MLE
and they are used to calculate the 5-th quantile lifetime. A total
of 1,000 replications are simulated and analyzed for each test
plan. We evaluate results using various sample sizes (i.e. the
number of test units), n = 45,65,90,120,150, and 180.

Optimum Plan Compromise Plan
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Fig. 6: Results of Monte Carlo Simulation Study.

The upper panel of Figure 6 illustrates the scaled prediction
variance of the 5-th quantile, from both large-sample approach
and simulation approach, versus sample size. Notice that as
sample size increases, the discrepancy between these two
approaches becomes smaller for each test plan. The lower
panel of Figure 6 provides the histograms of t̂0.05 for both
plans under the use condition with n = 180. It indicates that
the distributions for both plans cover the actual 5-th quantile
lifetime, which is presented as a red dashed vertical line. In
addition, both panels show the increased variability in the
compromise plan.

In summary, when sample size is relatively large, e.g. n ≥
90, the simulation result agrees with the analytically derived
large-sample approximation. The compromise plan tends to
have larger standard error than the optimum plan, which
matches our previous conclusion. For a small sample size,
we recommend using simulation to estimate the variability of
predicted quantile value.

B. Sensitivity Analysis

From Theorem 2, it becomes clear that once a design
space D is defined, the optimal allocation of test units can
be specified regardless of model parameters’ value. However,
as implied by Corollary 3, the design decisions made on both
test condition and test unit allocation are relevant to both the
fixed-effects parameters – β = (β0, β1, η1, η2)

′ and the failure
threshold D f . These terms have an effect on the optimum
plan since varying their values does change the design space.
Thus, to study the robustness of the optimum plan, we carry
out a sensitivity analysis of the optimum plan by increasing
or decreasing each parameter’s value in β and D f by 10%.
As a convention, we use +1 and −1 to represent increase
and decrease in these factors and 0 stands for no change.



9

−1

0

+1

6e+06

8e+06

1e+07

2.4 2.6 2. .0

β0

A
V
a
rn
(t^
p
)

8 3

(a) Optimum Plan versus β0.

−1

0

+1

8.2e+06

8.3e+06

8.4e+06

8.5e+06

0.050 0.055 0.060
η1

A
V
a
rn
(t^
p
)

(b) Optimum Plan versus η1.

−1

0

+1

4.0e+06

8.0e+06

1.2e+07

1.6e+07

5.2 5.6 6.0

Df

A
V
a
rn
(t^
p
)

(c) Optimum Plan versus D f .

−1

0

+1

7.5e+06

8.0e+06

8.5e+06

9.0e+06

9.5e+06

0.00090 0.00095 0.00100 0.00105 0.00110

β1

A
V
a
rn
(t^
p
)

(d) Optimum Plan versus β1.

−1

0

+18.28e+06

8.32e+06

8.36e+06

8.40e+06

0.016 0.017 0.018 0.019 0.020
η2

A
V
a
rn
(t^
p
)

(e) Optimum Plan versus η2.

0

+1

4.0e+06

8.0e+06

1.2e+07

1.6e+07

0.025 0.050 0.075 0.100
p

A
V
a
rn
(t^
p
)

−1

0

8.0e+06

8.5e+06

9.0e+06

4 5 6
m

A
V
a
rn
(t^
p
)

+1

−1

(f) Optimum Plan versus p or m.

Fig. 7: Results of Sensitivity Analysis.

Results are shown in Figure 7, in which each plot depicts
AVarn(t̂p) versus the change of a certain factor, with P?n of
the corresponding optimum nondegenerate plan showing aside
of each point and the resulted design space showing in the
corner. In general, the graphs show that the change of each
factor makes the minimum-stress level line get either closer
or farther to the use condition. As a consequence, AVarn(t̂p)
becomes larger as the design space becomes smaller. This is
because more extrapolation from the higher stress level to the
use stress level is resulted in. Particularly, the optimum plan
seems to be less sensitive to β1 due to the small change of
design space. We also evaluate the corresponding optimum
plans when the value of p (lifetime percentile) or m (number
of measurements) varies. The result is shown in Figure 7f. It
turns out that AVarn(t̂p) increases with p. This is because more
uncertainty is involved in inferring a higher percentile lifetime.
Furthermore, as expected, AVarn(t̂p) decreases with m. The
reason behind this is that given more frequent inspection
schedule, more information about the degradation process is
produced. As a result, the uncertainty in estimating the model
variance component (i.e. δ) is reduced. But for both cases, the
optimum plan stays unchanged. This result does not come with
surprise since p and m are not involved in the specification of
optimum plan, as stated in Corollary 3. In addition, notice that
random-effects parameters, δ = (σ0, σ1, ρ,σ)

′, do not affect
the optimum plan at all. It is due to the fact that changing
test plans would not change the information for estimating
these random-effects parameters, as implied by the M i matrix
presented in Equation (5) in Appendix A.

VIII. CONCLUDING REMARKS

Planning an ADT usually involves multiple decisions to
make. In the existing literature, the effort has been focused

more on designing the test with a single stress variable alone.
As shown in this paper, we extend the design procedure to
addressing the case of two stress variables. This procedure is
accomplished by a proposed analytical approach. It initially
finds the optimal setting of stress levels and allocation of test
units for a degenerate scenario and then splits the result to
form the optimum nondegenerate plan. The split is done by
maintaining the same value of the asymptotic variance of the
estimated p-th quantile lifetime achieved with the considera-
tion of the asymptotic variance of parameters estimation mean-
while. This complete methodology – including the modeling
framework, the rigorous proofs, and the design procedure –
has been demonstrated using the illustrative example.

Notwithstanding that the following issues are beyond the
scope of current study, they are definitely worth of a further
investigation:

1) It is noted that an optimum test plan is designed for
a specific planning criterion, so it may happen that the
optimum plan under one criterion performs poorly under
another criterion. In this paper, we have investigated a
design that weighs the asymptotic variance of quantile
lifetime under the use condition as the major criterion
with the asymptotic variance of parameters estimation as
a secondary criterion. This study can be extended to cover
other criteria such as V-optimality, which minimizes the
average prediction variance over a specific set of design
points, or any cost-based design criteria.

2) The test plans we developed are based on the assumption
that the two stress variables are independent to each other.
If there exists an interaction effect, compromise plans
can provide some robustness to such a deviation from
model assumption. But future research is still needed to
characterize the optimum plan under such situation.
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3) Addressing the optimal design for other types of ADT
models including nonlinear mixed-effects models and
stochastic process models is much desired. For instance,
Tung and Tseng (2019) recently proposed the optimum
plan for gamma process-based degradation model with
two stress variables under C-optimality. Methodologies
handling other types of models such as inverse Gaussian
process-based model are still lack of investigation.

4) As designing test plans relies on the knowledge of
degradation model and model parameters, creating robust
designs to model and parameter uncertainties is desired.
Bayesian design methodology, as described by Chaloner
and Verdinelli (1995), is clearly a future research direc-
tion. This issue has recently been discussed by Zhao et al.
(2018a) and Weaver and Meeker (2019) too.

5) In this paper, the assumption of an equally-spaced mea-
surement schedule is made due to its convenience and
commonality in engineering practice. But an unequally-
spaced measurement plan may provide better perfor-
mance in terms of generating precise estimates of per-
centile lifetime. Typically, one should make more fre-
quent measurements when the degradation process is
close to passing its failure threshold. The intuitive reason
for this is that more information about the close-to-failure
phase of the degradation process is obtained, which re-
sults in less uncertainty in extrapolation. But the optimal
schedule depends much on the type of the underlying
degradation model and can be very sensitive to model
choice. Clearly, this problem desires much research effort.
For some discussions on it, please refer to the works
provided by Boulanger and Escobar (1994).
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APPENDIX

A. Derivation of I(θ)
Recall that the full model (2) is given by

yi j = (β0 + b0i) + (β1 + b1i)τi j + (η1x1i + η2x2i) τi j + εi j,

Then, if we let Y i = (yi1, yi2, . . . , yimi )
′ denote the measure-

ments on unit i, it is equivalent to

Y i = X iβ + Z ibi + εi , (4)

where β = (β0, β1, η1, η2)
′, bi = (b0, b1)

′ ∼ N(0,V ), and εi =
(εi1, εi2, . . . , εimi )

′ ∼ MV N(0, σ2I i) with I i being a mi × mi

identity matrix. Furthermore, X i and Z i are design matrices
given by

X i =
©­­«
1 τi1 x1iτi1 x2iτi1
...

...
...

...
1 τimi x1iτimi x2iτimi

ª®®¬ , Z i =
©­­«
1 τi1
...

...
1 τimi

ª®®¬ .
In such case, Y i ∼ MV N(X iβ,Σi), where

Σi = Var(X iβ + Z ibi + εi) = Z iVZ ′i + σ
2I i .

So the log-likelihood function for unit i is

`i = −
mi

2
ln(2π) −

1
2

ln(|Σi |) −
1
2
(Y i − X iβ)

′Σ−1
i (Y i − X iβ).

Then, the total log-likelihood function is ` =
∑n

i=1 `i .
Suggested by Weaver et al. (2013), we make use of the

existing conclusion about the Hessian matrix and its expec-
tation of a linear mixed-effects model provided by Jennrich
and Schluchter (1986). If letting δ = (σ0, σ1, ρ,σ)

′ denote the
model variance component parameters, it can be shown that
the Hessian matrix, H i , for unit i is given by

H i =

(
Hββ,i Hβδ,i

Hδβ,i Hδδ,i

)
=

©­«
∂2`i
∂β∂β

∂2`i
∂β∂δ

∂2`i
∂δ∂β

∂2`i
∂δ∂δ

ª®¬ .
Then, the Fisher information is given by the negative of the

expectation of the Hessian matrix.

Ii(θ) = −E[H i] =

(
X ′iΣ

−1
i X i 0
0 M i

)
, (5)

where M i is a 4 × 4 symmetric matrix with elements

Mrs,i =
1
2

tr(Σ−1
i
ÛΣirΣ

−1
i
ÛΣis), r, s = 1, . . . ,4,

and
ÛΣir =

∂Σi
∂δr

, r = 1, . . . ,4.

It can be further shown that

ÛΣi1 =
∂Σi
∂σ0

= Z i

(
2σ0 ρσ1
ρσ1 0

)
Z ′i; ÛΣi2 =

∂Σi
∂σ1

= Z i

(
0 ρσ0
ρσ0 2σ1

)
Z ′i;

ÛΣi3 =
∂Σi
∂ρ
= Z i

(
0 σ0σ1

σ0σ1 0

)
Z ′i; ÛΣi4 =

∂Σi
∂σ
= 2σI i .

Thus, the total Fisher information is I(θ) = ∑n
i=1 Ii(θ).
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B. Derivation of tp
According to Equation (3), the p-th quantile lifetime tp

under condition x1 and x2 satisfies the following:

FT (tp) = 1 − Φ
©­­«

D f − β0 − β1τp − (η1x1 + η2x2)τp√
σ2

0 + τ
2
pσ

2
1 + 2τpρσ0σ1

ª®®¬ = p

Then, (
D f − β0 − (β1 + η1x1 + η2x2)τp

)2

σ2
0 + τ

2
pσ

2
1 + 2τpρσ0σ1

= [Φ−1(1 − p)]2

(h − rτp)2

σ2
0 + τ

2
pσ

2
1 + 2τpρσ0σ1

= k

(kσ2
1 − r2)τ2

p + 2(kρσ0σ1 + hr)τp + (kσ2
0 − h2) = 0,

where h = D f −β0, r = β1+η1x1+η2x2, and k = [Φ−1(1−p)]2.
Further denote a = (kσ2

1 − r2), b = 2(kρσ0σ1 + hr), and
c = (kσ2

0 − h2). The equation above is equivalent to

aτ2
p + bτp + c = 0

with solutions

τp =
−b ±

√
b2 − 4ac
2a

=
−(kρσ0σ1 + hr) ±

√
(kρσ0σ1 + hr)2 − (kσ2

1 − r2)(kσ2
0 − h2)

kσ2
1 − r2

=
−(kρσ0σ1 + hr) ±

√
k2ρ2σ2

0σ
2
1 + kσ2

0 r2 + kσ2
1 h2 − k2σ2

0σ
2
1 + 2kρσ0σ1hr

kσ2
1 − r2

,

then tp = τ
1/γ
p .

Note that “±” becomes “+” and “−” if 0 < p < 0.5 and
0.5 < p < 1, respectively. When p = 0.5 (i.e. k = 0, the case
of median lifetime), the equation above reduces to

τp =
h
r
=

D f − β0

β1 + η1x1 + η2x2
.

C. Derivation of c

Recall that c =
(
∂tp
∂β0

, . . . ,
∂tp
∂σ

) ′
. Let

ν =
√

k2ρ2σ2
0σ

2
1 + kσ2

0 r2 + kσ2
1 (β0 − D f )

2 − k2σ2
0σ

2
1 − 2kρσ0σ1r(β0 − D f ),

then we will have the followings:

∂tp
∂β0
=
∂tp
∂τp

∂τp

∂β0
=

1
γ
τ
(1/γ−1)
p

{
1

r2 − kσ2
1

(
−r ±

khσ2
1 + kρrσ0σ1

ν

)}
.

∂tp
∂β1
=
∂tp
∂τp

∂τp

∂β1
=

1
γ
τ
(1/γ−1)
p

{
2r

(r2 − kσ2
1 )

2
(−kρσ0σ1 − hr ± ν) −

1
r2 − kσ2

1

(
−h ±

krσ2
0 + kρhσ0σ1

ν

)}
.

∂tp
∂η1
=
∂tp
∂τp

∂τp

∂η1
=

1
γ
τ
(1/γ−1)
p

{
2r

(r2 − kσ2
1 )

2
(−kρσ0σ1 − hr ± ν) −

1
r2 − kσ2

1

(
−h ±

krσ2
0 + kρhσ0σ1

ν

) }
x1 .

∂tp
∂η2
=
∂tp
∂τp

∂τp

∂η2
=

1
γ
τ
(1/γ−1)
p

{
2r

(r2 − kσ2
1 )

2
(−kρσ0σ1 − hr ± ν) −

1
r2 − kσ2

1

(
−h ±

krσ2
0 + kρhσ0σ1

ν

) }
x2 .

∂tp
∂σ0

=
∂tp
∂τp

∂τp

∂σ0
=

1
γ
τ
(1/γ−1)
p

{
1

r2 − kσ2
1

(
kρσ1 ±

k2σ0σ
2
1 − kr2σ0 − k2ρ2σ0σ

2
1 − kρhrσ1

ν

)}
.

∂tp
∂σ1

=
∂tp
∂τp

∂τp

∂σ1
=

1
γ
τ
(1/γ−1)
p

{
1

r2 − kσ2
1

(
kρσ0 ±

k2σ2
0σ1 − kh2σ1 − k2ρ2σ2

0σ1 − kρhrσ0

ν

)
+

2kσ1

(r2 − kσ2
1 )

2
[kρσ0σ1 + hr ± (−ν)]

}
.

∂tp
∂ρ
=
∂tp
∂τp

∂τp

∂ρ
=

1
γ
τ
(1/γ−1)
p

{
1

r2 − kσ2
1

(
kσ0σ1 ±

−k2ρσ2
0σ

2
1 − khrσ0σ1

ν

)}
.

∂tp
∂σ
= 0 .

Again, “±” becomes “+” and “−” if 0 < p < 0.5 and 0.5 <
p < 1, respectively. Particularly, when p = 0.5, the equations
above reduce to

∂tp
∂β0
=

1
γ
τ
(1/γ−1)
p (−

1
r
) ;

∂tp
∂β1
=

1
γ
τ
(1/γ−1)
p (−

h
r2 ) ;

∂tp
∂η1
=

1
γ
τ
(1/γ−1)
p (−

h
r2 )x1 ;

∂tp
∂η2
=

1
γ
τ
(1/γ−1)
p (−

h
r2 )x2 ;

∂tp
∂σ0

=
∂tp
∂σ1

=
∂tp
∂ρ
=
∂tp
∂σ
= 0 .

D. Simplification of the Objective Functions

According to Section III-B, for a given plan P, the total
Fisher information matrix is given by

I(θ;P) = n
L∑
l=1

πlIi(θ; ξ l),

and the existing conclusion in Appendix A shows that

Ii(θ; ξ l) =
(
X ′iΣ

−1
i X i 0
0 M i

)
,

where X i , Σi , and M i are the corresponding elements in
Equation (5) for a single unit tested at the lth stress level.
Then, we further denote I(θ;P) by(

n
∑L

l=1 πlX
′
iΣ
−1
i X i 0

0 n
∑L

l=1 πlM i

)
=

(
RP 0
0 MP

)
.

Therefore, the objective functions in Section III-C can be
simplified as
• D-optimality:

−det

[
L∑
l=1

nlIi(θ; ξ l)

]
= − det

(
RP 0
0 MP

)
= − det(RP)det(MP);

• C-optimality:

c ′

(
L∑
l=1

nlIi(θ; ξ l)

)−1

c =c ′
(
RP 0
0 MP

)−1
c

=c ′
(
R−1
P

0
0 M−1

P

)
c.

E. Proof of Proposition 1
In a single-variable case, a test plan is given by

Ps =

(
xH xL
πH πL

)
,

and the ADT model becomes

yi j = β0i + β1iτi j + ηxiτi j + εi j,

where the derivation of I(θ), tp , and c follows similarly to
Appendices A, B, and C, respectively.

By Appendix D, we have

AVar(t̂p) =c ′
(
R−1
Ps

0
0 M−1

Ps

)
c

=c ′
(
(nπHXH

i

′
Σ−1
i XH

i + nπLXL
i

′
Σ−1
i XL

i )
−1 0

0 (nM i)
−1

)
c,
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where XH
i , XL

i , and c can be partitioned in the form

XH
i =

©­­«
1 τi1 xHτi1
...

...
...

1 τimi xHτimi

ª®®¬
def
=

(
T | xH t

)
,XL

i =
©­­«

1 τi1 xLτi1
...

...
...

1 τimi xLτimi

ª®®¬
def
=

(
T | xL t

)
,

and c =
(
∂tp
∂β0

, . . . ,
∂tp
∂η |

∂tp
∂σ0

, . . . ,
∂tp
∂σ

) ′ def
= (c ′1, c

′
2)
′.

¶ Thus, the proof is equivalent to demonstrating that
c ′1R

−1
Ps
c1 is a decreasing function of xH and an increasing

function of xL , ∀xH , xL ∈ (0,1) since M i doesn’t involve xH
and xL .

Note that

RPs =

(
nπHT ′Σ−1

i T nπH xHT ′Σ−1
i t

nπH xH t ′Σ−1
i T nπH x2

H t ′Σ−1
i t

)
+

(
nπLT ′Σ−1

i T nπL xLT ′Σ−1
i t

nπL xL t ′Σ−1
i T nπL x2

L t
′Σ−1

i t

)
=n

(
T ′Σ−1

i T (πH xH + πL xL)T ′Σ−1
i t

(πH xH + πL xL)t ′Σ−1
i T (πH x2

H + πL x2
L)t
′Σ−1

i t

)
def
= n

(
R11 (πH xH + πL xL)r12

(πH xH + πL xL)r ′12 (πH x2
H + πL x2

L)r22

)
,

where R11 is a 2 × 2 constant matrix, r12 is a 2 × 1 constant
vector, and r22 is a scalar.

Then, according to the Equation (2.51) on page 23 of
(Rencher and Schaalje, 2008), we have

R−1
Ps
=

1
n

(
R11 (πH xH + πL xL)r12

(πH xH + πL xL)r ′12 (πH x2
H + πL x2

L)r22

)−1

=
1

n f

(
f R−1

11 + (πH xH + πL xL)2R−1
11 r12r

′
12R

−1
11 −(πH xH + πL xL)R−1

11 r12
−(πH xH + πL xL)r ′12R

−1
11 1

)
,

where f = (πH x2
H + πL x2

L)r22 − (πH xH + πL xL)2r ′12R
−1
11 r12.

Note that ∂tp
∂η = 0 under the use condition, we further

partition c1 in the form c1 =
(
∂tp
∂β0

,
∂tp
∂β1

,0
) ′ def
= (c ′11,0)

′.
Then,

c ′1R
−1
Ps
c1 =

1
n f
(c ′11,0)

′

(
f R−1

11 + (πH xH + πL xL)2R−1
11 r12r

′
12R

−1
11 −(πH xH + πL xL)R−1

11 r12
−(πH xH + πL xL)r ′12R

−1
11 1

) (
c11
0

)
=

1
n f

c ′11
[

f R−1
11 + (πH xH + πL xL)2R−1

11 r12r
′
12R

−1
11

]
c11

=
1
n
c ′11

[
R−1

11 +
(πH xH + πL xL)2

f
R−1

11 r12r
′
12R

−1
11

]
c11.

· Thus, the proof is further equivalent to demonstrating

that
∂c′1R

−1
Ps

c1

∂xH
< 0 and

∂c′1R
−1
Ps

c1

∂xL
> 0, ∀xH , xL ∈ (0,1).

Note that

∂c ′1R
−1
Ps
c1

∂xH
=

1
n
c ′11

∂
[
R−1

11 +
(πH xH+πL xL )

2

f R−1
11 r12r

′
12R

−1
11

]
∂xH

c11

=
1
n
c ′11


∂ (πH xH+πL xL )

2

f

∂xH
R−1

11 r12r
′
12R

−1
11

 c11.

Similarly,

∂c ′1R
−1
Ps
c1

∂xL
=

1
n
c ′11


∂ (πH xH+πL xL )

2

f

∂xL
R−1

11 r12r
′
12R

−1
11

 c11,

and we let
(πH xH + πL xL)2

f
=

(πH xH + πL xL)2

(πH x2
H + πL x2

L)r22 − (πH xH + πL xL)2r ′12R
−1
11 r12

=
1

(πH x2
H+πL x

2
L )r22

(πH xH+πL xL )2
− r ′12R

−1
11 r12

def
=

1
g
.

¸ Thus, the proof is further equivalent to demonstrat-

ing that
∂ 1

g

∂xH
< 0 and

∂ 1
g

∂xL
> 0, ∀xH , xL ∈ (0,1) since

R−1
11 r12r

′
12R

−1
11 is a positive definite (pd) matrix.

Note that

∂ 1
g

∂xH
=
−

2r22πH xH (πH xH+πL xL )
2−2r22πH (πH x2

H+πL x
2
L )(πH xH+πL xL )

(πH xH+πL xL )4

g2

= −
xH (πH xH + πL xL) − (πH x2

H + πL x2
L)

(πH xH + πL xL)3g2/(2r22πH )

= −
πL xL(xH − xL)

(πH xH + πL xL)3g2/(2r22πH )
< 0.

Similarly,

∂ 1
g

∂xL
= −

πH xH (xL − xH )
(πH xH + πL xL)3g2/(2r22πL)

> 0. �

F. Proof of Corollary 1

Note that the two-level degenerate plan

Pd =

(
ξH ξL
πH πL

)
defined in Corollary 1 is equivalent to a “single-variable” case
with test conditions setting at the lowest and highest stress
levels by denoting

Pd→s =

(
1 a?

η1+sη2
πH πL

)
, for 0 ≤ s ≤ 1,

and

Pd→s =

(
1 a?

η1/s+η2
πH πL

)
, for 1 < s < ∞,

where 1/s set
= 0 when s approaches ∞.

Then, if denoting both a?

η1+sη2
and a?

η1/s+η2
by xL , the proof

of Corollary 1 is equivalent to demonstrating that AVar(t̂p) is
an increasing function of xL , 0 < xL < 1 in general, given any
fixed value of πH (πL) ∈ (0,1). This has already been proved
by Appendix E. �

G. Proof of Theorem 1

Without loss generality, we assume that s = 1. Following
Appendix F, denote the degenerate (after transforming to the
“single-variable” case) and nondegenerate plans by

Pd→s =

(
1 a?

η1+η2
πH πL

)
and Pn =

(
ξH ξL1 ξL2
πH πL1 πL2

)
=

©­«
1 x1L1 x1L2
1 x2L1 x2L2
πH πL1 πL2

ª®¬ ,
where πH + πL = 1, πL = πL1 + πL2, η1x1L1 + η2x2L1 = a?,
and η1x1L2 + η2x2L2 = a?.
¶ Firstly, we derive AVarn(t̂p) as follows.
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Similar to Appendix E, we partition XH
i , XL1

i , XL2
i , and c

in the form

XH
i =

©­­«
1 τi1 τi1 τi1
...

...
...

...
1 τimi τimi τimi

ª®®¬
def
=

(
T | t j ′

)
,

XL1
i =

©­­«
1 τi1 x1L1τi1 x2L1τi1
...

...
...

...
1 τimi x1L1τimi x2L1τimi

ª®®¬
def
=

(
T | tξ ′L1

)
,

XL2
i =

©­­«
1 τi1 x1L2τi1 x2L2τi1
...

...
...

...
1 τimi x1L2τimi x2L2τimi

ª®®¬
def
=

(
T | tξ ′L2

)
.

Then, RPn is given by

RPn =nπHXH
i

′
Σ−1
i XH

i + nπL1X
L1
i

′
Σ−1
i XL1

i + nπL2X
L2
i

′
Σ−1
i XL2

i

=n

[
πH

(
T ′Σ−1

i T T ′Σ−1
i t j ′

j t ′Σ−1
i T j t ′Σ−1

i t j ′

)
+ πL1

(
T ′Σ−1

i T T ′Σ−1
i tξ ′L1

ξL1 t
′Σ−1

i T ξL1 t
′Σ−1

i tξ ′L1

)
+ πL2

(
T ′Σ−1

i T T ′Σ−1
i tξ ′L2

ξL2 t
′Σ−1

i T ξL2 t
′Σ−1

i tξ ′L2

) ]

=n
(

R11 πH r12 j
′ + πL1r12ξ

′
L1 + πL2r12ξ

′
L2

πH j r ′12 + πL1ξL1r
′
12 + πL2ξL2r

′
12 πH jr22 j

′ + πL1ξL1r22ξ
′
L1 + πL2ξL2r22ξ

′
L2

)
=n

(
R11 r12(πH j ′ + πL1ξ

′
L1 + πL2ξ

′
L2)

(πH j + πL1ξL1 + πL2ξL2)r
′
12 (πH J + πL1ξL1ξ

′
L1 + πL2ξL2ξ

′
L2)r22

)
def
= n

(
R11 r12u

′
n

unr
′
12 Unr22

)
,

where j is a 2 × 1 vector with ones and J is a 2 × 2 matrix
with ones.

Thus,

AVarn(t̂p) =c ′
(
R−1
Pn

0
0 M−1

Pn

)
c

=c ′1R
−1
Pn

c1 + c ′2M
−1
Pn

c2

=c ′11A
−1
Pn

c11 + c ′2M
−1
Pn

c2,

where c =
(
∂tp
∂β0

,
∂tp
∂β1
|
∂tp
∂η1

,
∂tp
∂η2
|
∂tp
∂σ0

, . . . ,
∂tp
∂σ

) ′ def
= (c ′1, c

′
2)
′ def
=

(c ′11,0
′, c ′2)

′ and

APn = R11 −
1

r22
r12u

′
nU
−1
n unr

′
12.

· Secondly, we derive AVard(t̂p) as follows.
According to Appendix E, we denote

RPd→s
=n

(
R11 r12(πH + πL

a?

η1+η2
)

(πH + πL
a?

η1+η2
)r ′12 (πH + πL(

a?

η1+η2
)2)r22

)
def
= n

(
R11 r12ud

ud r
′
12 Udr22

)
=n

(
R11 r12

u′nη
(η1+η2)

u′nη
(η1+η2)

r ′12
η′Unη
(η1+η2)2

r22

)
where

ud = πH + πL
a?

η1 + η2
=

u′nη

(η1 + η2)

and

Ud = πH + πL(
a?

η1 + η2
)2 =

η ′Unη

(η1 + η2)2

given that η = (η1, η2)
′.

Thus,

AVard(t̂p) =c ′
(
R−1
Pd→s

0
0 M−1

Pd→s

)
c

=c ′1R
−1
Pd→s

c1 + c ′2M
−1
Pd→s

c2

=c ′11A
−1
Pd→s

c11 + c ′2M
−1
Pd→s

c2,

where

APd→s
=R11 −

1
r22

u2
d

Ud
r12r

′
12

=R11 −
1

r22
r12u

′
n

ηη ′

η ′Unη
unr

′
12.

¸ Thirdly, we provide a proof for part a).
First of all,

AVarn(t̂p) − AVard(t̂p)

=c ′11(A
−1
Pn
− A−1

Pd→s
)c11,

since MPn = MPd→s
.

When πL1ξL1+πL2ξL2 = πLξL , it is obvious that ud = u′n j
and U−1

d
= j ′U−1

n j, which implies that APn = APd→s
. Thus,

AVarn(t̂p) = AVard(t̂p).
To show that AVarn(t̂p) ≥ AVard(t̂p), it is equivalent to

demonstrating (see (Rao et al., 1973), problem 9 on page 70)
that APd→s

− APn is a nonnegative definite matrix. According
to the existing results above, we have

APd→s
− APn

=
1

r22
r12u

′
n

[
U−1

n −
ηη ′

η ′Unη

]
unr

′
12

=
1

r22
r12u

′
nL
′ [I − vv′] Lunr

′
12,

where I is an identity matrix, L′L = U−1
n is the Cholesky

decomposition of U−1
n , and v =

(L′)−1η
√
η′(L′L)−1η

is a unit length
vector.

Then, it is further equivalent to showing that I − vv′ is a
nonnegative definite matrix. By Cauchy-Schwartz inequality,
given any arbitrary vector a, we have

a′(I − vv′)a

=a′a − (a′v)2

≥a′a − (a′a)(v′v) = 0. �

¹ Lastly, we provide a proof for part b).
First of all, according to Appendix D, we have

det(I(θ;Pn)) = det(RPn )det(MPn ),

where MPn doesn’t involve stress variables. Thus, the proof
is equivalent to showing that det(RPn ) is maximized when
the split is done as much as possible.

Based on the results above, in general, the split is done such
that πL1ξL1 + πL2ξL2 = πLξL , i.e.

πL1

(
x1L1
x2L1

)
+ πL2

(
x1L2
x2L2

)
=πL

(
x1L
x2L

)
,

where πL = πL1+πL2, η1x1L1+η2x2L1 = a?, η1x1L2+η2x2L2 =
a?, and η1x1L + η2x2L = a?.
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Without loss of generality, we assume that d1 = x1L1−x1L >
0 and d2 = x1L − x1L2 > 0. Denote the slope of the minimum-
stress level line −η1

η2
by m and m = (1,m)′, we have

ξL1 =

(
x1L1
x2L1

)
=

(
d1 + x1L

md1 + x2L

)
= ξL + d1m,

ξL2 =

(
x1L2
x2L2

)
=

(
x1L − d2

x2L − md2

)
= ξL − d2m,

and (πL1d1 − πL2d2)m = 0. Then, RPn can be represented
using d1 and d2 as

RPn =n
(

R11 r12(πH j ′ + πL1ξ
′
L1 + πL2ξ

′
L2)

(πH j + πL1ξL1 + πL2ξL2)r
′
12 (πH J + πL1ξL1ξ

′
L1 + πL2ξL2ξ

′
L2)r22

)
=n

(
R11 r12(πH j ′ + πLξ

′
L)

(πH j + πLξL)r
′
12 [πH J + πLξLξ

′
L + (πL1d2

1 + πL2d2
2 )mm′]r22

)
.

and
∂RPn
∂d1

=

(
0 0
0 2r22πL1d1mm′

)
Then, the proof is further equivalent to showing that

det(RPn ) is an increasing function of both d1 and d2. We
prove this for d1; the proof for d2 is similar.

By partitioning RPn into a 2 × 2 matrix, we denote its
corresponding right lower partitioned inverse by R22. Note
that RPn and R22 are both pd matrices. By Equation (8.5) on
page 309 of (Harville, 1998), the derivative of the determinant
of RPn is given by

∂det(RPn )
∂d1

=det(RPn ) × tr
[
R−1
Pn

∂RPn
∂d1

]
=det(RPn ) × tr[2r22πL1d1R

22mm′]

=2r22πL1d1det(RPn )m
′R22m > 0.

Thus, det(RPn ) is an increasing function of both d1 and
d2; det(RPn ) is maximized by choosing d1 and d2 as large as
possible. It implies that the split should be done such that the
two lower levels reach the boundaries of D. �

H. Proof of Theorem 2

Without loss of generality, we assume that xU = 0 since one
can treat x ′H = xH − xU and x ′L = xL − xU as the transformed
higher and lower test condition, respectively, if xU , 0.

Following Appendix E, given fixed values of xH and xL ,
minimizing AVar(t̂p) is equivalent to minimizing

c ′1R
−1
Ps
c1 =

1
n
c ′11

[
R−1

11 +
(πH xH + πL xL)2

f
R−1

11 r12r
′
12R

−1
11

]
c11,

where f = (πH x2
H + πL x2

L)r22 − (πH xH + πL xL)2r ′12R
−1
11 r12.

Since c ′11R
−1
11 c11 and c ′11R

−1
11 r12r

′
12R

−1
11 c11 do not involve the

decision variables and are also positive, minimizing the term
above is further equivalent to finding the solutions of

∂ (πH xH+πL xL )
2

f

∂πH
= 0 and

∂ (πH xH+πL xL )
2

f

∂πL
= 0.

We demonstrate how to obtain the first solution. The second
one is found similarly or can be obtained simply by πL =

1 − πH . By denoting g =
(πH x2

H+πL x
2
L )r22

(πH xH+πL xL )2
− r ′12R

−1
11 r12, the

equation of partial derivative becomes

∂ (πH xH+πL xL )
2

f

∂πH
=

∂ 1
(πH x2

H
+πL x2

L
)r22

(πH xH +πL xL )
2 −r

′
12R

−1
11 r12

∂πH

= −
(x2

H − x2
L)(πH xH + πL xL) − 2(πH x2

H + πL x2
L)(xH − xL)

g2(πH xH + πL xL)3/r22
= 0.

Then, it is equivalent to solving the followings:

(x2
H − x2

L)(πH xH + πL xL) − 2(πH x2
H + πL x2

L)(xH − xL) = 0
(xH + xL)(πH xH − πH xL + xL) − 2πH (x2

H − x2
L) − 2x2

L = 0
πH (x2

H − x2
L) + xH xL + x2

L − 2πH (x2
H − x2

L) − 2x2
L = 0

πH (x2
H − x2

L) = xL(xH − xL)

πH =
xL

xH + xL
.

One can easily verify that the second derivative is greater than
0, so we omit it here. Thus, we complete the proof. �
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