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Abstract—Cyber and physical attacks threaten the security
of distribution power grids. The emerging renewable energy
sources such as photovoltaics (PVs) introduce new potential
vulnerabilities. Based on the electric waveform data measured
by waveform sensors in the distribution power networks, in this
paper, we propose a novel high-dimensional data-driven cyber
physical attack detection and identification approach (HCADI).
Firstly, we analyze the cyber and physical attack impacts
(including cyber attacks on the solar inverter causing unusual
harmonics) on electric waveforms in distribution power grids.
Then, we construct a high dimensional streaming data feature
matrix based on signal analysis of multiple sensors in the network.
Next, we propose a novel mechanism including leverage score
based attack detection and binary matrix factorization based
attack diagnosis. By leveraging the data structure and binary
coding, our HCADI approach does not need the training stage for
both detection and the root cause diagnosis, which is needed for
machine learning/deep learning-based methods. To the best of our
knowledge, it is the first attempt to use raw electrical waveform
data to detect and identify the power electronics cyber/physical
attacks in distribution power grids with PVs.

Index Terms—Attack Diagnosis, Distribution Power Grids,
Solar Inverter, Leverage Score, Binary Matrix Factorization.

I. INTRODUCTION

POWER electronics converters are becoming more vul-
nerable to cyber/physical attacks due to their growing

penetration in Internet of Things (IoT) enabled applications
including the smart grids [1]. Due to the lack of cyber awareness
in power electronics community [1], it becomes more urgent
to develop cyber/physical attack detection and identification
strategies for power electronics converters in many safety-
critical applications since these malicious attacks can lead
to a catastrophic failure and substantial economic loss if not
detected in the early stage.
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Attacks are studied in applications which are intensively
dependent on power electronics converters, including power
grids with voltage support devices [2], distribution systems
with solar farms [3], with power electronics driven HVAC
(Heating, ventilation, and air conditioning) systems [4], and
microgrids [5], [6]. However, they mostly focus on either
analyzing or detecting cyber attacks affecting grid level stability,
functionality and operational costs. In [7], a model-based
method was developed to detect data integrity attacks on
automation generation control of transmission systems. In [3],
a physical-law based detection was developed to detect false
data attacks which attempt to reduce the output power of solar
energy in distribution systems. In [4], a secure information
flow framework was developed for 118-bus distribution network
with power electronics driven HVAC system. In [8], a physics-
based, cooperative mechanism was developed to detect stealthy
attacks in DC microgrids with a number of DC-DC converters,
which can bypass most of observer-based detection methods.
In [9], a physics-based framework to detect false-data injection
attacks in DC microgrids with a number of DC-DC converters.
While power electronics converters are included in their cyber
security monitoring frameworks, they are designed to detect
one particular type of grid-level cyber attacks but those on the
devices (power electronics converters) are not studied. Thus,
their cyber security framework is not applied to (1) cyber attack
detection on power electronics converters, which might affect
the performance of power electronics converters; and (2) the
root cause identification when a variety of attacks occur.

As smart grids are evolving to complex cyber-physical
systems, there might be a variety of cyber and physical
attacks including coordinated attacks. Data-driven approaches
are gaining increased attention in recent years due to the
advancements in sensing and computing technologies [10]–
[13]. They show great potentials in detecting and identifying
complicated cyber and physical attacks. The data sources
for these purposes include solar power plants, wind turbines,
hydroelectric plants, marine turbines, phasor measurement
unit (PMU), microgrids, fault detectors, smart meters, smart
appliances and electric vehicles [14]. In [15], A data-driven
time-frequency analysis was proposed to detect the dynamic
load altering attacks. In [16], a data-driven hidden structure
semi-supervised machine was proposed to implement the power
distribution network attack detection. In [17], multistream data
flow was employed to build effective and efficient attack-
resilient solutions against the cyber threats targeting electric
grids. In [18], a data-driven and low-sparsity false data injection
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attack strategy against smart grid was investigated. In [19],
a machine learning solution was proposed to identify the
false data injection attacks on transmission lines of smart
grids. Existing data-driven approaches, however, have not
yet been used to detect cyber and physical attacks in the
device level (power electronics converters). Thus, a data-driven
methodology is needed to detect and identify a variety of cyber
and physical attacks, that negatively affect both the power
electronics converter (such as solar inverter) and other critical
components (such as relays and generators) in power grids.

Fig. 1: Cyber and physical attacks threaten the security of the
distribution power grid with a solar farm.

Fig. 1 shows the diagram of distribution power grid with
solar farms. The solar farm is physically connected to the
distribution grid through the DC/DC, DC/AC converters and
the grid connected transformers. Then the major components
and control center are connected through cyber networks.
The attacks in red are the potential cyber attacks on the
control center (such as data integrity attacks on inverter
feedback/control signals or some abnormal delay injected to
the control signal), which will compromise the performance
of the grid and power electronics converters; the attacks in
black are the physical attacks to the power grid facilities
(such as single and multiple phase short circuit faults of
transformers/generators, abnormal load/capacitor bank cut-off).
We need to detect and diagnose both cyber and physical attacks
to the distribution power grids with PV systems. Compared with
the traditional hardware protection, for example relays, we aim
to develop a comprehensive data-driven solution to adaptively,
efficiently and accurately monitor the power grid with more
and more various power electronics devices, protecting the
system from cyber and physical attacks, even subtle ones.

In this paper, we propose to develop a data-driven method-
ology to detect and identify the cyber and physical attacks on
distribution power grid with solar farms. We firstly analyze and
simulate the impacts of cyber and physical attacks on electrical
waveforms in distribution power grid with solar farms. Then we
propose a high-dimensional data-driven cyber physical attack
detection and identification approach (HCADI) based on feature
extraction, anomaly detection and matrix factorization. Finally,
we test and evaluate our HCADI approach in a MATLAB
model of distribution power grid with solar farms in different
cyber and physical attack scenarios. The contributions and
innovations of our work are:

1) We develop a novel HCADI framework that effectively
detects and identifies both cyber and physical attacks
on the grid level and device level (power electronics
converters) in distribution power grid with solar farms.

2) We propose an innovative waveform data based signal
processing and online statistics associated method to
detect the cyber and physical attacks. The proposed data-
driven method detects attacks based on the dependence
structure of multi-dimensional streaming sensor data.

3) We propose to use the feature distribution of latent vari-
ables based on matrix factorization to diagnose the cyber
attack types. The proposed attack diagnosis approach
doesn’t require a training stage, which is superior to
machine learning/deep learning based methods in terms
of computational efficiency.

II. CYBER PHYSICAL MODELING AND CONTROL OF PVS

In general, solar farms include four major components: solar
panels, first stage DC/DC converter, second stage DC/AC
inverter, and the grid connected transformer. Here, we an-
alyze, detect, and identify cyber attacks on the solar inverter,
causing the unusual harmonics and then poor power quality in
distribution systems.

Fig. 2: Main circuit topology of the inverter.S1 ∼ S6 denote
the switching signals.

The main topology of the solar inverter is shown in Fig. 2,
and the generalized physical model of DC/AC solar inverter is
derived as follows:


dia
dt = −RL ia −

ea
L + Vdc

3L (2sa − sb − sc),
dib
dt = −RL ib −

eb
L + Vdc

3L (−sa + 2sb − sc),
dic
dt = −RL ic −

ec
L + Vdc

3L (−sa − sb + 2sc),

(1)

where the control signals sa, sb, sc will be sent from the cyber
system and are defined as:

sa =

{
1 (S1 = 1, S4 = 0)
0 (S1 = 0, S4 = 1) ,

sb =

{
1 (S3 = 1, S6 = 0)
0 (S3 = 0, S6 = 1) ,

sc =

{
1 (S5 = 1, S2 = 0)
0 (S5 = 0, S2 = 1) ,

(2)

ia, ib, ic are the currents of each phase, ea, eb, ec are the phase
voltages of the power grid and L and R are the inverter
inductance and resistance, Vdc is the DC bus voltage after the
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first stage DC/DC converter. To simplify the analysis process,
direct-quadrature-zero (DQZ) transformation is adopted [20]:{ did

dt = − 1
Led + 1

LVdcSd + ωiq − R
L id,

diq
dt = − 1

Leq + 1
LVdcSq − ωid −

R
L iq,

(3)

where ω is the electric angular frequency, and the control
input is transformed as Sd and Sq , and other variables are all
corresponding to the d− and q− axis components.

Fig. 3 shows the control diagram of the solar farm system,
and the cyber attack on the solar inverter is denoted red, which
injects a long time delay to the solar inverter control signals.

Fig. 3: Control diagram of the solar farm system.

III. METHODOLOGY

A. Problem setup

Suppose we have sequential observations at k sensors,
x1(t), x2(t), . . . , xk(t). Before the emergence of the attack,
the observations are normal conditions following the electronic
model η(·) described in Section II with a random noise, i.e.,
ε(t) ∼ N(0, σ2). When an attack occurs, the observations at
different sensors will capture it but with different responses.
We assume the attack signal is causal, i.e., η(t) = 0,∀t < 0.

For the ith sensor, the observed data can be expressed as:

xi(t) = η(t) + εi(t), t = 1, 2, . . . , τ,
xi(t) = αiη

∗(t− τi) + εi(t), t = τ + 1, τ + 2, . . . ,
(4)

where αi is the unknown amplitude of the change at the ith
sensor. A sensor data matrix X can be constructed, X(t) =
[x1(t), . . . , xk(t)], X ∈ Rk×n, n is the data sample number.

B. Feature Extraction

The measured normal waveform data are typically sinusoidal
functions for AC power grids. In order to extract the waveform
information with impacts from different attacks, we need to
extract signal features first, such as the health index in [21]
and signal quality measurements in [22].

1) Instantaneous Features: The waveforms of voltage and
current signals V = [V1, V2, . . . , VN ]T , I = [I1, I2, . . . , IN ]T

are measured from a network with size N the nodal, where
depending on the number of phases at node i, Vi and Ii can
be row vectors of size 1, 2 or 3. In order to characterize the
waveform properties, we adopt instantaneous properties from:

sc(t) = s(t) + jH{s(t)} = A(t)ejψ(t), (5)

where s(t) is the real signal, sc(t) is the complex expression,
A(t) is the instantaneous amplitude (IA) (envelope), ψ(t) is
the instantaneous phase(IP), H is the Hilbert transform as:

H{s(t)} =
1

π

∞∫
−∞

s(τ)

t− τ
dτ. (6)

Thus, for a three phase current In = [InA, InB , InC ]T ,
where InA = AInA

ejψInA
(t). Similarly, Vn can be expressed

as Vn = [VnA, VnB , VnC ]T , where VnA = AVnA
ejψVnA

(t).
2) Differences: The changes of the nodal DC voltages and

branch currents can be expressed as:

∆Vn = Vn(t)− Vn(t− w), (7)

∆Inp = Inp(t)− Inp(t− w), (8)

where, w is the analysis window size, n and p denote two
arbitrary neighboring nodes.

For the AC voltages and currents, considering the instan-
taneous features in Section III-B1, the differences can be
expressed as:

∆VnA = AVnA
(t)−AVnA

(t− w), (9)

∆InpA = AInpA
(t)−AInpA

(t− w), (10)

where only Phase A is showed, Phases B and C have the
similar expressions. In the normal distribution power grids, the
voltages and currents should be stable. If abnormal changes
happen to ∆Vn and ∆Inp, an event can be detected based
on certain thresholding methods [23], [24]. Here, instead of
directly using the difference, we treat it as one dimension of
the high-dimensional detection metrics matrix.

3) Unbalance: In the AC power grids, single, two or even
three phase issues could exist. The waveforms of Phases
A,B, and C allow a relatively straightforward phase unbalance
characterization based on direct comparisons of phase signal
attributes. Based on the IA defined in Eq. (5), we define the
current unbalance characterization functions Iα, Iβ , and Iγ as:

Inα =
1

3

i,j∈{A,B,C}∑
i6=j

(AIni
−AInj

)2. (11)

Inβ =
Imax − Imin

Imax
, (12)

Inγ =

i,j∈{A,B,C}∑
i6=j

Γ(AIni , AInj ), (13)

where, In,max = max{AInA
, AInB

, AInC
} and In,min =

min{AInA
, AInB

, AInC
}, Γ denotes a thresholding function to

measure the difference. If Iβ is not zero, there exists unbalance
among the three phases. Then we use Iγ to determine the
how many phases are affected, and Iα to measure the absolute
changes. Similarly, we can also get Vα, Vβ and Vγ .

Authorized licensed use limited to: University of Georgia. Downloaded on September 01,2020 at 18:34:24 UTC from IEEE Xplore.  Restrictions apply. 



2168-6777 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2019.2943449, IEEE Journal
of Emerging and Selected Topics in Power Electronics

IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. X, NO. X, XX 2019 4

C. High-dimensional Data Matrix Construction

In Section III-A, we build a data matrix X in general,
and X ∈ Rk×n with n being the number of data sam-
ples and k being the number of sensors. Because of the
feature extraction in Section III-B, the streaming data from
one node on an AC distributed power grid become high
dimensional instead of just one. For a DC node the feature
matrix is [V, I,∆V,∆I]T , while for an AC node the feature
matrix is [AVA

, AVB
, AVC

, AIA , AIB , AIC ,∆VA,∆VB ,∆VC ,
∆IA,∆IB ,∆IC , Vα, Vβ , Vγ , Iα, Iβ , Iγ ]T . Note that for a node,
the current measurements could be more than one as the
connections with other nodes can be multiple. So the listed
matrices are still general formats. In reality, the feature matrices
will have even larger dimensions. In short, the detection data
matrix combines all the feature matrices from all the nodes
in the networks, and will be used for attack detection and
root cause diagnosis.Thanks to the recent growth in wireless
communication, the monitoring data even over a large area can
be efficiently collected [25].

D. Statistical Leverage Score for Attack Detection

After constructing the high-dimensional data matrix in
Section III-C, we apply a novel data-driven anomaly detection
method based on the feature matrix Y ∈ Rn×m with n
time sample points and m features to detect the attack
emergence. Since the observed signal are recorded along
time and has multiple dimensions, the multidimensional time
series model will be a natural choice for modeling such data.
To the best of our knowledge, traditional attack detection
and identification methods, including the distributed attack
detection and the adaptive fault detection methods, did not
fully utilize the feature contained in the multidimensional time
series model [26]–[28], while ignoring those temporal or cross-
correlated features may lead to biased detection results. The
vector autoregressive (VAR) model as a fundamental model
in the study of multivariate time series are considered to
capture the dynamics of the signals [29], [30]. On time domain,
each data point is correlated its previous values; on spatial
domain, each sensor records one dimensional data and data
from different dimension are correlated to each other spatially,
i.e., cross-correlated. The temporal dependency in the time
domain of the signal calls for the time series modeling, where
the autoregressive model can effective capture such features.
The autoregressive (AR) model is a time series model that the
observations are specified to be depended on its own previous
values and a stochastic term. On the other hand, the similarity
and dissimilarity among spatial features that we extract makes
the VAR model, which is an extension of AR model and
incorporates the multidimensional cross-correlation, suitable
for the analyzing the high-dimensional data. In general, we
consider the parameter estimation of a m-dimensional vector
autoregressive model of order p, i.e., VAR(p),

y′t= y′t−1Φ′1 + y′t−2Φ′2 + · · ·y′t−pΦ′p + e′t

= x′tB + e′t,
(14)

where yt is the k-dimensional response vector observed at time
point t ∈ {1, . . . , n}, B = [Φ′1,Φ

′
2, · · · ,Φ′p]′ is the mp ×m

model parameter matrix, xt = (y′t−1,y
′
t−2, · · · ,y′t−p)′ is a

column vector of previous values of length mp, and et is
a sequence of independent and identically distributed (i.i.d.)
stochastic random vectors with mean zero and and finite
non-singular covariance matrix E[ete

′
t] = Ψ. The unknown

parameter Bt at time sample t can be estimated as

Bt = arg min
B

∑
t∈{1,2,...}

||y′t − x′tB||22,

=

(∑
t

xtx
′
t

)−1(∑
t

xty
′
t

)
.

(15)

If we define a Hat Matrix PH = x′t (
∑
t xtx

′
t)
−1

xt, the
predicted value can be expressed as ŷt = PHyt. And, the i-th
diagonal element of PH ,

`ii =
∂ŷi
∂yi

= x′i

(∑
t

xtx
′
t

)−1
xi, (16)

is the statistical leverage score of the i-th observation, which
has been used to regression diagnostics to quantify the
influential observations, and data dependent subsampling [30]–
[32]. Alternatively, the leverage score can be expressed as

`ii = ||ui||22, (17)

where u′i comes from the rows of the orthogonal matrix U ,
which can be calculated from the left singular matrix of the
singular value decomposition (SVD) on matrix [x1 · · · xt]
[32], [33]. By calculating the leverage score based on the VAR
model, we can identify the highly influential data points that
change the system status rather than the random noise, which
can effectively reduce the false alarms in the attack detection.
High-leverage score data points have the extreme or outlying
behaviours such that they can effectively identify the anomaly
values of the underlying observations.

For streaming feature signals Y (t), finding the orthogonal
basis to calculate the leverage score can be implemented in an
online fashion through streaming principal component analysis
(PCA) [34], [35]. The implementation of streaming leverage
score calculation is discussed in [30].

E. Binary Matrix Factorization to Diagnose Attack Root Causes

After detecting the influential data points as possible attacks
using the statistical leverage score, we propose a data-driven
matrix factorization method for attack root causes diagnosis.
Matrix factorization techniques such as Non-negative Matrix
Factorization (NMF) or SVD consist of an important family of
data analysis tools that yield a compact representation of signals
as linear combinations of a small number of ‘basis’ referred
to as latent variables or states [36]. Attack detection based on
result of matrix factorization can be adopted to diagnose the
cyber attack root causes [37]. The construction of traditional
process monitoring methods based on multivariate statistics
neglects the temporal correlation and spacial dependency of
latent variables at different sampling times, and those methods
also assume latent variables satisfying a particular distribution.

Here we consider to decompose signals into the binary basis
and its corresponding weights. The binary basis reveal a unique
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binary coding as the latent states to indicate the fault types or
the root causes of the attack. By examining the combination of
the binary coding, we can effectively and efficiently diagnose
the root causes of the attacks. Specifically, if the input signal
is a real-valued matrix Y ∈ Rn×m, we aim to decompose Y
into a product of a binary matrix H and a weight matrix W ,
i.e., Y ≈ HW . The binary matrix factorization (BMF) method
is free from the input signal distribution assumptions, which
leads to a data-driven method for attack root cause analysis
without a training process.

We implement the following BMF algorithm to exam the
attack diagnosis. Given Y ∈ Rn×m as the input data matrix,
we formulate the BMF as an optimization problem: find H1 ∈
{0, 1}n×r and W1 ∈ Rr×m, such that Y ≈ H1W1 with r < m.
Using a metric of the F-norm (Frobenius norm), the general
BMF problem takes the form:

min
H1,W1

1

2
‖Y −H1W1‖2F ,

subject to H1 ∈ {0, 1}n×r, W1 ∈ Rr×m,
(18)

which can be solved by enumerating all vertices of the n-
dimensional cubic [0, 1]n contained in affine subspace of Y
and selecting a maximal independent subset. In summary, the
scalable speed up algorithm to find the vertices is:

1) Randomly selecting from candidate vertices, which yields
candidate matrices {H(l)

1 }sl=1;
2) Subsequently solving H1 = arg min

H
(l)
1

minW1
||Y −

H
(l)
1 W1||2F given the current estimate of W1;

3) Update the weight estimate by W1 = arg minW1
||Y −

H
(l)
1 W1||2F given the current estimate of H(l)

1 ;
4) Alternate Steps (2) and (3) until converge.

The convergence analysis of the algorithm can be found in [37].
We introduce the multilayer binary matrix factorization for

detailed root cause diagnosis. After the fitst layer BMF, we
denote the recovered signals as Ŷ := H1W1, and the residuals
as R1 := Y − Ŷ = Y − H1W1. Now we can perform the
second layer binary matrix factorization as

min
H2,W2

1

2
‖R1 −H2W2‖2F ,

subject to H2 ∈ {0, 1}n×r2 , W2 ∈ Rr2×m.
(19)

The rows H1(t,m), t ∈ {1, . . . , n} of the binary matrix H1

form the basis elements that indicate the binary coding of the
latent states of the signal. The rows H2(t,m), t ∈ {1, . . . , n}
of the binary matrix H2 contains the detailed elements that
indicate the binary coding of the pattern change of the signal.
By jointly examining the binary coding of both the H1 and
H2, we can determine the root causes of the attack through
the one-to-one mapping of binary coding and root causes.

IV. ALGORITHM

Based on the theories introduced in Section III, we propose
a online high dimensional data-driven cyber-physcial attack
detection and diagnosis algorithm called HCADI, whose
workflow is shown in Fig. 4. First, electric waveform data
are obtained continuously to construct streaming data. As the
streaming data are measured from the sensors in the distribution

power networks, the streaming data matrix has high dimensions
with AC and DC voltages and currents. Before the features
extraction, a typical pre-processing operation filters out the
noise interferences and conditions the data if data samples
are missing or time stamps are not stable. Using the Eqs. (5)
to (13), from the high dimensional data matrix, we build a
high dimensional feature matrix, whose dimension is even
higher. Based on the leverage score, the abnormal changes in
the feature matrix can be detected. Otherwise, if there is no
anomaly, the whole system will analyze the next streaming
data segmentation. Once an anomaly is detected, we apply the
BMF method to identify the attack types based on the binary
coding results. The advantage of using an attack detection step
before the attack diagnosis is the efficiency, as the diagnosis
is more time and computation consuming than the detection.

Fig. 4: Workflow of the proposed HCADI system. The attack
detection is highlighted with red shadow, and the attack
diagnosis result is in yellow.

V. SIMULATION

A simulation based on a MATLAB Simulink Demo, 400kW
Grid-Connected PV Farm Network, is conducted to generate
waveforms of some typical fault in small scale power network.
The power network topology is shown in Fig. 5.

Fig. 5: Simulation topology of a 400 kW Grid-Connected PV
Farm Network.

The power grid is modeled as an ideal voltage source with a
rate voltage of 120 kV, and connected to the sub-transmission
network with a rate voltage of 25 kV through a 47 MVA
power transformer. The PV farm includes four solar blocks,
each of them connected to the DC bus through a DC/DC
converter. And a three phase inverter is adopted to transfer
the DC power to the AC. And to match the voltage level of
the sub-transmission system, a 400 kVA power transformer is
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used to connect the PV farm and the sub-transmission system.
Moreover, four linear loads are modeled in the system: 30 MW
on Bus 4, denoted the power grid load, 100 kW and 2 MW on
Bus 5 and Bus 6, denoted the sub-transmission system loads,
and 40 kvar reactive power compensation on Bus 1 as well as
a 2 Mvar reactive power compensation on Bus 4, modeled as
capacitive power loads. Under normal operation condition, the
voltage and current waveforms of Bus 2 are shown in Fig. 6.
The sampling frequency is 50k Hz, and 0.5 seconds (s) data
are simulated for each scenario, which have 25001 samples.
Note that, to clearly illustrate details, we only plot 0.1 s data
around the event time in Figs. 6∼11.

Fig. 6: Normal operation condition waveforms of (left) the
voltage and (right) current on Bus 2.

Using the simulation system described above, we simulate
typical fault conditions, each of which has featured waveforms:

1) Physical Attacks: Short circuit fault is one of the most
common physical faults in power systems, which could
be caused by human behaviors and natural hazards, such
as misoperations, cyber-attacks, storm and lighting. And
the outcomes of short circuit fault depend on many factors
such as fault location, short fault type and damage severe
degree. So four different short circuit faults are simulated.

a) Main grid grounded short circuit fault: A single
phase grounded short circuit fault of Bus 4 results
in distortion of the voltage and the current. The
waveform of Bus 4 is shown in Fig. 7, it is easy
to note that this fault causes transient impacts
on currents and spike voltage and steady state
asymmetric components.

Fig. 7: Main grid single phase grounded short circuit fault
waveforms of (left) the voltage and (right) current on Bus 4.

b) Solar transformer grounded short circuit fault:
The short circuit faults happen on Bus 2, which can
be single phase or double phases. A double phases
(phase a and phase b) grounded short circuit fault
waveforms of Bus 4 are shown in Fig. 8. Note that

the fault current is even more severe than that from
the main grid fault described above.

Fig. 8: Solar transformer double phases (phase a and phase
b) grounded short circuit fault waveforms of (left) the voltage
and (right) current on Bus 2.

2) Cyber Attacks:
a) Extra reactive power compensation in solar

system: Fig. 9 shows the waveforms of Bus 1
when the PV farm is injected extra reactive power
compensation, which is possibly caused by false
data injection in the control center. In the simulation
model, extra reactive power is modeled as capacitive
power load and injected to Bus 1, which could be
caused by misoperations and purposeful attacks.

Fig. 9: Extra reactive power compensation in solar system
waveforms of (left) the voltage and (right) current on Bus 1.

b) PV farm inverter attacked: The solar inverter
hacked situation is simulated. A 1 ms delay is
added to the inverter controller signal to simulate
the “data integrity” attack [22]. The waveforms of
Bus 1 are shown in Fig. 10.

Fig. 10: PV farm inverter attacked waveforms of (left) the
voltage and (right) current on Bus 1.

c) 30MW linear load cut off: Heavy load cutting off
is another common fault in power system which
could be caused by the integrity attack to the control
center. When heavy load is cut off in a short period,
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the power system will generate sever oscillations.
The waveforms of Bus 4 are shown in Fig. 11.

Fig. 11: 30 MW linear load cut off waveforms of (left) the
voltage and (right) current on Bus 4.

VI. EVALUATION

A. Pre-processing and Feature Extraction

The first step of the proposed algorithm is the normalization.
Because our approach is based on matrix structure analysis,
the unbalanced amplitudes among different observations will
influence the following statistical analysis. Thus, we normalize
the data matrix before the feature extraction, and one example
of the main grid grounded short circuit fault in Fig. 7 is shown
in Fig. 12. Note that, the AC components are normalized
according to their IAs, while DC components are based on
their maximum and minimum values in the segments. There
are 6 nodes (5 AC nodes and 1 DC node) in Fig. 5, so the
vectors in data matrix are aligned following the node number.

Fig. 12: Data matrix normalization in the situation of main
grid grounded short circuit fault. (Left) Raw waveform matrix;
(Right) Normalized waveform matrix. Each vector corresponds
to one voltage or current waveform, which is either one phase
of AC components or one DC component. As there are 5 AC
nodes and 1 DC node, the data matrix dimension is 32.

Based on the normalized data matrix, we extract the feature
matrix according to Section III-B. Since AC components
generate instantaneous features, differences and unbalances,
while DC components do not have the unbalance features, the
dimension of feature matrix is 32 + 32 + 30 = 94, shown in
Fig. 13. With the sophisticated feature extraction, the latent
data structure information is better characterized, and the attack
detection robustness can also be improved. Comparing Fig. 12
and Fig 13, it is clear that the feature matrix exhibits more
information of the data anomaly than the original data matrix,
which is valuable for attack detection and diagnosis.

Fig. 13: Feature matrix extracted from the normalized waveform
matrix shown in Fig. 12. The total dimension is 94, including 32
columns of instantaneous features, 32 columns of differences,
and 30 columns of unbalances.

B. Attack Detection Using Leverage Score
Using the statistical leverage score introduced in Sec-

tion III-D, we can detect the abnormal changes in the matrix
structure. Fig. 14(a) shows the leverage scores extracted from
raw data matrix and feature matrix, respectively. As the attack
happens at t = 0.2 s, both raw data based and feature based
leverage scores can highlight the attack appearance. However,
the leverage score extracted from the raw data is not robust.
Fig. 14(b) shows the leverage scores extracted with 10 dB
noises. The attack can still be clearly detected by feature
matrix based leverage score, but not by the one based on the
raw data matrix. Thus, it is necessary to use the feature matrix
as the robustness must be considered.

(a) (b)

Fig. 14: Attack detection based leverage score on raw data
matrix and feature matrix in (a) noise free situation and (b)
with 10 dB random noise .

C. Attack Diagnosis Using BMF
As discussed in Section III-E, H1(t,k) and H2(t,k) of different

situations can be obtained by BMF. Figs. 15 and 16 demonstrate
the first and second layer binary coding results, where black
color denotes 1 while white denotes 0. The decomposed binary
bases H1s and H2s illustrate the observed data structures of
different distribution power grid operation scenarios. Normal
condition shows a different performance compared with the
attacked situations, that H1 is continuous and H2 has no
residues. However, it is difficult to directly distinguish different
attacks using original H1s and H2s.

For attack diagnosis, we use both H1(t,k) and H2(t,k)

distributions as stated above. In order to visualize the high-
dimensional matrices shown in Figs. 15 and 16, a visualization
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Fig. 15: H1(t,k) of (a) normal condition, main grid (b) single
phase (A1) and (c) double phases (A2) grounded short circuit
fault, Solar transformer (d) single phase (A3) and (e) double
phases (A4) grounded short circuit fault, (f) extra reactive
power compensation in solar system (A5), (g) PV farm inverter
attacked (A6) and (h) 30MW linear load cut off (A7). Black
denotes 1, while white denotes 0.

Fig. 16: H2(t,k) corresponding to the H1(t,k) in Fig. 15,
respectively. Black denotes 1, while white denotes 0.

method called t-Distributed Stochastic Neighbor Embedding (t-
SNE) [38] is adopted. It is a nonlinear dimensionality reduction
technique for visualizing high-dimensional data in a low-
dimensional space, in our study, two dimensions. The advantage
of t-SNE is the “distance-preserving” property [39], which
means the Kullback–Leibler divergence and the corresponding
Euclidean distance between two clusters are appropriately
preserved during the dimensionality reduction process. Fig. 17
shows the 2D visualization results of H1(t,k) and H2(t,k). In
Fig. 17(a), most attacks are clustered at different locations, but
A6 doesn’t have a dense distribution. Thus, the visualization
of H2(t,k) in Fig. 17(b) is an important complement to the
attack diagnosis. Thanks to the “distance-preserving” property
of t-SNE, the well separated clusters in the 2D space are also
well separated in the original high dimensions. Therefore, the
proposed double layered BMF is promising for attack diagnosis.

(a) (b)

Fig. 17: Visualization of (a) H1(t,k) and (b) H2(t,k) using t-
SNE. It is clear that different attack types can be identified.
Note that, as the two dimensional space is a latent space, the
two axes do not have physical meanings. However, the relative
distances among different clusters can be used to measure the
similarities of different clusters, indicating the potential hidden
relations among different attacks.

VII. CONCLUSION

Solar farms and other renewable energy sources bring
potential attack vulnerabilities to distribution power networks.
In this paper, we propose a novel cyber-physical attack
detection and diagnosis approach called HCADI based on high
dimensional data-driven methods. Features of the streaming
waveform data are constructed to be an analysis matrix, which
has the inherent data structure. Therefore, the leverage score
method can identify the anomaly brought by the attacks. Then
based on the binary coding results from BMF, the attack types
can be identified. The proposed approach is a data-driven
statistical structure analysis without a training stage, making it
efficient and implementable in an online real-time style.
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