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Online Distributed IoT Security Monitoring With
Multidimensional Streaming Big Data

Fangyu Li , Rui Xie , Zengyan Wang, Lulu Guo , Jin Ye , Ping Ma , and Wenzhan Song

Abstract—Internet of Things (IoT) enables extensive connec-
tions between cyber and physical “things.” Nevertheless, the
streaming data among IoT sensors bring “big data” issues, for
example, large data volumes, data redundancy, lack of scalability,
and so on. Under big data circumstances, IoT system monitoring
becomes a challenge. Furthermore, cyberattacks which threaten
IoT security are hard to be detected. In this article, we propose
an online distributed IoT security monitoring algorithm (ODIS).
An advanced influential point selection operation extracts impor-
tant information from multidimensional time-series data across
distributed sensor nodes based on the spatial and temporal data
dependence structure. Then, an accurate data structure model is
constructed to capture the IoT system behaviors. Next, hypothesis
testing is carried out to quantify the uncertainty of the monitor-
ing tasks. Besides, the distributed system architecture solves the
scalability issue. Using a real sensor network testbed, we com-
mit cyberattacks to an IoT system with different patterns and
strengths. The proposed ODIS algorithm demonstrates promising
detection and monitoring performances.

Index Terms—Big data, distributed, Internet of Things (IoT)
security, online.

I. INTRODUCTION

EXPLOSION of the Internet of Things (IoT) has been
witnessed in diversified fields [1]. The number of IoT

devices, as well as the generated data at different lay-
ers, are exponentially increasing. As reported, there will
be more than 50 billion terminal devices worldwide, and
the annual data generated will reach 847 Zebytes by
2021 [2]. “Big data” hereby becomes common in IoT applica-
tions [3], such as industrial manufacturing [4], smart cities [5],
energy Internet [6], wireless sensor network (WSN) [7], etc.
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Fig. 1. Multidimensional streaming “big data” from IoT systems. In a WSN,
there are sensor nodes (gray dots) and sink nodes (blue hexagons). Besides
sensing data (black cylinders), sink nodes also process data and exchange
information among sink nodes (orange cylinders).

However, because the IoT paradigm enables various connec-
tions between cyber networks and physical devices, vulner-
abilities become an important issue [8]. Data-driven-based
IoT security solutions have been proposed, such as neural
networks and deep-learning-based methods [9]. Nevertheless,
the big data nature of IoT applications generates furthermore
challenges, including the vast volume which will continu-
ously grow [10], modeling complexity caused by large-scale
processes [11], high-speed ubiquitous data collection [12],
data redundancy introduced by multidimensional data col-
lected asynchronously across distributed nodes [13], algorithm
scalability [14], and so on. Thus, it is necessary to develop IoT
security monitoring techniques in the big data era.

Our motivation is to effectively detect the IoT system
anomalies caused by cyberattacks under the big data circum-
stances, especially in WSN where multidimensional stream-
ing data are gathered from networked sensors in a high
speed [15], as shown in Fig. 1. The important anomaly
detection and diagnosis information for IoT monitoring are
typically buried in the system metrics, such as energy con-
sumption [8] and system resource usages [9]. Thus, extracting
useful information from data, especially, unlabeled samples,
is extremely important [16]. To fight against the data redun-
dancy, finding the informative samples is highly desired for
accelerating the computation and transmission processes of
the high-speed streaming data. To effectively and efficiently
extract informative samples, influential point selection (IPS)
can be viewed as a data extraction approach to reduce the
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Fig. 2. Proposed ODIS algorithm with streaming big data. The detailed method descriptions and algorithms can be found in Section III.

unnecessary energy consumption in the IoT devices caused by
redundant computations and system memory usages [17], [18].
Randomized data selection methods yield a high accuracy on
model parameter estimation [17].

Based on the extracted influential points, how to understand
the dynamic temporal and spatial/cross-sectional dependence
structure of multidimensional streaming time series is still
a challenge. The vector autoregressive (VAR) model, the
most popular and fundamental time series models, provides
a mechanism for capturing complex latent multidimensional
dependency structures [13], [19], [20]. Since it is impossible
to model the various unknown cyberattacks [8], we propose
to model the normal system behaviors as an alternative solu-
tion. Thus, the system performance modeling accuracy is of
great importance, and the accurate and robust data dependency
modeling can facilitate this purpose.

In addition, the IoT system essentially has a distributed
architecture [21], where each sensor node only observes par-
tial local information (a smaller set of relevant variables and
features are analyzed locally [22]), but in together forms the
analysis of the whole network. Note that a distributed man-
ner has additive benefits, such as more secure and enhanced
robustness, since the attack behaviors are isolated. Thus, the
IoT security monitoring procedure should be designed in a
distributed manner and the computation tasks can be assigned
to the individual nodes.

In this article, we propose an online distributed IoT security
monitoring algorithm (ODIS) for multidimensional stream-
ing big time-series data. The whole workflow is shown in
Fig. 2. Based on the efficient streaming time-series data
dynamic structure extraction through IPS, we can model the
IoT data economically and accurately. In addition, thanks
to the online distributed design, ODIS is suitable for the
real-time large-scale multidimensional streaming IoT security
monitoring. Finally, a complete algorithm is proposed so that
the whole IoT system can have an end-to-end security solu-
tion. The contributions of this article can be summarized as
follows.

1) We propose a novel online IoT security monitoring
algorithm under the big data circumstances.

2) Data science techniques, such as IPS and streaming data
modeling, are proposed to extract intrinsic data struc-
tures efficiently and effectively. The IoT application data
are collected across time and space, so the proposed

approach considers and models the spatio-temporal
dependencies.

3) The proposed ODIS algorithm is scalabe and can be
applied to real-time large-scale sensor network appli-
cations because of the online distributed streaming
processing algorithm design.

The remainder of this article is organized as follows. Related
works are introduced in Section II. In Section III, we describe
the proposed ODIS algorithm in detail with the related the-
oretical principles of every important operation. Using a real
IoT testbed in Section IV, we analyze the performances of our
proposed algorithm explicitly with comprehensive and quan-
titative analysis. In the end, a conclusion section is enclosed
in Section V.

II. RELATED WORK

IoT vulnerabilities arise due to the connected cyber-physical
infrastructure [23], [24]. To eliminate the IoT security threats,
there is a high demand for solutions with a real time, scal-
able, and distributed monitoring infrastructure [13]. Thus,
the previous resilient approaches, such as simple signal
analytics-based [25], Kalman filter [26], generalized-likelihood
ratio [27], the cumulative sum (CUSUM) [28], leverage
score [29], Bayesian calibration [30], and machine learn-
ing [31], which need a center to monitor and control the
entire system, are not suitable to be a distributed IoT security
framework. In contrast, the required system should be dis-
tributed, where sensors only coordinate with its own neighbors
within limited distances, and the multidimensional data could
be collected asynchronously across distributed nodes [13].

In addition, typical data-driven approaches also suffer the
lack of precise failure models in the device level as well as
the system (network) level. For example, a resilient strategy
was proposed to dispatch virtual power plant under cyber
attacks in [32], where lower and upper bounds of the con-
troller states are estimated in a distributed way. However, in the
consensus-based energy management algorithm, false states,
even minor ones within the given bounds, could cause large
deviations [33], resulting in an ineffective resilient strategy.

III. METHODOLOGY AND ALGORITHM

In this section, we briefly describe the principles of the
ODIS algorithm. Every key step is introduced and the whole
algorithm is summarized as well.
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A. Symbol and Notation

The uppercase letters A and A are used for matrices and
operators, and the curly capital letter A is for set or collection
of sets. The vector is denoted by the lowercase bold letter a,
and the scalar is denoted by the lowercase letter a. We write the
transpose of a matrix A as A′, the determinant of a matrix A
as det(A), and the matrix vectorization as vec(·). Specifically,
E(·) denotes the expectation, � denotes equal by definition,
‖·‖2 denotes the �2-norm for a vector, and ‖·‖F denotes the
Frobenius norm for a matrix. Moreover, Z denotes the integers,
R denotes the real numbers, In denote the identity matrix of
dimension n, and 1{·} denotes the indicator function.

B. Multidimensional Time Series Modeling

The multidimensional time series modeling can effectively
extract the temporal-dependent information from the streaming
multidimensional data, which is the key to understand and
monitor the status of the IoT system.

The VAR family, as the most important family of the time
series models, is used to reveal the complex dependence struc-
ture in the streaming time-series data [19]. The VAR model
class quantifies complex temporal and cross-sectional inter-
relationship among the multidimensional time series. At the
same time, the VAR model is flexible enough to be easily inte-
grated into the distributed IoT system [13], providing treatment
for the big data scenario.

The K-dimensional VAR model of order p (VAR(p)) of
K-dimensional streaming data yt can be written as

yt =
p∑

i=1

�iyt−i + εt (1)

where t ∈ Z, �i’s are the K × K model coefficient matri-
ces, and εt is a sequence of independent and identically
distributed (i.i.d.) random vectors with mean zero and finite
nonsingular covariance matrix. The VAR(p) model in (1)
encodes the temporal and cross-sectional dependence struc-
ture between sensors in the IoT system through the coefficient
matrices �i’s, which are the key to understand the structural
information from the streaming data. Learning these coef-
ficient matrices can be done through ordinary least-squares
(OLSs) estimate [19], [20]. However, twofold challenges need
to be conquered for the streaming big data setting. First, for a
given fixed-time period T , the computational cost of estimat-
ing the model coefficient matrices is O(TK2p2). It will pose
a computational challenge for the entire IoT system when the
number of observed data T is huge or the dimension of the
data K is high. Second, for streaming data analysis, an online
algorithm is needed so that we can achieve the real-time mon-
itoring of the IoT system. In the following sections, we will
address these two issues.

C. Big Data Influential Point Selection

With the growing scale of the IoT streaming data, the huge
volume of data challenges the computational and storage lim-
its of the IoT system. For streaming the IoT data monitoring,
selecting the influential points reduces the processing time,

energy consumption, and thus be an effective road to the big
data challenges. Data sketching and subsampling are the pop-
ular tools to reduce the size of the data, with applications in
online streaming analysis [13].

Extend the linear VAR (p) model in (1) to the form of
general streaming nonlinear model

y′t = f
(

y′t−1, y′t−2, . . . , y′t−p

)′
B+ ε′t (2)

for observation up to time t, where B = [�′1,�′2, . . . , �′p]′ is
the Kp× K model coefficient matrix.

For a given function f (·), we denote xt =
f (y′t−1, y′t−2, . . . , y′t−p)

′, a column vector of length Kp.
The model coefficient matrix can then be estimated as

B̂OLS =
(

∑

t

xtx′t

)−1 ∑

t

xty′t. (3)

We value the importance of a data point yt through its
predicted value ŷt = httyt, where

htt = x′t

(
∑

t

xtx′t

)−1

xt (4)

is the tth diagonal element of Hat Matrix, denoting the
Mahalanobis distance of the tth data [17], [34].

To effectively reduce the data size while maintaining the
underlying data features, we select a subset S from time
domain {1, . . . , T}, and use the subset data {yt|t ∈ S} to effi-
ciently estimate the model coefficient matrix. The least square
estimator [35] then becomes

B̂S =
(

∑

t∈S
xtx′t

)−1(∑

t∈S
xty′t

)
. (5)

If the subset size |S| is much less than the data size T , i.e.,
|S| << T , the IPS will greatly save the computational time
and cost to O(|S|K2p2).

The IPS is defined according to the selection rule

SIPS =
{

t ∈ {1, . . . , T} : htt > r2
}

(6)

where r is the selection threshold. The selection probability
distribution follows the chi-squared distribution with degrees
of freedom Kp, χ2

Kp. Thus, the selection threshold r is chosen
as a square root of the quantile of χ2

Kp distribution, that is

P(t ∈ SIPS) = P
(
χ2

Kp > r2
)

(7)

where the selection threshold r is approximately proportional
to the selection ratio, i.e., r ∝ |SIPS|/T . The theoretical justi-
fication of the choice of r can be found in [13]. Alternatively,
IPS can be described as, for data yt observed at time t, if
the Mahalanobis distance

√
htt > r, then we decide the data

point yt as the influential point and include t in subset SIPS.
Fig. 3 visualizes the geometric property and corresponding
Mahalanobis distance of the IPS procedure, where the data
points outside the ellipse are selected as the influential points
in the subset SIPS. IPS can be widely used to construct the
important sampling in big data analytics to reduce the data
size, and it can also be applied in regression diagnostics to
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Fig. 3. IPS illustration: 1-D data yt are plotted with axes lag-2 values yt−2
versus lag-1 values yt−1. IPS selection rule r is proportional to selection ratio,
i.e., r ∝ |SIPS|/T . The Mahalanobis distances larger than the ellipses (red:
10%; green: 5%) will be selected as the influential points. The influential
points only account for a small amount of the whole data set, e.g., 5% or
10%, but they represent the data structure.

identify the outliers and the influential observations (see [36]
and [37]).

D. Online Streaming IPS and Time Series Modeling

In the practical calculation of the streaming IPS, we need
to tackle the computational bottleneck of the Mahalanobis dis-
tance in (4), the inverse of sample covariance matrix

∑
t xtx′t

and update it as the new data arriving. The benefit of calcu-
lating the Mahalanobis distance is that it provides the unitless
and scale-invariant measurement to the influence of the data
and takes into account the correlations of the data. Such bot-
tleneck makes the IPS computation as expensive as solving the
original least-squares problem in (3) in a streaming setting.

We propose an online streaming IPS adapting the single-
pass streaming algorithm. As the new data arriving, we
collect the first batch of data points as pilot sample to cal-
culate a robust estimation on the sample covariance matrix
� = (

∑
t0 xt0 x′t0)

−1 with time range t0 taking from the pilot
sample batch. Then, for t > t0, the streaming IPS and the
corresponding selection rule are replaced as

h̃tt � x′t�xt > r2, for t > t0. (8)

Since xt is constructed based on the VAR model, the stream-
ing IPS procedure is a single-pass procedure that only requires
linear computational time O(Kp) with respect to the VAR
model dimension. It makes the streaming IPS scalable in the
big data setting. Online streaming time series modeling also
calls for an online real-time method to periodically aggregate
historical information from the previous data, updating the cur-
rent estimation on the model coefficient matrix based on the
arriving new data. More specifically, when the streaming data
keep arriving sequentially, we update the estimate of the model
coefficient matrix B adaptively.

The streaming IPS makes online real-time decision on
selecting influential points SIPS and IoT system monitoring.
In other words, for each time stamp t and selected influen-
tial points, the online VAR modeling and optimization with

Fig. 4. Diffusion strategy of the distributed network. At every time t, node
k collects a measurement y(k)

t and neighborhood data.

respect to model matrix B become,

Bt = arg min
B

∑

i∈SIPS∩{i≤t}

∥∥y′i − x′iB
∥∥2

2 (9)

where xi = f (y′i−1, y′i−2, . . . , y′i−p)
′. Note that the estimation

of Bt in (9) is an online optimization in a standard linear
form. It can be solved by various optimization algorithms,
including the Kalman filter [38], recursive least squares [39],
and gradient descent [40]. Our streaming IPS and time series
modeling are independent from the choice of the solver to
the optimization in (9). As long as the solver satisfies the one-
pass property in online optimization and has the computational
complexity linear in time t, the IPS monitoring and time series
modeling will be scalable for the streaming big data setting.

E. Distributed Online Monitoring

Distributed computing infrastructure is intrinsic and neces-
sary to the IoT tasks. Each sensor is observing a 1-D streaming
data, and all sensors together form a network with a cer-
tain topological structure. The sensor network is observing the
multidimensional streaming time series based on the topolog-
ical structure. Such structure leads to a distributed computing
environment. The streaming IPS and VAR modeling can be
integrated into the asynchronous distributed computing envi-
ronment. Fig. 4 illustrates the one-hop neighborhood diffusion
strategy.

The streaming IPS defined in (8) and selection rule defined
in (6) can be implemented on each marginal dimension asyn-
chronously and independently under the distributed setting.
The selection rule S(k)

lev for node k ∈ {1, . . . , K} becomes

h̃(k)
τk
= x′τk

�xτk > r2 (10)

where xτk = f (y′τk−1, y′τk−2, . . . , y′τk−p)
′ is the kth marginal

local copy of the streaming data at local time τk.
Given the assumption that the multidimensional streaming

data arrive sequentially in communication restricted distributed
streaming environment, we exploit the VAR model structure
so that the VAR modeling in (9) can be decomposed to K
subproblems. For simplicity, we assume the function f (·) as
the linear form. We express the model coefficient matrix B as
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Algorithm 1 Online Distributed Streaming IPS Monitoring
Input: From pilot sample batch: � , r, and initial values of B0 and

P0.
Output: Model coefficient matrix estimate Bτk

1: while t > 0 do
2: while node k ∈ [1, . . . , K] do
3: Receive the local data y(k)

t , and the one-hop neighborhood
data

4: Transmit the local data y(k)
t to one-hop neighbors

5: Wait until xτk is complete for some τk ≤ t

6: if h̃(k)
τk > r2 then

7: Update b(k)
τk and Pτk according to recursive least squares

according to Eq. (13) and Eq. (14)
8: else
9: b(k)

τk = b(k)
τk−1 and Pτk = Pτk−1

10: end if
11: Exchange the one-hop local estimate b(k)

12: τk ← τk + 1
13: return Bτk = [b(1)

τk , . . . , b(k)
τk , . . . , b(K)

τk ]
14: end while node
15: end while t

a block matrix with column vectors

B =
[
b(1), b(2), . . . , b(K)

]
(11)

with b(k) being the kth column of B for k ∈ {1, . . . , K}. For
node k at local time τk, the kth subproblem becomes

b(k)
τk
= arg min

b(k)

∑

τk∈S(k)
IPS∩{1,...,t}

∥∥∥y(k)
τk
− x′τk

b(k)
∥∥∥

2

2
(12)

where y(k)
τk is the kth element of yτj at local time τk, for k ∈

{1, . . . , K}. The estimation of b(k)
τk

can be completed once all
components of xτk is observed at local time τk. The estimation
of different nodes k �= k′ is calculated uncoordinately, which
leads us the asynchronous algorithm in the IoT system.

Various distributed consensus optimization algorithms can
be used to solve the subproblems (12), including distributed
gradient descent [40], distributed ADMM [41], and distributed
Kalman filter [38]. The framework of the distributed recursive
least squares [39] is adapted to solve the distributed problem in
(12) as an illustration. When data from its one-hop neighbors
sequentially arrived with some delay (see Fig. 4), the local
recursive least squares is to estimate the local model coefficient
b(k)
τk

for the kth node and local time τk ∈ SIPS

b(k)
τk
= b(k)

τk−1 +
[
y(k)
τk
− x′τk

b(k)
τk−1

]
kτk (13)

where

Pτk = Pτk−1 − kτk x′τk
Pτk−1 (14)

kτk � γ−1
τk

Pτk−1xτk , and γτk � 1 + x′τk
Pτk−1xτk with Pτk as

the kth local estimate of the precision matrix. By transmitting
the local estimation b(k)

τk
to its neighborhood, each node will

form a complete model coefficient matrix estimate Bτk , at time
τk, by combining these column vectors according to (11). We
summarize the algorithm in Algorithm 1.

Algorithm 2 Whole ODIS Algorithm
Input: K-dimensional Big Data Streaming in IoT System
Output: System monitoring, attack status decision.

1: while time t > 0 do
2: Streaming IPS using Eq. (6) - Eq. (8) to reduce the data size

and select influential points SIPS;
3: Extract the model matrix Bt at time t ∈ SIPS according to

model Eq. (9);
4: Distributed modeling according to Eq. (11) - Eq.(12);
5: Structural weight update and online monitoring following

Eq. (13) - Eq. (14);
6: Hypothesis testing for attack status quantification based on Bt.

If null hypothesis H0 is rejected, the attack status is detected.
7: end while t

F. Consensus Hypothesis Testing

For the monitoring purpose, we develop the statistical
hypothesis testing strategy to provide the real-time status and
uncertainty quantification based on the distributed monitoring
results Bt. In Algorithm 1, each node has been fused the con-
sensus monitoring results Bt based on the diffusion strategy,
see [38], which means that every node will have the same
monitoring results Bt when t is large enough. The purpose
of hypothesis testing is to distinguish the attack status from
the normal status in a quantitative way. Based on the VAR
modeling, we construct the Wald type statistics for hypoth-
esis testing with null hypothesis H0 : Bt = BNormal against
alternative hypothesis H1 : Bt �= BNormal, where we ignore the
superscript (k) since the consensus results of Bt. The Wald
statistic has asymptotic χ2 distribution with ρ degrees of free-
dom, where ρ is the rank of a matrix Bt [20]. Then, we provide
a hypothesis testing with a p-value that quantifies the uncer-
tainty of online attack monitoring states. If we reject the null
hypothesis based on the p-value, the current data suggest that
there is a significant pattern change to make the system devi-
ates from its normal status. After the distributed consensus
hypothesis testing, the system can obtain a unified decision.

G. Proposed ODIS Algorithm

We realize the ODIS monitoring through the mentioned key
steps. While Fig. 2 shows the big picture of the whole work-
flow, Algorithm 2 shows the detailed comprehensive workflow
of the proposed ODIS algorithm using the connections with
key theories.

IV. EXPERIMENTS AND EVALUATION

To evaluate the ODIS algorithm, we carry out cyberattack
experiments using a real IoT system, where smart sensors are
connected within a wireless network. Different cyber attack
strengths are tested to demonstrate the performances of ODIS
in cyber attack detection and monitoring.

A. Testbed Setup

We use the beaglebone black boards (BBBs) in our experi-
ments1 to implement a real IoT system consisting of wireless

1The hardware details are available at http://beagleboard.org/black (last
access: June 25, 2019).
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Fig. 5. Real IoT device testbed built by BBBs connected via a wireless
network.

network connected smart sensors (embedded system). Fig. 5
shows the testbed in our study. Note that there are 36 avail-
able BBBs in the same cluster sharing the same mesh network,
where the distributed algorithms can be operated among nodes.

B. Cyberattack Detection and Monitoring

Denial-of-Service (DoS) Cyberattack: The IoT sensor
networks are generally vulnerable to intrusion related to
snooping, spoofing, masquerading, and DoS attacks. The DoS
attacks impact the network communication partially or com-
pletely. As the sensor nodes of IoT are low powered and lossy,
the impact of DoS attack is quite significant [42]. The DoS
attack disrupts the communication between devices, making
their unavailability. The DoS attack can be carried out exter-
nally or internally in IoT and is very hard to detect it unless
the services have stopped working. For example, in the flood-
ing attack, the attacker overflows the network through sending
packets to disrupt the service of legitimate users. Its examples
include domain name system (DNS) flood, Internet control
message protocol (ICMP) flood, and user datagram protocol
(UDP) flood. There are four common types of DoS attacks,
volumetric, network transport, application, and multivector. As
volumetric attacks are the most common DoS attacks, we
simulate volumetric DoS attacks in our experiments, which
consume available network bandwidth between the target and
the Internet by overwhelming the target with a flood of
data.

Data: To monitor the WSN, we adopt the energy con-
sumption measurement [8] of every node, which represents
the whole system activities of the node. The total energy
consumption consists of energy consumption from individual
subcomponents, such as CPU, RAM, storage, data transmis-
sion, etc. In addition, cyberattacks result in the abnormal
system behaviors [9] that can be observed from the energy con-
sumption of the subcomponents. For example, the DoS attacks
significantly increase the amount of received data, resulting in
the energy consumption of not only the network adapter but
also the whole system increases. If the proposed ODIS algo-
rithm can detect anomalies and monitor the attack variations
based on the energy consumption auditing, the IoT monitoring
system is fully functional.

Evaluation: We compare the VAR modeling accuracy using
IPS with Vanilla and Bernoulli sampling methods. The Vanilla

Fig. 6. DoS attack pattern in experiment 1.

Fig. 7. Modeling errors using different methods in experiment 1.

method uses all data points without data point selection for
monitoring, which may result in delayed responses for the IoT
system. In Bernoulli sampling, a Bernoulli trial is conducted to
randomly select data points at each time with a fixed success
probability (p = 1/2) [13].

Experiment 1 (DoS Detection): Fig. 6 shows the relative
weak cyberattacks. The attack strengths vary from 25 kb/s
to 10 mb/s. Every time, DoS attack happens 20 s then there
is a 5 s interval. The time-series data contain 36 dimensions
(K = 36), and each dimension has around 24 000 samples
(23 985) with data interval 0.1 s.

As defined in (9), the VAR model should be accurately char-
acterized using the streaming data. We compare the modeling
performances in Fig. 7 using different sampling methods:
IPS, Vanilla, and Bernoulli. Due to the sampling strategy
used by the Bernoulli sampling, the modeling error is large.
The Vanilla and IPS sampling methods generate relatively
small modeling errors. Furthermore, due to the existence of
inevitable noises in the real testbed, the modeling results from
Vanilla could be influenced by the noise, whereas IPS has a
better robustness as only informative points are extracted and
used.

The estimated coefficient matrix �1 under the DoS attacks
25 kb/s and 250 kb/s are shown in Fig. 8. It is observable that
there are minor off-diagonal unusual patterns indicating that
the IoT system is under attack even the attacks are not strong.

Experiment 2 (DoS Monitoring): Fig. 9 shows the relative
strong cyber attacks. The attack strengths vary from 10 to
160 Mb/s. The time-series data contain 36 dimensions (K =
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Fig. 8. Estimated parameter matrices �1 under DoS attacks (a) 25 kb/s and
(b) 250 kb/s.

Fig. 9. DoS attack pattern in experiment 2.

36, and each dimension has around 24 000 samples (23 872)
with data interval 0.1 s.

Fig. 10 shows the modeling accuracy errors using differ-
ent sampling methods: IPS, Vanilla, and Bernoulli. Similar to
Fig. 7, the Bernoulli sampling method generates larger errors
than the other two methods. IPS is still the best approach. Note
that because of the hardware design and system limitations,
when the cyberattacks are strong, not only the network card
performance is affected, the whole system does not behave
normally. Then, there are more interference and noise mixed in
the modeling process, so the modeling performances of Vanilla
and IPS are not as good as those in experiment 1.

According to the consensus hypothesis testing in
Section III-F, we use the Wald test [20] to monitor the
streaming data structure variations. p-value is employed to
reject the null hypothesis. We observe that p is close to 1
for the same attack strength, and when there is a system
status change p value is small, for example, when the system
changes from normal to under attack, p value can be as small

Fig. 10. Modeling errors using different methods in experiment 2.

Fig. 11. Average elapsed time of IPS (blue), Bernoulli (red), and Vanilla
(orange) in experiment 1.

Fig. 12. Average elapsed time of IPS (blue), Bernoulli (red), and Vanilla
(orange) in experiment 2.

as 0.0001, and when the DoS attack is strong, we observe p
value’s unit could be 10−7.

1) Computation Efficiency: Besides the modeling error
characterization, we also compare the computational efficiency
of the mentioned methods. Since the data amounts are close
in experiments 1 and 2, the total computation time consump-
tion of two experiments does not vary significantly. It is clear
that IPS is more efficient than Vanilla in both Figs. 11 and 12,
as with less data the computation could be faster. However,
because the modeling computation, storage, and data trans-
mission also take time, even longer time, the time saving is
limited. Nevertheless, the proposed approach is promising, as
we can notice that more time saved for larger data, which is
the very target for the big data processing. Compared with the
Bernoulli sampling, IPS has additional computations, so it is
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slower, but IPS can have a slightly better modeling accuracy
even compared with the Vanilla method. Thus, the proposed
approach is the most promising.

V. CONCLUSION

To deal with the big data issues in IoT security, we proposed
an ODIS monitoring algorithm. The proposed algorithm han-
dles the complex streaming multidimensional time series very
well. The latent streaming data dependency on both time and
space can be effectively and efficiently extracted from the
multidimensional big data. In addition, the online distributed
algorithm design enables the real-time IoT monitoring with
affordable computation and communication burdens. Using the
testbed with real IoT devices, we carry out experiments about
cyberattacks (e.g., DoS) toward the IoT sensor networks. The
proposed algorithm is a general IoT cybersecurity solution
and shows promising performances in terms of cyberattack
detection and monitoring.
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