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Abstract—This article presents a noncooperative game-
theoretic framework to model the social welfare optimiza-
tion (SWO) problem with load aggregators participating in
integrated economic dispatch and demand response. In the
proposed framework, distribution system operators interact
with generation units and load aggregators to maximize
the overall social welfare. The proposed SWO problem
addresses practical system constraints and falls into the
scope of mixed integer nonlinear programs, which cannot
be well handled by existing distributed algorithms. The
proposed SWO problem is formulated by a special non-
cooperative strategic game, known as the potential game,
and solved by a revised version of the spatial adaptive play
under network anomaly. It is shown that the proposed frame-
work has guaranteed convergence to a Nash equilibrium
that is also a global optimizer. Simulations on a 15-generator
benchmark distribution network have been conducted to
validate the proposed framework.

Index Terms—Constrained optimization, distributed algo-
rithms, potential games, social welfare optimization (SWO).

NOMENCLATURE

G Set of generators.
E Set of load aggregators.
Ci Generation cost function of generator i.
Ui Utility function of load aggregator i.
Pi Power output when i ∈ G/consumption when i ∈ E .
η Parameter for scaling the utility function.
P in

i Baseline need of load aggregator i.
˜Pi Power level for load aggregator i.
ni Number of loads that load aggregator i manages.
PD Loads that do not participate in DR.
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P loss Total transmission loss.
P i Min. output when i ∈ G/consumption when i ∈ E .
P i Max. output when i ∈ G/consumption when i ∈ E .
P 0

i Previous power output of generator i.
DRi Down-ramp limit of generator i.
URi Up-ramp limit of generator i.
k Number of generators.
m Number of load aggregators.
Fi∈G Set of candidate power output for generator i.
Fi∈E Set of load numbers that aggregator i can serve.
λ Penalty multiplier to relax the equality constraint.
φ Potential function.
ui Payoff function for player i.
T Exploration parameter.
J (t) Set of channels with anomaly at t.
P (t) Action profile at t.
Pi(t) Action for player i at t.
P−i(t) Actions for players except player i at t.
Fi(t) Set of actions for player i at t.
P̂i Trial action for player i.
z Number of channels without anomaly.

I. INTRODUCTION

MODERNIZATION of electric power grids inherently
consists of responsibilities and actions from both ends

of supply and demand. On the supply end, system operators
solve economic dispatch (ED) problems to procure a generation
schedule of a specific time period by optimizing global objec-
tives (often minimizing the total generation cost) with operation
constraints [1]. On the demand end, demand response (DR)
programs incentivize both commercial [2] and residential [3]
end-users to control (often to reduce) their energy usage to
maximize their own benefits [4] and improve grid reliability
[5]. Both ED and DR are extensively studied constrained
optimization problems with many solution algorithms available.

Conventionally, ED and DR are often considered separately.
However, many recent works [6]–[11] have combined DR
with ED into a unified framework, known as social welfare
optimization (SWO). First discussed in [6], SWO addresses
how DR-participating households maximize the social welfare
under utilities’ coordination. Furthermore, Samadi et al. [7]
assumed two-way communications between end-users and util-
ities to share their demand information and maximize the social
welfare. A consensus-based, cooperative algorithm is proposed
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in [8] for distributed generations (DGs) and loads to maximize
social welfare. Ma et al. [9] proposes an SWO model considering
DC flow models solved by a two-layer mechanism including first
consensus-based information discovery and then gradient-based
generation. SWO is modeled as a convex problem with linear
constraints and solved by dual decomposition in [10], while
[11] considers linearized transmission losses, which constitute
a nonconvex problem solved by the proposed transformation
into convex subproblems.

Above-discussed SWO formulations are mostly based on
simplified assumptions such as 1) transmission loss is decoupled
or ignored; 2) DR units are comparable to generators in capacity;
3) cost functions are strictly increasing, convex, and smooth;
and 4) communication is reliable and robust. However, in
practice, cost functions are not always convex (e.g., if the
valve-point effect is considered) or smooth (e.g., if multiple
fuels are used or different incremental costs are present), and
transmission loss is typically coupled and nonlinear. Existing
SWO formulations and solutions cannot address these practical
constraints and scenarios in terms of nonconvex, nonsmooth,
or any cost functions. Therefore, this article introduces a novel
SWO formulation with practical constraints, which can handle
any formulations of cost and constraint.

Furthermore, power grids are experiencing a paradigm
shift to incorporate high penetration of distributed energy re-
sources, prosumers, and ubiquitous intelligent devices. Com-
pared to conventional centralized decision-making frameworks,
decentralized, autonomous, and self-interested decision-making
better aligns with practical needs. Consensus-based and game-
theoretic formulations are probably the two most popular such
decision-making frameworks, in which each agent/player inter-
acts with a defined group of other agents/players and makes
decentralized, autonomous decisions. An overview of existing
multiagent architectures for electric power grids can be found in
[12]. One missing property in existing multiagent algorithms is
that agents in general do not model self-interests of individuals,
which can be well addressed by noncooperative game-theoretic
formulations.

Moreover, above-discussed formulations involve many par-
ticipants from geographically remote locations, and thus re-
liable and fast communication infrastructures are necessary.
An overview of communication requirements for power grid
applications is provided in [13], which points out that secu-
rity and quality of service (QoS) concerns may arise when
public networks are used for power grid applications. If the
network is attacked, anomalous events that do not conform to
expected normal behavior will be detected. In this article, net-
work anomaly are considered to be unreliable communication
conditions with low QoS and package drops. Possible causes
of network anomaly can be harsh grid environment [14] or
cyber-attacks on wireless networks, which are widely used in
short to medium range power grid applications [15].

The impact of unreliable or limited communication on the
performance of decentralized algorithms has been widely stud-
ied for decentralized control. Recent work shows that QoS [16],
network topology changes [17], and communication delays [18]
could cause cooperative control algorithms to fail. Moreover, a
fallback control strategy is proposed in [19] for microgrids to

mitigate denial-of-service network anomaly. However, to the
authors’ best knowledge, the performance of noncooperative
games against network anomaly has not been well studied,
with most of the literature focuses on communication delays
[16], [20], [21]. Techniques such as the Artstein transformation
[21] and model predictive control [20] are proposed to reduce
the effect of time delays. However, the effect of frequent
communication loss on decentralized control and optimization
has not attracted much attention.

This article follows [22], [23] to integrate load aggregators
into the conventional SWO and formulate the proposed SWO
by a special noncooperative strategic game called the potential
game. Each load aggregator [24] or generator is formulated
as an independent and self-interested player who maximizes
its own utility. The proposed formulation also considers many
practical operating constraints such as ramp rates, prohibited
zones, power balance, and load aggregator limits, which make
the constrained SWO problem nonlinear and nonconvex and
cannot be addressed by above-discussed SWO formulations.
This article also assumes anomalous network conditions such
that, at each time step, there is a random group of players that
lose communication with others. A revised spatial adaptive play
(SAP) named partial SAP (PSAP), with restricted action sets
due to network anomaly, is proposed to solve this problem.
Guaranteed convergence to the global optimum would be proved
and validated in a widely used benchmark system.

The main contributions of this article are threefold.
1) Incorporating load aggregators and practical power flow

constraints into the conventional SWO, which introduces
a fundamentally different, nonlinear, and nonconvex
SWO formulation.

2) Solving the proposed SWO in a noncooperative or even
competitive manner through potential games. Each player
is only self-interested, which reflects the fact that generat-
ing units and load units belong to many different owners
and thus have quite different economic interests, which
cannot be addressed by cooperative (though distributed)
methods in literature.

3) Enhancing the resiliency of the proposed architecture
against network anomaly with theoretically proven, guar-
anteed convergence to a Nash equilibrium (NE), which is
also a global optimizer with arbitrarily high probability.

The remaining of this article is organized as follows. Section II
defines utility functions, cost functions, and constraints of the
proposed SWO problem. Section III introduces the concepts of
potential games, the SAP, and a potential-game formulation
of the proposed SWO problem. The PSAP and its conver-
gence analysis in the proposed SWO problem are presented in
Section IV. Section V presents numerical results on a 15-
generator system and compares performances of the proposed
PSAP algorithm in different communication environments.
Finally, Section VI discusses extensions to nonsmooth formu-
lations. Section VII concludes this article.

II. PROBLEM FORMULATION

In this section, the SWO problem considered in this article is
presented. The main differences from other SWO formulations
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in literature [7]–[11], [25] are twofold: 1) this article utilizes
a different formulation as well as utility function for load
aggregators, which induces additional mixed-integer property;
and 2) this article considers widely adopted [26] practical
constraints, which induces nonconvexity.

A. SWO Objective Function

The objectives of ED and DR considered in this article are
to minimize the total generation cost

∑

i∈G Ci(Pi) and to max-
imize the overall benefits of DR-participating load aggregators
∑

i∈E Ui(Pi), respectively. Therefore, the overall objective is to
maximize the following social welfare:

max
Pi

∑

i∈E
Ui(Pi)−

∑

i∈G
Ci(Pi). (1)

Let G := {1, . . . , k} denote the set of generators. The gener-
ation cost function Ci(Pi) in (1) is widely formulated [7]–[9],
[11], [25] as follows:

Ci(Pi) = αiP
2
i + βiPi + γi (2)

where Pi(i ∈ G) is the real power output of generator i, αi, βi ,
and γi are coefficients of the quadratic function.

Moreover, let E := {k + 1, . . . , k + m} denote the set of load
aggregators, each of which manages DR-participating loads
with the same power level and benefits from different types and
models in an area. Load aggregators, such as direct controlled
thermostat aggregators [27], electric vehicle (EV) aggregators
[24], and residential load aggregators [28], have been proposed
in many scenarios to participate in DR, day-ahead market, and
real-time market.

Most existing work uses the linearly decreasing marginal DR
utility function in SWO [7]–[11]. A sigmoid-type DR utility
was presented in [29] for EV aggregators, with an indication
parameter to represent range anxiety and thus EV drivers’
desire to participate in DR. This article follows this concept
and proposes the following sigmod-type utility function for
load aggregator i ∈ E to incorporate their baseline needs to
participate in DR:

Ui(Pi) =
η

1 + e−Pi +P i n
i

(3)

where Pi is the total consumption of the ith load aggregator, η is
a predefined scaling parameter, and P in

i is the baseline need of
load aggregator i. It can be observed that in (3) load aggregator
i receives only a small amount of utility when it reduces too
much demand (actual demand Pi is small) and thus reflect
end-users’ satisfaction levels. Furthermore, the baseline demand
can also be the real-time load forecasting and thus extended to
incentives and real-time market operations. As shown in Fig. 1,
when P in

i = 0, it means that customers do not have interests to
participate in DR, while P in

i > 0 indicates that customers have
incentives to participate DR with baseline P in

i . For instance,
it can be observed in Fig. 1 that “DR2” has more potential in
demand reduction than “DR1”.

Fig. 1. Utility function of load aggregators, in which zero power
consumption induces no DR utility.

B. SWO Operation Constraints

1) Load Aggregator Property: The demand of the ith load
aggregator can be formulated as

Pi = ni
˜Pi (ni ∈ N , i ∈ E) (4)

where ni is the number of loads that the ith load aggregator
manages, and ˜Pi is its average baseline power level. Note that
ni is a variable in Pi(i ∈ E) and thus needs to be optimized.

2) Active Power Balance:
∑

i∈G
Pi = PD + P loss +

∑

i∈E
Pi (5)

where PD is the total demand except loads participating in DR
(and thus not dispatchable). P loss is the total transmission loss,
which is generally estimated as a function of Pi(i ∈ G) with
Kron’s B coefficients [30]–[32]

P loss =
∑

i∈G

∑

j∈G
PiBijPj +

∑

i∈G
B0iPi + B00. (6)

3) Generator Output Limits:

P i ≤ Pi ≤ P i (i ∈ G) (7)

where P i and P i denote the lower and upper bounds of Pi .
4) Ramp Rate Limits:

P 0
i −DRi ≤ Pi ≤ P 0

i + URi (i ∈ G) (8)

where P 0
i , DRi , and URi denote previous power output,

down-ramp limit, and up-ramp limit of generator i, respectively.
5) Prohibited Zone Limits: Some thermal generators may

not operate in the valve points and thus they should avoid
zones, which contain those points. Feasible operation regions
for generator i can be written as [30]–[32]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

P i ≤ Pi ≤ PL
i,1

PU
i,s ≤ Pi ≤ PL

i,s+1, i ∈ G, s = 1, . . . , Ni−1

PU
i,Ni
≤ Pi ≤ P i

(9)
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Fig. 2. Implementation framework of proposed SWO.

where Ni is the total number of prohibited zones for i.
6) Load Aggregator Limits:

P i ≤ Pi ≤ P i (i ∈ E) (10)

where P i and P i denote the lower and upper bounds of load
aggregator i with actual demand Pi , respectively.

C. SWO Formulation in Mixed-Integer Nonlinear
Programming (MINLP)

For i ∈ G, define the set of candidate power outputs as

Fi∈G := {Pi ∈ R |Constraints 3), 4), 5)}. (11)

For i ∈ E , define the set of candidate number of loads the
aggregator i provides service to as

Fi∈E := {ni ∈ N |Constraints 1) and 6)}. (12)

Substituting Pi(i ∈ E) in (1), (5), and (10) with ni in (4) since
ni is to be solved, the SWO formulation can be written as

max
ni ,Pi

∑

i∈E
Ui(ni)−

∑

i∈G
Ci(Pi)

s.t.
∑

i∈G
Pi = PD + P loss +

∑

i∈E
ni

˜Pi

Pi ∈ Fi∈G

ni ∈ Fi∈E . (13)

To summarize, the proposed SWO is an MINLP problem with
both continuous and discrete variables, nonlinear objective func-
tions, and nonlinear constraints. Fig. 2 shows the proposed SWO
framework, in which a distribution system operators (DSO)
collects load forecasting and generation data and broadcast to
generation units and load aggregators. The SWO problem is
solved in a decentralized manner by aggregators and generators
whose are rational and self-interested. After the solution is
achieved, each generator outputs as desired and each load
aggregator manages its member loads to meet the assigned
demand, respectively.

III. POTENTIAL GAME AND ITS FORMULATION OF SWO

In this section, the potential game [33] and the SAP learn-
ing algorithm are reviewed, followed by the potential-game
formulation of the proposed SWO problem.

A. Noncooperative Strategic Games

A typical noncooperative strategic game consists of [22]
1) A set of players: P := {1, . . . , N}.
2) A set of actions for each player i ∈ P: Ai .
3) An action profile a ∈ A := ×i∈PAi is typically written

as a = (ai, a−i), i.e., player i’s action and everyone
else’s.

4) A payoff function for each player i ∈ P: ui : A → R.
5) An action profile a∗ ∈ A is a NE if and only if

ui(a∗i , a
∗
−i) ≥ ui(ai, a

∗
−i) for any i ∈ P , ai ∈ Ai .

6) An action profile a∗ ∈ A is a pure NE if ui(a∗i , a
∗
−i) =

maxai ∈Ai
ui(ai, a

∗
−i) for any i ∈ P .

B. Potential Game

A potential game is a special noncooperative strategic game,
in which the change in any player’s utility function resulting
from its unilateral change equals the change in a global utility
named potential function. That is, for every player Pi , for every
a−i ∈ A−i , and for every ai, a

′
i ∈ Ai

ui(ai, a−i)− ui(a′i , a−i) = φ(ai, a−i)− φ(a′i , a−i). (14)

If such a potential function φ : A → R exists, this game is
called a potential game with the potential function φ. Note that
any action profile that maximizes the potential function is a pure
NE of the potential game, and thus every potential game has at
least one such NE. However, not every NE of a potential game
maximizes its potential function. Thus, there could exist Nash
equilibra that are only suboptimal [35, Section II.A], which
are not desired solutions for engineering applications. Next, a
learning algorithm that guarantees convergence to a NE that also
maximizes the potential function is introduced.

C. Spatial Adaptive Play (SAP)

SAP is a learning algorithm in games, which can guarantee
the convergence to a NE which is also the global optimizer with
an arbitrarily high probability in potential games [34]. At each
time step t > 0, one player Pi is randomly chosen (with equal
probability for each player) and allowed to update its action. All
other players must repeat their actions, i.e., a−i(t) = a−i(t−1).
The updating player Pi randomly selects an action ai ∈ Ai

according to the softmax distribution Pri(t) ∈ Δ(Ai) of which
the ai th component Prai

i (t) is given as

Prai
i (t) =

exp {Tui(ai, a−i(t−1))}
∑

a ′i ∈Ai
exp {Tui(a′i , a−i(t−1))} (15)

where T ≥ 0 is the exploration parameter, and Δ(Ai) denotes
the set of all possible probability distributions over the set
Ai . Note that T determines how likely player Pi selects a
suboptimal action. If T = 0, player Pi selects any action with
equal probability. If T →∞, playerPi selects an action from its
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best response set with arbitrarily high probability. Therefore, if
all players update their actions following SAP with sufficiently
large t and T , then the players will reach an NE. Furthermore,
such an NE is a global optimizer, which maximizes the potential
function [35].

D. Potential-Game Formulation of SWO

The proposed SWO problem can be formulated as a poten-
tial game with load aggregators and generators considered as
self-interested players, whose actions are demands and gener-
ations, respectively. The objective function can be rewritten as
follows with a penalty multiplier λ adopted to relax the equality
constraint:

max
ni ,Pi

∑

i∈E
Ui(ni)−

∑

i∈G
Ci(Pi)

− λ

∣

∣

∣

∣

∣

PD + P loss +
∑

i∈E
ni

˜Pi −
∑

i∈G
Pi

∣

∣

∣

∣

∣

(16)

where the penalty multiplier λ should be positively large so that
the power mismatch is then driven to approach zero.

In this article, the potential function is designed as the
objective function in (16). For convenience of notation and
without loss of generality, ni is replaced by Pi(i ∈ E) here for
notation conveniences in the following theoretical derivation.
Thus, the potential function is written as:

φ(Pi, P−i) =
∑

i∈E
Ui(Pi)−

∑

i∈G
Ci(Pi)

− λ

∣

∣

∣

∣

∣

PD + P loss +
∑

i∈E
Pi −

∑

i∈G
Pi

∣

∣

∣

∣

∣

. (17)

The payoff function for each player is designed to be

ui(Pi, P−i) = − (αiP
2
i + βiPi)

− λ

∣

∣

∣

∣

∣

PD + P loss +
∑

i∈E
Pi −

∑

i∈G
Pi

∣

∣

∣

∣

∣

(i ∈ G)

(18)

ui(Pi, P−i) = Ui(Pi)

− λ

∣

∣

∣

∣

∣

PD + P loss +
∑

i∈E
Pi −

∑

i∈G
Pi

∣

∣

∣

∣

∣

(i ∈ E).

(19)

A potential game is formed by the SWO problem with
potential function φ. Details of the proof can be found in [23]
and omitted in this article due to space limit. If all players
(aggregators and generators) stick with SAP with perfect com-
munication environment, the interacting process is guaranteed
to converge to an NE, which is also a global maximizer to
the potential function as well as the relaxed SWO objective
function [23].

Algorithm 1: PSAP by DSO.

1: Initialize Pi(t)
2: repeat
3: At time t, detect the set of low-QoS channels J (t)

that failed to communicate at t
4: Randomly select i ∈ G ∪ E
5: if i ∈ J (t) then
6: Assign Pi(t)← Pi(t−1)
7: else
8: Notify i and send P−i(t−1) to i

(Go to Algorithm 2: 1)
9: Receive Pi(t) from i

10: Assign P−i(t)← P−i(t−1)
11: end if
12: until Converge to NE or STOP signal

IV. SAP UNDER NETWORK ANOMALY

The communication architecture considered in this article
is shown in Fig. 2. There are other communication archi-
tectures available in literature for SWO such as peer-to-peer
communications. However, it is more practical to have DSOs
(which are heavily protected under regulations for Critical
Infrastructures) to handle all information exchange instead of
having geographically remote and self-interested players keep
location and high-fidelity information about others.

As (15) shows, for every player to update with SAP at each
time step t, it needs to have full information of a−i(t−1), i.e.,
all the actions of others from last time step. Therefore, the
conventional SAP will not perform in a network with anomaly.
This article proposes a revised version of SAP, called PSAP,
since, at each time step, it is assumed that there is a partial
group randomly selected players who cannot communicate to
the DSO and thus cannot receive the most updated actions from
others.

In the proposed PSAP, the DSO does not make any decisions,
so its role is to evaluate channels, collect, and broadcast informa-
tion. Algorithm 1 operates in the manner that at each time step
the DSO first pings all channels and determines which channels
have anomaly (e.g., low QoS, network topology changes, or
communication delays). Since one channel can be jammed for
a certain amount of time, at each time step, the DSO then
only communicate the last-successfully communicated actions
from those jammed channels. In other words, the set of action
profiles for PSAP is only a subset of the conventional SAP with
a “partial” group of players participating at each time step.

Similar to traditional SAP, the DSO also randomly selects
a player i with equal probability to update its action. If the
selected player is not reachable due to network anomaly, i.e., it
is in J (t), then the DSO wait until next time step. Otherwise,
the DSO notifies it to play SAP according to P−i(t−1) sent by
the DSO. Note that P−i(t−1) consists of last known actions of
all players except the updating player. For each player i, it only
updates when it receives a notification from the DSO. Otherwise,
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Algorithm 2: PSAP by Each Player Pi .

1: Notified by the DSO to update with P−i(t−1)
2: if i ∈ G then
3: Update Pi(t) ∼ softmax [ui(Pi, P−i(t−1)), T ]

where Pi ∈ Fi∈G
4: else
5: Update Pi(t) ∼ softmax [ui(Pi, P−i(t−1)), T ]

where Pi ∈ Fi∈E
6: end if
7: Notify DSO and send Pi(t) to DSO

(Go back to Algorithm 1: 9)

no matter what status the corresponding communication channel
has, all players repeat their last action.

The convergence analysis of the proposed PSAP is shown
as follows. Denote an action profile at t by P (t) as a random
variable, which consists of k + m elements, a set of actions
for every player i at t can then by denoted by Fi(t) where
Pi(t) ∈ Fi(t) and P (t) ∈ ×i∈G∪EFi(t). When player i is not
experiencing network anomaly, i.e., i /∈ J (t), the set of actions
available to player i at time t is then

Fi(t) =

{

Fi∈G if i ∈ G
Fi∈E if i ∈ E . (20)

Otherwise, i.e., i ∈ J (t), the set of actions available to player i
at time t is

Fi(t) = {Pi(t−1)}. (21)

Equations (20) and (21) are restricted action sets. Similar to
[35], the updating player randomly selects a trial action P̂i from
its restricted action set with the following probabilities. Let
z = k + m− |J (t)| denote the number of channels without
network anomaly conditions, and the probability that the P̂i is
selected is given by

Pr[P̂i ∈ Fi(t), i /∈ J (t)] =
z

k + m

Pr[P̂i ∈ Fi(t), i ∈ J (t)] =
|J (t)|
k + m

. (22)

After player i selects P̂i , the player chooses its action at time
t according the following probability:

Pr[Pi(t) = P̂i ] =
exp {Tui(P̂i , P−i(t−1))}

∑

Pi ∈Fi (t) exp {Tui(Pi, P−i(t−1))}
Pr[Pi(t) = Pi(t−1)] = 1 (23)

where the first equation in (23) corresponds to Steps 3 and 5 in
Algorithm 2, and the second equation in (23) corresponds to
Step 6 in Algorithm 1.

Furthermore, given a discrete-time Markov chain (DTMC)
with transition matrix P = [pij ], an equilibrium distribution μ
is said to be in detailed balance if μipij = μjpji for all i, j ∈ S
[36]. Moreover, μ is a stationary distribution of the DTMC

since
∑

i μipij =
∑

i μj pji = μj

∑

i pji = μj and therefore
μ = μP .

The following theorem states that, within the potential-game
formulated SWO, the proposed PSAP induces a DTMC over
state space P (t) with a unique stationary distribution.

Theorem 1: Consider a finite (k + m)-player potential game
with the potential function φ(·). If a DTMC {P (t), t ≥ 0}
induced by the proposed PSAP over the state space S :=
×i∈G∪EFi(t) is irreducible and aperiodic, and it has the unique
stationary distribution given by

μ(p) =
exp{Tφ(p)}

∑

p̄∈S exp{Tφ(p̄)} for any p ∈ S. (24)

Proof: For any p, p′ ∈ S
ppp ′ := Pr[P (t) = p′|P (t−1) = p]. (25)

Since player i has probability 1
k+m of being chosen in any given

period and has probability z
k+m of any trial action P̂i selected

without network anomaly, it follows that:

μ(p)ppp ′ =

[

exp{Tφ(p)}
∑

p̄∈S exp{Tφ(p̄)}

]

×
[

1
k + m

z

k + m

exp {Tui(p′, P−i(t−1))}
∑

Pi ∈Fi (t) exp {Tui(Pi, P−i(t−1))}

]

(26)

μ(p′)pp ′p =

[

exp{Tφ(p′)}
∑

p̄∈S exp{Tφ(p̄)}

]

×
[

1
k + m

z

k + m

exp {Tui(p, P−i(t−1))}
∑

Pi ∈Fi (t) exp {Tui(Pi, P−i(t−1))}

]

.

(27)

Let

π =
1

∑

p̄∈S exp{Tφ(p̄)}
z

(k+m )2

∑

Pi ∈Fi (t) exp {Tui(Pi, P−i(t−1))}
(28)

then

μ(p)ppp ′ = π exp{Tφ(p) + Tui(p′, P−i(t−1))}. (29)

Since

ui(p′, P−i(t−1))− ui(p, P−i(t−1)) = φ(p′)− φ(p) (30)

it leads to

μ(p)ppp ′ = π exp{Tφ(p′) + Tui(p, P−i(t−1)} (31)

and

μ(p)ppp ′ = μ(p′)pp ′p . (32)

The detailed balance condition is then established. It follows
immediately that μ is a stationary distribution of the DTMC
{P (t), t ≥ 0}. Given the state-space S, the process in any
period is irreducible, i.e., all states communicate with each other,
and aperiodic. Therefore, it has a unique stationary distribution
which must be μ. This completes the proof of Theorem 1. �
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TABLE I
SOLUTIONS BY PSAP AND TRADITIONAL SAP

Corollary 1: For every monotonically increasing explo-
ration parameter T (t) > 0, i.e., T (t′) > T (t) if t′ > t, then
Theorem 1 still holds.

Proof: It can be observed that (32) holds with only denomi-
nators containing T terms in (26)–(28) cancel out on both sides
of (32). This completes the proof of Corollary 1. �

From Theorem 1, the unique stationary distribution μ(p) is an
instance of Gibbs distribution. For sufficiently large times t > 0,
μ(p) is equal to the probability that P (t) = p. As T →∞,
P (t) follows the unique p with arbitrarily high probability μ(p)
such that p as an NE maximizes the potential function. So the
objective function in (16) is maximized as well. It is noted
that the final action profile p can be different in the different
communication environment.

V. NUMERICAL RESULTS

In this section, the effectiveness of the proposed PSAP in
different communication environment is validated in a widely
used benchmark distribution system [22], [26], [30]–[32] with
15 generators. Modifications are made to include participation
of three load aggregators (10 kW) and 12 load aggregators
(100 kW). Generators parameters can be found in above ref-
erences and, thus, are omitted here due to space limit.

The solutions to the SWO (with near-full loading) shown
in Table I and Fig. 3 are based on λ = 3000 and η = 15.
One solution is the proposed PSAP with a random number of
channels selected with network anomaly (shown in Red), and
the other solution is by traditional SAP with full communication
without network anomaly (shown in Blue).

It can be observed that
1) Fig. 3(a) shows that the global potential function in-

creases quickly and converges to a near steady final
value after around 50 iterations in both cases.

2) Fig. 3(b) shows that the total social welfare converges
along with the global potential function in both cases.

Note that with network anomaly, the social welfare is
lower, due to restricted action sets caused by limited
choices of updating players.

3) Fig. 3(c) shows that the total utility of all aggregators
decreases along with the decrease of the total energy
consumption, which is shown in Fig. 3(e).

4) Fig. 3(d) shows that the total generation cost drops along
with the decrease of the total energy consumption shown
in Fig. 3(e) as well as the total generation shown in
Fig. 3(i). Note that with network anomaly, the generation
cost is higher, due to the same reason mentioned in
Fig. 3(b).

5) Fig. 3(e) shows that load aggregators have participated
in DR in terms of reducing total energy consumption,
although it decreases loads’ total utility. Note that
with network anomaly, the total energy consumption
is higher.

6) Fig. 3(f) shows the player which is randomly selected at
each iteration of the PSAP learning process.

7) Fig. 3(g) shows that the total generation drops as load
aggregators participating in DR to reduce peak demand.
Note that with network anomaly the total generation is
higher due to the same reason as Fig. 3(b).

8) Fig. 3(h) shows that the total transmission loss con-
verges. Note that with network anomaly the total trans-
mission loss is higher due to the same reason as in
Fig. 3(b).

9) Fig. 3(i) shows that the total load/demand drops as load
aggregators participate in DR.

10) Fig. 3(j) shows that the power balancing converges.
To summarize, under network anomaly, the proposed PSAP

can converge as expected. The overall convergence is slower
compared to the scenarios without communication issues due to
limited choices of updating players at each step. Also note that
due to limited information and choices at each time step, the total
energy cost might be slightly higher under network anomaly but
the overall global utilities converge to a value almost identical
to the scenarios without network anomaly, as shown in Fig. 3(a)
and (c).

It is also noted that the setting of η is critical to the per-
formance of PSAP. An appropriate setting should satisfy the
following condition [23]:

η < 4 min {2αiP i + βi, i ∈ G.}. (33)

VI. EXTENSIONS TO NONSMOOTH FORMULATIONS

Note that in the potential game framework, the cost, utility,
or potential functions can be nonsmooth, nonconvex or of any
form. In [37], potential games are applied to plug-in hybrid
EVs charging problem with concave utility functions. In [38],
potential games are applied to solve the mathematical puzzle
Sudoku with nonsmooth utilities. Furthermore, the proposed
SWO formulation can also be inherently extended to nonsmooth
cost objective functions. Consider the cases in which multiple
fuels are used and the objective function can be expressed as the
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Fig. 3. Update of all indicators under the near full-load scenario.

following piece-wise quadratic cost function:

Ci (Pi) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

αi,1 + βi,1Pi + γi,1P
2
i ,

if Pi,min ≤ Pi ≤ Pi,1

αi,2 + βi,2Pi + γi,2P
2
i ,

if Pi,1 ≤ Pi ≤ Pi,2

αi,n + βi,nPi + γi,nP 2
i ,

if Pi,n−1 ≤ Pi ≤ Pi,max

which is composed of a finite number of subproblems, each
of which falls into the proposed formulation. Therefore, the

discontinuous cost functions can also be effectively handled by
the proposed formulation.

VII. CONCLUSION

This article took into consideration the impact of net-
work anomaly on a noncooperative formulation of the con-
strained SWO problem. Continuing with the previously
proposed potential-game formulation of the SWO, a variant
of the SAP algorithm called PSAP was proposed and analyzed.
With all players stick to the proposed PSAP, it was shown that
the induced DTMC guarantees to converge to an NE, which
is also a global maximizer with arbitrarily high probability.
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Numerical simulations of SWO with network anomaly solved
by the proposed PSAP and SWO without network anomaly
solved by conventional SAP were presented and compared,
with results outcomes met expectations. For future work, the
proposed algorithm can be improved with more effective way
to handle the power balance equality constraints. Also, the
proposed algorithm can be extended to vector-based action
profiles to consider a long-duration SWO problem.
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