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Abstract—With the evolution of PV converters, a growing
number of vulnerabilities in PV farms are exposing to cyber
threats. To mitigate the influence of cyber-attack on PV farms,
it is necessary to study attacks’ impact and propose detection
methods. To meet this requirement, a cyber-physical security
framework is proposed for PV farms. Data integrity attacks
(DIAs) are studied on different control loops. As µPMU is gaining
in popularity, a lower sampling rate of µPMU data is applied to
develop a detection algorithm. We have evaluated two data-driven
methods, which are support vector machine (SVM) and long
short-term memory (LSTM). Finally, the data-driven methods
verify the feasibility of µPMU data in attack detection.

Index Terms—PV farm, Data-driven Detection, µPMU, Data
Integrity Attack, Attack Impact Analysis

I. INTRODUCTION

As power grids evolve into a cyber-physical system, they
become more vulnerable to cyber-attacks than before. A
large amount of DERs (distributed energy resources) that
are integrated into the grid, such as photovoltaic (PV) farm,
wind power plant, and electric vehicles, bring an amount of
vulnerabilities and challenges [1]. To resolve this poten-
tial threat, PELS (IEEE Power Electronics Society) proposes
strengthening the research of the cyber-physical security in
power electronics. Data integrity attack (DIA), which is one of
the most common cyber-attacks in practical applications, may
falsify the sensor measurement by injecting or altering data to
change the system’s status. In [2], the impact of DIA on the
distributed controller in microgrid was analyzed, wherein, the
DIA could block the measurement or control signal, causing
severe damage to the system. In [3], a systematic method was
proposed to assess the integrity attack on the motor drive.
In [4], the author proposed a systematic assessment method
for cyber-physical security on EMS in electrical vehicles.

As one of the most typical applications of DERs, solar
photovoltaic generation systems have been concerned widely.
In general, the PV farm works as a power generator, which
significantly impacts the power system operation. In [5],
the authors constructed a state-space model for PV farms
to analyze PV dynamic performance. With the evolution of
PV converters, vulnerability assessment of cyber-attacks has
become necessary. In [6], the author analyzed the impact of
cyber-attacks on PV and ESS in the microgrid, but this work
only focused on the assessment of attacks at the system level.

Up to date, the attack impact analysis research in the converter
level has yet to be explored.

Besides the impact evaluation of DIAs in PV farms, cyber-
attack detection is also necessary for an operator to identify
and eliminate integrity attacks timely in practical applications.
Among the detection methodologies in the literature, a data-
driven method is widely employed. In [7], a data-driven
method was proposed to distinguish differences between sev-
eral faults in the power grid. In [8], a multidimensional online
approach was presented to detect cyber-attacks. In [9], a diag-
nosis methodology was presented for DIAs in PV farm based
on multilayer long short-term memory networks. According
to the above works, the extracted feature from waveform data
was applied to the detection algorithm. With the popularity
of µPMU, µPMU data is obtained easily from the system
dispatch center, which brings a new possibility for data-driven
detection methods.

To mitigate the false data integrity attacks on the PV farm,
this paper focuses on the DIA on large-scale PV systems. The
DIAs on different control loops are analyzed. Two detection
methods will then be used to verify the feasibility of µPMU
in cyber-attack detection.

II. MODELING OF PHOTOVOLTAIC FARMS

As shown in Fig. 1, a two-stage two-level PV system is
built, including PV array, DC/DC converter, DC/AC inverter,
DC/DC controller and DC/AC controller.

A. PV Array Model
In Fig. 1, an equivalent circuit is applied to represent the

PV array. To describe the PV current-voltage relationship, a
dynamic equation of PV array is derived as follow:

Ipv = Iph − Is(e
Upv+IpvRs

a − 1) − Upv + IpvRs
Rsh

(1)

where Iph and Is are the photovoltaic and saturation currents
of the array, respectively; Rs is the equivalent series resistance
of the array; Rsh is the equivalent parallel resistance; a is
the diode ideal constant; [Iph, Is, Rs, Rsh, a] are calculated by
using the following equations.

Iph = Iph0G[1 + aIsc(T − T0)],

Is = Is0(
T

T0
)3e47.1(1−

T0
T ),

a = a0
T

T0
, Rs = Rs0, Rsh = Rsh0/G

(2)
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Fig. 1: Two-stage two level PV converter circuit.

where T0 = 298.15 is the STC temperature; G(pu) represents
the irradiance; aIsc is the short circuit current temperature co-
efficient; [Iph0, Is0, Rs0, Rsh0, a0] can be extracted at standard
test conditions (STC).

B. DC/DC Converter Model

The DC/DC circuit is used to connect the PV array with an
inverter in Fig. 1. The DC/DC controller generates the optimal
duty cycle for boost converter to track the maximum power
point (MPP). The DC/DC converter is modeled as

˙Upv =
Ipv − IL
Cpv

˙IL =
Upv − (1 −D)Udc

L

(3)

where IL is the inductance current; Udc is the dc voltage
of capacitor; D is the duty cycle and Cpv; L represents the
component of DC/DC circuit. In steady state, the relationship
between Upv and Udc can be derived as

Udc
Upv

=
1

1 −D
(4)

C. DC/AC Inverter Model

The differential equation of the DC link capacitor can be
expressed as follows:

Cdc ˙Udc = (1 −D)IL − 3

2

UcdIgd + UcqIgq
Udc

(5)

where Udc is dc link capacitor voltage; Ucd, Ucq are the LCL
capacitor voltage in d,q frame; Igd, Igq are the grid side current

of LCL in d,q frame. The inverter and LCL filter can be
represented by the following state equations:

˙Ifd =
1

Lf
(Uid − Ucd) + ωIfq

˙Ifq =
1

Lf
(Uiq − Ucq) − ωIfd

˙Ucd =
1

Cf
(Ifd − Igd) + ωUcq

˙Ucq =
1

Cf
(Ifq − Igq) − ωUcd

˙Igd =
1

Lg
(Ucd − Ugd) + ωIgq

˙Igq =
1

Lg
(Ucq − Ugq) − ωIgd

(6)

where ω is system frequency, Ifd,q is inverter side current in
the LCL filter, and Lf is the inductance in LCL filterp.

D. Controller for DC/DC Converter

DC/DC converter is used to connect the PV array to DC/AC
inverter. Generally, the DC/DC converter is designed as a
boost converter that extracts the maximum power from the
PV array. MPPT is a widely used algorithm in the DC/DC
controller. In this paper, an incremental conductance method
is used. It utilizes the incremental conductance (∆I/∆V ) of
the PV array to compute the sign of the change in power to
voltage (∆P/∆V ). In this method, the maximum power point
is derived by comparing incremental conductance (∆I/∆V )
to the array conductance (I/V ). When the two conductances
are the same (I/V = ∆I/∆V ), the output voltage is the MPP
voltage. The flowchart of the MPPT scheme is shown in Fig. 2.

E. Controller for DC/AC Inverter

Typically, the inverter controller is designed to transfer
the power from the DC circuit to the AC grid. In Fig. 1,
the DC/AC controller includes DC link voltage control loop,
reactive control loop, and current control loop. The DC link
controller is responsible for maintaining the capacitor voltage
and determining the I∗fd. The reactive power control loop is



Fig. 2: Flowchart of MPPT Algorithm

designed so that the PV system could generate an amount of
reactive power and determines I∗fq . Thus, I∗fd and I∗fq can be
expressed as follows:

I∗fd = kpv(U
∗
dc − Udc) +

kiv(U
∗
dc − Udc)

s

I∗fq = kpq(Q
∗ −Q) +

kiq(Q
∗ −Q)

s

(7)

where kpv, kiv, kpq and kiq are the PI parameter, U∗
dc is DC

link voltage reference, Q∗ is reactive power reference. In prac-
tical applications, PV converters do not generate any reactive
power. Therefore, in this paper, we assume that I∗fq = 0.
The inner current control loop also employs the PI controller
independently to regulate Ifd, Ifq to their references. Then,
the current control loop can be modeled as

U∗
id = kpi(I

∗
fd − Ifd) +

kii(I
∗
fd − Ifd)

s
− ωLfIfq

U∗
iq = kpi(I

∗
fd − Ifd) +

kii(I
∗
fd − Ifd)

s
+ ωLfIfd

(8)

where kpi, kii are the PI paremeter, I∗fd,q is the inductance
current in LCL filter, I∗fd,q is the inductance current reference
in d,q frame.

III. CYBER-ATTACKS MODEL AND IMPACT ANALYSIS

To investigate the impact of DIAs in the PV converter,
we model the DIAs and analyze the dynamic performance
of the two-stage PV converter during attack duration, the
conclusion of which will benefit developing a data-driven
detection method.

A. DIA Model

To clarify the impact of cyber-attack on the PV converters,
the vulnerability of PV is given in Fig. 1. The attackers can

compromise the DC/DC or DC/AC controller and falsify the
sensor measurements. In general, a DIA can be expressed as

YF(t) = α ∗ F(t) + β ∗Y0(t− tdelay) (9)

where YF is the compromised data vector that is eventually
the input of controller; Y0 is the original measurement; F is
a general compromised data vector which can be independent
or determined by Y0; α is a multiplicative factor matrix that
defines the weight of the attack vector; β is a multiplicative
factor that defines the weight of the real vector; tdelay is the
delay time injection. Here, Y0(t) is defined as

Y0(t) = [Upv(t), Ipv(t), Udc(t), If (t), Uc(t), Ig(t)]
T . (10)

In the above definition, α is the multiplicative factor matrix,
and can be expressed as a 12 × 12 matrix

α = diag [αupv, αipv, αudc, αil1×3
, αuc1×3

, αig1×3
]. (11)

B. Impact Analysis of DIAs on DC/DC converter

When an attacker compromises the DC/DC sensor, the
measurements would be mistakenly used in the controller,
degrading the DC/DC controller performance. According to
the above analysis in sectionII-D, attacks on DC/DC converter
should be designed elaborately so that PV system operation
status can be changed. To further study the impact of in-
tegrity attacks on DC/DC converter, we consider the MPPT
algorithm’s mechanism. We assume that ∆I and ∆V are
two malicious injections aiming to falsify the DC/DC sensor
measurements. As shown in Fig. 2, the output duty cycle in
the controller must meet the following constraints of MPPT
algorithm:

Dmin < D < Dmax. (12)

Once the duty cycle exceeds the limit, the control signal
remains unchanged in the controller. To destroy the DC/CD
controller, ∆I and ∆V should meet the following conditions:

−∆I∆U >
Dmin −D

∆D
,

∆I

∆U
> − I

U
(13)

or
∆I∆U <

Dmax −D

∆D
,

∆I

∆U
< − I

U
(14)

where D is duty cycle generated by MPPT after attack; ∆D
is duty cycle step size.

To clarify the dynamic process of cyber-attack on DC/DC
controller, two DIAs are simulated in PV converters modeled
in the above section.

Attack 1: α = diag [1 −0.9 0 0 0 0 0 0 0 0 0 0]T , β = 1, F =
Y0(t), tdelay = 0, G = 1, T = 298.15K, tattack =
0.3−0.6s. Fig. 3 shows performance of DC/DC controller and
measurement variation in sensors. As the input of the DC/DC
controller, both voltage and current of PV array are changed
at 0.3s. Based on the MPPT algorithm, −I/V > ∆I/∆V ,
the DC/DC controller should generate a larger duty cycle to
track the MPP, which is also obtained from the Fig. 3(c).
Thus, the power level is falsified by cyber-attacks. Although
the efficiency of PV converter is reduced, this attack does not
generate any harmonics in the waveform.



Fig. 3: PV Array Voltage, Current, Duty Cycle and Output
Power due to DIA 1 in DC/DC controller

Attack 2: α = diag [−0.9 1 0 0 0 0 0 0 0 0 0 0] , β = 1, F =
Y0(t), tdelay = 0, G = 1, T = 298.15K, tattack = 0.3 −
0.6s. According to Fig. 4(d), this attack does not cause any
changes to the controller operation. More specifically, the PV
array voltage decreases, and the PV array current increases.
Thus, based on Fig. 4(a,b), there is −I/V < ∆I/∆V . The
duty cycle should be reduced to track the MPP. Due to the
limitation of the duty cycle in the MPPT algorithm, the output
duty cycle remains the same in the Fig. 4(c). According to the
above two attacks, we conclude that DC/DC integrity attack
can only change the power level of PV converters when it
meets equations (13) or (14).

Fig. 4: PV Array Voltage, Current, Duty Cycle and Output
Power due to DIA 2 in DC/DC controller

C. Impact Analysis of DIAs on outer DC Link Voltage Control

As analyzed in sectionII-E, both DC voltage control and
reactive power control determine the reference of the inner
current control loop. In a real application, the PV converter
does not generate reactive power and I∗fq = 0. Thus, the
impact of DIA on the DC link is analyzed in this section.
The DC link capacitor works as a bridge that connects DC
circuit and DC/AC inverter. DC voltage disturbance impacts
the PV array output and inverter performance. As discussed
in the previous section, UdcF is defined to represent the DC
link voltage after an attack. Considering the value of UdcF ,
the impacts of two scenarios are discussed in the following
passage.

Fig. 5: PV Array P-U Curve and I-U Curve

Fig. 6: Inductor current in CCM and DCM operation

1) UdcF > Udc: When Upv > Umpp, the PV array output
current decreases with the increasing Upv . When Upv = Uov
(see Fig. 5), the PV array never generates any current to
DC/DC converter, which also causes DC/DC converter to enter
DCM. In the steady mode, IL is determined by Ipv . Thus, the
average value of inductance current is expressed as ĪL = Ipv .
Fig. 6 shows the PV converter CCM and DCM operation.
When Ipv is less than IL,CCM as shown in Fig. 6, DC/DC
converter operates in DCM. According to the equations (1)
and (2), Ipv can be represented by f(Upv). Therefore, if we
apply the equation (4) and (12), then the DC/DC converter is



in DCM operation when the UdcF should meet the following
constraints: f(UdcF (1−Dmax)) < IL,CCM . Otherwise, when
UdcF > Udc, the DIA only changes power level and decrease
PV converter operation efficiency.

2) UdcF < Udc: In this scenario, the DC/DC converter
could not enter into DCM operation state, since UdcF (1 −
Dmin) > Uov . With the decreased UdcF , the MPPT algorithm
still works to track the MPP. Based on the equation (7), I∗fd
increases to transfer the PV output power to AC grid. As
the saturation limitation in PI control, the PV converter will
operate at a stable point due to this integrity attack.

To illustrate the impact of DIA in DC link controller, two
simulation results are described in the following paragraph.

Attack 1: α = diag [0 0 −1 0 0 0 0 0 0 0 0 0]T , β = 1, F =
Y0(t), tdelay = 0, G = 1, T = 298.15K, tattack = 0.3 − 0.6s.
As shown in Fig. 7, DC link voltage increases due to attack,
which leads to an increase in PV array voltage. The DC/DC
converter enters into the DCM operation state, which can be
obtained from the inductance current in Fig. 7(b). Because the
PV array could not generate any power to the converter, the
DC link needs to absorb energy from the AC grid. Hence,
there is an amount of disturbance in the output power and Ig
which are shown in the Fig. 7(c,d). Thus, this attack destroys
the converter controller.

Fig. 7: PV Array Voltage, Inductor Current, Output Power and
Ig due to DIA on DC link Voltage Control

Attack 2: α = diag [0 0 0.33 0 0 0 0 0 0 0 0 0]T , β = 1, F =
Y0(t), tdelay = 0, G = 1, T = 298.15K, tattack = 0.3 − 0.6s.
As shown in Fig. 8, DC link voltage decreases due to attack.
But the PV converter is still stable. Inductance current shows
the converter operates in CCM in Fig. 8(b). Thus, this attack
only reduces PV array output power, which is also obtained
from Fig. 8(c,d).

D. DIAs’ Impact Analysis in Inner Current Control
The inner current control loop can be expressed as[

Ifd
Ifq

]
= Gi(s)

[
I∗fd
I∗fq

]
(15)

Fig. 8: PV Array Voltage, Inductor Current, Output Power and
Ig due to DIA on DC link Voltage Control

Gi(s) =
Gipi(s)Gp(s)GPWM (s)

1 +Gipi(s)Gp(s)GPWM (s)
(16)

where Gipi = kp + ki/s, Gp = 1/(sLfi); Gi(s) is the closed
transfer function; I∗fd, I∗fq is inductance current reference;
GPWM represents the inverter and PWM. In this paper,
Uid = U∗

id. Thus, GPWM is assumed as 1 here. DIA falsifies
the sensor measurement, the Gi can be manipulated as

GiF (s) =
Gipi(s)Gp(s)GPWM (s)

1 +Gipi(s)Gp(s)GPWM (s)GF (s)
(17)

where GiF (s) is the closed transfer function of current con-
troller, and GF (s) is a function of αil and β. In recent years,
a number of papers have assessed the stability of the current
control loop [10], [11]. These methods can be used to evaluate
DIA’s impacts on the current controller. Due to page limitation,
this method is not presented in the paper.

IV. DATA-DRIVEN CYBER-ATTACK DETECTION

To the best of our knowledge, µPMU data is rarely used in
the data-driven detection algorithm. In this section, we focus
on assessing the feasibility of using µPMU data for data-driven
attack detection. We will implement two different kinds of
popular supervised data-driven methods, e.g., Support Vector
Machine (SVM), and Long Short-Term Memory (LSTM) [12],
[13]. To obtain enough µPMU data samples, the PV converter
model in section II is used to construct a large-scale PV farm
in MATLAB. Seven paralleled PV converters are connected to
a power grid. Thus, the capacity of this PV farm is 980kW.
An amount of cases, including normal condition, DIAs in
controller, and replay attack, are simulated to form training
data set. The µPMU is installed at the PCC node to measure
the voltage and current of PV farm.

A. Machine Learning

1) Support Vector Machine: The basic idea of the support
vector machine is to create a boundary or a hyperplane to



separate the data into several classes. Intuitively, the further
from the hyperplane data points lie, the more confident we
are that they have been correctly classified. In general, it’s not
easy to have a directly separable set of training data. That
is where the kernel trick comes in, whose idea is mapping
the non-linear separable dataset into a higher dimensional
space where we could find a hyperplane to separate the data.
SVM exhibited state-of-the-art performance on classification
problems. However, SVM does not perform well for large
datasets such as image classification, and the training time
is much higher.

B. Deep Learning

1) Long short-term memory: LSTM is a variant of the
recurrent neural network(RNN). It was developed to solve
the vanishing gradient problem of RNN by adding a way to
carry the past information across the time steps. In this case,
information is saved for later, thus preventing older data from
gradually vanishing during training. LSTM is versatile that can
process not only single data points but also entire sequences of
data, especially time-series data. It shows powerful capability
when handling scenarios like natural language processing
(NLP), speech recognition.

C. µPMU Dataset Analysis

The µPMU data are collected from the PMU sensors.
Although the sampling rate of µPMU data is much less
compared to the original waveform, the three features of
the magnitude, frequency, and phase angle of the waveform
are directly obtained from the hardware calculation of PMU
device. At each sampling time instance, an 18-dimensional
µPMU data vector is obtained. We denote three-phase (a, b, c)
voltage (V ) µPMU data (θ, F , M represent phase angle,
frequency and magnitude, respectively) as: θVa

, FVa
, MVa

,
θVb

, FVb
, MVb

, θVc
, FVc

, MVc
and three-phase current (I)

µPMU data as: θIa , FIa , MIa , θIb , FIb , MIb , θIc , FIc , MIc .
All the data at each time point constitute a µPMU data

sample, which can be represented as a 1-D time sequence:
X = (XµPMU

1 , XµPMU
2 , ..., XµPMU

t ), where XµPMU
t repre-

sents the µPMU data sampled at time t. The equation
XµPMU
t = (θtVa

, F tVa
,M t

Va
..., θtIc , F

t
Ic
,M t

Ic
), shows the fea-

tures that µPMU sample data have (18 features in total). For
every µPMU data sample, we constructed a normalized high-
dimensional matrix Xt×s, where t represents the window size
of the sample data and s represents the number of features. In
our case, t = 10 (0.08 sec) and s = 18 (18 features in total),
respectively. Eventually, each sample data to be input to the
models denote by the matrix X10×18.

D. Case Study

SVM and LSTM are used to conduct experiments on
attack detection and attack diagnosis, respectively. For attack
detection, the data are divided into 2 cases (normal and
abnormal), which is a binary classification problem. For attack
diagnosis, the data are divided into 5 cases (normal, DIA in
DC/AC controller, DIA in DC/DC controller, replay attack,

delay attack), which is a multi-classification problem. The
overall block diagram is shown in Fig. 9, describing the
workflow of the implemented data-driven evaluation methods.
The experiment results are presented below after we conducted
a 10-fold cross-validation. Tables. I and II show the detection
and diagnosis performance of the two algorithms.

From the Tables. I and II, in comparison, LSTM out-
performs SVM model in all metrics (99.42% and 98.98%
accuracy in detection and diagnosis, respectively). Although
SVM gets similar results as LSTM on attack detection, when it
comes to attack diagnosis, the gap between these two methods
is revealed. The performance of the SVM declined while the
robustness of the LSTM is still strong. We contribute this to
LSTM’s powerful capability of extracting features and latent
information. In short, both the implemented two data-driven
methods perform well in the attack detection and diagnosis for
our PV farm, which shows the potential for µPMU data to be
used in the security area of the power system.

Fig. 9: The overall block diagram showing the workflow of
the implemented data-driven evaluation methods.

TABLE I: Detection performance evaluation

Model\Metrics Acc Prec Rec F1

SVM 0.9880 0.9908 0.9789 0.9847
LSTM 0.9942 0.9935 0.9929 0.9945

TABLE II: Diagnosis performance evaluation

Model\Metrics Acc Prec Rec F1

SVM 0.9753 0.9473 0.9414 0.9443
LSTM 0.9898 0.9742 0.9891 0.9892

V. CONCLUSION

This paper analyzes the impact of DIAs on different control
loops in the PV farm. For validation, the DIA model is built,
and a two-stage two-level PV converter is modeled. To obtain



the impacts of DIA, both theoretical analysis and case studies
are shown in this paper. To mitigate the DIAs’ impact, a data-
driven method is proposed using µPMU data. As one of the
first attempts at using µPMU data, we evaluate two data-
driven methods, which are SVM and LSTM. Finally, these
two methods verify the feasibility of µPMU data in attack
detection.
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