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ABSTRACT: Product lifetime prediction is challenging when the product is subject to a 
time-varying operational environment. Most of the existing studies use some functions to 
explicitly specify the relationship between degradation parameters and environmental 
conditions so as to reveal how the degradation process evolves over time. However, in many 
applications, the assumptions needed for establishing these functions cannot be validated in 
engineering practice or they cannot accurately model the entire underlying degradation 
mechanism. In contrast to previous work, the focus of our study is placed on product 
degradation prognosis by implementing an ensemble learning method. This method combines 
the stochastic process modeling approach and the machine learning approach, taking 
advantage of these approaches to gain a more accurate and stable degradation prediction. The 
proposed method is demonstrated by some simulation examples and by a case study of 
lithium-ion battery accelerated degradation test. Both the simulation study and the real case 
verify the superiority of the proposed method. The case study indicates that the ensemble 
learning method can further help to effectively manage the energy storage and energy 
distribution of battery packs.  
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1. Introduction 
Lifetime prediction is crucial in manufacturing, automotive, aerospace, and many other 

industries for supporting an effective decision-making process.[1] For a highly reliable product, 

accelerated degradation tests are frequently employed in this process to reduce the test time 

and to infer the product’s lifetime under its normal operating condition.[2][3][4]  

Many studies of degradation-based lifetime prediction had been presented in literature; 

however, these studies are often based on laboratory testing data obtained under a standard or 

controlled environment and ignore the complicated time-varying operational environment that 

products will experience in reality.[5][6][7][8] In practice, many environmental stress variables 

are indeed random and the product’s degradation mechanism could be environmental 

sensitive. Ignoring the effect of stress variation can lead to significant prediction error. A few 

studies had tried to utilize field data and real environmental conditions to minimize such 

deficiency. Kharoufeh et al.[9] presented a method by considering the case of a semi-

Markovian environmental model. Gebraeel and Pan[10] introduced a degradation modeling 

framework with the consideration of time-varying environment. Pan[11] and Wang et al.[12] 

introduced a calibration factor to the lifetime predictive model to denote the environmental 

influence. Qu et al.[13] proposed a mission profile-based lifetime predictive method to estimate 

the lifetime and reliability performance of light emitting diodes in field operations. Thomas [14] 

adjusted the lifetime prediction model of lithium-ion cell in order to make it more realistic for 

the dynamic use condition. 

One commonality of these existing methods is that the dependence of the degradation 

processes on environmental conditions is explicitly specified using some presumed functions, 

which are modeling how the degradation process evolves over time.[15] However, in many 

applications, such well-defined parametric models cannot be found or they cannot accurately 

capture the entire underlying degradation mechanism. This problem is particularly true for a 

product operated under a time-varying environmental condition and/or with multiple failure 

modes. To tackle these challenges, in this paper we incorporate dynamic environment factors 

into degradation modeling and treat them as accelerated stress factors. Given the complexity 

of degradation mechanism, we develop the models for both stress process prediction and for 

product lifetime prediction.  

Generally speaking, existing degradation modeling methods can be summarized into 

three main categories – the stochastic process modeling approach, the regression modeling 

approach, and the machine learning approach. Typical stochastic process models include 

Wiener process model[16][17][18], Gamma process model[19][20], and their variants[21][22]. However, 

estimating parameters in these models could be a difficult task and estimation results are often 

unsatisfactory.[23][24] The Bayesian inference approach has been proposed to solve these 
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problems. It has a considerable advantage over traditional inferential methods because the 

modern computational Bayesian method can provide more precise results.[25][26] For example, 

Mukhopadhyay et al.[27] proposed a Bayesian method for reliability estimation using multi-

stress accelerated life testing of series systems. Ali et al.[28] combined Gaussian process 

modeling and Bayesian inference method to estimate the remaining useful life of insulated 

gate bipolar transistor devices.  

The parametric methods mentioned above all require the specification of a product’s 

lifetime-stress acceleration model. However, when the product’s degradation mechanism 

becomes quite complicated, developing an accurate acceleration model is nearly impossible[29]. 

On the other hand, machine learning methods, which purely rely on observed data, can avoid 

such restriction. Some popular machine learning methods, such as Support Vector Machine 

(SVM)[30], Backpropagation Network (BP)[31], and Recurrent Neural Network[32], have been 

utilized to train accelerated degradation models and to predict a product’s operational lifetime. 

As discussed above, both Bayesian inference method and machine learning method are 

useful for lifetime prediction, yet neither of them is perfect. Bayesian method has the merits 

of uncertainty reduction and being able to use prior information accumulated from field 

observations, and it can solve small sample problem.[33] However, this method is 

computationally complicated, and the result could be highly unstable. Machine learning 

methods are often more versatile and adapted to data, but its use is limited by the large data 

size requirement and the overfitting problem[34]. And both methods could have a poor 

generalization property when the training dataset has a great degree of volatility. However, it 

has been seen that these two methods could be complementary to each other in some way[35], 

thus by combining them together the deficiency of each method can be somewhat 

compensated.  

Ensemble learning is commonly used for data-based machine learning tasks. Previous 

studies have shown that an ensemble learning algorithm often outperforms any of the 

constituent learning algorithms alone.[36] It has applied on the prediction of energy use[37][38], 

gas turbine engine degradation prediction[39], and the remaining useful life prediction of 

lithium-ion batteries[40], etc. Therefore, we believe that it is also feasible to synthesize 

Bayesian inference and machine learning methods to improve the performance of 

degradation-based lifetime prediction. 

In this paper, an ensemble learning-based lifetime predictive approach is proposed with 

the consideration of a product’s time-varying operational environment. The Bayesian 

inference method and two popular machine learning algorithms (SVM and BP neural network) 

are chosen to construct the predictive sub-models. The remainder of this paper is organized as 

follows. In Section 2, the general ensemble process is introduced. A simulated example is 
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developed in Section 3 to verify the effectiveness of the proposed method. In Section 4, a case 

study is provided to demonstrate the validity of the proposed method in battery lifetime 

prediction. Finally, conclusions are drawn in Section 5. 

2. Methodology 

2.1 Bagging Method 
Bagging, which is bootstrap aggregation, is a type of ensemble learning. It usually 

consists of a class of algorithms which build several instances of a black-box estimator on 

random subsets of the original training set and aggregate their individual predictions to form 

the final prediction. Bagging algorithm is often a straightforward way to improve a predictive 

model without a significant adjustment of the underlying base algorithm. 

Data resampling is a necessary step in developing the prediction framework with 

bagging. The key method of data resampling is bootstrapping, which is a statistical technique 

operating on measurement data to infer the level of uncertainty on any parametric estimator. It 

assesses the statistical properties of an estimator, such as its mean or variance, by utilizing 

repeated random sampling of the same dataset. The core idea of bootstrapping is to generate 

many replicas of a dataset by randomly selecting N observations with replacement, where N is 

the dataset size. Then we train models on these replications to find their predicted responses. 

After resampling data, there is a certain percentage of observations left from each resampling 

process. These “out-of-bag” observations can be used as the validation dataset to assess 

predictive power and feature importance. 

Another essential part of bagging is to form a model ensemble, which is the last step in 

any ensemble-based system. The strategy used in this step depends in part on the type of 

algorithm used as ensemble member. Usually, for regression, the combining method is to 

average outputs, and for classification, it is majority voting or weighted majority voting. 

It is known that ensemble prediction methods are generally better than using a single 
prediction method. Breiman[41] presented the following explanation when he proposed the 
ensemble tree method. Suppose there is a regression problem. Let f denote the ground-truth 
function and h(x) denote a learner trained from the bootstrap distribution Dbs. The aggregated 
learner generated by Bagging is  

H(x) = 𝐸𝐷𝑏𝑠
[ℎ(𝑥)]                                                           (1) 

With the inequality (E[X])2 ≤ E[X2], we have  

𝐸2[𝑓(𝑥) − ℎ(𝑥)] = (f(x) − H(x))2 ≤ 𝐸[(𝑓(𝑥) − ℎ(𝑥))2]                                        (2) 

We can see that the squared error of the aggregated learner is smaller than the expected 

squared error of individual learner. The size of difference depends on  

(𝐸[ℎ(𝑥)])2 ≤ 𝐸[ℎ(𝑥)2]                                                  (3) 
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This explains why Bagging is an effective approach to reducing errors associated with 

unstable learners.  

2.2 Predictive Model Ensemble 
The basic scheme of the proposed model ensemble will be applied to accelerated 

degradation data and time-varying environmental data as depicted in Figure 1. It comprises 

three steps – data processing, sub-model construction, and model ensemble. Essentially, 

Bayesian regression and machine-learning methods are used to build sub-models.  The former 

method is chosen for its merit of uncertainty reduction and its ability of utilizing the prior 

information accumulated from field observations; while the latter one is chosen for its 

ductility in data fitting. At last, the outputs from these sub-models will be combined, 

according to the ensemble learning theory, to obtain the final prediction.  

 

  

Figure 1 Basic Scheme of Ensemble Predictive Method 

2.2.1 Dataset Partition and Resampling 
To apply the bagging method, data resampling is used to obtain multiple training and 

testing datasets. Suppose there are N accelerated degradations and the time-varying 

Data resample

Dataset 

{si,di,ti,Δyi},i=1,2, ,N

Subset-a
{sai,dai,tai,Δyai},i=1,2, ,N

Subset-b

{sbi,dbi,tbi,Δybi},i=1,2, ,N

Subset-c

{sci,dci,tci,Δyci},i=1,2, ,N

Subset-a
{sai,Δt,Δyai},i=1,2, ,N

Training Subset-b
{sbi,dbi,tbi},i=1,2, ,n

Test Subset-b

{sbj,dbj,tbj},j=1,2, ,N-n

Training Subset-c

{sci,dci,tci},i=1,2, ,n

Test Subset-c
{scj,dcj,tcj},j=1,2, ,N-n

Subset partition

Bayesian  Method Support Vector Machine BP Neural Network

BP Neural Network-Based 
Prediction Sub-Model 

SVM-Based 
Prediction Sub-Model 

Bayesian-Based 
Prediction Sub-Model 

Prediction results 
Averaging

Ensemble Prediction 
Model Construction

Dataset Partition and Resample

Prediciton sub-models construction

Ensemble Prediction Model Construction



 

6 
 

environmental observations are as {si, ti, Δyi}, i=1, 2,…,N, where si=[si1,si2,…sim] are the 

stress measurements of m stress variables, ti is the observation time and Δyi is the degradation 

increment (Δyi=yi+1 - yi). 

Based on the bootstrap method, we draw N out of N observations with replacement from 

the dataset of observations three times to obtain the subsets for sub-models (see Figure 1). 

The subsets are denoted as {sqi, ti, Δyqi}, i=1, 2,…,N, q= a, b, c, where a, b, and c denote three 

subsets. 

When adopting machine-learning methods, a dataset must be divided into a training set 

and a test set. The training set is a dataset used to fit a model. The test set, which is 

independent of the training set but follows the same probability distribution, is used to assess 

the performance of the trained model. Thus, the last two subsets are further partitioned with a 

proportion of 75/25 by random sampling, where n is the size of training subset. The full data 

partitioning and resampling process are shown in Figure 1. 

2.2.2 Predictive sub-model construction 
(1) Bayesian-based Stochastic Process Sub-model 
Suppose a stochastic process model such as the Wiener process model or the Gamma 

process model is sufficient for describing the degradation process, the model parameters can 

be estimated by the Bayesian inference method. 

Assume that the degradation process follows a Wiener process, then the degradation 

observations are modeled by 

 𝑌(𝑡) = 𝜎𝐵(𝑡) + 𝑑(𝑠)𝑡 + 𝑦0   (4) 

where Y(t) is the performance degradation observation of a product at time t, σ is the diffusion 

coefficient, B(t) is the standard Brownian motion with mean zero and variance t, y0 is a known 

initial value of product performance, and the drift coefficient d(s) represents the degradation 

rate of the product and it is a function of stress variables 𝑠.[12] It is used for incorporating 

stress-induced degradation acceleration into the degradation model. 

Since the stress we consider here is time-varying, Eq. (4) can be re-written as 

𝑌(𝑡) = 𝜎𝐵(𝑡) + ∫ 𝑑(𝑠, 𝜏)𝑑𝜏 + 𝑦0
𝑡

0
                                      (5) 

Known from the property of Wiener process, degradation increment ΔY during a time 

interval Δt follows a normal distribution; i.e., 

∆Y~N(∫ 𝑑(𝑠, 𝜏)𝑑𝜏,
𝑡+∆𝑡

𝑡
𝜎2∆t)                                    (6) 

If we divide [0, t] into n intervals with the length of Δt and suppose the si remains 

constant in every interval, we can obtain that  

 ∫ 𝑑(𝑠, 𝜏)𝑑𝜏 ≈ ∑ 𝑑(𝑠𝑖)Δ𝑡𝑛
𝑖=1

𝑡

0
                                          (7) 
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Then Eq. (6) becomes 

   Δ𝑌~𝑁(𝑑(𝑠𝑖)Δ𝑡, 𝜎2Δ𝑡)                                          (8) 
Here, since multiple time-varying environmental stress variables are considered, the 

models that can accumulate multiple stress effects are needed. A general linear model is 

adopted as the acceleration model of the degradation rate d(si). It is given by 

𝑑(𝑠𝑖) = exp[𝛽0 + ∑ 𝛽𝑗𝜑(𝑠𝑖𝑗)𝑚
𝑗=1 ]                                          (9) 

where φ(sij) is a given function of the stress factor sj at the i-th interval or a transformation of 

stress factor, the coefficient βj is the effect of this stress factor, and d(si) is an exponential 

function of the sum of individual stress effects.  

We input the stresses sai and a set of degradation-increment data Δyai from subset-a. The 

following regression equations can be obtained from Eqs. (4) and (9): 

 𝐸(𝛥𝑦𝑎𝑖(𝑡)) = 𝑒𝑥𝑝( 𝛽0 + ∑ 𝛽𝑗𝜑(𝑠𝑎𝑖𝑗
𝑚
𝑗=1 ))𝛥𝑡  (10) 

 𝑙𝑛( 𝐸(𝛥𝑦𝑎𝑖)) = ∑ 𝛽𝑗
𝑚
𝑗=1 𝜑(𝑠𝑎𝑖𝑗) + 𝛽0 + 𝑙𝑛( 𝛥𝑡)  (11) 

The Bayesian method and a Markov chain Monte Carlo (MCMC) algorithm are used to 

estimate the unknown parameters (β0, β1, …, βm  and σ) in the accelerated degradation process 

model. 

By the Bayesian nature, parameters are treated as random variables, and their 

probabilistic models are obtained by posterior distributions. So, with the integrated system of 

degradation data, the posterior distribution of unknown parameters can be written as 

𝜋(Θ|𝐷)

= 𝜋(𝛽0, 𝛽1, … , 𝛽𝑚, 𝜎2|Δ𝑦𝑎 , 𝑠𝑎 , Δ𝑡)

∝ ∏ (
1

𝜎2Δ𝑡
)

1

2
𝑒𝑥𝑝 (−

(Δ𝑦𝑎𝑖−𝑑(𝑠𝑎𝑖))
2

2𝜎2Δ𝑡
) 𝜋(𝛽0, 𝛽1, … , 𝛽𝑚, 𝜎2) 𝑛

𝑖=1

                   (12)   

The prior distributions of β0, β1, …, βm and σ must be defined. We assume that the prior 

distribution of βj is a normal distribution and the prior distribution of σ is an inverse gamma 

distribution, such as 

𝛽𝑗~𝑁(𝜇𝛽𝑗
, 𝜀𝑗

2), 𝜎2~𝐼𝐺𝑎(𝑎, 𝑏) 

The hyperparameters in these prior distributions can be determined from past knowledge or 

be elicited from domain experts. They can also be chosen according to some principles, such 

as symmetry or maximizing entropy for some given constraints.[42]  

Now, Eq. (12) becomes 
𝜋(Θ|𝐷)

= 𝜋(𝛽0, 𝛽1, … , 𝛽𝑚, 𝜎2|Δ𝑦𝑎, 𝑠𝑎 , Δ𝑡)

∝ ∏ (
1

𝜎2Δ𝑡
)

1/2
exp (−

(Δ𝑦𝑎𝑖−𝑑(𝑠𝑎𝑖))
2

2𝜎2Δ𝑡
) (∏ 𝜙 (

𝛽𝑗−𝜇𝛽𝑗

𝜀𝑗
)𝑚

𝑗=0 )
𝑏𝑎

Γ(𝑎)
(

1

𝜎2)
𝑎+1

exp (
𝑏

𝜎2)𝑛
𝑖=1

      (13) 

Finally, after the posterior distributions of all required parameters are obtained by 

MCMC, the estimated values of parameters can be calculated. Then the degradation rate d(sai) 
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subjected to specific stresses si1,…,sim can be obtained by Eq. (9) and the future degradation 

status can be predicted with the degradation model. 

 (2) SVM-based Predictive Sub-model Construction 
The support vector machine (SVM) is a powerful machine learning algorithm introduced 

by Vapnik[43]. This algorithm is developed based on statistical learning theory and structural 

risk minimization principle. It is widely used for classification and regression analysis. When 

using SVM to solve a regression problem, the basic idea is to map the data x into a higher-

dimensional feature space, via a nonlinear mapping, and perform linear regression in this 

space.[44] In this paper, the SVM algorithm is utilized to construct a predictive sub-model. 

First, obtain the training and testing dataset, subset-b. Take both the time-varying 

environmental data, sbi, and time, t, as input vectors, and collect degradation data, dbi, as the 

output vector of SVM. The input and output data structures are constructed as follows: 

𝐼𝑛𝑝𝑢𝑡 = [

𝑠𝑏1 𝑡𝑏1

𝑠𝑏2 𝑡𝑏2… …
𝑠𝑏𝑛 𝑡𝑏𝑛

] = [

𝑆𝑏11 𝑆𝑏12

𝑆𝑏21 𝑆𝑏22

… 𝑆𝑏1𝑚 𝑡𝑏1

… 𝑆𝑏2𝑚 𝑡𝑏2… …
𝑆𝑏𝑛1 𝑆𝑏𝑛2

… … …
… 𝑆𝑏𝑛𝑚 𝑡𝑏𝑛

] , 𝑂𝑢𝑡𝑝𝑢𝑡 = [

𝑑𝑏1

𝑑𝑏2…
𝑑𝑏𝑛

] 

Then, normalize the input and output data by (14) and (15): 

𝑠̂𝑏𝑖 =
𝑠𝑏𝑖−𝑚𝑖𝑛𝑖(𝑠𝑏𝑖)

𝑚𝑎𝑥(𝑠𝑏𝑖)−𝑚𝑖𝑛𝑖(𝑠𝑏𝑖)
, 𝑡̂𝑏𝑖 =

𝑡𝑏𝑖−𝑚𝑖𝑛𝑖(𝑡𝑏𝑖)

𝑚𝑎𝑥(𝑡𝑏𝑖)−𝑚𝑖𝑛𝑖(𝑡𝑏𝑖)
                        (14) 

𝑑̂𝑏𝑖 =
𝑑𝑏𝑖−𝑚𝑖𝑛𝑖(𝑑𝑏𝑖)

𝑚𝑎𝑥(𝑑𝑏𝑖)−𝑚𝑖𝑛𝑖(𝑑𝑏𝑖)
                                     (15) 

where ŝbi , b̂it and   are, respectively, the i-th normalized input and output data point. 

Next, using the principle of SVM, the regression function is expressed as 

𝑓(𝑠𝑏𝑖 , 𝑡𝑏𝑖) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾((𝑠𝑏𝑖 , 𝑡𝑏𝑖), (𝑠𝑏𝑗 , 𝑡𝑏𝑗))𝑁

𝑗=1 + 𝑏                        (16) 

where αi and αi
* are Lagrange multipliers, and 𝐾((𝑠𝑏𝑖, 𝑡𝑏𝑖), (𝑠𝑏𝑗, 𝑡𝑏𝑗)) is the kernel function, 

which has an important effect on the generalization performance of SVM. 

To guarantee effective prediction performance in (16), the Lagrange multipliers and 

kernel function should be carefully chosen. Here we choose the radial basis function to be 

kernel function. Based on the Karush-Kuhn-Tucker (KKT) condition, Lagrange multipliers 

can be defined with a penalty constant (C). So, the penalty constant and kernel parameters 

(i.e., the variance in the radial basis function) must be initialized. 

Then, a parameter-optimization algorithm, such as the grid searching method or Particle 

Swarm Optimization (PSO), etc., can be utilized to obtain the optimized hyper-parameters 

(e.g., C), with several iterations of SVM model training and hyper-parameter updating to 

achieve the desired performance. 

Finally, the SVM-based predictive sub-model can be built by training with the optimized 

hyper-parameters.  

(3) BP Neural Network-based Predictive Sub-model Construction 

ˆ
bid
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A Back Propagation (BP) neural network is a multilayer feedforward network, consisting 

of input, hidden, and output layers. The error inverse feedback principle is adapted to 

continuously revise weight coefficients of each layer to improve its self-learning effectiveness 

and prediction accuracy. In this paper, BP neural network is built as a predictive sub-model 

for lifetime prediction. 

The structure of BP neural network is shown in Figure 2. 

 

Figure 2 Basic structure of BP neural network 

We construct the BP neural network as shown in Figure 2, where sci’s form a set of 

accelerated stresses and time-varying environmental data, tci is observation time, dci is 

degradation data, m is the total number of stresses, and ω is weight coefficient. Then the 

output of hidden layer neurons can be obtained as 

𝐻𝑗 = 𝑓(𝜔𝑝𝑗𝑡𝑐𝑖 + ∑ 𝜔𝑝𝑗
𝑚
𝑝=1 𝑠𝑐𝑖 − 𝑏𝑗), 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑞; 𝑝 = 0,1, . . . , 𝑚.   (17) 

where Hj is the output of the hidden layer, f(.) is the driving function, 𝜔𝑝𝑗  is the weight 

coefficient between input layer and hidden layer, bj is the threshold of hidden layer, q is the 

number of hidden layers, and n is the data size.  

With the hidden layer output H, the threshold value k, and the weight coefficient 𝜔𝑗 

between hidden layer and output layer, the prediction result P of the output layer can be given 

as 

 𝑃 = 𝑓(∑ 𝐻𝑗
𝑞
𝑖=1 ⋅ 𝜔𝑗 − 𝑘).  (18) 

The prediction error ɛ is calculated as 
 𝜀 = 𝑑𝑐𝑖

− 𝑃  (19) 
The feed backward modeling process is conducted along the neural network based on the 

prediction error ɛ. This error can be minimized with the updating of weight coefficients and 

thresholds by the following updating schemes: 

𝜔𝑝𝑗 ← {
𝜔𝑝𝑗 + 𝜉 ⋅ 𝑡𝑖 ⋅ 𝐻𝑗(1 − 𝐻𝑗) ⋅ 𝜔𝑗 ⋅ 𝜀,      𝑝 = 0

𝜔𝑝𝑗 + 𝜉 ⋅ 𝑠𝑐𝑖 ⋅ 𝐻𝑗(1 − 𝐻𝑗) ⋅ 𝜔𝑗 ⋅ 𝜀, 𝑝 = 1,2, . . . , 𝑚
 

𝑏𝑗 ← 𝑏𝑗 + 𝜉 ∙ 𝑡𝑖 ∙ 𝐻𝑗(1 − 𝐻𝑗) ∙ 𝜔𝑗 ∙ 𝜀,     𝑝 = 0                             (20) 
k ← k + ε 
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where  is the learning rate. 

2.2.3 Ensemble Predictive Model Construction and Lifetime Prediction 
Of all sub-models, the stochastic process model is an analytical model, while SVM and 

BP network are the black-box type of predictive models; but, once established, all of them can 

provide prediction results for any new observations. Therefore, as discussed in section 2.1, the 

ensemble strategy is to combine these sub-models by averaging their prediction outputs.  

Again, the time-varying environmental or working stress data are denoted as {si}, i=1, 

2, … n, where n is the data size and si=[si1, si2, … sim] is the vector of measurements of m 

stress variables. These time-varying environmental data, for example, can be obtained from 

historical weather/climate records. Then these data, along with time point ti, are set to be the 

input to the three sub-models. The prediction results for a product under its operating 

condition from these sub-models are denoted as 𝑓𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛(𝑠𝑖, 𝑡𝑖), 𝑓𝑆𝑉𝑀(𝑠𝑖, 𝑡𝑖) and 𝑓𝐵𝑃(𝑠𝑖, 𝑡𝑖) . 

Finally, the prediction result of ensemble model, denoted as fEnsemble, is calculated by 

taking the weighted average of outputs from these sub-models, 

𝑓𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑠𝑖, 𝑡𝑖) = 𝑤1𝑓𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛(𝑠𝑖, 𝑡𝑖) + 𝑤2𝑓𝑆𝑉𝑀(𝑠𝑖, 𝑡𝑖) + 𝑤3𝑓𝐵𝑃(𝑠𝑖, 𝑡𝑖)         (21) 

where ,  and  are the weight value for each method with𝑤1 + 𝑤2 + 𝑤3 = 1  and 

𝑓𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑠𝑖, 𝑡𝑖) is the proposed ensemble predictive model.  

Let k be the performance threshold and a product fails when 𝑓𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑠𝑖, 𝑡𝑖) − 𝑘 < 0. 

However, the data may fluctuate within a certain range; in order to eliminate the influence of 

outliers, we do not use the first passage time as the lifetime prediction. Instead, if there are n 

consecutive times that the failure criterion, 𝑓𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑠𝑖, 𝑡𝑖) − 𝑘 < 0 , is satisfied, the nth 

passage time is used as the product’s predicted failure time under its operating condition.  

2.3 Model Performance Estimation Criteria 
To evaluate the performance of a predictive model, a metric function (i.e., the function 

for assessing prediction error) needs to be carefully chosen. In this paper, two metrics -- mean 

absolute error (MAE) and root mean square error (RMSE) – are used to evaluate the 

performance of a candidate model. MAE is the average of absolute errors and RMSE is the 

sample standard deviation of the difference between prediction and observed value. These 

metrics are widely used for quantifying the quality of a predictive model. 

Using the test dataset we obtain the prediction value, Ypredicted(i), from fEnsemble and 

compare it with the observed value, Yreal(i). MAE and RMSE are calculated by 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑟𝑒𝑎𝑙(𝑖) − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑖)|𝑛

𝑖=1                                  (22) 

𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (𝑦𝑟𝑒𝑎𝑙(𝑖) − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑖))

2
𝑛
𝑖=1                          (23) 



1w 2w 3w
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3. Simulation Study  
In this section, a simulation example is presented to verify the effectiveness of the 

proposed ensemble predictive model. Moreover, since the proposed model is designed to 

predict a lifetime accounting for the time-varying operational condition, degradation datasets 

with multiple random stress variables are generated for this study. The study design is 

presented in section 3.1, then in section 3.2, we present the construction process of proposed 

predictive method, and in section 3.3, we compare the model performance with those of 

benchmark models. 

3.1 Data description 
Suppose a product is subjected to three different types of stresses that possess stochastic 

volatility within certain ranges. The variation ranges of these stresses are shown in Table 1. 

We assume that the product’s performance degradation can be described by a linear function 

and it follows a Wiener process. Then, we choose the general linear model as an acceleration 

model to denote the relationship between stress and degradation, i.e., 

𝑑(𝑠𝑖) = exp(𝛽0 + 𝛽1𝜑(𝑠1𝑖) + 𝛽2𝜑(𝑠2𝑖) + 𝛽3𝜑(𝑠3𝑖)), 𝑖 = 1,2, … , 𝑛             (24) 

where 𝜑(𝑠𝑗𝑖) (j=1,2,3) is a known function of original stress variable. Moreover, to verify the 

effect of different variance value on prediction results and to test the stability of the proposed 

model, we choose three variance values. The initial values of these parameters are listed in 

Table 2. 

Table 1 Ranges of Stress Variable 

Stress number Stress 1 Stress 2 Stress 3 

Stress range 20-50 15-70 30-50 

 

Table 2 Initial value of model parameter 

Parameter β0 β1 β2 β3 σ 

Dataset 1 5 -240 -170 -30 0.054 

Dataset 2 5 -240 -170 -30 0.254 

Dataset 3 5 -240 -170 -30 0.354 

 
Here, we let the time interval Δt to be 1, the number of data points be 1,000 and the 

initial performance value be 100. A series of accelerated degradation increments can be 

generated by Monte Carlo using Eq. (24). The accelerated degradation data for different 

variances can be obtained by subtracting the increment from the initial value. Moreover, to 

validate the simulated data, we fit the increment data with a normal distribution and compare 
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the fitted variances with true values. The three simulated datasets used in this study are shown 

in Figure 3. 

 
Figure 3 Final simulated accelerated degradation data 

3.2 Predictive Model Construction 
We now provide the details of how to construct the proposed predictive model for the 

simulated data. We will evaluate the performance of our proposed ensemble model and 

compare it with some benchmark models. The model construction process consists of the 

following steps. 

Step 1: Data Partitioning and Resampling. In our study, to test the prediction accuracy 

of a model, a later part of degradation measurements is removed from the original dataset and 

preserved for model evaluation. We call this dataset the prediction dataset. We divide the 

simulated accelerated degradation data into a training and testing dataset and a prediction 

dataset with the proportion of 75/25. That is, the data with times ranging from 751 to 1,000 

are reserved for evaluating the performance of the proposed model. Next, we resample the 

training and testing dataset and create three subsets by bootstrapping, as explained in Section 

2.2.1. These subsets are further divided into training sets and testing sets, as described before.  

Step 2: The Bayesian-based Predictive Sub-model Construction. To draw inferences on the 

unknown parameters with MCMC, the initial values of these parameters must be obtained. 

Parameters β0, β1, β2, and β3 can be calculated by Eqs. (10), (11) and (13) with polynomial 

regression method fitting. As for σ2, it is known from the properties of Wiener process that the 

conjugate prior distribution of 1/σ2·Δt is a gamma distribution, and so are the parameters a and b. 

Here, the prior distribution of these parameters are listed in Table 3. Then the parameters for 

the Bayesian-based predictive sub-model are inferred by MCMC. The results of different 

variances are shown in Table 4. 
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Table 3 Prior Distribution of Parameters 

Parameter β0 β1 β2 β3 σ 

Prior 

Distribution 

Normal 

Distribution 

Normal 

Distribution 

Normal 

Distribution 

Normal 

Distribution 

Gamma  

Distribution 

Initial Value N(4.5, 103) N(-250, 103) N(-180, 103) N(-30, 103) a~G(1,1); b~G(1,0.3) 

 

Table 4 Parameter Inference Results with Different Variance Values 

Parameter β0 β1 β2 β3 σ 
σ=0.054 150.3458 -233.5981 -168.2673 -30.8805 0.0499 

σ=0.254 150.5371 -227.9355 -168.4073 -26.9785 0.2292 

σ=0.354 149.607 -261.8479 -171.3926 -31.7399 0.3243 

 
 

Step 3: The SVM-Based Predictive Sub-model Construction. The modeling process 

described in Section 2.2.2 is used to construct an SVM-based predictive sub-model. The SVM 

parameters listed in Table 5. Here, we choose the RBF kernel function as the kernel function 

of SVM and the particle swarm optimization algorithm for parameter optimization. The SVM 

performance, visualized by the actual and predicted degradation values, are shown in Figure 4. 

Table 5 SVM Parameters 

Parameter Initial Value 

c [0,100] 
g [0,100] 

Evolution generations 100 

Population number 20 

Cross-validation times 5 

 

 
Figure 4 Training and testing process of SVM on three datasets 
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Step 4: The BP Neural Network-based Predictive Sub-model Construction. Based 

on the parameters listed in Table 6 and the process described in Section 2.2.2, a neural 

network with a structure of 4-15-1 (4 input layers, 15 hidden layers, and 1 output layer) is 

used to construct a BP neural network-based predictive sub-model. The actual and prediction 

values of three different datasets are shown in Figure 5. 

Table 6 BP Neural Network Parameters 

Parameter Initial Value Parameter Initial Value 
c [0,100] Cross validation times 5 
g [0,100] Maximum iterative number 1000 

Evolution generations 100 Learning rate 0.05 
Population number 20 Learning goal 0.00001 

 

Figure 5 Training and testing process of BP Neural Network on three datasets 

 

Step 5: The Ensemble Predictive Model Construction. After the prediction set is fed 

into three sub-models, the ensemble predictive model, as described by Eq. (21), with equal 

weight values w1=w2=w3=1/3 is employed. The ensemble predictions on future degradation 

measurements are visualized in Figure 6. 
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Figure 6 ensemble predictive model performance curves of three datasets 

3.3 Comparison and Analysis of Results 
The three basic models (SVM, BP neural network) and the stochastic process with 

Bayesian inference are now presented as benchmark models trained with the original dataset. 

They all use unresampled data to build lifetime predictive models, and then after the model is 

well trained, the same prediction dataset as used by the ensemble model will be used to test 

these benchmark models. The performances of these models are evaluated by RMSE and 

MAE. Considering the randomness of simulation example, we make the prediction 20 times 

with the prediction data. The average results of these 20 RMSEs and MAEs are compared 

with the proposed model’s performance to demonstrate the implementation of the proposed 

method. To further examine the effect of timeframe on a predictive model’s performance, five 

data sets are selected and each of them contains the first 50, 100, 150, 200, and 250 data 

points of the prediction dataset, respectively. The comparison results are shown in Figure 7, 

y-axis value represent the error rate of the model. 
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  Figure 7 Performance Comparison with Benchmark models  
 

It should be noted that in Figure 7, the ensemble predictive model (purple dotted line) 

outperforms any individual member algorithm at most data points, as expected. Also, the 

performance of the proposed model is quite stable and varies little with increased variance or 

increased prediction timeframe. Thus, we conclude that the proposed ensemble model is 

effective. 

4. Case Study 
In this section, we apply the proposed model on an accelerated degradation dataset 

obtained from a lithium-ion (Li-ion) battery testing program and intend to provide a more 

effective and stable lifetime prediction. 

Due to its high density of specific energy and long lifetime cycle, Li-ion battery is the 

most popular type of rechargeable battery used in mobile devices, electric vehicles, space 

systems, and unmanned aerial systems, etc.[45][46] In practice, many Li-ion batteries are 

operated in severe environments such as extremely high or low temperature, and high 
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humidity. These factors may affect the energy, power capability, and durability of Li-ion 

batteries and put applications at risk. Thus, it is meaningful to gain a deeper understanding of 

the relationship between the battery’s degradation process and the foregoing factors to 

determine an effective energy management strategy. 

The test units in this experiment are commercial Samsung 18650 Li-ion batteries. We 

conducted an ADT program on these batteries. Two electric currents – charge current and 

discharge current – were selected as the accelerating stresses. Three stress levels were set with 

a constant battery voltage of 4.2 V. The combination of stresses can be found in Table 7. 

Three Li-ion batteries were tested at each level, and the degradation data were recorded. 

Since the lifetime of Li-ion batteries is affected by temperature and humidity, the 

environmental data were also recorded. The obtained degradation data and environmental 

data are shown in Figure 8. 

 

Table 7 Combination of Stress Levels 

Stress Level Voltage Charge Current Discharge Current 

S1 4.2V 0.8C (1720mA) 1.5C (3225mA) 

S2 4.2V 1C (2105mA) 2C (4300mA) 

S3 4.2V 1C (2150mA) 2.5C (5375mA) 

 

Figure 8 Degradation Data and Environmental Data 

 

To test the proposed model’s ability to predict the lifetime under normal operating 

condition, degradation data from the normal stress level with a voltage of 4.2V, a charge 

current of 0.5C and a discharge current of 1C were recorded. There were 698 data points at 
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this stress level. The environmental data (temperature and humidity) were also obtained and 

shown in Figure 9.  

 

Figure 9 Degradation Data and Environmental Data under Normal Operating Condition 

Based on the description in section 2.2, a Bayesian-based stochastic process sub-model 

was built with a Wiener process and a general linear model. Table 8 lists the inferred 

parameters of the Bayesian-based predictive sub-model by MCMC.  

 

Table 8 Parameter Inference Results 

Parameters 𝛽0̂ 𝛽1̂ 𝛽2̂ 𝛽3̂ 𝜎̂ 

Values 49.9342 295.1899 -193.3770 4.9273 -14.9024 

 

Let 𝑠0 represent the stress in a normal environment; i.e., 𝑠0 represents a voltage of 4.2V, 

a charge current of 0.5C and a discharge current of 1C. 

Then, based on Eq. (9), the predicted degradation rate becomes 

d(𝑠0) = exp[𝛽0̂ + ∑ 𝛽𝑗̂
3
𝑗=1 φ(𝑠0)]                                    (25) 

Eq. (8) becomes 

∆y~N(d(𝑠0)∆t, σ̂2∆t)                                                     (26) 

The amount of degradation in the normal environment can be obtained by accumulating 

∆y. Therefore, we can derive degradation prediction at normal environment based on the 

model built by the collected degradation data at accelerated environment. 
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The SVM and BP neural network-based sub-models were constructed with the inputs of 

charging current, discharging current, temperature, and humidity, charge/discharge cycle and 

the output of capacity-degradation data. Then, we utilized the normal operating stress 

variables (the voltage, the charge current and the discharge current) and the environmental 

data obtained from the normal operating condition and normal charge/discharge cycle to 

establish an ensemble predictive model. The prediction results of this model are shown in 

Figure 10. 

The performance of the proposed model was further estimated by RMSE and MAE, and 

compared with the three benchmark models at the first 100, 200, 300, 400, 500, 600 and 698 

data points. The comparison results are shown in Figure 11 and Figure 12. 

 

 

Figure 10 Comparison with Benchmark models 

 

Figure 11 Comparison results of MAE with Benchmark models 
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Figure 12 Comparison results of RMSE with Benchmark models 

 

As can be seen in Figure 10, predictions of the proposed ensemble model are consistent 

with actual data. Also from the results shown in Figure 11 and Figure 12, we can conclude 

that the ensemble method outperforms the benchmark models at all tested timeframes and the 

variance of errors remains stable.  

To test the performance of the proposed model in lifetime prediction, we let the failure 

threshold of a test item to be 80% of its capacity, which is 1720 mAH. The battery lifetime is 

defined as the number of cycles that the battery can be charged and discharged before its 

capacity reaches the failure threshold. The prediction results and accuracies calculated from 

the ensemble model, as well as from the benchmark models, are listed in Table 9. 

As can be seen in Table 9, the prediction accuracy of the proposed model is the highest 

compared with others. Therefore, it concludes the effectiveness of the ensemble predictive 

model for making a lifetime prediction. 

 

Table 9 Comparison of Prediction Result and Accuracy with Benchmark models 

Models SVM BP neural 
network 

Bayesian 
model 

Ensemble predictive 
model 

Actual 
Lifetime 

Result 670 550 697 686 683 

Error Rate 1.9% 19.5% 2.0% 0.4% / 

 

5. Conclusion 
In this paper we tackle the problem of product lifetime prediction in a complicated time-

varying operational environment and in order to improve prediction accuracy, we propose an 

ensemble learning-based degradation predictive model. The Bayesian inference method for 

building stochastic process models and two other popular machine learning methods – SVM 

and BP neural network – are chosen to construct predictive sub-models. The former method is 
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chosen for its merits of uncertainty reduction and being able to use prior information 

accumulated from field observations, while the latter ones are selected for their strong data 

adaptability. The simulation example demonstrates that the proposed ensemble method can 

reduce the prediction error caused by time-varying environmental stresses, as it balances out 

the shortfalls of individual models and gains a more accurate and stable prediction result. A 

real case study of the Li-ion battery degradation further verifies its superiority and usefulness 

in engineering practice. It indicates that the proposed method can further help with effectively 

managing energy storage and energy distribution of battery pack. 

This research aims to understand how to obtain a more accurate prediction result when 

considering the time-varying environmental data along with the accelerated degradation 

process. The proposed ensemble learning-based predictive model is built upon the Bayesian 

inference method and two popular machine learning algorithms. The computation of the 

proposed method is expensive, which could be alleviated by some optimization methods. 

Moreover, different machine learning algorithms may have different effects on the accuracy 

of prediction result and increasing prediction horizon will affect the effectiveness and 

accuracy of the proposed method too. These aspects would be discussed in our future study. 
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