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Abstract

Dynamic response systems are often found in science, engineering and medical appli-

cations, but the discussion on experimental design for such a system is relatively rare in

literature. For an experimenter, designing such experiments requires her to make decisions

on (1) when or where to take response measurements along the dynamic variable and (2)

how to choose the combination of experimental factors and their levels. The first consid-

eration is unique for such experiments, especially when the measurement cost is high. In

this paper, we present a design approach through the mixed effects linear model, which

is based on a hierarchical B-spline function for the dynamic response. We develop several

theorems that can assist in finding a statistically efficient sampling plan and propose an

algorithm for searching the D-optimal design of a dynamic response system.
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1. Introduction to the B-spline Function

Many industrial experiments produce one or more dynamic responses, where the response is

a function of time or another continuous variable, i.e., a response curve. In some cases a

summary statistic of this function, such as the average response or the maximum response, will

be sufficient for analyzing the system under study. There are many other occasions, however,

when the experimenter desires to know the entire response curve so as to understand the

dynamics of the system under study. Thus, it requires to model the system response by some

flexible, yet mathematically tractable, response functions. The optimal experimental designs

that target this type of dynamic response, as opposed to a scalar response variable, had rarely

been discussed in literature before. In this paper, we present a mixed effects linear modeling

approach to this problem and attempt to derive optimal designs under this modeling framework.

A class of commonly used mathematical functions for describing system dynamics are poly-

nomial regression functions. Even though a polynomial function is good at modeling a response

variable’s global features, such as trend, curvature, etc., it is not flexible enough to capture local

features. In addition, a higher-order polynomial often overfits the data. Figure 1 plots such

a data set where the response variable demonstrates different dynamic behaviors in different

regions. This type of data is referred as the whiplike structured data in Ruppert [33]. One may

notice that there are several peaks and valleys at different time instances and with different

magnitudes. Neither a second-order polynomial nor a third-order polynomial can capture these

local features very well. Instead, a B-spline function looks generally better than those poly-

nomial functions. Therefore, we will first describe B-spline regression functions in this section

and demonstrate some properties of this class of regression functions.

A regression spline can be viewed as a piecewise polynomial regression, in which the entire

response region is divided into multiple segments by interior knots and the data within each

segment is fitted by a local polynomial function. Each local polynomial function is able to

model response dynamics within its corresponding region, while the overall connectivity and

smoothness of response curve are obtained by imposing some constraints at the end points

(knots) shared by two adjacent local polynomials. These boundary constraints typically require

the response curve to be continuous at these knots, which leads to the values of two adjacent
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Figure 1: Whiplike structured data. The complexity of the dataset changes significantly at

T = 0.4.

polynomial functions should coincide at interior knots. Furthermore, to guarantee a smooth

curve up to visual inspection, it also requires the first and second derivatives of two adjacent

functions must meet at knots. Cubic polynomial functions are able to satisfy these constraints,

thus they are commonly used for constructing regression splines; i.e., cubic splines.

It is easy to construct a spline function by using truncated power basis functions. To

estimate regression coefficients, however, this approach is computationally unstable. Instead, a

class of basis functions that are recursively constructed, as discovered by de Boor [5], are widely

adopted for modeling splines. A B(asis)-spline function is expressed as a linear combination of

a set of basis functions.

Without loss of generality, let a function f(t) span over a dynamic variable (e.g., time) t

from 0 to 1. Suppose there are n interior knots and the piecewise polynomial functions should

maintain continuity and smoothness at these knots and each piecewise polynomial function has

a degree of d (d = 3 for cubic splines). The B-spline function is of order m, where m = d + 1.

Expanding the knot set by adding m additional knots at each end of the dynamic variable

and ordering these knots, we have an ordered knot series such as {τ0, τ1, ..., τn+2m−1}, where

τ0 = τ1 = ... = τm−1 = 0, τn+m = τn+m+1 = ... = τn+2m−1 = 1, and other knots are interior

knots. Then, the m-order B-spline bases are given by (de Boor [5]):

Bi,1(t) =

 1 τi ≤ t < τi+1

0 otherwise
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Bi,j(t) =
t− τi

τi+j−1 − τi
Bi,j−1(t) +

τi+j − t
τi+j − τk+1

Bi+1,j−1(t), (1)

where i (i = 0, 1, ..., n + d) is the index of basis function and j (j = 1, 2, ...,m) is the index of

spline order. By Eq.(1), one can see that the basis function of higher order can be recursively

constructed by the basis functions of lower order.

A B-spline function of order m, fm(t), is defined as

fm(t) =
n+d∑
i=0

θiBi,m(t), (2)

where θi is the coefficient of the corresponding basis function of order m, Bi,m. To simplify the

notation, we will drop the subscript m in Eq. (2) in the rest of this paper.

From Eq. (2) one can see that an order-m B-spline function with n interior knots is con-

structed by p (where p = n+m or p = n+d+1) non-zero basis functions. It can be shown that

the sum of these basis functions at any time t equals to 1. In addition, these basis functions are

compact in the sense that each of them has non-zero values only within at-most m consecutive

segments. For example, consider an order-4 B-spline function that has polynomial bases with

degrees of 3 (i.e., a cubic spline), when there are three interior knots, the number of basis

functions is 7 and each basis function has non-zero values within at-most 4 segments. Figure 2

(a) shows a set of order-4 B-spline basis functions with interior knots at {0.3, 0.6, 0.9}. Notice

that the differentiability at these knots can be reduced by adding replicates. For example,

Figure 2 (b-d) have additional 1, 2 and 3 replicates of knot 0.6, respectively, which result in a

basis system that has one-degree continuous derivative, zero-degree continuous derivative but

continuous function, and discontinuous function, respectively, at this point.

Using B-splines to model a dynamic response yields

Y (t) = f(t) + ε = BT (t)θ + ε, (3)

whereBT (t) is the transpose of a basis function vector evaluated at t, θ is a vector of coefficients,

and ε is the measurement error with ε ∼ N(0, σ2). Suppose there are N dynamic response

profiles and each profile is measured at t1, t2, ..., tM , then the response vector of each profile

is yj = [yj(t1), yj(t2), ..., yj(tM)]T , where j = 1, 2, ..., N . Let the response matrix be as Y =

[y1,y2, ...,yN ], then

Y(t) = B(t)Θ + ε, (4)
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Figure 2: The order-4 B-spline system with 7,8,9 and 10 basis functions that are derived

from the internal knots located at {0.3, 0.6, 0.9},{0.3, 0.6, 0.6, 0.9}, {0.3, 0.6, 0.6, 0.6, 0.9} and

{0.3, 0.6, 0.6, 0.6, 0.6, 0.9}, respectively.

where B(t) is the design matrix of basis functions and its elements are as bik = Bk(ti), where

i = 1, 2, ...,M and k = 1, 2, ..., p, Θ is the corresponding matrix of coefficients, and ε ∼ N(0,Σ).

Note that Y(t) is a M × N matrix, while B(t) and Θ have M × p and p × N dimensions,

respectively. As aforementioned, the sum of all elements in each row of B matrix equals to one.

This constraint needs to be accommodated during the development of any efficient algorithm

for finding optimal designs.

The remainder of the paper is organized as follows. The design problem to be studied in

this paper will be specified in the next section and a mixed effects linear model framework will

be presented. In Section 3, some basic theorems derived from the B-spline model are stated and

they provide the foundation for finding optimal sampling times. Next, a novel search algorithm

is developed in Section 4, which focuses on the planning of sampling times on a response curve.

Section 5 describes another algorithm for sequentially generating optimal sampling times and

optimal experimental conditions. Finally, the performance of optimal designs obtained by our

algorithms will be compared with other designs through an example.
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2. Experimental Design Issues

2.1 Literature Review

In this paper we discuss the experimental design for a dynamic response. The design issues

involve determining 1) the sampling time of dynamic response variable and 2) the experimental

condition to be set on input or controllable variables.

Optimal designs, in which some specific experimental designs are found by optimizing certain

statistical criteria (see, e.g., [20, 21, 22]), for such dynamic response experiments will be studied

in this paper. Among many optimality criteria, D-optimality is the most popular one for

evaluating the quality of a design, particularly when the experimenter is interested in the quality

of model parameter estimation, because the D-optimal criterion maximizes the determinant of

expected Fisher information matrix of parameter estimators. Fedorov et al.[7] introduced the

point exchange algorithm (PEA) for constructing exact D-optimal designs for linear models.

This algorithm and its variants are widely adopted by existing statistical software (see, e.g., [1],

[4], [28], [29], [31], [32], [37], [41] and[45]). The PEAs proposed by these researchers take the

exhaustive search approach to finding the optimal design from a large set of candidate designs.

Generating and storing the candidate matrix and comparing each candidate design point with

others may impose a huge computational burden in many optimal design problems. Therefore,

some meta-heuristic optimization algorithms, such as genetic algorithm (GA) and simulated

annealing (SA) algorithm, have been proposed for obtaining optimal experimental designs (see,

e.g., [3], [15], [17] and [26]). On the other hand, the coordinate exchange algorithm (CEA)

proposed by [27] has been used to address the PEA’s shortcoming by avoiding an explicit list

of candidate design points. Until today, this type of algorithm is still one of the most popular

algorithms for constructing D-optimal designs for linear and nonlinear models.

While the optimal experimental designs for static responses have been widely discussed in

the literature, the research on experimental designs for dynamic responses is relatively sparse.

To design the experiment with a dynamic response, one needs to select a set of response

measurement points (sampling points) on the dynamic variable, as well as the setting of other

experimental factors. These two aspects may be considered separately or jointly. Most of the

existing literature on experimental designs for dynamic responses focused on the first aspect
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only, i.e., the response measurement locations or the sampling times on the response curve.

Gaffke and Heiligers [10] used B-spline bases for modeling response curves and then found the

D-optimal design for dynamic response. Woods et al. [43] considered an additional interaction

term of B-spline bases and ordinary polynomial models. Heiligers [16] utilized Chebyshev

splines for designing E-optimal experiments with dynamic responses. Finding the Ds and T

optimal sampling times for functional data was also discussed by Fisher and Woods [9]. Our

proposed algorithm extends these approaches by considering both experimental settings and

sampling times via an mixed effects modeling method of dynamic response. This method is

developed from the hierarchical modeling approach to fitting dynamic data, as suggested by

[6], [30], [36] and [44]. We also note that mixed effects models have been widely studied in the

longitudinal data analysis (see, e.g., [23] and [39]).

For the completeness of the description of dynamic system modeling, we need to mention

that the response model presented in this paper is different from the time-invariant dynamic

system as represented by the time series model or Box-Jenkins transfer function model [2]. Here,

we utilize an explicit mathematical expression of response variable (i.e., a spline function)

as a function of time and some static input variables; while in the transfer function model,

the dynamics of the response is modeled by a function of past responses and dynamic input

variables. The study of experimental design for transfer function model can be traced back to

Viort [40]. Titterington [35] surveyed the applications of optimal experimental design theory to

such models and built a connection of optimal process control and design of experiments. This

body of work is also related to system identification, which deals with the problem of building

mathematical models of dynamical systems based on observed system data, appeared in the

system control literature (see, e.g., Ljung [25]). More recently, Georgakis [11] investigated the

experimental design problem for a system where the response was static but decision variables

were time-varying processes and modeled by a linear combination of Legendre polynomial basis

functions, so the design problem became as determining the input variable profiles. They named

this type of design problem as Design of Dynamic Experiments (DoDE) and demonstrated its

uses in chemical and pharmaceutical industries (see [8] and [12]). Again, our study is different

from theirs, because our study focuses on the dynamics of response variable, thus the response

sampling time.
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2.2 Mixed effects model

Beside of specifying the sampling points on the dynamic variable, the experimental design of

a dynamic response system concerns with the study of effects of experimental factors on the

system’s dynamic behavior. To model these effects, a popular approach is the hierarchical

modeling approach, in which the coefficients of spline model (Eq. (4)) are defined as functions

of experimental factors (see, e.g., [6], [36], [39] and [44]).

Consider an experiment that consists of multiple treatments on experimental units and

the outputs from each experimental unit are measured over time. The hierarchical modeling

approach has two stages – first, the response curve of each experimental unit is modeled by a

spline function; second, the coefficients of spline function are modeled as functions of treatments.

This approach yields:

yj = B(t)θ(xj) + εj εj ∼ N(0,Σ), (5)

and

θ(xj) = Hf(xj) + ωj ωj ∼ N(0,Σω), (6)

where xj is the vector of experimental factors applied on the jth experimental unit and f(xj)

is the vector of any possible transformation of these experimental factors in linear regression,

and H is a matrix of unknown model parameters. Same as before, we assume there are M

measurements on the jth response curve, so yj is a M × 1 vector, B(t) is a M × p matrix,

where p is the number of basis functions, and θ(xj) is a p × 1 vector. Assuming there are q

linear regression terms in Eq. (6), then f(xj) is a q× 1 vector and H is a p× q matrix. By this

hierarchical modeling approach, the stage-1 model smooths the actual observed data profile, yj,

individually; then, the stage-2 model assesses the relationships between smoothing parameters

and experimental factors.

Del Castillo et al. [6] and Verbeke and Molenberghs [39] proposed to combine Equations

(5) and (6) to derive the mixed effects model such as

yj = B(t)[Hf(xj) + ωj] + εj

= B(t)Hf(xj) + B(t)ωj + εj, (7)
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Using a Kronecker product of two matrices, the first term of the right hand side of Eq.(7) can

be rewritten as (f(xj)
T ⊗ B)vec(H), where the vec() operator stacks columns of H to one

column. Then, the mixed effects model of the jth dynamic response becomes

yj = Xjβ + Bωj + εj, (8)

where Xj = f(xj)
T⊗B and β = vec(H). Note that Xj has the dimensions of M×pq and β has

the dimensions of pq×1. It is easy to show the variance of yj is given by Vj = Σ+B(t)ΣwB(t)T .

When there are multiple experimental units and each of them generates one response curve,

we can stack the measurements of these curves to form a response vector, then the mixed effects

model becomes

Y = Xβ + (IN ⊗B)ω + ε. (9)

Here, Y is a vector of all response measurements such as Y = [yT1 ,y
T
2 , ...,y

T
N ]T . Same as

before, we assume there are N experimental units and each of them is measured M times,

then Y has the dimensions of NM × 1. Again, let p be the number of basis functions and

q the number of (transformed) experimental factor terms, it can be shown that the design

matrix X, which is constructed by (IN ⊗B)F(x) with IN being an N ×N identity matrix and

F(x) = [Ip ⊗ f(x1), Ip ⊗ f(x2), ..., Ip ⊗ f(xN)]T , has the dimensions of NM × pq. The fixed

unknown parameters of this model, β, is equal to [βT1 ,β
T
2 , ...,β

T
p ]T , where βTk = [βk1, βk2, ..., βkq].

Hence, β has the dimensions of pq × 1. Finally, the unknown random effects term, ω, is equal

to [ωT1 ,ω
T
2 , ...,ω

T
N ]T , where ωTj = [wj1, wj2, ..., wjp] and ω is a Np× 1 vector.

The maximum likelihood estimate of unknown parameters in the mixed effects model pro-

vided above is

β̂ = (XTV−1XT )−1XTV−1y. (10)

where V = Σ + (IN ⊗B)Σω(IN ⊗B)T .

These estimators are unbiased to the parameters being estimated. The covariance of these

estimators is given by

COV (β̂) = (XTV−1X)−1. (11)

To obtain a D-optimal experimental design, one needs to minimize the determinant of

COV (β̂) or to maximize the determinant of information matrix; therefore, the D-optimal cri-
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terion is defined as

Dβ := max
X
|XTV−1X|. (12)

Mixed effects models have been applied on a wide variety of experimental design studies. For

examples, Goos and Jones [13] used this model for designing split-plot experiments; Laird and

Ware [23] used it to study the repeated measurement problem; Liu and Frank [24], Kao et al.

[19] and Saleh et al. [34] applied it on fMRI experiments. However, the experimental response

to be considered in this paper is much more complicated than those in previous studies. We

will derive the optimal experimental plan for both the sampling time of dynamic response and

the setting of experimental factors on individual experimental unit.

The design matrix of mixed effects model, X, is a sparse matrix. This matrix is constructed

by the multiplication of stacked basis matrix B and experimental design points f(x). According

to B-spline’s basis properties, the basis function of order-m B-spline are nonzero only at the

at-most m adjacent intervals separated by knots. Therefore, in the case of using an order-4

B-spline function (cubic spline) to model a dynamic response with 10 interior knots, there are

14 basis functions, but each basis function has non-zero values in at-most 4 adjacent intervals

only, so at any sampling point there are at-most 4 non-zero basis values. Note that, if there

is one sampling point in each interval, the basis matrix will become a banded diagonal matrix

with a bandwidth of 4. For example, in the experiment given by Grove, Woods, and Lewis [14]

there are 55 experimental units, 3 independent factors, and 7 observations on each response

curve. Using the order-4 B-spline model yields a design matrix of size 385× 21 ((NM)× (pq)).

To make all model parameters estimable, only 385 nonzero entries are needed in this matrix,

which is 5% of the size of design matrix.

3. Basic Theorems

In this section, we discuss the D-optimal sampling times for functional data in order to estimate

the θ parameter vector in Eq. (4) accurately. The covariance matrix for this linear model equals

COV (θ̂) = (BTB)−1

where B is the basis matrix that depends on the choice of sampling times, as well as the B-spline

system to be used and the specification of interior knots.
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Therefore, the D-optimal criterion can be specified as

Dθ := max
B
|BTB| (13)

S.T. bi1 = 1, for all i’s.

where bi is the ith row of B matrix and it is defined by bi = [B1(ti) B2(ti)... Bp(ti)], where

i = 1, 2, ...,M . Note Bk(ti) is given by Eq. (1) evaluated at the sampling time ti. Here, again,

it is assumed that there are a total of M sampling times. The constraint in Eq. (13) simply

states that each row of B must sum to unity.

To provide a general idea of what an optimal sampling plan would be like for a B-spline

model, we plot two different B-spline basis systems in Figure 3 and Figure 4, along with their

optimal sampling times. One can see these optimal sampling times are either on or close to the

locations where one basis function has its maximum value. This property can be explained by

the following theorems. The proof of the first theorem is provided in Appendix.

Figure 3: Plot of six bases for an order-4 B-spline system with internal knots (τ ’s) lo-

cated at {0.3, 0.8}. Optimal sampling times are depicted by solid lines, while the dot-

ted lines indicates the location of interior knots. Optimal sampling times are found to be

{0, 0.145, 0.385, 0.669, 0.895, 1}.
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Figure 4: Plot of five bases for an order-4 B-spline system with internal knot (τ) located at

{0.1}. Optimal sampling times are depicted by solid lines, while the dotted lines indicates the

location of interior knots. Optimal sampling times are found to be {0, 0.071, 0.307, 0.72, 1}.

Theorem 3.1 Let M be a symmetric matrix with non-negative elements. If M is positive

definite, then there exists a positive value, ωT , such that the determinant of M can be calculated

by

|M| =
∏
i

mii − ωT , (14)

where mii’s are the diagonal elements of M.

The proof can be extended from the Cauchy’s expansion of the determinant of a positive

definite matrix. As one can see from Appendix, the positive value ωT involves non-diagonal

elements in M. As a result, to maximize the determinant function, we may try to increase the

values of diagonal elements and reduce the values of non-diagonal elements at the same time.

Now, consider the B-spline basis matrix defined in Eq. (13) and let M = BTB, so M is the

information matrix of B-spline design matrix. It is easy to show that the summation of all

elements in M is given by
∑

i

∑
jmij = M , where M is the number of rows of B or the number

of sampling times. This property implies that increasing the values of diagonal elements in M

will simultaneously decrease the values of non-diagonal elements in M.
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Theorem 3.2 Let t = {t1, t2, ..., tM} be an ordered sequence of optimal sampling times for a

dynamic system modeled by a B-spline function, then the two end points of the dynamic variable

must be included in this sequence, i.e., t1 = 0 and tM = 1.

This theorem is a direct consequence of the previous theorem when it is applied on the B-

spline basis matrix. Suppose B is the design matrix without including t = 0 or t = 1 sampling

time. Based on the Cauchy’s expansion theorem and also Laplace’s formula, a D-optimal design

can be found by increasing the diagonal elements in BTB and decreasing non-diagonal elements

at the same time. The constant summation property of a row of B-spline basis matrix indicates

that replacing a row in the design matrix by another one does not change the summation of

the elements in the information matrix. Since it is desired to increase the values of diagonal

elements, changing the first row of B to be [1 0 0 ... 0] and the last row to be [0 0 ... 0 1]

will increase the determinant of information matrix. Thus, t = 0 and t = 1 must exist in the

sequence of optimal sampling times.

We can apply the same argument to other sampling times in the optimal sequence. As

the spline function is supported by N bases, it requires at least N sampling times to make

all coefficients estimatable. To have the diagonal elements of information matrix to be large

while non-diagonal elements to be small, the corresponding diagonal elements in B should be

large, which implies that optimal sampling times should be located around the time when one

basis function reaches its maximum. This speculation has been supported by all the numerical

examples we had tried. On the other hand, we can utilize this insight to reduce the size

of candidate points for constructing the optimal sampling time sequence by using exchange

algorithms. This idea will be further elaborated in the next section.

Theorem 3.3 Let M be the information matrix corresponding to a B-spline basis matrix B.

Suppose this B-spline system has its interior knots equidistantly placed between the two ends

of the dynamic variable, then optimal interior sampling times must be symmetrically located

between 0 and 1.

With uniformly spaced internal knots, it is realized that a basis function of B-spline are

symmetric to another basis function or itself. Using the Cauchy’s expansion, it can be shown

that if the time t, t < 0.5, is included in the optimal sampling sequence, then 1 − t must also
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appear in the sequence. Assume b1 and b2 are the vectors that correspond to the sampling

time t and 1− t, respectively. If b1 is a row vector to be augmented to B, the new information

matrix can be calculated as M + Md
1, where Md

1 = bT1 b1. Matrix Md
1 is a sparse matrix with

a block of nonzero elements. This block is similar to the nonzero block in Md
2 calculated by

bT2 b2. This similarity, between Md
1 and Md

2 , is caused by the symmetrical behavior of bases

due to uniformly spaced internal knots. As a result, sampling at t or 1− t has similar impact

on the information matrix. Therefore, if one of them appear in the optimal sequence, the other

one must also appear.

4. Algorithms

Finding the optimal sampling times of dynamic responses is a unique problem that would not

be seen in the experiments with static responses. Sampling is required when there is a high

cost associated with response measurement. Gaffke and Heiligers [10] presented the D-optimal

designs for B-spline regression models and their designs were taking the approximate design

form, which considers the design space to be continuous. This relaxation enables statisticians

to find an explicit formula for the optimal solution, but its solution may not be feasible in

practice, because the weight values of design points in an approximate design may not become

integers for a given sample size. The exact designs that are obtained from exchange algorithms

are considered in this paper.

4.1 Algorithm for finding D-optimal sampling times

Properties of an optimal B matrix are discussed in the previous section and these properties

can be utilized to develop a deterministic search algorithm for finding the D-optimal sampling

plan. Similar to PEA, the proposed algorithm requires a set of candidate points. Each row of

matrix B (the design matrix) corresponds to a sampling time; i.e., for a time t there is a row

vector [b1 b2 ... bN ]. Define an objective function to be

obj(t) := max{b2i } − λ
∑
i

∑
j>i

bibj (15)

We discretize the dynamic variable from 0 to 1 to give a list of t values. Then, with the list

of obj(t) values we find all local maxima and save their corresponding t’s to the candidate set.
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Parameter λ in Eq. (15) is a regularization parameter. This parameter eventually controls

the trade-off between achieving a large increase in the diagonal element of information matrix

and a decrease in the non-diagonal elements. The optimal λ value can be found by examining

the determinants of information matrix versus different λ values, as shown in an example later.

However, we can also preset several different λ values and create a larger set of candidate points

to be used in the exchange algorithm.

Starting from a random initial design where sampling times are randomly assigned between 0

and 1, our algorithm replaces these sampling times by the times in the candidate set one by one.

At each iteration, the Fedorov delta function will be evaluated for assessing the improvement in

the determinant of information matrix when a current sampling time is replaced by a candidate

sampling time. (For the Fedorov delta function, please refer to [28] and [32].) The iteration

terminates when there is no more replacement that can increase the determinant of information

matrix.

Algorithm 1 A New Approach for Finding Optimal Sampling Times

1: procedure

2: Generate B-spline basis functions with order-m and n internal knots

3: Generate the candidate set C; C ← arg(max obj(t))

4: Generate the initial design matrix

5: i← 1

6: while δ∗ ≥ e do

7: for j ∈ C do

8: δj ← delta function of replacing the current sampling point by the jth candidate point.

9: δ∗ ← max δj; ti ← the candidate point with max δj

10: i← i+ 1.

11: if i > Number of rows in the design matrix then

12: i← 1.

The computation time and determinant value of the optimal design obtained by our algo-

rithm are compared with those obtained from an exhaustive search over all possible sampling

plans. Woods et al. [42] suggested to build the candidate set by choosing only sampling times

around the locations where each basis function reaches its maximal value. Our approach further
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reduces this candidate set to only N candidate sampling times.

Figure 5: The D-efficiency of optimal design for different λ values. The experiment has 6 runs

and the order-4 B-spline function has two internal knots at {0.3, 0.8}.

Figure 6: The D-efficiency of optimal design for different λ values. The experiment has 6 runs

and the order-4 B-spline function has one internal knot at {0.1}.

Consider the examples in Figures 3 and 4. Varying the tuning parameter λ, we compare

the D-efficiency of the optimal design from our algorithm to the one from exhaustive search.

Figures 5 and 6 show that our algorithm is capable of reaching to the highest possible efficiency

with a proper choice of λ. The computation time of our algorithm is much reduced from Woods

et al. [42]. As to the first example (Figure 3), the average computation time of our algorithm

is 0.06 seconds, comparing to 12 seconds by [42]. In addition, Kaishev [18] suggested to simply
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use the times where each basis function has its maximal value. The efficiency of this sampling

plan is also marked by circle in the Figure 5 and Figure 6. It is clear that Kaishev’s sampling

plan is not optimal.

4.2 Robust sampling plans

The optimal sampling plan depends on the basis functions, thus the locations of interior knots,

of B-spline system. The selection of knots in turn depends on the experimenter’s knowledge

of the shape of response curve. Therefore, the uncertainty existed in this prior knowledge at

the experimental design stage requires the experimenter to consider a robust sampling plan.

In the following example, five different basis systems with different locations of internal knots

are used. Optimal sampling times for five systems are shown in Figure 7. Then, we apply the

k-means clustering algorithm to cluster these optimal sampling times into k clusters, where k

is less than the total number of sampling times determined by the experimenters. In the next

step, the centroids of these clusters are stored in the candidate set and exchange algorithm is

applied to construct the robust sampling plan, where the objective function is set as the median

of D-efficiency for the all basis systems considered. Figure 8 shows the robust design for the

five B-spline systems provided in Figure 7.

4.3 Optimal Design of Experiments with Dynamic Responses

In Section 2.2 we model the dynamic response system by a mixed effects model, so the D-optimal

experimental design for such a system can obtained by applying the D-optimal criterion, Eq.

(12). However, the design matrix X in Eq. (9) is a large matrix and it is constructed by

horizontally stacking multiple functions of B-spline basis matrix B, as explained for Eq. (9).

Note that each row of B is required to sum to unity. As to the design matrix X, this constraint

needs to be checked multiple times for all of its submatrices. We have found that it is difficult

to directly apply exchange algorithms on matrix X. Therefore, in this section, we develop a

two-step approach for finding the optimal design.

The first step is to find the optimal sampling times for a given B-spline basis system. This is

the same as maximizing the information matrix of Model (5), B(t)TB(t). For example, consider

a order-4 B-spline basis system with two interior knots at 0.3 and 0.6. These basis functions
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Figure 7: Five B-spline basis systems with order-3 and two internal knots at random locations.

Optimal sampling times for different bases are depicted by solid bold lines, where the dotted

lines indicates the location of the knots.

are plotted in Figure 9 and the optimal sampling times with different number of samples are

listed in Table 1.

The number of bases of a B-spline system depends on the number of knots assigned to the

system. Reducing the number of bases may result in losing modeling flexibility of some local

behaviors of response curves under certain experimental conditions; while increasing the number

of bases requires the experimenter to have more prior knowledge of the dynamic response and

increases the complexity of experimental design.

After finding optimal sampling times, the second step is to find the optimal experimental

Table 1: Optimal sampling times for an order-4 B-spline basis system

Number of Samples Optimal Sampling Times

6 {0,0.12,0.33,0.6,0.85,1}

7 {0,0.12,0.33,0.6,0.85,0.85,1}

8 {0,0.12,0.33,0.6,0.6,0.85,0.85,1}

9 {0,0.12,0.33,0.33,0.6,0.6,0.85,0.85,1}

10 {0,0.12,0.12,0.33,0.33,0.6,0.6,0.85,0.85,1}
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Figure 8: Robust D-optimal design for the 5 B-spline systems provided in Figure 7. Each

sampling time has two replicates for an experiment with 10 sampling times.

condition for each experimental unit, i.e., the optimal X in Eq. (9). Note that X = (IN ⊗

B)F(x). With B is fixed, we applied the exchange algorithm to find the optimal F(x) to

maximize the D-optimal design objective given by Eq. (12).

To compare this two-step approach to other methods, we consider the previous example of

order-4 B-spline system with 3 experimental factors and 55 experimental units. The range of

each factor is scaled to -1 to 1, so the design region is a cube. Beside of the two-step approach,

we apply two other approaches – optimizing the D-objective, Eq. (12), with randomly chosen

sampling times or uniformly spaced sampling times. The designs derived from these approaches

are listed in Table 2. We varied the number of sampling times from 6 to 10. However, using

the two-step approach, the selected experimental conditions are the same for any number of

sampling times, so they are listed in one column. The numbers in each column of Table 2

are the number of experimental units assigned to the corresponding experimental conditions.

The determinants of the information matrices of these designs are given in Table 3. One can

see that the two-step approach is clearly superior than the other two approaches in terms of

providing designs with larger determinant values of information matrix.
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Table 2: Optimal experimental designs of an order-4 B-spline system with 3 experimental

factors and 55 experimental units

Sampling Strategies

x (experimental conditions) Two-step Random-6 Random-7 Random-8 Random-9 Random-10 Equal-6 Equal-7 Equal-8 Equal-9 Equal-10

{−1,−1,−1} 14 11 14 14 14 11 14 13 12 14 14

{−1,−1, 1} 13 5 10 11 5 5 13 11 4 12 13

{−1, 1,−1} 14 8 12 13 8 8 14 14 8 13 14

{−1, 1, 1} 0 6 4 3 9 7 14 5 7 0 0

{1,−1,−1} 14 8 9 10 4 7 0 9 6 4 0

{1,−1, 1} 0 5 2 1 6 6 0 0 6 0 0

{1, 1,−1} 0 0 4 3 9 9 0 2 10 2 14

{1, 1, 1} 0 9 0 0 0 2 0 1 2 0 0

Table 3: Determinants of the information matrices of experimental designs derived from three

approaches.

Determinants for Sampling Strategies

Number of Sampling Times Optimal Random Equal

6 2.75E+17 1.02E+10 2.16E+16

7 1.42E+18 2.43E+13 4.41E+17

8 7.34E+18 3.28E+15 2.91E+18

9 3.74E+19 1.61E+16 1.17E+19

10 1.91E+20 1.37E+17 3.87E+19
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Figure 9: The order-4 B-spline bases system with interior knots located at {0.3, 0.6}.

5. An Industrial Case

In this section, we apply the two-step approach to find the optimal experimental designs for

an engineering example in the literature. We compare them with the standard design and the

engineer’s suggested design. The standard design is obtained by uniformly placing sampling

times combined with D-optimal design of experimental factors, while the engineer’s suggested

design is taken from the literature.

This example concerns with designing an electrical alternator (see Nair et al. [30]). The

response variable is electric current. The dynamic variable is the revolution per minute (RPM)

and it is sampled at RPM = {1375, 1500, 1750, 2000, 2500, 3500, 5000} for 108 designed alter-

nators (see Figure 10). After scaling the range of dynamic variable to [0, 1], we have these

sampling points at {0, 0.03, 0.1, 0.17, 0.31, 0.58, 1}. Eight controllable factors and two noise

factors are considered in this example.

We use an order-4 B-spline system to model the response profiles over RPM and place two

interior knots at {0.3, 0.6}. Then, the optimal sampling times are located at {0, 0.12, 0.33,

0.6, 0.85, 0.85, 1}. The determinants of information matrices of the engineer suggested design

in Nair et al. [30], the standard design, and the D-optimal design derived from the two-step

approach are compared in Table 4. One can see that the determinant of design matrix of
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Figure 10: 108 profile curves derived from the experiments conducted for designing the electrical

alternator. The electric current values are marked by circles and they are connected by straight

lines.

Table 4: Determinants of the information matrix from the optimal design, standard design,

and engineer suggested design

Design Determinant

Optimal Design 6.04E + 90

Standard Design 1.30E + 89

Engineer Suggested Design 4.08E + 48

optimal design is much larger than the standard design, while the engineer suggested design is

the worst one among them.

6. Conclusions

The dynamic response system studied in this paper generates response curves that can be mod-

eled as functions of a time variable or another dynamic variable. The features of these response

curves and their interactions with other experimental factors are of interest to experimenters,

thus it requires new experimental design methods for exploring such a system efficiently.

The statistical models for quantifying such dynamic responses are explored in this paper.

We resort to B-spline functions to model dynamic responses given its flexibility, yet affinity to
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traditional linear models. With the parameters in B-splines being further defined as functions

of other controllable variables, it is shown that the entire model becomes a mixed effects linear

model, thus allowing the use of linear design theory. For a simple spline function, we demon-

strate several theorems that can assist in constructing an efficient sampling plan, which is good

at revealing the features of response curves. When consider other controllable variables, we

propose a two-step approach for finding both the optimal experimental conditions and optimal

sampling points. An exchange algorithm is proposed for finding the D-optimal design. Finally,

we employ an industrial example to demonstrate the superior performance of our approach. As

described in the introduction section, dynamic responses are very common from engineering

systems; however, experimental designs for such systems have not been researched adequately.

This paper is only the beginning of a research effort to explore this new topic. In future we

plan to research other types of dynamic response analysis methods, such as functional prin-

cipal component analysis that can model the dynamics in both input variables and response

variables, simultaneously.
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Appendix

First, denote the determinant of a n × n matrix A by |A|. Let Sij be the determinant of a

submatrix of A, which is obtained from A by deleting row i and column j. Sij is also called

the first minor of |A|. Denote the cofactor of an element aij in A as Aij and

Aij = (−1)i+jSij.

It can be shown that

|A| =
n∑
k=1

aikAik.

The cofactor matrix C(A) is a n× n matrix with elements of cofactor Aij. In addition, define

Si1i2;j1j2 be the second minor of |A|. It is the determinant of a submatrix of A, which is obtained

from matrix A by rejecting rows i1, i2 and columns j1, j2. It is also known as a rejecter minor.

Then, the second cofactor of |A|, denoted by Ai1i2;j1j2 , is defined as a signed second reject minor

such as

Ai1i2;j1j2 = (−1)i1+i2+j1+j2Si1i2;j1j2 .
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With these definitions, we can proceed to prove Theorem 3.1. First, the following lamma is

required.

Lemma 6.1 Let matrix A be a symmetric positive definite matrix, then its cofactor matrix

C(A) is also positive definite.

Proof: Because A is symmetric and positive definite, its determinant |A| > 0 and its inverse

A−1, if exists, is positive definite too. For a symmetric matrix, its cofactor matrix must be

symmetric too and it is the same as its adjugate matrix, which is the transpose of cofactor

matrix. It is also known that the adjugate matrix equals to 1
|A|A

−1. Therefore, the cofactor

matrix C(A) is also positive definite.

Proof of Theorem 3.1: Let Mij be the cofactor of element mij in matrix M. Consider

the first diagonal element m11 of the positive definite symmetric matrix M. By the Cauchy’s

expansion (see Theorem 3.11 in Vein and Dale [38]) its determinant is given by

|M| = m11M11 − ω1,

where ω1 =
∑n

i=1

∑n
j=1m1imj1M1i;j1 and M1i;j1 is a second cofactor, which is obtained by the

signed determinant of rejecter matrix. This rejecter matrix is obtained from M by rejecting

rows 1, i and columns j, 1. As m1i and mj1 are numerical variables and m1i = mi1, mj1 = m1j

due to symmetry, ω1 is in fact a quadratic form of n− 1 variables, m12,m13, ...,m1n, and their

corresponding cofectors. That is, let m1 = [m12,m13, ...,m1n]T and C(R11) be the cofactor

matrix of the rejector R11. Note that R11 is a principal submatrix of M and the cofactor

M11 = |R11|. Hence, in the quadratic form, ω1 = mT
1 C(R11)m1. Now, because M is positive

definite, its principle submatrices are positive definite too. Following Lemma 6.1, C(R11) is

positive definite. Consequently, ω1 is greater than 0, except when m1 = 0. The Cauchy’s

expansion can be used again for expanding M11, which is equivalent to the determinant of

rejecter matrix R11. Thus,

M11 = m22M12;12 − ω2

and

|M| = m11m22M12;12 −m11ω2 − ω1.
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Here, again, ω2 is greater than 0, except when m2 = 0. Continuing the expansion, we will have

|M| =
n∏
i=1

mii − ωT ,

where ωT = ω1 +m11ω2 +m11m22ω3 + ...+m11m22...mnnωn and it is non-negative.
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