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a b s t r a c t

Functional regression models are widely considered in practice. To make a precise
statistical inference, a good sampling schedule for collecting informative functional
data is needed. However, there has not been much research on the optimal sampling
schedule design for functional regression model so far. To address this design issue, an
efficient computational approach is proposed for generating the best sampling plan in
the function-on-function linear regression setting. The obtained sampling plan allows
a precise estimation of the predictor function and a precise prediction of the response
function. The proposed approach can also be applied to identify the optimal sampling
plan for the problem with scalar-on-function linear regression model. Through case
studies, this approach is demonstrated to outperform the methods proposed in the
previous studies.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Functional data analysis has wide applications such as in brain imaging (Jiang et al., 2009; Saleh et al., 2017; Zhu et al.,
2018), pharmacokinetics (Lai et al., 2006), and marketing (Sood et al., 2009). Observations that are obtained repeatedly
over time in functional data analysis can either be on a regular dense time grid (Ferraty, 2014) or on a sparse irregular
time grid (Peng and Paul, 2009). It is known that measuring functional data on a dense, regular grid by, e.g., a high
frequency recording machine, has several advantages for data analytics (Rice, 2004). However, collecting such a data set
can be expensive and may not always be possible in practice due to limited resource and/or practical constraints. In
such a situation, a judicious selection of sampling time points is important for yielding high statistical efficiency (Pan
et al., 2019). Several previous studies have discussed optimal sampling times when functional data are measured at
sparse and irregularly spaced time points. For example, Wu et al. (2018) discussed the optimal sampling schedules to
capture between-subject variability. Ji and Müller (2017) attempted to find the optimal sampling designs for recovering
the unknown trajectory of the underlying predictor function and for predicting a scalar response through a functional
linear model. Park et al. (2018) worked in the same direction but aimed for the design that maximizes the sum of two
optimality criteria, one for recovering predictor function and the other for predicting a scalar response.

Following these works, we are concerned with the optimal sampling schedules for recovering the trajectory of a
predictor function and a response. But here, we allow the response to either be either a scalar or a function. We also
consider the flexible weighted sum criterion for finding the compound optimal design that strikes the balance between the
statistical efficiencies in recovering the functional predictor and predicting the response based on user-specified weights.
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To find such a design, we first extend the results of Ji and Müller (2017), and Park et al. (2018) to derive our optimality
criteria for a function-on-function regression model. This extension is also presented as an open research problem in
the unpublished Ph.D. thesis of Li (2017). Here, we rigorously build our results on the theories developed by Yao et al.
(2005b), and in a sense, our derived optimality criteria can be viewed as a pragmatic approximation to that of Li (2017).
Our criteria can be used directly in a search algorithm for obtaining optimal designs. We then propose a probabilistic
subset search (PSS) algorithm to efficiently find single- or multi-objective optimal designs for both function-on-function
and scalar-on-function regression models. In simulation studies, we show that our proposed algorithm outperforms some
existing approaches.

This paper is organized as follows. In Section 2, we introduce the basic notations and our derived optimality criteria
for recovering the predictor function and predicting the response function. In Section 3, we discuss the implementations
of some computational methods and introduce a new algorithm. Simulation studies are presented in Section 4. We then
apply the proposed approach to some real applications in Section 5. A discussion can be found in Section 6.

2. Statistical framework

Let (Xi(·), Yi(·)) be a pair of smooth but unobservable random trajectories for the ith subject. Throughout the paper,
Xi(·) denotes the predictor function and Yi(·) represents the response function. They are defined over continuous compact
domains, S and T , respectively, and have unknown smooth mean functions, E(X(s)) = µX (s) and E(Y (t)) = µY (t),
continuous covariance surfaces, Cov(X(s1), X(s2)) = ΓX (s1, s2) and Cov(Y (t1), Y (t2)) = ΓY (t1, t2), and continuous cross-
covariance surface, Cov(X(s), Y (t)) = CXY (s, t). We also assume that X(s) and Y (t) are square integrable random processes.
Then, the Mercer’s Theorem applies with ΓX (s1, s2) =

∑
∞

m=1 ρmψm(s1)ψm(s2), and ΓY (t1, t2) =
∑
∞

k=1 λkφk(t1)φk(t2), where
ψm is the mth eigenfunction of the covariance operator of X(s) with corresponding eigenvalue ρm, ρ1 ≥ ρ2 ≥ · · · ≥ 0,
and φk is the kth eigenfunction for Y (t) with eigenvalue λk, λ1 ≥ λ2 ≥ · · · ≥ 0. With mild conditions (Hsing et al., 2015),
we can write

Xi(s) = µX (s)+
∞∑

m=1

ζimψm(s), and

Yi(t) = µY (t)+
∞∑
k=1

ξikφk(t),

(1)

where for the ith subject, ζim =
∫
S(Xi(s) − µX (s))ψm(s)ds and ξik =

∫
T (Yi(t) − µY (t))φk(t)dt are the functional principal

component (FPC) scores for X(s) and Y (t), respectively. Note that the random variables, ζim (ξik) have mean 0 and variance
ρm (λk), and the FPC scores are uncorrelated. We define Uil as the (noisy) observation of Xi(sil) at sil ∈ S , and Vij as
the observation for Yi(tij) at tij ∈ T ; l = 1, . . . , Li, j = 1, . . . , Ji and i = 1, . . . , n. In particular Uil = Xi(sil) + εil and
Vij = Yi(tij)+ ϵij, where εil’s and ϵij’s are independent random noise with mean 0 and variances, σ 2

X and σ 2
Y , respectively;

see also Yao et al. (2005b). Note that for dimension reduction, the infinite sums in (1) are often approximated by respective
finite sums using only the first few eigenfunctions and FPC scores.

To predict the unknown function Y (·) with a predictor function X(·), Yao et al. (2005b) considered the following
function-on-function linear regression model in Ramsey and Silverman (2005),

E(Y (t)|X) = µY (t)+
∫
S
β(s, t)X c(s)ds = µY (t)+

∞∑
k=1

∞∑
m=1

bkmζmφk(t), (2)

where X c(s) = X(s) − µX (s) and β(s, t) is the coefficient function that can be represented as β(s, t) =∑
∞

k=1
∑
∞

m=1 bkmψm(s)φk(t) for bkm = E(ζmξk)/E(ζ 2m); see He et al. (2000) and Yao et al. (2005b) for details. In practice,
the unknown quantities in (1) and (2) need to be estimated. There is much work on estimations under the functional
principal component analysis (FPCA) framework. Estimation methods for densely observed data were discussed in Castro
et al. (1986) and Rice and Silverman (1991), and a shrinkage method for estimating the principal component scores was
proposed in Yao et al. (2003). Estimation with sparse data was discussed by several authors using different approaches
such as the mixed effects model (James et al., 2000), the local linear smoother (Yao et al., 2005b), the geometric
approach (Peng and Paul, 2009), and the fast covariance estimation (Xiao et al., 2018). In this paper, we consider the FPCA
function of ‘fdapace’ package (Dai et al., 2018) in R for estimation, although some other methods can also be considered.
For a new subject with p observations U = (U(s1), . . . ,U(sp))T , we then have the following predictions of X(s) and Y (t),
respectively (see also Yao et al. 2005a and Yao et al. 2005b):

X̂M (s) = µ̂X (s)+
M∑

m=1

ζ̂mψ̂m(s); and Ŷ KM (t) = µ̂Y (t)+
K∑

k=1

M∑
m=1

b̂kmζ̂mφ̂k(t),

where µ̂X (s) is the estimate of µX (s), µ̂Y (t) is an estimates of µY (t), ψ̂m(s) is the estimated mth eigenfunction for X(s),
φ̂k(t) is the estimated kth eigenfunction for Y (t), b̂km is the estimated coefficient of bkm, and ζ̂m = Ê(ζm|U ) is the mth
predicted FPC score; m = 1, . . . ,M and k = 1, . . . , K . The finite integers M for X(s) and K for Y (t) are selected so that
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the majority of variability of X(s) and Y (t) are captured; see Jiang et al. (2009). The asymptotic distributions of X̂M (s) and
Ŷ KM (t) are provided in Yao et al. (2005a,b), and

X̂M (s)− X(s)
·

∼ N(0, ψ̂
M
(s)T (R̂− ĤΓ̂ −1

∗
ĤT )ψ̂

M
(s)), and

Ŷ KM (t)− E(Y (t)|X)
·

∼ N(0, φ̂
K
(t)T B̂KM (R̂− ĤΓ̂ −1

∗
ĤT )B̂T

KM φ̂
K
(t)),

(3)

where R̂ is an M×M diagonal matrix whose diagonal elements are the estimated eigenvalues for X(s), Γ̂∗ is the estimated
covariance matrix of U , ψ̂

M
(s) = (ψ̂1(s), . . . , ψ̂M (s))T , φ̂

K
(t) = (φ̂1(t), . . . , φ̂K (t))T , B̂KM is a K × M matrix whose (k,m)

element is b̂km and Ĥ is the covariance matrix between the estimated FPC scores and the observations whose mth row is
Cov(ζ̂m,U ). We aim at finding the best sampling schedule to sample the X(s) for this new subject so that the recovery of the
predictor function using X̂M (s) and the prediction of the response function with Ŷ KM (t) are precise in some sense. To this
end, we make use of (3) to derive the following optimality criteria for selecting a good sampling schedule s = (s1, . . . , sp)T :

F̂X (s) = tr(ĤΓ̂ −1
∗

ĤT ), and (4)

F̂Y (s) = tr(B̂T
KM B̂KM ĤΓ̂ −1

∗
ĤT ). (5)

We note that, by replacing B̂KM with a 1×M vector whose mth element is b̂m = Ê(ζmY )/ρ̂m, (5) is reduced to the criterion
derived in Park et al. (2018) for a scalar response Y .

The derivations of (4) and (5) can be found in S.1 of the supplementary document. As mentioned there, tr(R̂), and
tr(B̂T

KM B̂KM R̂) form upper bounds for F̂X and F̂Y , respectively. We thus define the following relative efficiencies:

R̂EX (s) =
tr(ĤΓ̂ −1

∗
ĤT )

tr(R̂)
, and

R̂EY (s) =
tr(B̂T

KM B̂KM ĤΓ̂ −1
∗

ĤT )

tr(B̂T
KM B̂KM R̂)

.

(6)

As a direct consequence of the proof of Theorem 2 of Park et al. (2018), R̂EX (s) and R̂EY (s) converge to 1 as p→∞.
One may also search for designs maximizing F̂X and F̂Y , respectively, to provide approximations of sharper upper

bounds to replace tr(R̂) and tr(B̂T
KM B̂KM R̂) in (6). Maximizing the sum of R̂EX and R̂EY might strike a good trade-off between

the two objectives. However, it might sometimes fail to meet the experimenter’s needs when one of the objectives is
more important than the other. To overcome this problem, we consider the weighted sum approach to allow a set of
user-specified weights W = {w1, . . . , wa}, where 0 ≤ wi ≤ 1, and wi’s are all distinct, and to find designs maximizing

wiR̂EX (s)+ (1− wi)R̂EY (s), i = 1, . . . , a. (7)

3. Search algorithms

We follow Ji and Müller (2017) and Park et al. (2018) to find the optimal design with p time points on a discretized
domain that has N (> p) equally spaced points. We study five different search algorithms, which include an exhaustive
search algorithm (if feasible), a greedy search algorithm as proposed in the previous works, a simple exchange algorithm,
a k-exchange algorithm, and our proposed probabilistic subset search (PSS) algorithm.

The exhaustive search guarantees the true optimal design over the discretized domain since it searches over all the
(N
p

)
possible designs for the one that optimizes the criterion of interest. However, this approach can easily become infeasible,
unless N and p are small. The greedy search algorithm is probably the most efficient method in terms of computing time.
At each step, this algorithm adds to the current design the next best point that yields the greatest improvement in the
optimality criterion. It considers Np− p(p−1)

2 cases and is much cheaper than the exhaustive search algorithm. However,
by fixing the previously chosen points at each iteration, the greedy search algorithm does not always guarantee the best
sampling plan.

The simple exchange algorithm starts with a randomly chosen p-point design. In each iteration, a best point is selected
from the remaining (N − p) points and it is added to the current p-point design. Among the p+ 1 points in the enlarged
design, the point that minimizes the reduction of optimality criterion is then removed. This process is repeated until the
design obtained in the current iteration is the same as in the previous one. This algorithm is comparably fast, but it can
easily be trapped in a local optimum. The k-exchange algorithm is similar to the simple exchange algorithm in the sense
that it exchanges points of the current design. This algorithm, however, exchanges k ≥ 1 points in each iteration; when
k = 1, the algorithm reduces to the simple exchange algorithm. This feature makes the computation more expensive than
the simple exchange algorithm, but reduces the risk of being caught in a local optimum. These exchange algorithms are
widely considered in finding optimal experimental designs (Cook et al., 1980; Johnson et al., 1983).

Our proposed PSS algorithm involves the selection of subsets of candidate points based on the probability distributions
defined by the eigenvalues and eigenfunctions of the covariance operator of X(s). Specifically, let X = {s1, . . . , sN}
be all the time points in the discretized domain, and Ξ be the design space that contains all the p-point designs,
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dp = {dp(1), . . . , dp(p)}, dp(i) ∈ X , i = 1, . . . , p. The algorithm begins with a randomly selected d0p ∈ Ξ . In the kth
iteration, we randomly select a subset Sk of l time points from X − dk−1p for a given integer l, 1 ≤ l ≤ N − p, where
dk−1p is the design obtained at the k − 1st iteration. Intuitively, we would want information of the new X(·) at the time
points where the between-subject variability is large. When selecting Sk, we thus give higher weight to the points with
higher between-subject variability. We consider the following 4 weighting schemes: (i) equal weights for all candidate
points, (ii) weights proportional to

∑M
m=1 ρ̂mψ̂

2
m(s), the estimated variance of X(s) using (1), (iii) weights proportional to√∑M

m=1 ρ̂mψ̂
2
m(s), and (iv) weights proportional to

∑M
m=1 ρ̂m|ψ̂m(s)|. Based on our experience, weighting scheme (ii) is the

most efficient in terms of the computing time and achieved design efficiency. In particular, (ii) seems to be the ‘‘greediest’’
in the sense that the variability of the weights of different points is the greatest among the four weighting schemes. This
might be the reason for (ii) to perform slightly better than the other methods in the case studies that we considered. We
thus define the sampling weights, Π = (πs1 , . . . , πsN )

T , of the N candidate points as

πsi = V̂ar(X(si)) =
M∑

m=1

ρ̂mψ̂
2
m(si), i = 1, . . . ,N.

The elements of Sk are randomly selected without replacement from X − dk−1p with probability proportional to πsi . This
in turn gives a reduced set of candidate design points; namely, Xk = dk−1p ∪ Sk ⊂ X . With Xk, the design space of p-point
designs is reduced to Ξk = {dp = ((dp(j)))j=1,...,p : dp(j) ∈ Xk, j = 1, . . . , p} ⊂ Ξ , and the design maximizing the criterion
Φ among the

(p+l
p

)
designs inΞk is then identified as dkp. The algorithm then iterates until a stopping rule is met (e.g., when

no significant improvement can be expected).
We note that the PSS algorithm will converge to the true optimum when p ≤ l. While it may not guarantee the optimal

solution when p > l, our case studies suggest that optimal or near-optimal designs can be efficiently achieved with a small
l (< p). A pseudo code for this algorithm is described below.
Algorithm Probabilistic subset search algorithm
INPUT: Candidate points X ; initial design d0p; subset size l
OUTPUT: Optimal design dp
Set k← 1
Calculate πsi
while dk−1p does not satisfy the stopping rule do

Choose a subset Sk whose elements are randomly selected without replacement from X − dk−1p with probability
proportional to πsi

Xk = Sk ∪ dk−1p and Ξk = {dp : dp(j) ∈ Xk, j = 1, ..., p}
Compute Φ(·) for the

(p+l
p

)
designs in Ξk

Find d∗p = argmaxdp∈Ξk Φ(dp)
dkp ← d∗p
k← k+ 1

end while

Instead of considering all the
(N
p

)
possible designs, our proposed PSS algorithm searches over

(p+l
p

)
designs in each

iteration, thus it can drastically reduce the computational effort in finding optimal designs, especially when l is small. We
note that, although a large l may help to improve the achieved design efficiency, the required computing time will also
be increased. Our experience suggests that, with a small l (e.g., l = 3 or 5), the PSS algorithm can often give satisfactory
results (see also Sections 4 and 5); this algorithm is thus expected to save much in computational resources.

In addition, by randomly selecting candidate points to form the subset Sk, we equip the PSS algorithm with the ability
to avoid being caught in local optimum. Moreover, we take advantage of the estimated variance of X(s) to determine
the selection probability of Sk to help accelerate the convergence of the algorithm. In what follows, we demonstrate the
performance of the PSS algorithm and compare it with the other previously mentioned approaches.

4. Simulation studies

In our simulation studies, we assume some known (finite) sets of eigenfunctions for X(s). Three types of eigenfunctions
that we consider include: Fourier basis functions, periodic but non-Fourier basis functions, and non-periodic functions.
Without loss of generality, we assume that s ∈ S = [0, 1] (See S.2 of the supplementary documents). The measurement
errors are assumed to be independent and follow a standard normal distribution. Moreover, we assume for simplicity that
the mean functions for X(s) and Y (t) are zero for simplicity, although our results still apply for non-zero mean functions.
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Fig. 1. Eigenfunctions for X(s): The solid (black), broken (red), dashed (green) curves represent the first, second, and third eigenfunctions, respectively.

In the first scenario, we assume that (M, K ) = (3, 3), and the first M eigenfunctions of X(s) are

ψ1(s) = C
1

√
1+ s

sin
( 2π
ln 2

ln(1+ s)
)
,

ψ2(s) = C
1

√
1+ s

sin
( π

ln 2
ln(1+ s)

)
, and

ψ3(s) = C
1

√
1+ s

sin
( 4π
ln 2

ln(1+ s)
)
,

with eigenvalues ρm = 8, 2, 1, respectively. Here, C is a normalizing constant, making
∫
S ψ

2
m(s)ds = 1.

We note that the eigenfunctions for Y (t) and corresponding eigenvalues do not play a role in the search for optimal
sampling designs. The BKM matrix, whose (k,m)th element is the bkm as defined in (2), is assumed as

BKM =

[ 0.5 −0.5 0.5
1.5 −1.0 0.5
−0.5 −0.5 0.5

]
.

As the second scenario, we assume that the eigenfunctions of X(s) are

ψ1(s) = 1,

ψ2(s) =
√
2 sin(2πs),

ψ3(s) =
√
2 cos(4πs), and

ψ4(s) =
√
2 sin(6πs),

with eigenvalues ρm = 10, 5, 2, 1, respectively.
The BKM matrix is set to be

BKM =

[
3 −2 2 1
1 −1 1 −1

]
.

For the third scenario, we again assume M = K = 3, but the eigenfunctions of X(s) are as in Fig. 1. To demonstrate
the applicability of our method, we randomly generate these eigenfunctions.

Eigenvalues for X(s) are assumed to be ρm = 10, 5, 1, respectively, and

BKM =

[0.5 −1.0 0.5
0.5 0.5 1.5
1.5 1.0 0.5

]
.

With these scenarios, we compare below different search algorithms in terms of their efficiency and effectiveness in
optimizing (7).
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Table 1
Average of 100 relative efficiencies of achieved designs that maximize the optimality criterion Φ .

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

PSS-3 0.8889 0.9431 0.9597 0.9671 0.9717 0.9759
PSS-5 0.8889 0.9435 0.9597 0.9671 0.9717 0.9760
Simple exchange 0.8615 0.9387 0.9570 0.9657 0.9708 0.9751
3-Exchange 0.8807 0.9408 0.9593 0.9668 0.9716 0.9759
Greedy 0.8889 0.9297 0.9512 0.9637 0.9699 0.9743
Exhaustive 0.8889 0.9438 0.9597 0.9671 infeasible

Fig. 2. Log of 100 average computing time in second; S-Ex, 3-Ex, GRD and EXH are for simple exchange, 3-exchange, greedy search and exhaustive
search algorithms, respectively.

4.1. Comparison of search algorithms

In the first simulation study, we compare the search algorithms introduced in Section 3 under Scenario 1. The
results for Scenarios 2 and 3 are in S.3 and S.4 of the supplementary document, respectively, and they convey similar
information. In this study, we discretize the time domain with the grid spacing of 0.01 and consider the criterion
Φ(s) = (REX (s)+REY (s))/2. With this setting, we use the previously described algorithms to find the best p-point designs
for p = 2, 3, . . . , 7.

For the simple exchange and k-exchange algorithms, the initial design is chosen randomly, and we also set k = 3. For
the PSS algorithm, two different sizes (l) of subsets are considered, namely l = 3 and 5. The corresponding algorithms are
then denoted as PSS-3 and PSS-5, respectively. The search is terminated when the obtained designs remain the same in
L = 30 consecutive iterations. This number of iterations is decided via some simulation studies. Although a smaller L may
reduce computing time, the achieved design efficiency is not as satisfactory. For cases with L > 30, we observed that the
search requires a long computing time without yielding a significantly improved design efficiency.

For comparison, we report the computing time (in seconds) and the relative design efficiency achieved by these search
algorithms. A search is deemed to be infeasible when the required CPU time is longer than 120 min. We note that
the average computing time and achieved design efficiency are the corresponding averages obtained by running each
algorithm 100 times with different random initial designs. All the simulations are implemented on a desktop computer
with a 3.40 GHz Intel i7-2600 8-core processor.

Fig. 2 depicts the logarithm of the required CPU time of each algorithm. The average achieved design efficiencies of
these algorithms are presented in Table 1 and Fig. 3. As shown in Fig. 2, the computing time of the exhaustive search
algorithm increases exponentially and it quickly becomes infeasible, especially when p > 5. The greedy search algorithm
is the fastest, but it often generates designs with inferior efficiencies, as shown in Table 1 and Fig. 3. The simple exchange
algorithm is as fast as the greedy search algorithm, but as shown in Fig. 3, it can be unstable in terms of the achieved design
efficiency. This is because the final design tends to be over-dependent on the initial design. The k-exchange algorithm
takes a longer time but is more stable than the simple exchange algorithm. The PSS-3 and PSS-5 algorithms can achieve
the highest design efficiencies without requiring much computing time. Following these simulation study results, we
recommend the use of the PSS-3 algorithm given its speed and achieved design efficiency.

4.2. Robustness of estimated optimal sampling schedule

Here, we study the robustness of our obtained designs with respect to the variation in the eigen-pairs that are estimated
from different simulated data sets. Specifically, we generate the simulation data Uil = Xi(sil)+εil based on the eigenvalues
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Fig. 3. Boxplots of 100 achieved relative efficiencies. Horizontal lines indicate the theoretical upper-bound obtained from the exhaustive search
algorithm.

Table 2
Mean (standard deviation) of 200 AREs obtained by PSS and greedy search algorithms.

Scenario 1 Scenario 2 Scenario 3

PSS greedy PSS greedy PSS greedy

p = 3
n = 10 .0602 (.0675) .0739 (.0746) .0834 (.0740) .0840 (.0752) .0487 (.0502) .0534 (.0458)
n = 100 .0082 (.0115) .0281 (.0182) .0487 (.0558) .0845 (.0597) .0317 (.0288) .0379 (.0304)
n = 1000 .0021 (.0013) .0212 (.0095) .0143 (.0116) .0447 (.0406) .0109 (.0114) .0227 (.0167)

p = 4
n = 10 .0492 (.0528) .0494 (.0571) .0721 (.0701) .0735 (.0663) .0366 (.0383) .0320 (.0363)
n = 100 .0088 (.0061) .0161 (.0121) .0299 (.0256) .0442 (.0395) .0294 (.0300) .0223 (.0190)
n = 1000 .0030 (.0030) .0111 (.0059) .0079 (.0110) .0320 (.0163) .0128 (.0092) .0134 (.0070)

p = 5
n = 10 .0422 (.0478) .0393 (.0510) .0464 (.0442) .0397 (.0391) .0302 (.0341) .0233 (.0262)
n = 100 .0073 (.0091) .0095 (.0105) .0268 (.0213) .0259 (.0235) .0257 (.0293) .0174 (.0147)
n = 1000 .0024 (.0019) .0047 (.0027) .0151 (.0103) .0202 (.0098) .0088 (.0053) .0106 (.0063)

p = 6
n = 10 .0418 (.0520) .0349 (.0489) .0391 (.0399) .0330 (.0414) .0336 (.0386) .0243 (.0305)
n = 100 .0059 (.0090) .0068 (.0055) .0221 (.0171) .0171 (.0185) .0245 (.0272) .0159 (.0144)
n = 1000 .0015 (.0011) .0040 (.0022) .0089 (.0065) .0076 (.0036) .0048 (.0034) .0076 (.0049)

and eigenfunctions specified for Scenarios 1 to 3; i = 1, . . . , n, and l = 1, . . . , Li.. We consider three different numbers
of subjects, namely n = 10,100 and 1000. The ith subject has Li observations where Li ∼ Uniform{2, . . . , 10}, and εil’s
are assumed to be independent and follow normal distribution with variance σX = 1. For each simulated data set, we
estimate eigenvalues and eigenfunctions, which in turn give the ‘estimated’ optimality criterion Φ̂ for Φ = [REX+REY ]/2.
For given number of sampling points p = 3, 4, 5 and 6, we find the optimal sampling times ŝ∗ maximizing Φ̂ by using the
PSS-3 and greedy search algorithms. For comparison purposes, we also define the absolute relative error (ARE) as follows:

ARE =
Φ(s∗)−Φ(ŝ∗)

Φ(s∗)
.

Here, s∗ is obtained by the respective algorithm to maximizes the ‘true’ Φ that is obtained from the ‘true’ eigenvalues
and eigenfunctions specified for each scenario. We calculate 200 AREs from 200 independent simulations, and report their
mean and standard deviation in Table 2.

From Table 2, it can be seen that the ARE decreases with n, and designs obtained from PSS-3 tend to give a smaller ARE
than that of the greedy search, especially when n = 1000. When n = 10, designs obtained by both algorithms can have
an average efficiency loss of about 2.5%-8.5%. Having a good estimate of the eigen-pairs, or a robust design that perform
relatively well for a variety of estimated eigen-pairs, can thus be helpful. This is a future research interest.
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Fig. 4. Optimal designs for different weights generated by PSS-3 and greedy search.

4.3. Weighted sum criteria

In this simulation study, we consider compound optimality criteria of (7). We allow the weights to increase from 0.01
to 0.99 in steps of 0.01, i.e., W = (0.01, 0.02, . . . , 0.99). The greedy search algorithm and the PSS-3 algorithm are used
for finding the optimal design for each given weight. For clarity, we focus on the cases with p = 5 and 7. Fig. 4 shows
the relative efficiencies of the obtained designs for X(s) and Y (t) for Scenarios 1 and 2. Note that the results for Scenario
3 are included in S.5 of the supplementary document, where they provide similar information. Clearly, the PSS algorithm
generates better designs than the greedy algorithm. Furthermore, probably due to the characteristics of greedy algorithm,
we do not observe a concave Pareto front from its outputs. In contrast, the PSS algorithm gives clear Pareto fronts in Fig. 4.
Therefore, we can say that the designs obtained by the PSS-3 algorithm outperform those found by the greedy algorithm.
Moreover, it is clear that the relative efficiencies achieved by the designs with p = 7 are higher than those with p = 5.

Among these obtained designs, there are several ways of choosing one design that fits best the experimenter’s needs.
First, we may select the design whose relative efficiency has the smallest Euclidean distance to the ideal point (1, 1). For
example, for Scenario 1 when p = 7, such a design can be obtained from PSS with w = 0.54. Another approach is to
define a targeted relative efficiency for one criterion and then find the design that maximizes the relative efficiency for
the other criterion. For instance, we want to find the best design with the relative efficiency for Y (t) to be at least 0.98.
In this case, using the PSS algorithm, we can find that the designs with w = 0.52 or 0.53 are the best for maximizing
the efficiency for X(s). We note that since the time domain is discretized, the exact same designs may be obtained for
different values of w. The relative efficiencies of this particular design in recovering X(s) and predicting Y (t) are 0.9718
and 0.9801, respectively. Moreover, an additional approach is to find the design that makes the two relative efficiencies
to be as similar as possible; i.e., to find the design that minimizes ∥REX (s∗i )− REY (s∗i )∥

2 among the designs on the Pareto
front. In this case, w = 0.99 is the best weight that satisfies this requirement.

We also study the selection of p by considering the Euclidean distance between the achieved (REX , REY ) and the ideal
point (1, 1). This distance is expected to decrease with p as also observed from Fig. 5. Denoting the minimum Euclidean
distance for p sampling design as dp, a simple method for selecting p is by finding

p̂ = min
p

{d1 − dp
d1

> δ

}
, (8)

where 0 < δ < 1 is a user-specified percentage of improvement from the design with 1 observation. To find p̂, we set
δ = 0.9 in this simulation study. The appropriate p̂ = 7 in Scenario 1, while p̂ = 4 is chosen by the method in (8) for
Scenarios 2 and 3. Fig. 5 also suggests that the reduction in the distance between (REX , REY ) and (1, 1) tends to be smaller
as p becomes larger.

4.4. Performance of designs

Here, we compare the performance of the designs obtained from PSS-3 that maximize FX of (4) and FY of (5) separately
with random designs and equally spaced designs. For this comparison, we generate a total of 200 ‘true’ paired trajectories
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Fig. 5. Minimum distance from (1, 1) for each p with dashed horizontal threshold line for δ = 0.9.

Fig. 6. MISE boxplot for each criterion with p = 5 under Scenario 3: bottom numbers imply the number of outlying data over the range.

(X(·), Y (·)) according to the assumed eigenfunctions and eigenvalues by using (1) and (2) after replacing the infinite sums
with finite sums. For each design that is being compared, we then randomly generate 100 sets of noisy observations
Uil’s at the p time points in the design, and follow the procedures introduced in Section 2 to give 100 pairs of predicted
trajectories for each true (X(·), Y (·)). For comparison purposes, the mean integrated squared error (MISE) of the prediction
is then calculated for X(·) and Y (·) over these 200 × 100 combinations for each design.

According to Tables 3, 4, and 5, the designs obtained by the PSS algorithm clearly outperform random designs and
equally spaced designs at minimizing the MISE; this should be an expected result. Moreover, the MISE decreases as p
increases for our obtained designs, but this is not always true for other designs. It is also noteworthy that the decrements
get smaller and smaller as we increase the number of measurements, p.

Fig. 6 shows the boxplots of the averages of 100 MISEs (avg(MISE)) generated by these designs for recovering X(s)
and predicting Y (t) under Scenario 1 with p = 5. As presented there, optimal designs perform better than equally spaced
designs or random designs.

5. Applications

We apply our proposed methods to several real data sets, from Alzheimer’s disease neuroimaging, primary biliary
cirrhosis, and eggs laid by Mediterranean fruit flies. We obtain the single-objective optimal sampling schedules for



10 H. Rha, M.-H. Kao and R. Pan / Computational Statistics and Data Analysis 146 (2020) 106925

Table 3
Mean of 200 MISE under Scenario 1.

p = 3 p = 4 p = 5 p = 6 p = 7

Optimal X 0.6519 0.5071 0.4213 0.3444 0.2958
Y 0.9504 0.7001 0.5636 0.4832 0.4128

Random X 2.2911 1.9220 1.2866 0.9144 0.7322
Y 3.6951 2.9531 1.8411 1.4708 1.0971

Equal X 6.4478 2.2956 0.7654 0.6632 0.4734
Y 12.8957 2.3867 1.3562 1.0576 0.7863

Table 4
Mean of 200 MISE under Scenario 2.

p = 3 p = 4 p = 5 p = 6 p = 7

Optimal X 1.8197 0.8045 0.6581 0.5496 0.4780
Y 6.2370 4.6401 3.4349 2.7679 2.3692

Random X 4.1733 4.3292 2.5480 2.0622 1.3177
Y 21.0827 20.0287 11.5562 10.6416 6.8009

Equal X 10.4178 1.8575 2.5727 0.6678 1.4897
Y 38.3678 6.3009 8.3204 3.2615 4.5380

Table 5
Mean of 200 MISE under Scenario 3.

p = 3 p = 4 p = 5 p = 6 p = 7

Optimal X 0.7284 0.5308 0.4109 0.3441 0.3000
Y 1.8296 1.3788 1.0556 0.8310 0.7046

Random X 2.6253 1.6662 1.1862 0.8063 0.6497
Y 6.8553 4.2408 3.0290 2.1180 1.6674

Equal X 1.7843 1.0465 0.6024 0.4615 0.3681
Y 7.7042 3.5754 1.9516 1.3259 1.0557

Table 6
Optimal sampling schedules for recovering ADAS and HCI curves for the different numbers of measurements.

X(s): ADAS-Cog (R̂EX ) Y (t): HCI (R̂EY )

p = 2 75.0, 86.0 (0.680) 80.0, 87.0 (0.817)
p = 3 68.0, 77.0, 86.5 (0.790) 79.5, 81.5 87.5 (0.864)
p = 4 64.0, 68.0, 80.0, 87.0 (0.826) 67.5, 80.0, 80.5, 87.5 (0.900)
p = 5 63.0, 68.5, 75.5, 84.5, 87.5 (0.860) 67.5, 80.0, 80.5, 81.0, 87.5 (0.919)
p = 6 63.0, 67.0, 69.5, 77.0, 84.5, 87.5 (0.882) 68.0, 79.5, 80.0, 80.5, 85.5, 88.0 (0.931)
p = 7 63.0, 65.5, 68.0, 70.0, 79.5, 85.0, 88.0 (0.893) 68.0, 79.5, 80.0, 80.5, 81.0, 86.0, 88.0 (0.940)

functional predictor X(s) and functional/scalar response Y (t)/Y that maximize (4) and (5), respectively, and the bi-objective
optimal sampling schedules that maximize (7).

5.1. Alzheimer’s disease neuroimaging data

Alzheimer’s disease (AD) is one of the most common forms of dementia. The Alzheimer’s Disease Assessment Scale-
Cognitive Subscale (ADAS-Cog) is designed to assess the level of cognitive impairment in AD. It is a clinical rating and
consists of 11 tasks measuring the disturbances in memory, language, praxis, attention, and other cognitive abilities which
are often referred to as the core symptoms of AD (Kolibas et al., 2000). On the other hand, another assessment score, the
hypometabolic convergence index (HCI), is taken to reflect in a single measurement the extent to which the pattern and
magnitude of cerebral hypometabolism in an individual’s fluorodeoxyglucose positron emission tomography (FDG-PET)
image correspond to ADAS-Cog in a probable AD patient, and it is generated by using a fully automated voxel-based
image-analysis algorithm (Chen et al., 2011). In this study, we use ADAS-Cog as an explanatory function and HCI as a
response function. The source data come from the ADNI database, the data sheet ‘‘148-n3355-FDG-ALL-Info’’, and the HCI
scores are calculated by the neuroimaging lab in the Banner Alzheimer Institute.

We use the data from patients between 63 and 88 years of age, which covers most of the measurements in the data set.
There are 269 patients who have observations within this age range, and the number of measurements varies from 1 to 8
with a median of 2. A spaghetti plot of the data is shown in Fig. 7. This data set is used to estimate the unknown quantities
needed in calculating the optimality criteria using the methods introduced in Section 2. We then find the optimal sampling
schedule for recovering predictor and response functions with the grid spacing of 0.5 year.

The single-objective optimal p-point designs generated by our proposed PSS-3 algorithm with p = 2, . . . , 7 are shown
in Table 6. The achieved R̂EX and R̂EY are also reported there. For example, the optimal sampling points for ADAS-Cog
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Fig. 7. Left figure: Alzheimer’s disease assessment scale (ADAS-Cog); Right figure: hypometabolic convergence index.

Fig. 8. Performance of compound optimal designs for different weights with p = 3. Black circles are designs generated by the PSS algorithm, and
red triangles are designs generated by the greedy search algorithm.

when p = 2 are 75.0 and 86.0 with R̂EX = 0.68. We note that, for a finite p, the optimal sampling schedule for the
predictor function X(·) is not necessarily the best sampling point for the response function Y (·); see also Park et al. (2018)
for a similar observation. This is mainly because we have different optimality criteria, namely (4) and (5), for X(·) and
Y (·). In particular, the criterion for Y (·) depends not only on the criterion for X(·), but also on the correlation of X(·) and
Y (·) through B̂KM . Unlike the greedy search algorithm, these points are not part of the optimal design for p = 3. We also
observe that the optimal sampling time points for X(·) tend to be spread out over the age range, whereas those for Y (·)
occur at the later time points where the variability seems larger (see Fig. 7).

In Fig. 8, we present our obtained compound designs for different weights when p = 3. The designs obtained by the
greedy search algorithm are also provided, and clearly, the PSS-3 algorithm generates better designs than greedy search
algorithm. We can choose weights w = 0.52, . . . , 0.60 to find the design that minimizes the Euclidean distance between
the relative design efficiencies and (1, 1). We note that the same designs are obtained from several different weights w
due to a large grid spacing for discretizing the time domain. This also suggests that, for large grid spacings, we may reduce
the size of W (i.e. the number of different weights) when obtaining compound designs for approximating the Pareto front.
We also consider the choice of the appropriate number of sampling schedules defined in (8). According to Fig. 9, when
p̂ = 7, the Euclidean distance from (1, 1) becomes less than (1− δ)d1 where δ = 0.9.
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Fig. 9. Minimum distance from (1, 1) for each p with dashed horizontal threshold line.

Fig. 10. Left figure: Albumin Level; Right figure: Prothrombin time.

5.2. Primary biliary cirrhosis data

Primary biliary cirrhosis (PBC) is a fatal immune disorder which slowly and gradually destroys biliary ducts of the
liver (Dancygier, 2010). Damaged biliary ducts result in the damage in liver over time, and it is called cholestasis. It
is known to occur more commonly in women with the ratio 9:1 female to male with a prevalence of one per 3–4000
people (Mülhaupt et al., 2006). The data were collected at the Mayo Clinic from 1975 to 1984. There were 312 PBC patients
that participated in the randomized trial, and they were supposed to visit at 6 months, 1 year, and annually thereafter.
However, the data were collected on a sparse and irregular grid, since many of patients missed some of scheduled visits,
and this results in a different number of measurements for each patient.

Yao et al. (2005b) discussed the relationship between albumin in mg/dl as a predictor function and prothrombin time
in seconds as a response function. To find the optimal designs, we use the data from 2000 days of 312 PBC patients, shown
in Fig. 10. The number of visits varied from 1 to 8 with the median of 5. Optimal designs for recovering the predictor
function (albumin), and for predicting the response function (prothrombin time) are obtained by the proposed method
for the different numbers of measurements; compound designs with different weights are also generated. We consider
51 candidate days from day 0 to day 2000 in steps of 40 days.

Optimal sampling schedules for the predictor and response functions with different number of measurements are
shown in Table 7. Similar to the previous application, the more observations we make, the higher the relative efficiencies
obtained. As shown in Fig. 11, compound designs generated by the PSS algorithm outperform those obtained from the
greedy search algorithm.
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Table 7
Optimal sampling schedules for recovering albumin level and prothrombin time curves for the different numbers of
measurements.

X(s): Albumin level (R̂EX ) Y (t): Prothrombin time (R̂EY )

p = 2 680, 1480 (0.784) 960, 1360 (0.725)
p = 3 600, 1080, 1600 (0.831) 0, 920, 1320 (0.772)
p = 4 40, 760, 1160, 1600 (0.861) 0, 840, 1200, 1400 (0.818)
p = 5 40, 760, 1080, 1560, 1600 (0.882) 0, 800, 1120, 1200, 1560 (0.843)
p = 6 0, 720, 760, 1160, 1560, 1600 (0.900) 0, 800, 960, 1160, 1240, 1560 (0.859)
p = 7 0, 720, 760, 1120, 1200, 1600, 1640 (0.909) 0, 40, 800, 960, 1160, 1200, 1600 (0.872)

Table 8
Optimal sampling schedules for recovering the curve of the number of eggs laid on a particular day and the remaining
total number of eggs for the different numbers of measurements.

X(s): Number of eggs (R̂EX ) Y (t): Remaining eggs (R̂EY )

p = 2 10, 17 (0.623) 7, 25 (0.672)
p = 3 8, 14, 19 (0.702) 8, 24, 25 (0.739)
p = 4 7, 10, 16, 21 (0.753) 7, 8, 24, 25 (0.760)
p = 5 7, 10, 14, 16, 21 (0.781) 7, 8, 18, 24, 25 (0.770)
p = 6 7, 8, 11, 14, 19, 22 (0.804) 7, 8, 13, 18, 24, 25 (0.783)
p = 7 7, 8, 9, 12, 16, 17, 24 (0.823) 7, 8, 12, 18, 23, 24, 25 (0.794)

Fig. 11. Performance of compound optimal designs for different weights. Black circles are designs generated by the PSS algorithm, and red triangles
are designs generated by the greedy search algorithm.

5.3. Eggs laid from mediterranean fruit flies data

One advantage of the PSS algorithm is its versatility in different situations including finding optimal sampling plans for
predicting a scalar response. To demonstrate its applicability, we find optimal sampling schedules for recovering trajectory
of the number of eggs laid daily over 25 days (predictor function) and for predicting the total number of eggs remaining
during lifetime (scalar response). Ji and Müller (2017) found the optimal sampling times for recovering trajectory and
scalar response, and used the exhaustive search algorithm and greedy search algorithm to obtain optimal designs. Their
FOptDes function of the ‘fdapace’ package in R is available for finding such designs using either the exhaustive search or
greedy search algorithms. The observations were made every day, i.e., the number of eggs was measured 25 times per
subject.

We also obtain the optimal design using PSS-3 for recovering the predictor function and for predicting scalar response
with the same grid spacing for the time domain as in Ji and Müller (2017). Our obtained optimal designs are shown in
Table 8. We compare the computing time of PSS-3 and the FOptDes function of ‘fdapace’ package in R for p = 2, 3, 4, 5, 6,
and 7. Table 9 shows the average of 100 computing time for PSS-3 and the FOptDes function with the exhaustive search.
The optimal sampling schedules for Y (t) obtained by PSS-3 are identical to those generated by the FOptDes function,
which guarantees the optimal design. However, PSS-3 mostly, but not always, generates consistent designs compared to
those generated by the FOptDes function. It is because the FOptDes function uses the approximated values to compute
optimality criteria for X(s), while PSS-3 uses the exact values for computation. As p increases, the computing time increases
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Table 9
Average (standard deviation) of 100 computing times (in seconds) for finding optimal designs.

X(s): Predictor Y : Response

PSS-3 FOptDes PSS-3 FoptDes

p = 2 0.0325(5.43× 10−3) 0.1272(7.90× 10−3) 0.0310(1.49× 10−2) 0.1971(7.38× 10−3)
p = 3 0.0670(1.54× 10−2) 0.2547(7.99× 10−3) 0.0616(1.70× 10−2) 0.2998(3.14× 10−2)
p = 4 0.1465(2.65× 10−2) 0.9459(4.41× 10−2) 0.1305(1.89× 10−2) 0.8473(6.88× 10−2)
p = 5 0.2923(4.80× 10−2) 3.5728(4.51× 10−2) 0.2595(4.24× 10−2) 2.8424(6.57× 10−2)
p = 6 0.5535(7.10× 10−2) 12.147(2.23× 10−1) 0.5198(7.31× 10−2) 9.4726(4.49× 10−1)
p = 7 0.9896(1.16× 10−1) 33.156(1.94× 10−1) 0.9238(5.92× 10−2) 25.238(2.62× 10−1)

for both algorithms. However, the PSS-3 algorithm outperforms the FOptDes in terms of computing time, especially when
p is large.

6. Discussion

We are concerned with the optimal design for both recovering the predictor function and predicting the response
function under a functional linear regression model. We present a framework that makes it possible to efficiently find the
optimal sampling schedule that improves precision in functional trajectory recovery.

In our simulation studies, the PSS algorithm is reasonably fast and generates good single-objective and bi-objective
compound designs. We also show that our obtained optimal designs outperform and result in significant improvement
over random designs or equally spaced designs in terms of minimizing MISE. For future subjects with a limited number
of measurements, it is better to allocate observations based on the proposed designs in this paper. Moreover, the PSS
algorithm can generate the Pareto front with different weights for compound optimality criteria. Among these designs,
one can choose the design that satisfies the experimenter’s requirements. Here, we focus on cases where p ≤ 7, and
our proposed PSS with l = 3 is observed to work well. One may increase l for an improved design efficiency. But in our
study, this improvement does not seem to compensate for the increased computing time. As for an increased p (> 7),
the PSS-3 and greedy search attain very similar design efficiencies, but the latter algorithm is faster than the former, and
thus should be considered.

The approach presented herein is useful and widely applicable to real problems, but it has some limitations. First, to
apply this method, we must have some information about the unknown quantities in the functional regression model.
One possible way to handle this difficulty is by estimating these quantities from the existing data. Moreover, if the
estimates are not as accurate as we desire, then the designs obtained by our method will not be very useful; that is,
the quality of estimates is crucial for effective experimental designs. Thus, one future research interest is to find suitable
experimental plans to provide good model parameter estimations. It should also be useful to obtain designs under a model
misspecification of, e.g., the eigen-pairs of the covariance operator of the predictor function. Another future research
direction is to extend the simple functional linear regression to the multiple functional linear regression. Moreover, in
this paper, we focus on the optimal sampling plans for the case where only the observations of predictor function are to
be collected. In some situations, we will be able to make observations on the response axis as well, although the number of
observations may be very limited. The predictor and response functions are connected through the regression coefficient
surface, namely β(s, t). One may consider using the observations of a new subject to update the estimated coefficient
surface β̂(s, t). The quality of the updated β̂(s, t) depends on the sampling plans for the predictor function and for the
response function. Finding optimal sampling plans in both domains is thus important and an extension of our proposed
method to such a situation is a future research interest.
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