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ABSTRACT Since the cost of labeling data is getting higher and higher, we hope to make full use of the large

amount of unlabeled data and improve image classification effect through adding some unlabeled samples for

training. In addition, we expect to uniformly realize two tasks, namely the clustering of the unlabeled data and

the recognition of the query image.We achieve the goal by designing a novel sparse model based onmanifold

assumption, which has been proved to work well in many tasks. Based on the assumption that images of the

same class lie on a sub-manifold and an image can be approximately represented as the linear combination

of its neighboring data due to the local linear property of manifold, we proposed a sparse representation

model on manifold. Specifically, there are two regularizations, i.e., a variant Trace lasso norm and the

manifold Laplacian regularization. The first regularization term enables the representation coefficients

satisfying sparsity between groups and density within a group. And the second term is manifold Laplacian

regularization by which label can be accurately propagated from labeled data to unlabeled data. Augmented

Lagrange Multiplier (ALM) scheme and Gauss Seidel Alternating Direction Method of Multiplier (GS-

ADMM) are given to solve the problem numerically. We conduct some experiments on three human face

databases and compare the proposed work with several state-of-the-art methods. For each subject, some

labeled face images are randomly chosen for training for those supervised methods, and a small amount of

unlabeled images are added to form the training set of the proposed approach. All experiments show our

method can get better classification results due to the addition of unlabeled samples.

INDEX TERMS Image classification, manifold, semi-supervised, sparse, trace lasso.

I. INTRODUCTION

Image classification is one of the most active applications

in image processing, computer vision and machine learning

and has been extensively studied by numerous researchers.

Meanwhile, numerous image classification and representa-

tion methods have been proposed. Wright et al. proposed a

Sparse Representation Coding (SRC) method by applying the

l1-norm based sparse representation to Face Recognition (FR)

[1]. SRC has shown interesting results in image classification

and recognition and has been widely used and extended, as

The associate editor coordinating the review of this manuscript and

approving it for publication was Yudong Zhang .

evidenced by its many followup papers. Some later works,

on the other hand, began to investigate the role of sparsity

in image representation [2]–[5]. Yang et al. [4] gave an

insight into SRC and provided some theoretical support for its

effectiveness. They argued that it is l1 constraint rather than

l0 that makes SRC effective. Lei Zhang et al. indicated that

most literatures emphasized too much on the role of l1-norm

sparsity in image classification. They demonstrated that it

is actually the Collaborative Representation (CR), i.e., using

the training samples from all classes to represent the query

sample, but not the l1-norm, that plays the essential role in

SRC. Therefore, they proposed the CR based classification

with regularized least square (CRC_RLS) [5], which has
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significantly less complexity than SRC but leads to very com-

petitive classification results. Zhang et al. [6] extended their

CRC to the robust version, robust collaborative representation

classification (RCRC), using the Laplacian estimator to deal

with severe random pixel noise and illumination changes.

Grave et al. proposed a Trace Lasso (TL) norm [7]. It is

proved that TL interpolates between l2-norm and l1-norm.

Its behaviour is adaptively related to the correlation of the

training data. For a recognition task, if the labeling infor-

mation is available, by integrating the labeling information

with TL, Jian Lai et al. proposed a method named Supervised

Trace Lasso (STL) [8]. This method can cluster the samples

from the same subject but with different variation information

together, which conforms to the goal of identification.

All the above works consider the query sample lies in the

linear space spanned by the training samples from the same

class. However, in practice, taking face image for instance,

when reflectance is typically non-Lambertian and the pose

of the subject varies, the data do not necessarily conform

to linear subspace models. On the other hand, these meth-

ods are supervised methods, that is, they require the label-

ing information of all training samples. They are effective

only in the small-sample-size case because when sample-

size gets larger the computing burden for these methods will

get heavy and particularly the cost of labeling data may be

unaffordable. In recent years, a lot of methods based on

deep learning [9]–[13] have been proposed. These methods

obtained very competitive results on image classification and

recognition task. Even though there are only a small amount

of labeled samples, deep learning can also be used through

semi-supervised network as long as the quantity of samples is

enough. However, in some practical applications, especially

for some cold research fields or some institutions with limited

condition, public data sets may not be able to meet their

requirement and data acquisition is also very difficult. As

a result, they have to face the small-sample-size situation,

which is the focus of our work here. We will show that when

a small number of unlabeled samples are added to training set

the classification result can be effectively improved.

Manifold regularized semi-supervised learning (MRSSL)

is one of the most successful methods in computational

imaging. A set of N by M images may be better modeled

by a manifold embedded in an NM-dimensional Euclidean

space, called an image manifold [14]. MRSSL exploits the

local structure of data distribution including both labeled and

unlabeled samples to leverage the generalization ability of

a learning model. There are many representative works in

MRSSL, in which the most prominent is Laplacian regular-

ization which determines the underlying manifold by using

the graph Laplacian [15], [16]. With the merits of simple

calculation and promising performance, Laplacian regular-

ization based semi-supervised learning has received extensive

attention and many algorithms have been developed, includ-

ing Laplacian regularized support vector machines, Laplacian

regularized kernel least squares [15], [17], and Laplacian reg-

ularized nonnegative matrix factorization [18]. In addition,

P-Laplace regularization is proposed in [19] to preserve the

local geometry and is applied to support vector machines

and kernel least squares. Reference [20] presented a hyper

graph P-Laplacian regularization for remotely sensed image

recognition. P-Laplacian is a natural generalization of the

standard graph Laplacian. Besides Laplace regularization,

[21] presented Hessian regularized multiset canonical corre-

lations for multiview dimension reduction.

In this paper, a semi-supervised sparse image classification

model on manifold is presented as follows

argmin
x, Z

‖y − Ax‖1 + λ ‖ZDiag (x)‖∗

+
υ

2

∑n

i,j=1

∥

∥zi − zj
∥

∥

2

2
Sij +

∑n

j=1
Ujj
∥

∥zj − gj
∥

∥

2

2
(1)

The query image y ∈ Rm is first collaboratively represented

by thewhole training samplesA = [a1, a2, · · · , an] ∈ Rm×n,

whether they are labeled or unlabeled. x is the representation

coefficient. We assume the images of one class lie on a sub-

manifold. Since manifold locally is a linear space, the query

image can be approximately represented as the linear com-

bination of its neighbour data, namely only the coefficients

correlated with these data are not zero in the collaborative

representation.

Assume among the whole n training samples, only samples

whose index belongs to S have identity information. Let zj ∈

Rc (1 ≤ j ≤ n) be the label vector of sample aj, here c is the

number of classes. Since we don’t know c, the dimension of

zj just needs to be set larger than c and at most equals to

min {m, n}. Here, for simplicity, we still use c to represent

the dimension of zj. The label matrix is Z = [z1, · · · , zn] ∈

Rc×n. Assume gj =
(

gij
)

∈ Rc (j ∈ S) is the label vector of

the labeled sample aj. The entries of gj is very simple. gij = 1

when aj is in the ith class, while gij = 0 otherwise. If aj
already has a label, namely j ∈ S, then zj = gj. This can

be fulfilled by the last term in (1), in which U ∈ Rn×n is a

diagonal matrix, Ujj takes a large value when aj is labeled,

otherwise Ujj = 0. If aj is not labeled, we set gj to be a zero

vector and zj needs to be solved.

We present two regularization terms. The first regulariza-

tion term, a variant Trace Lasso norm ‖ZDiag (x)‖∗, forces

the group sparsity instead of the sample sparsity, whichmeans

the query image is presented by a small number of groups,

and in each group, the training samples are fully used. This

sparsity between groups and density within a group is pre-

ferred to the aim of image classification. The second one is the

manifold Laplacian regularization
∑n

i,j=1

∥

∥zi − zj
∥

∥

2

2
Sij, with

which distance is calculated along the manifold of samples

and for each class label can be appropriately propagated

from labeled samples to unlabeled samples, then the accurate

classification can be reached. λ and υ are two parameters used

to balance the roles of two regularization terms.

The rest of the paper is organized as follows. The

related works to our method are analysed in Section 2.

In Section 3, we present the manifold Laplacian regularized

semi-supervised sparse image classification model. And two
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regularization terms are presented. The first one is a variant

Trace Lasso regularization by combining semi-supervised

samples with Trace Lasso norm. The second one is the

manifold Laplacian regularization. The numerical methods,

i.e. the Augmented Lagrange Multiplier (ALM) scheme and

Gauss Seidel Alternating Direction Method of Multiplier

(GS-ADMM) are given in Section 4 to solve the problem

numerically. In Section 5, through experiments with several

commonly used databases, we compare the performance of

the proposed method with several state-of-the-art methods to

show the effect of our method. Concluding and discussing

remarks aremade in Section 7. As far as we know, it is the first

time to use unlabeled samples in the sparse representation

based image classification methods. Compared to the meth-

ods based on deep learning, our method belongs to the type

of knowledge-based modeling approaches which has clear

structure and better theoretically interpretability.

Some notations used in this work are defined as follows.

For a vector x = (x1, x2, · · · , xn)
T, ‖x‖2 =

√

n
∑

i=1

|xi|
2 is the

l2 norm, ‖x‖1 =
n
∑

i=1

|xi| is the l1 norm, ‖x‖0 is the l0 norm

which counts the number of nonzero elements of vector x.

Diag (x) is a diagonal matrix whose diagonal entries are x.

For a matrix X =
(

Xij
)

, xj and xj represent the jth column

and jth row of X separately, ‖X‖F =

√

∑
∣

∣Xij
∣

∣

2
denotes the

Frobenius norm, ‖X‖∗ =
∑

σi (X) is the nuclear norm, here

σi (X) is the ith singular value ofX.XT refers to the transpose

of X. Diag (X) describes the diagonal matrix with diagonal

components being Xii, diag (X) is a vector with entries Xii.

tr (X) is the trace function of the square matrix X.

II. RELATED WORKS

A. SRC

Wright et al. considered the following model

argmin
x

‖y − Ax‖22 + λ ‖x‖0 (2)

where the query sample is represented as a linear combination

of all labeled training samples. Suppose the training samples

from the same subject to be in a single subspace, therefore the

l0-norm forces the query sample to be sparsely represented

and we hope that the training samples significantly contribute

to the representation are from the same subspace with the

query.

However, (2) is an NP-hard problem. It has been proved

that, if x is sparse enough, the solution of l0 minimization

problem (2) is equivalent to the solution of the following l1
minimization problem called SRC

argmin
x

‖y − Ax‖22 + λ ‖x‖1 (3)

Many efficient methods have been proposed to solve this

problem [22]–[24]. Further analysis showed that if training

data are highly correlated, to achieve the sparse goal, SRC

may randomly select one sample. This randomness could

cause the SRC unstable and lead to misclassification by

selecting the sample from the wrong subject.

B. CRC_RLS

Lei Zhang et al. indicated that it is the CR, but not the l1-

norm sparsity, that plays an essential role for classification in

SRC. Therefore they proposed to use the l2-norm, which can

have similar classification results but with significantly lower

complexity

argmin
x

‖y − Ax‖22 + λ ‖x‖22 (4)

However, when columns of A are orthogonal to each other,

we need many samples to faithfully represent y, then the

discrimination ability of (4) becomes weaker.

C. TL

Grave et al. proposed a new norm named Trace Lasso (TL)

norm ‖ADiag (x)‖∗. It is shown that TL interpolates between

l2-norm and l1-norm. Its behaviour adaptively depends on

the correlation of training data. When all columns of A are

the same, the result of TL is the same as that of l2-norm

of x. When all columns of A are orthogonal to each other,

the result of TL is the same as that of l1-norm of x. So TL

norm shares the advantages of l1-norm and l2-norm. Using it

as the regularization term, the following problem is obtained

argmin
x

‖y − Ax‖22 + λ ‖ADiag(x)‖∗ (5)

TL naturally clusters the highly correlated initial sampling

data A. However, it is well known that face images include

much information, such as identity and variations (e.g. illu-

mination and expression). In the uncontrolled environment,

variation information can be more significant than identity.

In this case, the correlation will depend more on variations

than identity. Therefore, face images from different subjects

with similar variations could have a higher correlation than

those from the same subject but with different variations.

As a result, TL naturally clusters the samples with similar

variations together. The outcome of TL is contradictory to

the goal of identification, which is to cluster the samples

according to their identities.

D. STL

For a recognition task, if the labeling information is available,

by integrating the labeling information with TL, Jian Lai et al.

proposed a method named STL. Their method is as following

argmin
x

‖y − Ax‖1 + λ ‖GDiag(x)‖∗ (6)

in which a class dependent matrix G ∈ Rm×n is introduced

in the trace lasso term, where G = [G1,G2, · · · ,Gc] and

Gi ∈ Rm×ni , here ni is the number of training samples in the

ith class and c is the number of training classes. In Gi, all

elements in the ith row are one and those in the other rows

are zero. With G, the correlation of column vectors within

the class is one and that between the classes is zero. This
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method can cluster the samples from the same subject but

with different variation information together, which conforms

to the goal of image recognition.

In all the above methods, CR is used, that is, the query

image is considered as a linear combination of all train-

ing samples. The query image lies in the linear subspace

spanned by the training data from the same subject. When

this subspace has sufficient samples and can be expanded by

these samples, namely it is complete, the query sample can

be faithfully represented and representation error approaches

zero. Unfortunately, sometimes image classification may be

a typical small-sample-size problem, even the amount of

samples may not meet the completeness requirement, not to

mention having to label all the training samples. When only a

small number of labeled images are available, they will lead

to wrong classification results.

III. PROPOSED APPROACH

A. THE PROPOSED MODEL

Nowadays, it is easy to collect unlabeled samples because of

the convenience supplied by Internet. MRSSL successfully

exploits the local structure of data distribution including both

labeled and unlabeled samples. With the unlabeled samples,

which are from various different subjects, the number of

samples from the same class with the query is firstly increased

and therefore the representation ability is improved. Besides,

the unlabeled images can be automatically labeled using the

proposed model rather than manual participation.

Manifold usually means the graph locally having the prop-

erty of Euclidean space. We assume all samples lie on a

low dimensional manifold which is embedded in a high

dimensional Euclidean space. Images of the same class have

the same label and lie on a sub-manifold. Since manifold

locally can be approximated as a linear space, any point

on it can be approximated by the linear combination of the

neighboring points. Consider the query sample y ∈ Rm as a

collaborative representation of all training samples A = [a1,

a2, · · · , an] ∈ Rm×n, then only the linear representation coef-

ficients, which are correlated with the data on the same sub-

manifold with y and at the neighborhood of y, are nonzero and

the other coefficients are all zero. This is equivalent to find a

kind of sparse representation of y about all training samples.

Fig.1 (a) is a practical example where there are two classes

of data and only two samples (one for each class) are labeled.

These two labeled data are marked with blue circle and

orange cross respectively. The other points are all unlabeled

so we need to find the labels of all these data. This is a very

difficult clustering task due to the lack of labeled data. For

the convenience of illustration, Fig.1 (a) is simply shown as

Fig.1 (b). The data in Class one are shown as small triangles

and data in Class two are shown as black dots. The two

curves represent two sub-manifolds associated with the two

classes. In full-supervised case, that is, only labeled samples

can be used. Therefore the point markedwith red star can only

be represented with the blue circle point and orange cross

FIGURE 1. An example of data classification. (a) Two classes of data with
only two labeled data, (b) The sketch of (a).

point. Since these three points are in the same linear space

(the black straight line through the three points), the red star

point can be represented as the linear combination of the blue

circle point and orange cross point. And both representation

coefficients may not be zero, which implies the red star point

can be classified to Class one or Class two. This may lead to a

wrong classification result. While as the unlabeled points are

added and under the assumption of image manifold, the red

star point can be approximately represented as the linear

combination of the points on the tangent plane of the sub-

manifold (the blue straight line), and all these points are from

Class two. This is the classification result we expect.

We measure the reconstruction error with l1-norm, which

is much more robust than l2-norm to handle real-world con-

tamination.

argmin
x

‖y − Ax‖1 (7)

There are two regularization terms in our model.

97364 VOLUME 8, 2020
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The first term is the manifold Laplacian regularization

υ

2

∑n

i,j=1

∥

∥zi − zj
∥

∥

2

2
Sij (8)

υ is the regularization parameter used to adjust the smooth-

ness of manifold. Assume S =
(

Sij
)

n×n
is a matrix with

element Sij being the similarity between two samples ai and

aj. The similarity matrix is used to obtain the labels of the

unlabeled training samples. Let

Sij=











exp

(

−
∥

∥ai−aj
∥

∥

2

σ 2

)

, ai, aj is k-nearest neighbor

0, otherwise

(9)

For alleviating the number of parameters, here the similarity

Sij only takes value 0 or 1. S can be simplified as

Sij =

{

1, ai, aj is k-nearest neighbor

0, otherwise
(10)

(10) is the exceptional case of (9) as σ → ∞. Equation (8)

means when similarity degree between ai and aj is 1, their

labels should be as same as possible.

Using all the training samples aj (j = 1, 2, · · · , n) as

nodes, ai and aj have a connection between them as Sij = 1

and no connection as Sij = 0. Then we can obtain a graph

of all the samples. Since for each sample the most similar

sample must come from the same class with it, under an

appropriate threshold k (note that a small k will be fine in

formula (10)), each node must connect with at least one node

on the same sub-manifold. Then through the function of man-

ifold Laplacian regularization (8), the label can be propagated

from the labeled nodes to unlabeled nodes along the connec-

tions. The connected nodes (samples cluster) therefore can

share the same label. This can be simply illustrated by Fig.2,

where there are two classes of data and only two are labeled

(one for each class and tagged with blue circle and orange

cross separately). The other points are all unlabeled. For each

class the label can be properly propagated to unlabeled data

along the connections because of the function of the manifold

Laplacian regularization.

The second regularization, a variant Trace Lasso norm is

proposed as follows

‖ZDiag(x)‖∗ (11)

The TL term ‖ZDiag(x)‖∗ can be considered as an

approximation to the rank of ZDiag(x). We set Zi =
[

zi1, z
i
2, · · · , zini

]

∈ Rc×ni is composed of the label vectors of

all samples from ith class. Since the label can be accurately

propagated from labeled data to unlabeled data among the

samples on the same sub-manifold, Zi will have the structure

that all the elements in ith row are one and those in other rows

are zero. Therefore, the formula (11) can automatically seek

a sparsity of the number of classes, which means the query

image is represented by a small number of groups. Once one

class is selected, it is in favor of using more samples from the

FIGURE 2. Semi-supervised classification on manifold.

same class, just as that illustrated in [8]. Therefore, the second

regularization forces the group sparsity, and in each group,

the training samples are fully used. This sparsity between

groups and density within a group are preferred to the aim

of image classification.

As a sum of above, the complete model we propose is

argmin
x, Z

‖y − Ax‖1 + λ ‖ZDiag (x)‖∗

+
υ

2

∑n

i,j=1

∥

∥zi − zj
∥

∥

2

2
Sij +

∑n

j=1
Ujj
∥

∥zj − gj
∥

∥

2

2
(12)

This model is a generalization of STL. If all the training

samples are labeled, namely Z is known, the third and fourth

terms will automatically disappear, then the formula (12) is

the same with that of STL. If all training samples or a part of

them are unlabeled, we can obtain the unknown labels at the

same time of identifying the query image by (12).

Assume G =
(

gj
)n

j=1
∈ Rc×n and Djj =

∑n
i=1 Sij, D is a

diagonal matrix, L = D − S is the graph Laplacian matrix.

Then (12) can be reformulated as

argmin
x, Z

‖y − Ax‖1 + λ ‖ZDiag (x)‖∗

+υtr
(

ZLZT
)

+ tr((Z − G)U (Z − G)T) (13)

B. OPTIMIZATION

Since the first two terms of formula (13) are not differen-

tiable, this makes it impossible to achieve the solution directly

through optimization methods such as gradient descent. The

original problem is converted to the following equivalent

constrained problem

argmin
e, J, Z, x

‖e‖1 + λ ‖J‖∗ + υtr
(

ZLZT
)

+tr((Z − G)U (Z − G)T)

s.t. e = y − Ax, J = ZDiag(x) (14)
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We use the ALM scheme to derive the following uncon-

strained optimization problem

argmin
e, J, Z, x

L (e, J, Z, x) = ‖e‖1 + λ ‖J‖∗ + υtr
(

ZLZT
)

+tr((Z − G)U (Z − G)T) + θ
T (y − Ax − e)

+tr
(

YT (ZDiag (x) − J)
)

+
µ

2

(

‖y − Ax − e‖22 + ‖ZDiag (x) − J‖2F

)

(15)

where Y ∈ Rc×n and θ ∈ Rm are the Lagrangian multipliers,

µ > 0 is the penalty parameter. Instead of optimizing all

arguments simultaneously, we solve them individually and

iteratively using GS-ADMM.

By fixing J, Z, x, we optimize e by the following sub-

problem

argmin
e

‖e‖1 + θ
T (y − Ax − e) +

µ

2
‖y − Ax − e‖22

= argmin
e

‖e‖1 +
µ

2

∥

∥

∥

∥

e −

(

y − Ax +
θ

µ

)∥

∥

∥

∥

2

2

(16)

The solution of (16) can be achieved via soft-thresholding.

To update J, the following sub-problem is solved

argmin
J

λ ‖J‖∗ + tr
(

YT (ZDiag(x) − J)
)

+
µ

2
‖ZDiag(x) − J‖2F

= argmin
J

λ ‖J‖∗ +
µ

2

∥

∥

∥

∥

J −

(

ZDiag(x) +
Y

µ

)∥

∥

∥

∥

2

F

(17)

Problem (17) can be solved by singular value thresholding

operator.

The optimized x can be obtained as

argmin
x

θ
T (y − Ax − e) + tr

(

YT (ZDiag(x) − J)
)

+
µ

2

(

‖y − Ax − e‖22 + ‖ZDiag(x) − J‖2F

)

(18)

This problem can be solved by solving the following linear

system

µ

(

ATA + Diag(ZTZ)
)

x = diag
(

µJTZ − YTZ
)

+AT
θ + µAT (y − e) (19)

As the left multiplied matrix
(

ATA + Diag(ZTZ)
)

is

inversible, x can be solved directly.

By fixing e, J, x, we optimize Z by the following sub-

problem

argmin
Z

υtr
(

ZLZT
)

+ tr((Z − G)U (Z − G)T)

+tr
(

YTZDiag(x)
)

+
µ

2
‖ZDiag(x) − J‖2F (20)

It can be solved using the following equation

Z
(

µDiag(x)2 + 2υL + 2U
)

= µJDiag(x)

−YDiag(x) + 2GU (21)

TABLE 1. Algorithm 1.

The Lagrangian multipliers are updated as

Y = Y + µ (ZDiag(x) − J) (22)

θ = θ + µ (y − Ax − e) (23)

The steps (16), (17), (19), (21), (22), (23) are repeated until

the convergence conditions are attained. Algorithm 1 summa-

rizes the procedures to solve the optimization problem. The

numerical experiments in the next section can confirm the

convergence of this algorithm.

C. CLASSIFICATION

Once the matrix Z is obtained, for the unlabeled data, the ele-

ment
∣

∣Zij
∣

∣ describes the probability of jth data belonging to

ith class. If Zij is the element with the largest absolute value

in vector zj, we set Zij = 1 and all other elements are set to

zero.

We classify the query sample according to the representa-

tive coefficients vector x. The l1-norm is still used to measure

the reconstruction error to be consistent with the first term of

(13). The reconstruction error of each class is

r (i) =

∥

∥

∥

∥

y − A ×

(

Zi × diag (x)
)T
∥

∥

∥

∥

1

(i = 1, 2, · · · , c)

(24)
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Here, product Zi × diag (x) is to extract the representation

coefficients correlated to ith class. r (i) is the representative

error of using all the training samples from ith class to repre-

sent y. Finally, the query sample is labeled to the class with

the minimum residual as following

i∗ = argmin
i

r (i) (25)

IV. EXPERIMENTAL RESULTS

As an important application of image classification, face

recognition is mainly considered in this section. Of course,

our method can be extensively applied to other data classi-

fication task as long as the data distribution conforms to the

manifold assumption. The proposedmethod is comparedwith

the state-of-the-art approaches including SRC, RCRC, TL,

STL, nuclear norm based matrix regression (NMR) classifi-

cation [25], weighted group sparse classifier (WGSC) [26],

iterative re-constrained group sparse classification (IRGSC)

[27]. We use three popular face databases: Extended Yale B

database [28], AR Face Database [29] and ORL [30]. For

the first two databases and the methods SRC, TL and STL,

we use the similar setting as that used in [8] and directly

cite some results reported in [8]. We compute the recognition

accuracy (RA) as

Recognition Accuracy =

Number of correctly

recognized testing data

Total number of

testing data

(26)

The average RA (ARA) are the results of over 10 runs across

various methods for each testing image of every subject.

We directly utilize the grey level as the feature in all exper-

imental scenarios for all approaches. The best results are

shown with bold font in all the tables below.

There are three parameters needed to be tuned in our

method: λ, υ and k , where λ and υ are used to balance

the roles of two regularization terms. k is the parameter

used to choose the most relevant samples for each data in

formula (10). Because the label can be accurately propagated

from labeled data to unlabeled data by manifold Laplacian

regularization, k can take a small value. In the follow-

ing experimental scenarios, k = 2 achieves good results.

Fig.3 shows variations of ARAwith parameters λ and υ. Here

for each subject from Extended Yale B database we randomly

choose 13 images with 8 labeled images and 5 unlabeled

images as training set. Other 32 images are used for testing.

Then we run our algorithm 10 times and calculate ARA.

We can see when the value of λ is taken from interval [1, 10],

the highest ARA can be obtained, here paramenter υ is fixed

as 1. As λ < 1, ARA rapidly decreases. In the same way,

we can get the best choice for υ is [1, 22] as fixing λ = 1. The

ARA is more sensitive to small λ and υ. Experiments show

these choices also achieve the best results in all the following

experimental setting. The parameters for each other method

are also finely tuned to achieve its best result.

FIGURE 3. Variations of ARA with each parameter.

A. EXTENDED YALE B DATABASE

There are 38 subjects in Extended Yale B database. Each sub-

ject includes about 64 face images captured under different

illuminations. All the images are down-sampled to 48∗42. For

per subject, we randomly select t = 8 images for training for

the methods SRC, RCRC, TL, IRGSC, NMR, WGSC and

STL. These are all fully supervised methods, which means

they require all the training samples to be labeled. Based

on the t labeled images, unlabeled samples are added then

we check the recognition effect of our method. The number

of unlabeled training images is denoted as s, therefore the

training images for our method is t + s in total. 32 images

are used for testing for all the eight methods. The ARA are

reported in Table 2. With the choice of s = 24, our method

can achieve best result than the other seven methods.

Table 3 shows the influence of the value taken for s on

ARA in our method. When s equals to 0, namely our model

degenerates to that of STL, the ARA of our method is the

same with that of STL method. While when the unlabeled

samples are added, our method achieves higher and higher

ARA with increase of the number of unlabeled images.
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TABLE 2. Comparison of ARA on extended Yale B database.

TABLE 3. Influence of s on ARA.

TABLE 4. Comparison of ARA on AR database.

B. AR DATABASE

AR database includes 126 subjects. For each subject, 26 face

images are taken in two separate sessions. Each session

is with the expression, illumination and disguise variation.

In this paper, a subset of 100 subjects is used with each

subject getting 14 images selected and only with expression

or illumination changing. All images are down-sampled to

50∗40. For each subject, t = 4 face images from Session

1 are used for training for the methods SRC, RCRC, TL,

IRGSC, NMR, WGSC and STL, and all these images are

labeled. s = 3 unlabeled images of Session 1 are added to

form the training set of our method. All the samples from

Session 2 are used for testing. Table 4 shows the results

of all involved methods. With the addition of the unlabeled

samples, our method can achieve better results than all the

other seven methods.

C. ORL DATABASE

The ORL data set consists of face images of 40 distinct

subjects, each subject having 10 face images under vary-

ing lighting conditions, with different facial expressions and

facial details. In our experiment each image is down-sampled

from 112×92 to 32×32. For each subject, t = 3 labeled face

images are used for training for the methods SRC, RCRC,

TABLE 5. Comparison of ARA on ORL database.

TL, IRGSC, NMR, WGSC and STL, and s = 2 unlabeled

images are added for training in our method. 5 images are

used for testing. Table 5 gives the ARA of different methods.

We can observe that our method can get better classifica-

tion results than other methods due to the addition of the

unlabeled samples, which further confirms the role of the

unlabeled data.

V. CONCLUSION AND DISCUSSION

For the small-sample-size case especially when only a small

number of labeled images are available and for the use of the

unlabeled samples, a semi-supervised sparse image classifi-

cation technique is proposed. The query image is collabora-

tively represented by thewhole training data, whether they are

labeled or unlabeled. Based on the assumption that images

of the same class lie on a sub-manifold and the local linear

property of manifold, an image can be approximately rep-

resented as the linear combination of its neighbouring data.

There are two regularization terms. A generalized trace lasso

regularization term is proposed by combing semi-supervised

samples with a variant trace lasso norm. This term seeks the

sparsity of the number of classes instead of the number of

training samples, which directly coincides with the objective

of data classification. By using manifold Laplacian regular-

ization, the label of labeled images can be propagated to

unlabeled images within a class along the distance of samples

manifold. Both aims of image recognition and finding out the

unknown identities of samples are achieved simultaneously.

ALMMethod and GS-ADMM are applied to solve the whole

model.

Nowadays a discussion hot point in computational imaging

is if it is the time to discard the classic methods and fully

replace them by deep learning based methods. On the one

hand, a prerequisite for deep learning based methods is a

huge amount of samples. However, there are indeed some

situations where there are only a small number of samples,

at this time the knowledge based modeling methods are more

suitable. On the other hand, classical methods have clear

structure and theoretical guarantee. They are based on the

knowledge of the problem we are trying to solve rather than

seeking for best performance by intuitively choosing archi-

tectures or trial an error. In the futurework, it is possibly better

to integrate the classical knowledge based approaches into

the deep learning architecture, making the algorithm enjoy
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both the flexibility of the deep learning based methods and

the clear structure of the classical approaches. For example,

the result of our algorithm is dependent on the selection

of the similarity matrix S, if S is not properly selected the

label can’t be accurately propagated. We will try to solve this

problem and all the parameters that need to be determined by

designing a deep network.
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