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ABSTRACT Since the cost of labeling data is getting higher and higher, we hope to make full use of the large
amount of unlabeled data and improve image classification effect through adding some unlabeled samples for
training. In addition, we expect to uniformly realize two tasks, namely the clustering of the unlabeled data and
the recognition of the query image. We achieve the goal by designing a novel sparse model based on manifold
assumption, which has been proved to work well in many tasks. Based on the assumption that images of the
same class lie on a sub-manifold and an image can be approximately represented as the linear combination
of its neighboring data due to the local linear property of manifold, we proposed a sparse representation
model on manifold. Specifically, there are two regularizations, i.e., a variant Trace lasso norm and the
manifold Laplacian regularization. The first regularization term enables the representation coefficients
satisfying sparsity between groups and density within a group. And the second term is manifold Laplacian
regularization by which label can be accurately propagated from labeled data to unlabeled data. Augmented
Lagrange Multiplier (ALM) scheme and Gauss Seidel Alternating Direction Method of Multiplier (GS-
ADMM) are given to solve the problem numerically. We conduct some experiments on three human face
databases and compare the proposed work with several state-of-the-art methods. For each subject, some
labeled face images are randomly chosen for training for those supervised methods, and a small amount of
unlabeled images are added to form the training set of the proposed approach. All experiments show our

method can get better classification results due to the addition of unlabeled samples.

INDEX TERMS Image classification, manifold, semi-supervised, sparse, trace lasso.

I. INTRODUCTION

Image classification is one of the most active applications
in image processing, computer vision and machine learning
and has been extensively studied by numerous researchers.
Meanwhile, numerous image classification and representa-
tion methods have been proposed. Wright ef al. proposed a
Sparse Representation Coding (SRC) method by applying the
11-norm based sparse representation to Face Recognition (FR)
[1]. SRC has shown interesting results in image classification
and recognition and has been widely used and extended, as
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evidenced by its many followup papers. Some later works,
on the other hand, began to investigate the role of sparsity
in image representation [2]-[5]. Yang er al. [4] gave an
insight into SRC and provided some theoretical support for its
effectiveness. They argued that it is 1; constraint rather than
lp that makes SRC effective. Lei Zhang et al. indicated that
most literatures emphasized too much on the role of 1;-norm
sparsity in image classification. They demonstrated that it
is actually the Collaborative Representation (CR), i.e., using
the training samples from all classes to represent the query
sample, but not the 1;-norm, that plays the essential role in
SRC. Therefore, they proposed the CR based classification
with regularized least square (CRC_RLS) [5], which has
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significantly less complexity than SRC but leads to very com-
petitive classification results. Zhang et al. [6] extended their
CRC to the robust version, robust collaborative representation
classification (RCRC), using the Laplacian estimator to deal
with severe random pixel noise and illumination changes.
Grave et al. proposed a Trace Lasso (TL) norm [7]. It is
proved that TL interpolates between l;-norm and 1;-norm.
Its behaviour is adaptively related to the correlation of the
training data. For a recognition task, if the labeling infor-
mation is available, by integrating the labeling information
with TL, Jian Lai et al. proposed a method named Supervised
Trace Lasso (STL) [8]. This method can cluster the samples
from the same subject but with different variation information
together, which conforms to the goal of identification.

All the above works consider the query sample lies in the
linear space spanned by the training samples from the same
class. However, in practice, taking face image for instance,
when reflectance is typically non-Lambertian and the pose
of the subject varies, the data do not necessarily conform
to linear subspace models. On the other hand, these meth-
ods are supervised methods, that is, they require the label-
ing information of all training samples. They are effective
only in the small-sample-size case because when sample-
size gets larger the computing burden for these methods will
get heavy and particularly the cost of labeling data may be
unaffordable. In recent years, a lot of methods based on
deep learning [9]-[13] have been proposed. These methods
obtained very competitive results on image classification and
recognition task. Even though there are only a small amount
of labeled samples, deep learning can also be used through
semi-supervised network as long as the quantity of samples is
enough. However, in some practical applications, especially
for some cold research fields or some institutions with limited
condition, public data sets may not be able to meet their
requirement and data acquisition is also very difficult. As
a result, they have to face the small-sample-size situation,
which is the focus of our work here. We will show that when
a small number of unlabeled samples are added to training set
the classification result can be effectively improved.

Manifold regularized semi-supervised learning (MRSSL)
is one of the most successful methods in computational
imaging. A set of N by M images may be better modeled
by a manifold embedded in an NM-dimensional Euclidean
space, called an image manifold [14]. MRSSL exploits the
local structure of data distribution including both labeled and
unlabeled samples to leverage the generalization ability of
a learning model. There are many representative works in
MRSSL, in which the most prominent is Laplacian regular-
ization which determines the underlying manifold by using
the graph Laplacian [15], [16]. With the merits of simple
calculation and promising performance, Laplacian regular-
ization based semi-supervised learning has received extensive
attention and many algorithms have been developed, includ-
ing Laplacian regularized support vector machines, Laplacian
regularized kernel least squares [15], [17], and Laplacian reg-
ularized nonnegative matrix factorization [18]. In addition,
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P-Laplace regularization is proposed in [19] to preserve the
local geometry and is applied to support vector machines
and kernel least squares. Reference [20] presented a hyper
graph P-Laplacian regularization for remotely sensed image
recognition. P-Laplacian is a natural generalization of the
standard graph Laplacian. Besides Laplace regularization,
[21] presented Hessian regularized multiset canonical corre-
lations for multiview dimension reduction.

In this paper, a semi-supervised sparse image classification
model on manifold is presented as follows

arg min [ly = AXI + 4 | ZDiag (9.
X,

v
5 2 = alysi+ 30 Uil —gl;

The query image y € R™ is first collaboratively represented
by the whole training samples A = [aj, ap, --- , a,] € R™*",
whether they are labeled or unlabeled. x is the representation
coefficient. We assume the images of one class lie on a sub-
manifold. Since manifold locally is a linear space, the query
image can be approximately represented as the linear com-
bination of its neighbour data, namely only the coefficients
correlated with these data are not zero in the collaborative
representation.

Assume among the whole n training samples, only samples
whose index belongs to S have identity information. Let z; €
R (1 < j < n) be the label vector of sample aj, here c is the
number of classes. Since we don’t know ¢, the dimension of
z; just needs to be set larger than ¢ and at most equals to
min {m, n}. Here, for simplicity, we still use ¢ to represent
the dimension of z;. The label matrix is Z = [z1,--- ,2,] €
RO, Assume g; = (gij) € R°(j € S) is the label vector of
the labeled sample a;. The entries of g; is very simple. g;; = 1
when a; is in the ith class, while g;; = 0 otherwise. If a;
already has a label, namely j € §, then z; = g;. This can
be fulfilled by the last term in (1), in which U € R"™" is a
diagonal matrix, Uj; takes a large value when a; is labeled,
otherwise Uj; = 0. If a; is not labeled, we set g; to be a zero
vector and z; needs to be solved.

We present two regularization terms. The first regulariza-
tion term, a variant Trace Lasso norm ||ZDiag (x)||,, forces
the group sparsity instead of the sample sparsity, which means
the query image is presented by a small number of groups,
and in each group, the training samples are fully used. This
sparsity between groups and density within a group is pre-
ferred to the aim of image classification. The second one is the
manifold Laplacian regularization Zf’ =1 ||z,- — 1z ||§Sl:,~, with
which distance is calculated along the manifold of samples
and for each class label can be appropriately propagated
from labeled samples to unlabeled samples, then the accurate
classification can be reached. A and v are two parameters used
to balance the roles of two regularization terms.

The rest of the paper is organized as follows. The
related works to our method are analysed in Section 2.
In Section 3, we present the manifold Laplacian regularized
semi-supervised sparse image classification model. And two
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regularization terms are presented. The first one is a variant
Trace Lasso regularization by combining semi-supervised
samples with Trace Lasso norm. The second one is the
manifold Laplacian regularization. The numerical methods,
i.e. the Augmented Lagrange Multiplier (ALM) scheme and
Gauss Seidel Alternating Direction Method of Multiplier
(GS-ADMM) are given in Section 4 to solve the problem
numerically. In Section 5, through experiments with several
commonly used databases, we compare the performance of
the proposed method with several state-of-the-art methods to
show the effect of our method. Concluding and discussing
remarks are made in Section 7. As far as we know, it is the first
time to use unlabeled samples in the sparse representation
based image classification methods. Compared to the meth-
ods based on deep learning, our method belongs to the type
of knowledge-based modeling approaches which has clear
structure and better theoretically interpretability.

Some notations used in this work are defined as follows.

n
For a vector X = (x1, X2, -+ , X)L, X[l = [ |x;|? is the
i=1
n
I, norm, |x|l; = > |x;| is the 1} norm, x|l is the 1y norm
i=1
which counts the number of nonzero elements of vector x.
Diag (x) is a diagonal matrix whose diagonal entries are X.
For a matrix X = (Xj), x; and ¥ represent the jth column

and jth row of X separately, | X|lg = /> |Xl;,'|2 denotes the
Frobenius norm, [|X]|, = Y o; (X) is the nuclear norm, here
o; (X) is the ith singular value of X. XT refers to the transpose
of X. Diag (X) describes the diagonal matrix with diagonal
components being Xj;, diag (X) is a vector with entries Xj;.
tr (X) is the trace function of the square matrix X.

Il. RELATED WORKS
A. SRC
Wright ef al. considered the following model

arg min [ly — Ax|3 + 2 [Ix[lo @)
X

where the query sample is represented as a linear combination
of all labeled training samples. Suppose the training samples
from the same subject to be in a single subspace, therefore the
lp-norm forces the query sample to be sparsely represented
and we hope that the training samples significantly contribute
to the representation are from the same subspace with the
query.

However, (2) is an NP-hard problem. It has been proved
that, if x is sparse enough, the solution of lp minimization
problem (2) is equivalent to the solution of the following 1;
minimization problem called SRC

argmin ||y — Ax||3 + A |Ix[|; 3
X

Many efficient methods have been proposed to solve this
problem [22]-[24]. Further analysis showed that if training
data are highly correlated, to achieve the sparse goal, SRC
may randomly select one sample. This randomness could
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cause the SRC unstable and lead to misclassification by
selecting the sample from the wrong subject.

B. CRC RLS

Lei Zhang et al. indicated that it is the CR, but not the 1;-
norm sparsity, that plays an essential role for classification in
SRC. Therefore they proposed to use the I,-norm, which can
have similar classification results but with significantly lower
complexity

arg min ||y — Ax||5 + A |[x||3 “
X

However, when columns of A are orthogonal to each other,
we need many samples to faithfully represent y, then the
discrimination ability of (4) becomes weaker.

CTL

Grave et al. proposed a new norm named Trace Lasso (TL)
norm [|ADiag (x)||,.. It is shown that TL interpolates between
I,-norm and 1j-norm. Its behaviour adaptively depends on
the correlation of training data. When all columns of A are
the same, the result of TL is the same as that of 1,-norm
of x. When all columns of A are orthogonal to each other,
the result of TL is the same as that of 1;-norm of x. So TL
norm shares the advantages of 1;-norm and I-norm. Using it
as the regularization term, the following problem is obtained

argmin |y — Ax||3 + A | ADiag(x)|l, Q)
X

TL naturally clusters the highly correlated initial sampling
data A. However, it is well known that face images include
much information, such as identity and variations (e.g. illu-
mination and expression). In the uncontrolled environment,
variation information can be more significant than identity.
In this case, the correlation will depend more on variations
than identity. Therefore, face images from different subjects
with similar variations could have a higher correlation than
those from the same subject but with different variations.
As a result, TL naturally clusters the samples with similar
variations together. The outcome of TL is contradictory to
the goal of identification, which is to cluster the samples
according to their identities.

D. STL

For arecognition task, if the labeling information is available,
by integrating the labeling information with TL, Jian Lai et al.
proposed a method named STL. Their method is as following

arg min ||y — Ax||; 4+ A [|GDiag(x)/l,. 6)
X

in which a class dependent matrix G € R™*" is introduced
in the trace lasso term, where G = [G{, Gy, -+, G.] and
G; € R™"  here n; is the number of training samples in the
ith class and c is the number of training classes. In G, all
elements in the ith row are one and those in the other rows
are zero. With G, the correlation of column vectors within
the class is one and that between the classes is zero. This
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method can cluster the samples from the same subject but
with different variation information together, which conforms
to the goal of image recognition.

In all the above methods, CR is used, that is, the query
image is considered as a linear combination of all train-
ing samples. The query image lies in the linear subspace
spanned by the training data from the same subject. When
this subspace has sufficient samples and can be expanded by
these samples, namely it is complete, the query sample can
be faithfully represented and representation error approaches
zero. Unfortunately, sometimes image classification may be
a typical small-sample-size problem, even the amount of
samples may not meet the completeness requirement, not to
mention having to label all the training samples. When only a
small number of labeled images are available, they will lead
to wrong classification results.

ill. PROPOSED APPROACH

A. THE PROPOSED MODEL

Nowadays, it is easy to collect unlabeled samples because of
the convenience supplied by Internet. MRSSL successfully
exploits the local structure of data distribution including both
labeled and unlabeled samples. With the unlabeled samples,
which are from various different subjects, the number of
samples from the same class with the query is firstly increased
and therefore the representation ability is improved. Besides,
the unlabeled images can be automatically labeled using the
proposed model rather than manual participation.

Manifold usually means the graph locally having the prop-
erty of Euclidean space. We assume all samples lie on a
low dimensional manifold which is embedded in a high
dimensional Euclidean space. Images of the same class have
the same label and lie on a sub-manifold. Since manifold
locally can be approximated as a linear space, any point
on it can be approximated by the linear combination of the
neighboring points. Consider the query sample y € R™ as a
collaborative representation of all training samples A = [aj,
a, -+, a,] € R™*", then only the linear representation coef-
ficients, which are correlated with the data on the same sub-
manifold with y and at the neighborhood of y, are nonzero and
the other coefficients are all zero. This is equivalent to find a
kind of sparse representation of y about all training samples.

Fig.1 (a) is a practical example where there are two classes
of data and only two samples (one for each class) are labeled.
These two labeled data are marked with blue circle and
orange cross respectively. The other points are all unlabeled
so we need to find the labels of all these data. This is a very
difficult clustering task due to the lack of labeled data. For
the convenience of illustration, Fig.1 (a) is simply shown as
Fig.1 (b). The data in Class one are shown as small triangles
and data in Class two are shown as black dots. The two
curves represent two sub-manifolds associated with the two
classes. In full-supervised case, that is, only labeled samples
can be used. Therefore the point marked with red star can only
be represented with the blue circle point and orange cross
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FIGURE 1. An example of data classification. (a) Two classes of data with
only two labeled data, (b) The sketch of (a).

point. Since these three points are in the same linear space
(the black straight line through the three points), the red star
point can be represented as the linear combination of the blue
circle point and orange cross point. And both representation
coefficients may not be zero, which implies the red star point
can be classified to Class one or Class two. This may lead to a
wrong classification result. While as the unlabeled points are
added and under the assumption of image manifold, the red
star point can be approximately represented as the linear
combination of the points on the tangent plane of the sub-
manifold (the blue straight line), and all these points are from
Class two. This is the classification result we expect.

We measure the reconstruction error with 1;-norm, which
is much more robust than lp-norm to handle real-world con-
tamination.

arg min |y — Ax||; (N
X
There are two regularization terms in our model.
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The first term is the manifold Laplacian regularization

U 2

) Zi,j:l |zi — 2] 5S; ®)
v is the regularization parameter used to adjust the smooth-
ness of manifold. Assume S = (Si/)nxn is a matrix with

element S;; being the similarity between two samples a; and
a;. The similarity matrix is used to obtain the labels of the
unlabeled training samples. Let

exp M a;, a; is k-nearest neighbor
Sl] = 0'2 ’ "

0, otherwise

C))

For alleviating the number of parameters, here the similarity
S;j only takes value O or 1. S can be simplified as

17
Sij = 0

(10) is the exceptional case of (9) as ¢ — oo. Equation (8)
means when similarity degree between a; and a; is 1, their
labels should be as same as possible.

Using all the training samples a; (j=1,2,---,n) as
nodes, a; and a; have a connection between them as S;; = 1
and no connection as S;; = 0. Then we can obtain a graph
of all the samples. Since for each sample the most similar
sample must come from the same class with it, under an
appropriate threshold k (note that a small k& will be fine in
formula (10)), each node must connect with at least one node
on the same sub-manifold. Then through the function of man-
ifold Laplacian regularization (8), the label can be propagated
from the labeled nodes to unlabeled nodes along the connec-
tions. The connected nodes (samples cluster) therefore can
share the same label. This can be simply illustrated by Fig.2,
where there are two classes of data and only two are labeled
(one for each class and tagged with blue circle and orange
cross separately). The other points are all unlabeled. For each
class the label can be properly propagated to unlabeled data
along the connections because of the function of the manifold
Laplacian regularization.

The second regularization, a variant Trace Lasso norm is
proposed as follows

a;, a; is k-nearest neighbor
i £ (10)
otherwise

ZDiag(x)]l., Y

The TL term |ZDiag(x)|l, can be considered as an
approximation to the rank of ZDiag(x). We set Z; =
(2.2}, -, zili] € R is composed of the label vectors of
all samples from ith class. Since the label can be accurately
propagated from labeled data to unlabeled data among the
samples on the same sub-manifold, Z; will have the structure
that all the elements in ith row are one and those in other rows
are zero. Therefore, the formula (11) can automatically seek
a sparsity of the number of classes, which means the query
image is represented by a small number of groups. Once one
class is selected, it is in favor of using more samples from the
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FIGURE 2. Semi-supervised classification on manifold.

same class, just as that illustrated in [8]. Therefore, the second
regularization forces the group sparsity, and in each group,
the training samples are fully used. This sparsity between
groups and density within a group are preferred to the aim
of image classification.

As a sum of above, the complete model we propose is

argmin |y — Ax||; + | ZDiag (%),
X, Z

v n 2 n 2
5 2 =S+ 30 Uills —gl, a2

This model is a generalization of STL. If all the training
samples are labeled, namely Z is known, the third and fourth
terms will automatically disappear, then the formula (12) is
the same with that of STL. If all training samples or a part of
them are unlabeled, we can obtain the unknown labels at the
same time of identifying the query image by (12).

Assume G = (g/)7:1 €R*and Djj = Y !, S;.Disa
diagonal matrix, L = D — S is the graph Laplacian matrix.
Then (12) can be reformulated as

argmin [ly — Ax||; + A [|[ZDiag (x) |,
X, Z
Joutr (ZLZT) +((Z-G)U@Z -6 13)

B. OPTIMIZATION

Since the first two terms of formula (13) are not differen-
tiable, this makes it impossible to achieve the solution directly
through optimization methods such as gradient descent. The
original problem is converted to the following equivalent
constrained problem

argmin |le|; + A ||J]l. + vtr (ZLZT)

e, J, Z x
+t(Z - G)U(Z - G)T)
s.t. e =y — Ax, J = ZDiag(x) (14)
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We use the ALM scheme to derive the following uncon-
strained optimization problem

argmin Z (e, J, Z, x) = |lell; + A [IJ]l, + vtr (ZLZT)
e, J, Z, x

+r(Z -G UEZ-G)H+6" (y—Ax—e)

+ir (YT (ZDiag (x) — J))

+5 (Ily = Ax — el + | ZDiag (x) — JI}) (15)

where Y € R°*" and @ € R™ are the Lagrangian multipliers,
u > 0 is the penalty parameter. Instead of optimizing all
arguments simultaneously, we solve them individually and
iteratively using GS-ADMM.

By fixing J, Z, x, we optimize e by the following sub-
problem

argmin |le], + 0T (y — Ax —e) + % ly — Ax — ellg
e

0
o)

The solution of (16) can be achieved via soft-thresholding.
To update J, the following sub-problem is solved

2

— argmin [le]| + = (16)
e 2

2

arg min . | J, + tr (YT (ZDiag(x) — J))
J

2 .
+7 | ZDiag(x) - JI3

. 2 . Y|
= argmin A ||J||,, + = ||J — | ZDiag(x) + ;
J

> 7)

F

Problem (17) can be solved by singular value thresholding
operator.
The optimized x can be obtained as

arg min 6T (y—Ax—e)+tr (YT (ZDiag(x) — J))

+5 (Ily = Ax — el + | ZDiagt0 — JIF)  (18)

This problem can be solved by solving the following linear
system

" (ATA 4 Diag(ZTZ)) x = diag (uJTZ - YTZ)
+AT0 +uAT (y—e)  (19)

As the left multiplied matrix (ATA + Diag(ZTZ)) is
inversible, x can be solved directly.

By fixing e, J, X, we optimize Z by the following sub-
problem

arg min vtr (ZLZT) +u(Z -G UEZ-G)T)
V/
T . 1% . 2
e (Y ZDlag(X)) + 5 IZDiagx) —JI7  20)
It can be solved using the following equation

zZ <uDiag(X)2 +2uL + 2U) — JDiag(x)
—YDiag(x) + 2GU (1)
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TABLE 1. Algorithm 1.

Input: Training set A ; query image Y ; known labels

g (jeS);
e=10".

Initialization: £° =107, and all the other variables are initialized

parameters A , U , k ; /’lmax:106 , p=1.1,

to be zero vector or zero matrix. For [ =0,1,2,---

Ji+1 _ZHIDiag(XHl )

while

2& or "y - Ax e
o0

oo

> ¢ do
1. Update e = arg min /(e, Ji, Zi, Xi; 9i, Yi) as problem
e
(16).
2. Update J**' = arg min J(e'”, J,.Z',x'; 0, Y') as
J
problem (17).
3.Solve X' = arg min/(e”] I 7 %0, Y ) using
X
equation (19).
4. Solve Z'*' = argmin \,/"(e"+1 LI 2, x e, Y[) by
z

equation (21).
5. Update the multipliers

Y™ == argmin J(e”l, J oz xt e, Y)
and '
0" =arg min%(e”‘ LI 2 x e, Y )
by (22), (23). 9
6. Update the parameter £/ by ,Lli+l =min (py’ > Hinax ) .

end
Output: Coefficient vector X , the unknown label vectors

z,(j£5).

The Lagrangian multipliers are updated as

Y =Y + u (ZDiag(x) — J) (22)
0=0+pu(y—Ax—e) (23)

The steps (16), (17), (19), (21), (22), (23) are repeated until
the convergence conditions are attained. Algorithm 1 summa-
rizes the procedures to solve the optimization problem. The
numerical experiments in the next section can confirm the
convergence of this algorithm.

C. CLASSIFICATION

Once the matrix Z is obtained, for the unlabeled data, the ele-
ment |Z,-j| describes the probability of jth data belonging to
ith class. If Z;; is the element with the largest absolute value
in vector z;, we set Z; = 1 and all other elements are set to
Zero.

We classify the query sample according to the representa-
tive coefficients vector x. The 1;-norm is still used to measure
the reconstruction error to be consistent with the first term of
(13). The reconstruction error of each class is

r(i) =

. T
y—Ax(lediag(x)) (i=1,2,-,¢

1
(24)
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Here, product Z' x diag (x) is to extract the representation
coefficients correlated to ith class. r (i) is the representative
error of using all the training samples from ith class to repre-
sent y. Finally, the query sample is labeled to the class with
the minimum residual as following

i* = argmin r (i) (25)

1

IV. EXPERIMENTAL RESULTS

As an important application of image classification, face
recognition is mainly considered in this section. Of course,
our method can be extensively applied to other data classi-
fication task as long as the data distribution conforms to the
manifold assumption. The proposed method is compared with
the state-of-the-art approaches including SRC, RCRC, TL,
STL, nuclear norm based matrix regression (NMR) classifi-
cation [25], weighted group sparse classifier (WGSC) [26],
iterative re-constrained group sparse classification IRGSC)
[27]. We use three popular face databases: Extended Yale B
database [28], AR Face Database [29] and ORL [30]. For
the first two databases and the methods SRC, TL and STL,
we use the similar setting as that used in [8] and directly
cite some results reported in [8]. We compute the recognition
accuracy (RA) as

Number of correctly

. recognized testing data
Recognition Accuracy = Total bor of (26)
otal number o

testing data

The average RA (ARA) are the results of over 10 runs across
various methods for each testing image of every subject.
We directly utilize the grey level as the feature in all exper-
imental scenarios for all approaches. The best results are
shown with bold font in all the tables below.

There are three parameters needed to be tuned in our
method: A, v and k, where A and v are used to balance
the roles of two regularization terms. k is the parameter
used to choose the most relevant samples for each data in
formula (10). Because the label can be accurately propagated
from labeled data to unlabeled data by manifold Laplacian
regularization, k can take a small value. In the follow-
ing experimental scenarios, k = 2 achieves good results.
Fig.3 shows variations of ARA with parameters A and v. Here
for each subject from Extended Yale B database we randomly
choose 13 images with 8 labeled images and 5 unlabeled
images as training set. Other 32 images are used for testing.
Then we run our algorithm 10 times and calculate ARA.
We can see when the value of A is taken from interval [1, 10],
the highest ARA can be obtained, here paramenter v is fixed
as 1. As A < 1, ARA rapidly decreases. In the same way,
we can get the best choice for vis [1, 22]asfixing A = 1. The
ARA is more sensitive to small A and v. Experiments show
these choices also achieve the best results in all the following
experimental setting. The parameters for each other method
are also finely tuned to achieve its best result.
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FIGURE 3. Variations of ARA with each parameter.

A. EXTENDED YALE B DATABASE

There are 38 subjects in Extended Yale B database. Each sub-
ject includes about 64 face images captured under different
illuminations. All the images are down-sampled to 48*42. For
per subject, we randomly select ¢+ = 8 images for training for
the methods SRC, RCRC, TL, IRGSC, NMR, WGSC and
STL. These are all fully supervised methods, which means
they require all the training samples to be labeled. Based
on the ¢ labeled images, unlabeled samples are added then
we check the recognition effect of our method. The number
of unlabeled training images is denoted as s, therefore the
training images for our method is ¢ + s in total. 32 images
are used for testing for all the eight methods. The ARA are
reported in Table 2. With the choice of s = 24, our method
can achieve best result than the other seven methods.

Table 3 shows the influence of the value taken for s on
ARA in our method. When s equals to 0, namely our model
degenerates to that of STL, the ARA of our method is the
same with that of STL method. While when the unlabeled
samples are added, our method achieves higher and higher
ARA with increase of the number of unlabeled images.
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TABLE 2. Comparison of ARA on extended Yale B database.

METHODS ARA(%)
SRC 84.94
RCRC 85.96
TL t=8 86.13
IRGSC 89.07
NMR 86.67
WGSC 88.76
STL 90.83.
OURS(s=24) 96.68
TABLE 3. Influence of s on ARA.
ARA(%)

0 90.83

5 92.39

10 94.28

15 95.94

24 96.68

TABLE 4. Comparison of ARA on AR database.

METHODS ARA(%)
SRC 87.5
RCRC 88.53
TL t=4 89.56
IRGSC 89.56
NMR 89.08
WGSC 88.75
STL 91.56
OURS(s=3) 95.36

B. AR DATABASE

AR database includes 126 subjects. For each subject, 26 face
images are taken in two separate sessions. Each session
is with the expression, illumination and disguise variation.
In this paper, a subset of 100 subjects is used with each
subject getting 14 images selected and only with expression
or illumination changing. All images are down-sampled to
50*40. For each subject, t = 4 face images from Session
1 are used for training for the methods SRC, RCRC, TL,
IRGSC, NMR, WGSC and STL, and all these images are
labeled. s = 3 unlabeled images of Session 1 are added to
form the training set of our method. All the samples from
Session 2 are used for testing. Table 4 shows the results
of all involved methods. With the addition of the unlabeled
samples, our method can achieve better results than all the
other seven methods.

C. ORL DATABASE

The ORL data set consists of face images of 40 distinct
subjects, each subject having 10 face images under vary-
ing lighting conditions, with different facial expressions and
facial details. In our experiment each image is down-sampled
from 112 x 92 to 32 x 32. For each subject, t = 3 labeled face
images are used for training for the methods SRC, RCRC,
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TABLE 5. Comparison of ARA on ORL database.

METHODS ARA(%)
SRC 71.13
RCRC 72.33
TL t=3 73.79
IRGSC 72.76
NMR 73.47
WGSC 72.24
STL 75.76
OURS(s=2) 76.36

TL, IRGSC, NMR, WGSC and STL, and s = 2 unlabeled
images are added for training in our method. 5 images are
used for testing. Table 5 gives the ARA of different methods.
We can observe that our method can get better classifica-
tion results than other methods due to the addition of the
unlabeled samples, which further confirms the role of the
unlabeled data.

V. CONCLUSION AND DISCUSSION

For the small-sample-size case especially when only a small
number of labeled images are available and for the use of the
unlabeled samples, a semi-supervised sparse image classifi-
cation technique is proposed. The query image is collabora-
tively represented by the whole training data, whether they are
labeled or unlabeled. Based on the assumption that images
of the same class lie on a sub-manifold and the local linear
property of manifold, an image can be approximately rep-
resented as the linear combination of its neighbouring data.
There are two regularization terms. A generalized trace lasso
regularization term is proposed by combing semi-supervised
samples with a variant trace lasso norm. This term seeks the
sparsity of the number of classes instead of the number of
training samples, which directly coincides with the objective
of data classification. By using manifold Laplacian regular-
ization, the label of labeled images can be propagated to
unlabeled images within a class along the distance of samples
manifold. Both aims of image recognition and finding out the
unknown identities of samples are achieved simultaneously.
ALM Method and GS-ADMM are applied to solve the whole
model.

Nowadays a discussion hot point in computational imaging
is if it is the time to discard the classic methods and fully
replace them by deep learning based methods. On the one
hand, a prerequisite for deep learning based methods is a
huge amount of samples. However, there are indeed some
situations where there are only a small number of samples,
at this time the knowledge based modeling methods are more
suitable. On the other hand, classical methods have clear
structure and theoretical guarantee. They are based on the
knowledge of the problem we are trying to solve rather than
seeking for best performance by intuitively choosing archi-
tectures or trial an error. In the future work, it is possibly better
to integrate the classical knowledge based approaches into
the deep learning architecture, making the algorithm enjoy
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both the flexibility of the deep learning based methods and
the clear structure of the classical approaches. For example,

the

result of our algorithm is dependent on the selection

of the similarity matrix S, if S is not properly selected the
label can’t be accurately propagated. We will try to solve this
problem and all the parameters that need to be determined by
designing a deep network.
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