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Abstract—In this paper, we present a residual-based anomaly
detection method to enhance the cyber-physical security of the
steering stability control system (SSCS) in a four-wheel inde-
pendent drive electric vehicle. With the approach of the linear
quadratic regulator, the SSCS is developed through the yaw
moment generated by the torque deviation between the motors,
the goal of which is to improve the lateral stability of the vehicle
body. To prevent the vehicle against cyber-physical attacks, e.g.,
integrity attacks, we propose a residual-based anomaly detec-
tion method. Compared to traditional residual-based anomaly
detection, the presented method can deal with threats on both
control inputs and sensor measurements by combining physics-
based and learning-based approaches. Simulation results have
shown the effectiveness of the proposed detection method.

I. INTRODUCTION

In recent years, four-wheel independent drive electric ve-
hicles (4WDEVs) have shown significant advantages in the
short drive chain, compact structure, and fast generated torque.
Due to the quick response to the traction of drive motors, this
distributed-driven powertrain platform provides great potential
to improve both longitudinal and lateral performances of the
vehicle through various approaches, for instance, fuzzy logic
control [1], robust control [2], and those optimization-based
methods [3], [4]. In most of these steering stability control
systems (SSCSs), vehicle stability is pursued by adding a yaw
moment through torque split-based technologies. Although the
active steering stability control can significantly enhance the
yaw stability of the vehicle [5]–[10], once malicious cyber-
physical attacks infect the vehicle, the stability control system
may instead lead to severe consequences, for instance, dis-
abling brakes, turning off headlights, taking over steering [10]–
[12], and real incidents in Cherokee Jeep [13] and Tesla [14].

This concern requires more attention in modern cars be-
cause the number and complexity of embedded electronic
control units (ECUs) are increasing rapidly. Therefore, the
cyber-physical security of the SSCS for 4WDEVs should be
addressed. Up to date, there have been many publications
making efforts to prevent the network in the vehicle against
cyber-physical attacks, such as secure controller area network

(CAN) [15], but they alone cannot ensure the safety of the car,
especially in the control level. Once the system is affected by
cyber-physical threats, the core problem is how to protect the
control system, and the first step is to identify the potential
attacks and alert the driver for driving safety.
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Fig. 1. Diagram of the steering stability control system of the 4WDEV.

In general, the detection methods of a cyber-physical control
system can be categorized into two schemes: physics-based
methods and data-based methods. In both schemes, the main
idea of threat identification is to calculate the residual rk =
|y(k)− ŷ(k)|, and then rk ≥ τ (k represents kth time instant,
and τ is a threshold) is considered as a proxy for the presence
of attacks, such as the works in [16], [17]. In most of the
physics-based methods, the residual is obtained by estimating
the system outputs through state observers, while in a data-
based detector, it is predicted by using regression techniques,
e.g., machine learning, deep learning, etc [16]–[20].

In this paper, for a 4WDEV, we design an SSCS and
analyze cyber-physical security, based on which we develop
a residual-based anomaly detection method to improve the
cyber-physical security of 4WDEVs. When calculating the
residual, besides the control-theoretical observer, we also use a
deep-learning network to predict the system outputs, in which
the controller behavior is considered, and thus cyber-attacks on
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control inputs can be identified, while in most of the physics-
based methodologies, only threats on sensor measurements can
be identified. The paper is organized as follows. In section
II, the longitudinal and lateral control systems are described,
based on which the residual-based detector is designed in
Section III. Then, comparison results are shown in section IV
to validate the effectiveness of the proposed threat detection,
and conclusions are given in section V.
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Fig. 2. Diagram of the steering stability control system of the 4WDEV.

II. VEHICLE MODELING AND SYSTEM DESCRIPTION

Fig. 1 presents the lateral and longitudinal control systems
in a 4WDEV, in which the longitudinal driver model is devel-
oped with a proportional-integral-derivative (PID) controller to
track the given speed profile. The total torque demand Tdem
can be derived from the longitudinal vehicle dynamics in [21].
In the paper, we consider a typical two-degree-of-freedom
yaw plane vehicle model for simplification (see Fig. 2), a
detailed description of which can be found in [22]. In the
SSCS, the controller is designed to track the required yaw
rate γref , which can be derived by the driver’s action. The
vehicle dynamics can be described as follows:

β̇(t) =
Fyf (t) + Fyr(t)

vxM
− γ(t), (1a)

γ̇(t) =
LfFyf (t)− LrFyr(t) +Mz(t)

Iz
, (1b)

where β represents the lateral slip angle; γ is the yaw rate
of the vehicle body; vx is the instantaneous vehicle speed;
Fyf and Fyr represent the resultant lateral forces of the
front and rear tires, respectively; M is the vehicle mass; Lf

and Lr are the distances from the center of mass to the
front and rear axles, respectively; Mz is the additional yaw
moment from the difference between longitudinal tire forces.
In the above equations, Fyf and Fyr are determined by the
tire characteristics, road conditions, tire sideslip angle, front-
wheel steering angle, etc. Due to high complexity of the
tires, the tire model to establish the lateral forces is typically
simplified to an empirical formula through experimental data.
For the steering stability control, we use a linear tire model:

Fy(t) ≈ −2Cyα(t), where α is front-wheel steering angle;
Cy is the cornering stiffness of the tires. Then, the state-space
equation is formulated as follows:

Ẋ = AX +BU (2a)

A =

 − 2Cy,f+2Cy,r

vxM
2Cy,rLr−2Cy,fLf

v2
xM

− 1

2Cy,rLr−2Cy,fLf

Iz

−2Cy,rL
2
r−2Cy,fL

2
f

Izvx

 (2b)

B =

[
2Cy,f

vxM
0

2Cy,fLf

Iz
1
Iz

]
(2c)

where the state of the system is defined as X = [β, γ]T ; the
control input is U = [δ,Mz]

T .
Then, a linear quadratic regulator (LQR) controller is de-

signed with Uopt = −KX +Ur, where Ur brings the outputs
to the desired point; K is the feedback gain matrix to minimize
the cost function

J =

∫ ∞
0

[(X −Xref )
TQ(X −Xref ) + UTRU ]dt (3)

and is derived by the solution of the Riccati equations:

PA+ATP − PBR−1BTPT +Q = 0, (4a)

AT − PBR−1BT ξ +QXref = 0. (4b)

Then K = R−1BTP and Ur = R−1ξ. Here Xref =
[βref, γref ]

T is the reference of the system state; Q and R are
the positive weighting matrices. Because during steering, low
lateral slip angle indicates better stability and comfortability,
we set the desired lateral slip angle as βref = 0.

III. ATTACK TAXONOMY AND RESIDUAL-BASED
DETECTION METHODOLOGY

A. Modeling of the cyber-physical attacks

To model the attack taxonomy, we assume that the attacker
can illegally get access to the CAN bus, modify the sensor
measurements, and hijack the stability control system. For
convenient expression, as introduced in [23], we consider a
general control architecture, which has three components: the
plant (physical phenomena of interest including the actuators),
sensors (or observers) to obtain the system outputs, denoted as
y, and control commands u. Let ũ and ỹ represents the signal
under attacks. In the case of integrity attacks, a malicious
attacker can either physically or remotely gain access to the
signals and generate false data. Then, as shown in Fig. 3,
three attack scenarios are considered in the work: (i) integrity
attacks on y, expressed as ỹ 6= y and ua = unom, where unom
represents the results of the normal controller; (ii) integrity
attacks on u, as ỹ = y, u = unom, and ua 6= u; besides
the above two cyber-attacks on signals in CAN bus, we
consider (iii) integrity attacks on the controller, as ỹ = y,
u = ũc 6= unom, and ua = u. According to the SSCS
described above, the most dominating feedback signals that
might be attacked include the system states β and γ. Specific
definitions of these attacks are summarized in Table. I.
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Fig. 3. Diagram of the residual-based detection method.

TABLE I
DEFINITIONS OF CYBER-PHYSICAL ATTACKS

Attack Case Definition

(i)

1-4 γ̃ = κsγ, κs ∈ {0, 0.5, 1.5, 2}
5-8 γ̃ = γ + p, p ∈ {−0.05,−0.02, 0.02, 0.05}
9-12 β̃ = κ′sβ, κ

′
s ∈ {0, 0.5, 1.5, 2}

13-16 β̃ = β + p′, p′ ∈ {−0.005,−0.002, 0.002, 0.005}
(ii) 17-21 ũa = κuu, κu ∈ {0.4, 0.6, 0.8, 1.2, 1.4}
(iii) 22-26 ũc = κcunom, κc ∈ {0.4, 0.6, 0.8, 1.2, 1.4}

B. Residual-based detection methodology

Based on the system dynamics and operating data, we
propose a residual-based cyber-attack detection methodology
for the SSCS. Firstly, by using the system model, a state
observer is developed to estimate the states of the system,
as follows:

˙̂
X = AX̂ + L(X − X̂)−BU (5)

where L is the observer gain that ensures observer stability.
Consider that the output estimation error at time instance k
is rphyk = g(Xi, X̂i), i = k − l + 1, . . . , k (l represents the
window size of detection, and the superscript phy denotes
physics-based), which is the function of the estimation and
measurement values. Then, rphyk can be one of the residuals
to identify the cyber-physical threats. Based on the sequences
X̂i and Xi over the window size of detection, the residual
signal at time instance k can be defined as

rphyk =

k∑
i=k−l+1

‖Xi − X̂i‖/l. (6)

Typically, for physics-based detection, the residual rk > τphy

(here τphy is a threshold) is considered as a proxy for the
presence of attacks, and the detector will trigger an alarm.

Notice that the control input U is directly used in the
state estimation, the detection criteria rphyk cannot identify
cyber-attacks on the controller. Hence, besides the physics-
based tphyk , we develop a data-based residual by using a deep

Normal residual

Fig. 4. Simulation results of Cases 1-4 (Physics-based residual rphy
k

).

Attack Scenario (iii)

Attack Scenario (ii)

Fig. 5. Results of attack scenarios (ii) and (iii) (Physics-based residual rphy
k

).

network - long short-term memory (LSTM), which has been
used widely in many domain becasue of its superior ability
in capturing the dynamics of a system [24]–[27]. In the deep
LSTM, the sequential observations for states prediction are
chosen as x = [γ, β, vx, γref ]

T in normal driving conditions.
Then, in off-line training process, the predicted system states
are calculated based on their past Nd values, vehicle speed vx,
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Root Mean Square Error (RMSE)

Fig. 6. Training accuracy of the LSTM, where RMSE = ‖Y − Ŷ ‖/2.

Fig. 7. Results of attack scenarios (i), (ii), and (iii) (Data-based residual
rlstmk ), where the black dot line represents the threshold τ lstm.

and the reference γref . The moving horizon split-window Nd

is used to generate the raw data matrix, which is formulated
as Xinput = [x(k − Nd + 1), x(k − Nd + 2), ..., X(k)].
Here k represents the current time instance. The output of
the network corresponding to the input Xinput is defined as
Youtput = [γ(k+1), β(k+1)]T . A standard cost function for
training the network is to minimize the empirical loss of its
model predictions, as follows:

arg min
W

Loss(Ŷoutput, Youtput) + λR(W ), (7)

where R measures the complexity of a model, W is the weight
to be optimized, and λ is a trade-off hyper-parameter.

Failed Detection

Fig. 8. Comprehensive detection results of the defined attacks.

After obtaining the well-trained network, based on the given
inputs Xinput in real time, the predicted value is defined as
X̂ lstm

i = Ŷoutput, based on which the data-based residual is
calculated by

rlstmk =

k∑
i=k−l+1

‖Xi − X̂ lstm
i ‖/l. (8)

Then, rlstmk > τ lstm (here τ lstm is a threshold) is also used
to detect the cyber-physical attacks.

Finally, both the two residuals are adopted to identify the
cyber-physical threats, as follows:

status = 1 if rphyk > τphy or rlstmk > τ lstm, (9)

and if not, status = 0, where status represents the status of
system security; 0 and 1 represent the normal and abnormal
condition, respectively. In addition to detection status, by
using the two physics-based and data-based residuals, one
can also make a preliminary threat localization: attacks on
the controller or others, which can benefit to threat diagnosis
and mitigation. For example, if status = 1 and rphyk < τphy ,
then the possibility of the presence of controller attacks should
be considered, which can be further identified with more cri-
teria, e.g., performance indexes like tracking accuracy, torque
ripple, and frequency of steering to evaluate the performance
degradation caused by control failure.

IV. PERFORMANCE EVALUATION

In this section, we present the results of the specified attack
cases in Table I under a double-lance change driving condition.
The entering scenario is on straight running with an initial
speed of 80 km/h. The road surface is assumed to be flat and
smooth, with a friction coefficient of 0.7.

For the sake of precise observation of the effectiveness of
the obtained residuals, we present specific results of integrity
attacks on the system state, control inputs, and controller,
respectively. Figs. 4-5 show the results of residual rphyk , from
which we can observe that sensor data integrity attacks may
have a significant influence on the system performance, even
cause instability. The results indicate that rphyk can adequately
reflect the impact of cyber-attacks; thus, in the case of attacks
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on system states and control inputs, the threat can be identified
timely by physics-based residual. However, for the cyberat-
tacks on the controller, such as attack scenario (iii), this kind
of observer-based detection would not be sufficient for threat
identification. This is because, in the design process of the
observer, the control inputs are directly used in the system
model (see Equation (5)), which is also the actual control
instruction to the actuator. Therefore, the defined physics-
based residual cannot reflect the performance degradation of
the controller, as shown in Fig. 5.

To illustrate the effectiveness of the data-based residual,
with a double-lance change driving condition, we obtain
3996 normal observations. Among the total training data, we
randomly choose 80% of the data to train the network and
the rest 20% data to validate the model accuracy. The training
process is given in Fig. 6, which illustrates the accuracy of the
trained network. Then, we present the results of rlstmk in Cases
1-4, Cases 17-21, and Cases 22-26, as shown in Fig. 7. From
these results, we can see that the residual rlstmk is useful in
identifying those cyber-physical attacks causing visible effects,
especially for controller attacks.

It worth noting that, compared to the developed model-
based residual, the obtained rlstmk through LSTM shows less
ability to distinguish normal conditions and control inputs
attacks. Even though the data-based residual can be used to
identify the potential threats, it highly depends on the number
of training data. Thus, a certain driving condition that differs
greatly from the training set may lead to misjudgment when
only the data-based residual is used. Therefore, in real-world
applications, it is necessary to combine both the physics-based
and data-based residuals. Finally, the comprehensive detection
results, status, are presented in Fig. 8, wherein, thresholds
τphy and τ lstm are set to 0.0025 and 0.01, respectively.
From the results, we can see that the combined residuals
can improve the accuracy of threat detection. Besides, due to
the fixed detection thresholds, τphy and τ lstm, the detection
accuracy can not be up to 100%. This is because, in real-
world applications, the driving conditions are changing, and
then the prediction error (in normal situations) of the designed
estimator, either observer-based or data-based, is time-varying.
Moreover, considering the uncertainty of driving road and
system modeling, an adaptive threshold should be introduced,
which will be one of the future works of cyber-physical attack
detection and diagnosis.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a steering stability control system is designed,
based on which a residual-based anomaly detector is devel-
oped to identify cyber-physical attacks. Besides the control-
theoretical observer, we also use a deep-learning network to
predict the system output, with which a data-based residual is
calculated to be an auxiliary identification index. Simulation
results have shown the effectiveness of the proposed residual-
based detection methodology and validated the necessity to
combine the physics-based and data-based results.
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