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Abstract

We consider the problem of computing the best-fitting ReLU with respect to
square-loss on a training set when the examples have been drawn according to
a spherical Gaussian distribution (the labels can be arbitrary). Let opt < 1 be the
population loss of the best-fitting ReLLU. We prove:

e Finding a ReLLU with square-loss opt + € is as hard as the problem of learning
sparse parities with noise, widely thought to be computationally intractable.
This is the first hardness result for learning a ReLLU with respect to Gaus-
sian marginals, and our results imply —unconditionally— that gradient descent
cannot converge to the global minimum in polynomial time.

o There exists an efficient approximation algorithm for finding the best-fitting

ReLU that achieves error O(opt?/3). The algorithm uses a novel reduction
to noisy halfspace learning with respect to 0/1 loss.

Prior work due to Soltanolkotabi [Sol17] showed that gradient descent can find the
best-fitting ReLLU with respect to Gaussian marginals, if the training set is exactly
labeled by a ReL.U.

1 Introduction

A Rectified Linear Unit (ReLU) is a function parameterized by a weight vector w € R? that maps
R? — R as follows: ReLUy(x) = max(0,w - x). ReLUs are now the nonlinearity of choice in
modern deep networks. The computational complexity of learning simple neural networks that use
the ReLU activation is an intensely studied area, and many positive results rely on assuming that the
marginal distribution on the examples is a spherical Gaussian [ZYWG19, GLM 18, ZSJ +17, MR18].
Recent work due to Soltanolkotabi [Sol17] shows that gradient descent will learn a single ReL.U in
polynomial time, if the marginal distribution is Gaussian (see also [BG17]). His result, however,
requires that the training set is noiseless; i.e., there is a ReLU that correctly classifies all elements of
the training set.

Here we consider the more realistic scenario of empirical risk minimization or learning a ReLU
with noise (often referred to as agnostically learning a ReLU). We assume that a learner has ac-
cess to a training set from a joint distribution D on R? x R where the marginal distribution
on R? is Gaussian but the distribution on the labels can be arbitrary within [0,1]. We define
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opt = miny, |ju|<1 Es,y~p[(ReLUy(2) — y)?], and the goal is to output a function of the form
max (0, w - X) with square-loss at most opt + €.

1.1 Our Results

Our main results give a trade-off between the accuracy of the output hypothesis and the running time
of the algorithm. We give the first evidence that there is no polynomial-time algorithm for finding a
ReLU with error opt + €, even when the marginal distribution is Gaussian:

Theorem 1 (Informal version of Theorem 3). Assuming hardness of the problem of learning sparse
parities with noise, any algorithm for finding a ReLU on data drawn (rom a distribution with Gaus-
sian marginals that has error at most opt + € runs in time d*(1°(1/€)),

Since gradient descent is known to be a statistical-query algorithm (see Section 4), a consequence
of Theorem 1 is the following:

Corollary 1. Gradient descent fails to converge to the global minimum for learning the best-fitting
ReLU with respect to square-loss in polynomial time, even when the marginals are Gaussian.

This above corollary is unconditional (i.e. does not rely on any hardness assumptions) and shows
the necessity of the realizable/noiseless setting in the work of Soltanolkotabi [Sol17] and Brutzkus
and Globerson [BG17]. We also give the first approximation algorithm for finding the best-fitting
ReLU with respect to Gaussian marginals:

Theorem 2 (Informal version of Theorem 5). There exists a polynomial-time algorithm for finding
a ReLU with error O(opt?/3) + e.

The above result uses a novel reduction from learning a ReLU to the problem of learning a halfspace
with respect to 0/1 loss. We note that the problem of finding a ReLU with error O(opt) + € remains
an outstanding open problem.

1.2 Our Techniques

Hardness Result. For our hardness result, we follow the same approach as Klivans and Kothari
[KK14] who gave a reduction from learning sparse parity with noise to the problem of agnostically
learning halfspaces with respect to Gaussian distributions. The idea is to embed examples drawn
from {—1,1}% into R? by multiplying each coordinate with a random draw from a half-normal
distribution. The key technical component in their result is a correlation lemma showing that for a
parity function on variables indicated by index set S, the majority function on the same index set is
weakly correlated with a Gaussian lift of the parity function on S.

In our work we must overcome two technical difficulties. First, in the Klivans and Kothari result, it
is obvious that for distributions induced by learning sparse parity with noise, the best fitting majority
function will be the one that is defined on inputs specified by S. In our setting with respect to ReL.Us,
however, the constant function 1/2 will have square-loss 1/4, and this may be much lower than the
square-loss of any function of the form max (0, w - x). Thus, we need to prove the existence of a gap
between the correlation of ReLUs with random noise (see Claim 3) versus the correlation of ReLLUs
with parity (see Claim 4).

Second, Klivans and Kothari use known formulas on the discrete Fourier coefficients of the majority
function and an application of the central limit theorem to analyze how much the best-fitting majority
correlates with the Gaussian lift of parity. No such bounds are known, however, for the ReLU
function. As such we must perform a (somewhat involved) analysis of the ReLU function’s Hermite
expansion in order to obtain quantitative correlation bounds.

Approximation Algorithm. For our polynomial-time algorithm that outputs a ReLU with error
O(opt?/3) + ¢, we apply a novel reduction to agnostically learning halfspaces. We give a simple
transformation on the training set to a Boolean learning problem and show that the weight vector w
corresponding to the best fitting halfspace on this transformed data set is not too far from the weight
vector corresponding to the best fitting ReLU. We can then apply recent work for agnostically learn-
ing halfspaces with respect to Gaussians that have constant-factor approximation error guarantees.
The exponent 2/3 appears due to the use of an averaging argument (see Section 5).



1.3 Related Work

Several recent works have proved hardness results for finding the best-fitting ReLU with respect to
square loss (equivalently, agnostically learning a ReLU with respect to square loss). Results show-
ing NP-hardness (e.g., [MR18, BDL18]) use marginal distributions that encode hard combinatorial
problems. The resulting marginals are far from Gaussian. Work due to Goel et al. [GKKT17] uses
a reduction from sparse parity with noise but only obtains hardness results for learning with respect
to discrete distributions (uniform on {0, 1}%).

Using parity functions as a source of hardness for learning deep networks has been explored recently
by Shalev-Shwartz et. al. [SSSS17] and Abbe and Sandon [AS18]. Their results, however, do
not address the complexity of learning a single ReLU or consider the case of Gaussian marginals.
Shamir [Shal8] proved that gradient descent fails to learn certain classes of neural networks with
respect to Gaussian marginals, but these results do not apply to learning a single ReLU [VW19].

In terms of positive results for learning a ReLU, work due to Kalai and Sastry [KS09] (and follow-
up work [KKKS11]) gave the first efficient algorithm for learning any generalized linear model
(GLM) that is monotone and Lipschitz, a class that includes ReLUs. Their algorithms work for
any distribution and can tolerate bounded, mean-zero and additive noise. Soltanolkotabi [Sol17]
and Brutzkus and Globerson [BG17] were the first to prove that gradient descent converges to the
unknown ReLU in polynomial time with respect to Gaussian marginals as long as the labels have
no noise. Other works for learning one-layer ReLU networks with respect to Gaussian marginals or
marginals with milder distribution assumptions [ZYWG19, GLM18, ZSJ™17, GKLW19, GKM18,
MRI18] also assume a noiseless training set or training set with mean-zero i.i.d. (typically sub-
Gaussian) noise. This is in contrast to the setting here (agnostic learning), where we assume nothing
about the noise model.

There are several works for the related (but different) problem of agnostically learning halfspaces
with respect to Gaussian marginals [KKMSO08, ABL14, Zhal8, DKS18]. While agnostically learn-
ing ReLUs may seem like an easier problem than agnostically learning halfspaces (at first glance the
learner sees “more information” from the ReLU’s real-valued labels), the quantitative relationship
between the two problems is still open. In the halfspace setting, we can assume without loss of
generality that an adversary has flipped an opt fraction of the labels. In contrast, in the setting with
ReLUs and square loss, it is possible for the adversary to corrupt every label.

2 Preliminaries

Define ReLU(a) = max(0,a) and the set of functions CreLy = {ReLUy|w € R ||w|ls < 1}
where ReLUy (x) = max (0, w - x). Define sign(a) to be 1 if a > 0 and -1 otherwise. Let errp(h) :=
E(x,y)~p[(h(x) — y)?], Also define opt(C) = mincec errp(c) to be the error of the best-fitting
¢ € C for distribution D. We will use x_; to denote the vector x restricted to the indices except
i. The ‘half-normal’ distribution will refer to the standard normal distribution truncated to R=°,
We will use n and its subscripted versions to denote natural numbers unless otherwise stated. In
this paper, we will suppress the confidence parameter J, since one can use standard techniques to
amplify the probability of success of our learning algorithms.

Agnostic learning. The model of learning we work with in the paper is the agnostic model of
learning. In this model the labels are allowed to be arbitrary and the task of the learner is to output
a hypothesis within an € error of the optimal. More formally,

Definition 1. A class C is said to be agnostically learnable in time t over the Gaussian distribution to
error € if there exists an algorithm A such that for any distribution D on X XY with the marginal on
X being Gaussian, A uses at most t draws from D, runs in time at most t, and outputs a hypothesis
h € C such that errp(h) < optp(C) +

We assume that A succeeds with constant probability. Note that the algorithm above outputs the
“best-fitting” ¢ € C with respect to D up to an additive e. We will denote érrs(h) to be the empirical
error of h over samples S.



Learning Sparse Parities with Noise. In this work we will show that agnostically learning Creu
over the Gaussian distribution is as hard as the problem of learning sparse parities with noise over
the uniform distribution on the hypercube.

Definition 2 (k-SLPN). Given access to samples drawn from the uniform distribution over {£1}4
and target function y being the parity function over an unknown set S C [d] of size k, the problem
of learning sparse parities with noise is the problem of recovering the set S given access to noisy
labels where the label is flipped with probability 7.

Learning sparse parities with noise is generally considered to be a computationally hard problem
and has been used to give hardness results for both supervised [GKKT17] and unsupervised learning
problems [BGS14]. The current best known algorithm for solving sparse parities with constant noise
rate is due to Valiant [Val135] and runs in time ~ d9-8%.

Assumption 1. Any algorithm for solving k-SLPN up to constant error must run in time d*(%).

Gaussian Lift of a Function Our reduction will require the following definition of a Gaussian lift
of a boolean function from [KK14].

Definition 3 (Gaussian lift [KK14]). The Gaussian lift of a function f : {£1}¢ — R is the function
7 : R? — R such that for any x € R?, f7(z) = f(sign(z1), . ..,sign(zq)).

Hermite Analysis and Gaussian Density We will assume that the marginal over our samples x
is the standard normal distribution N (0, I;). This implies that w - x for a vector w is distributed
as N(0,|w|/?). We recall the basics of Hermite analysis. We say a function f : R — R is
square integrable if En,1)[f 2] < oo. For any square integrable function f define its Hermite
expansion as f(z) = Y o ﬁﬁ,(z) where H;(z) = HT(;) are the normalized Hermite poly-
nomials, and H; the unnormalized (probabilists) Hermite polynomials. The normalized Hermite
polynomials form an orthonormal basis with respect to the univariate standard normal distribution
(E[H;(z)H;(x)] = d;;). The associated inner product for square integrable functions f,g : R — R

is defined as (f, g) := E,~n(0,1)[f(7)g(x)]. Each coefficient f; in the expansion of f(x) satisfies
fi=E,. Nl f (@) Hi(z)]. We will need the following facts about Hermite polynomials.

Fact 1. Forallm > 0, Hay,11(0) = 0 and Ha,, = (—1)™ (@m)!

ml2m

Fact 2 ([KKMSO08]). sign, = 0 and fori > 1, sign, = 1/ =2; H;_1(0).

il

3 Hardness of Learning ReLLU

In this section, we will show that if there is an algorithm that agnostically learns a ReLU in polyno-
mial time, then there is an algorithm for learning sparse parities with noise in time d°(*), violating
Assumption 1. We follow the approach of [KK14]. Let x s be an unknown parity for some S C [d].
We will show that there is an unbiased ReL.U that is correlated with the Gaussian lift of the unknown
sparse parity function. Notice that dropping a coordinate j € S from the input samples makes the
labels of the resulting training set totally independent from the input. In contrast, dropping j ¢ S
results in a training set that is still labeled by a noisy parity. Therefore, we can use an agnostic
learner for ReLUs to detect a correlated ReLU and distinguish between the two cases. This allows
us to identify the variables in S one by one.

We formalize the above approach by first proving the following key property,

Lemma 1 (ReLU Correlation Lemma). Let x denote the Gaussian lift of the parity on variables in
S C [d]. Forevery S C [d] with |S| < k and k = 41 + 2 for some | > 0, there exists ReLU,, ¢ such
that (ReLU,, ., x2) > 279 where ReLU,, ., only depends on variables in S.

Proof. Let wg = ﬁ > ics € where e(?) is 1 at coordinate i and O everywhere else. We will
show that

1 Zi Ziq . —
(ReLUywg, x3) = EEZNN(OJ(!) [ReLU (5%) (H S|gn(zi)>] > 2= 0k),

i€S



Let s?g\nn and R/eL\Un denote the degree n Hermite coefficients of the sign function and RelL U func-
tion respectively. It is easy to see that the Hermite expansion of the Gaussian lift of a parity supported
on S is,

= [Isientzi) =1 (Z ?H()) = > Ilsen.duz) @
n=0

€S €S Ni,...,nk 1€S

In order to finish the proof of Lemma 1 we will need the expansion of ReLU (ZTTZ) in terms of

products of univariate Hermite polynomials. Toward this end we establish the following two claims
(see proofs in the supplemental).

Claim 1 (Hermite expansion: univariate RelLU). R/eL\UO = 1/v/2m, R/eL\Ul = 1/2 and for i > 2,

RelLU; = \/%(Hl(O) + iHi_g(O)).
Claim 2 (Hermite expansion: multivariate ReLU). For any S C [d] with |S| =k,
RelU,, nl N\
ics *
RelU ( > Z DS <M) Hn, (25)
ni+...+ng=n j=1

Combining Equation 1 and Claim 2 now yields,

E,Ar0,14) [ReLU ( i€sS l) H5|gn ]

i€S
ReLU, o O\
=Esnot) KZ T2 > (M) HH (zi)
n=0 ni+...+np=n =1

k
x Z H s/ig\nmj Hn, (2)

mi,...,Mg j=1

1/2 k

RLUW ! _
SIS DD DY P | C LA

ni+...+ng=nmsi,..

= R LUn | 1/2 k _
:Z% Z (M) 1:[15|gnni

n=0 ni+...+nr=n

From Fact 2 and Claim 1 we see that sTg\an = 0 and F\’/eL\UQmH = 0 for m > 1. Additionally,

—

since sign, = 0 we see that each n; > 1. This gives us,

E.on(0,10) [ReLU < i€s ) H5|gn Z ]
1/2 k

N 1 n!
=3 SO+ ths©) 3 (M) [T,

N1y, >1
ni+...+ng=n

00 3/2 k:

ni,...,nEp>1
ni+...+ng=n

To finish the proof of Lemma 1, we will look at each term in the outer summation above. Let the
term for any fixed n > k be denoted by T,. Since H;(0) = 0 for odd i, observe that 7,, is non-zero
if and only if n is even and each n; = 2n) + 1 for n; > 0. We have

_; B 5717' n(— g—lﬁ
= Vot (( U G Y (Z—1>!2’51>



1 sk [y (2n))!
X (277/ _|_]_)l(2n/ _|_]_)| H ;(_1) ! 1191
>0 1 : k : j=1 n;12%
o, ny="5"
(- nEa L 25 (-1)"s
2k (n/2)12% n—1 T3
1 32 (anh)1- - (2nh)
< ((2/+1)|...(2/+1)|> ( 1/)1...(/|k)
0 nq ! ny, ! nyl---ny!
Zj”;:nTik

_ ()5l > ( 1 )3/2(2 DL (2np)!
VorkE(n—1)(n/2)2" T xS @i+ D (20 £ 1) nyle-my!

1 _n—k
Ej n;="3

Since k = 4l + 2 (by assumption), 7;, > 0 for all even n > k and equal to O for all odd n. Thus
oo i T > Ty Lower bounding T}, we have

(41 + 2)!
V2 (AL + 2)2 (4] + 1)(20 + 1) 2+

Ty =

1 2 (4l + 2) <4l + 2)4l+2 1 ( >2l+1
~ T
V2 (4l + 2)2H1 (4] 4 1)m2i+1 e 2m(20+1) \20+1

1 9\ 2+1
N — 9—0(k)
Va4l +1) (ew)
O

Now we present our main algorithm (Algorithm 1) that reduces learning sparse parities with noise
to agnostically learning ReL.Us and a proof of its correctness.

Algorithm 1 Learning Sparse Parities with Noise using Agnostic ReLU learner
Input Training set S of M; samples (x?, yz)fvill validation set V of M, samples

(x?, y’)fvi 1}\‘/'} 11‘121, error parameter €, Agnostic ReL.U learner A

Output Set of relevant variables V.,
1: Set Vye = 1]
2: SetSl,...,Sd::Q)
3: fori = 1to My + M5 do
4: Draw n independent univariate half Gaussians g1, ..., g4 ,
5: Construct X" such that for all j € [d], 2/, := gjx§- and sety’ = %
6: Forall j € [d],if i < M; add (x__;,y’) to S; else to V;
7: for j € [d] do
8: Run A on §; to obtain hypothesis h;
9: Compute erry, (h;)
10: iferry, (h;) > 3 — .= — ¢/4 then
11: Add j to V¢
12: Return V.

Theorem 3. If there is an algorithm to agnostically learn unbiased ReLUs on the Gaussian dis-

tribution in time and samples T(d,1/¢), then there is an algorithm to solve k-SLPN in time

0] <—(1270;’;>)7 log(d)) +0(d)T (d, ?i—(;:]) where 1) is the noise rate.

In particular, if Assumption 1 is true, then any algorithm for agnostically learning (unbiased) ReLUs
on the Gaussian distribution must run in time d**(1°8(1/€),



Proof. Given a set of samples from the k-SPLN problem, we claim that Algorithm 1 can recover all
indices j belonging to the sparse parity when run with appropriate parameters. We will first show
that if a variable is relevant then the error is smaller compared to when it is irrelevant. It is easy to
see that /' is M with probability 1 — 7 and IolLies si8n(h) (herwise. Let D; denote the
distribution obtained by dropping the jth coordinate from the lifted distribution and let S denote the
set of active indices of the parity. The proof of the theorem follows from the following claims,

Claim 3. If j € S then for all w, errp, (ReLU,) = > — Ll 4 &> 11
Claim 4. If j ¢ S then there exists w* with |w*| = \/% such that errp, (ReLU,+) < 4 — L —
5—O(k)
T—27
Claims 3 and 4 imply that we have a gap of at least 21__02(3) = % for some ¢ > 0 between the

relevant and irrelevant variable case. Setting € = % in Algorithm 1 will let us detect this gap.
Since A is an agnostic learner for ReLU, as long as M; = T'(d, 2/¢) we know that with probability
2/3, for all j € S, Aruns on S; and outputs h; such that errp, (h;) < miny errp,(RelLUy,) <

-1 —¢/2,andforall j ¢ S,errp, (h;) > 5 — L.

Using standard concentration inequalities for sub-Gaussian and subexponential random variables
[Ver] we see that using a validation set of M, = 100/€¢? samples, we have for all j, |erry, (h;) —
errp, (h;)| < €/4. Therefore, we can differentiate the two cases as in the Algorithm with confidence
> 1/2. Itis easy to see that the run time of the algorithm is O(d)T(d,2/€) + O(1/€?), and that this
can be amplified to obtain an algorithm with any desired confidence using standard techniques. [

4 Lower Bounds for SQ Algorithms

A consequence of Theorem 3 is that any statistical-query algorithm for agnostically learning a ReL.U
with respect to Gaussian marginals yields a statistical-query algorithm for learning parity functions
on k unknown input bits. This implies that there is no polynomial time statistical-query (SQ) algo-
rithm that learns a ReLLU with respect to Gaussian marginals for a certain restricted class of queries.
We present the formal theorem and defer the proof to the supplemental.

Theorem 4. Any SQ algorithm for agnostically learning a ReLU with respect to any distribution D
satisfying Gaussian marginals over the attributes, requires d*1°€(1/9) ynit norm correlation queries
or queries independent of the target with tolerance % to an oracle that returns T-approximate

poly(
expectations with respect to D.

Remark: Note that this implies there is no d°(*/¢)-time gradient descent algorithm that can ag-
nostically learn ReLU(w - x), under the reasonable assumption that for every i the gradients of

E(x,y)~D {(ReLUw(u(x)_i) - yTH)Q} can be computed by O(d) queries whose norms are polyno-
mially bounded.

5 Approximation Algorithm

In this section we give a learning algorithm that runs in polynomial time in all input parameters
and outputs a ReLU that has error O(opt?/3) + ¢ where opt is the error of the best-fitting ReLU.
The main reduction is a hard thresholding of the labels to create a training set with Boolean labels.
We then apply a recent result giving a polynomial-time approximation algorithm for agnostically
learning halfspaces over the Gaussian distribution due to Awasthi et. al. [ABL14]. We present our
algorithm and give a proof of its correctness.



Algorithm 2

Input Training set S of m samples (x*, y*)™ ,, the agnostic halfspace learning algorithm
A from [ABL14] and a parameter «
Output Weight vector w
1: Construct S’ := {(x,sign(y — a)) | (x,y) € S}.
2: Run A to recover W close in errg ;.
3: Return w

Theorem 5. There is an algorithm (Algorithm 2) that given O(poly(d,1/¢€)) samples (x,y) such
that x is drawn from N(0,1;) and y € [0,1] recovers a unit vector w such that err(ReLU,,) <

O(opt?/3) + € where opt := min,—; err(ReLU,).

Proof. Let w* = arg miny — err(ReLUy) and so, err(ReLUy+) = opt. Define the S04 to be the

set of points that are a-close to the optimal ReLU, i.e. Sgo0qa = {x : |y — ReLUy-(x)| < a}. By
Markov’s inequality,

Prx & Sgooa] = Pr[|ly — ReLUy ()| > o] < —-.

This implies that all but an %t fraction of the points are a--close to their corresponding y’s. In the
first step of Algorithm 2, the labels become Boolean. Define the 0/1 error of the vector w as follows,
errg/1(w) = E[sign(y — ) # sign(w - x)]. Let w' be the argmin of err/; (W) over all vectors w

with ||w||2 < 1. Since for all elements in Sgo0q\{V: W* - v € (0,2c)}, sign(y — a) = sign(w* - x),

erro/1(w*) < Prx & Sgooa\{v:w*-v € (0, 2a)}]
<Prlx¢ Sgood +Pr[x € {v w* v e (0,2a)}]
opt

opt / e—92/2
dg < — + 2a.
\/271' a?

We now apply Theorem 8 from [ABL14] which gives an algorithm with polynomial running time
in d and 1/e that outputs a w such that ||w|| = 1 and [|[w — wi|| < O((2% + 2a)) + €. For unit
vectors a, b, 6(a,b) < C Pr[sign(a - x) # sign(b - x)] for some absolute constant C' where 6(a, b)
is the angle between the vectors (see Lemma 2 in [ABL14]). The triangle inequality and the fact
that ||a — b|| < 6(a,b) implies that if erry/; (a),errg/1(b) < 1 then |la —b|| < C Prsign(a - x) #
sign(b-x)] < O(n). Applying this to wi and w* yields |[w! —w*|| < O(%5 + 2a). Since the ReLU
function is 1-Lipschitz, we have

err(ReLUy) = E[(y — ReLU(W - x))?]
< 2E[(y — ReLU(W* - x))?] + 2E[(ReLU(W* - x) — ReLU(W - x))?]
< 20pt + 2E[((W" — W) - x)’]

2
= 2opt +2[|w" —w||? < O (opt+ (——1—2@) +e)
Setting v = opt!/? and rescaling € we have err(ReLU,,) < O(opt?/?) + . O

6 Conclusions and Open Problems

We have shown hardness for solving the empirical risk minimization problem for just one ReLU
with respect to Gaussian distributions and given the first nontrivial approximation algorithm. Can
we achieve approximation O(opt) + €? Note our results holds only for the case of unbiased ReLUs,
as the constant function 1/2 may achieve smaller square-loss than any unbiased ReLU. Interestingly,
all positive results that we are aware of for learning ReLLUs (or one-layer ReLU networks) with
respect to Gaussians also assume the ReLU activations are unbiased (e.g., [BG17, Sol17, GKM18,
GKLW19, GLM18, ZYWG19]). How difficult is the biased case?
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