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Reaction-diffusion systems have been widely used to study spatio-temporal phenomena in cell biology,
such as cell polarization. Coupled bulk-surface models naturally include compartmentalization of cytoso-
lic and membrane-bound polarity molecules. Here we study the distribution of the polarity protein Cdc42
in a mass-conserved membrane-bulk model, and explore the effects of diffusion and spatial dimension-
ality on spatio-temporal pattern formation. We first analyze a one-dimensional (1-D) model for Cdc42
oscillations in fission yeast, consisting of two diffusion equations in the bulk domain coupled to non-
linear ODEs for binding kinetics at each end of the cell. In 1-D, our analysis reveals the existence of
symmetric and asymmetric steady states, as well as anti-phase relaxation oscillations typical of slow-fast
systems. We then extend our analysis to a two-dimensional (2-D) model with circular bulk geometry,
for which species can either diffuse inside the cell or become bound to the membrane and undergo a
nonlinear reaction-diffusion process. We also consider a nonlocal system of PDEs approximating the dy-
namics of the 2-D membrane-bulk model in the limit of fast bulk diffusion. In all three model variants
we find that mass conservation selects perturbations of spatial modes that simply redistribute mass. In
1-D, only anti-phase oscillations between the two ends of the cell can occur, and in-phase oscillations
are excluded. In higher dimensions, no radially symmetric oscillations are observed. Instead, the only in-
stabilities are symmetry-breaking, either corresponding to stationary Turing instabilities, leading to the
formation of stationary patterns, or to oscillatory Turing instabilities, leading to traveling and standing
waves. Codimension-two Bogdanov-Takens bifurcations occur when the two distinct instabilities coincide,
causing traveling waves to slow down and to eventually become stationary patterns. Our work clarifies
the effect of geometry and dimensionality on behaviors observed in mass-conserved cell polarity models.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

of an initially homogeneous distribution of polarity regulators to
form one or multiple clusters, as well as dispersal and reformation

Cell growth and division require long-distance communication
and coordination between two ends of the cell. To polarize, cells
require the ability to form distinct cellular domains with dif-
ferent molecular components. Establishment of cell polarity re-
lies on local accumulation of signaling molecules on the mem-
brane and has attracted considerable attention from mathemati-
cians and physicists (Jilkine and Edelstein-Keshet, 2011; Rappel and
Edelstein-Keshet, 2017; Halatek et al., 2018). Positive and nega-
tive feedback loops can result in spontaneous symmetry breaking
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of these clusters in an oscillatory manner (Johnson et al.,, 2011).
Thus, polarization involves spatial diffusion processes coupled
with biochemical reactions occurring within localized signaling
compartments.

The master regulator of cell polarity in a variety of organisms,
from yeast to humans, is the protein Cdc42 (Etienne-Manneville
and Hall, 2002; Martin and Arkowitz, 2014). Previous mathemat-
ical modeling of Cdc42 in cell polarization has focused primarily
on symmetry breaking and establishment of active Cdc42 cortical
zones in budding yeast, often via a Turing mechanism (reviewed in
Goryachev and Leda, 2017). Detailed and phenomenological mod-
els of cell polarization investigated the effects of single or multiple
positive feedback loops and mass conservation on the formation of
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a unique polarity zone (Otsuji et al., 2007; Goryachev and Pokhilko,
2008; Mori et al., 2011; Jilkine et al., 2011; Freisinger et al., 2013;
Chiou et al., 2018). In some circumstances, two or more active
Cdc42 domains can coexist for some time, and the basis for the
switch from a single to multiple polarity zones is not yet fully un-
derstood (Wu and Lew, 2013; Chiou et al., 2018). Here we focus on
a model of spatio-temporal oscillations of Cdc42 from pole-to-pole
that have been observed in fission yeast (Das et al., 2012), a model
organism for understanding how cells integrate polarity and spatial
coordination of growth.

The mathematical modeling of cell polarization typically in-
volves a system of reaction-diffusion equations for the concentra-
tions of membrane-bound active Cdc42 molecules and cytosolic
inactive Cdc42 molecules with no-flux or periodic boundary con-
ditions (Goryachev and Pokhilko, 2008; Mori et al., 2008; 2011;
Lo et al., 2014). This approach does not take into effect the spa-
tial segregation of polarity molecules in the cell. For Cdc42 and
many other polarity molecules, most biochemical reactions of in-
terest happen at the interface between the cytosol and the mem-
brane. Because the active form of the protein is found on the
membrane, while the inactive form is in the cytosol (Etienne-
Manneville and Hall, 2002), a more appropriate formulation would
be a membrane bulk-cytosol model with diffusion in the interior of
the cell, and boundary conditions modeling the exchange between
the membrane and the cytosol. Pattern formation in membrane-
bulk models with applications to cell polarity have previously
been analyzed in Rdtz and Roger (2012), Ritz and Roger (2014),
Madzvamuse et al. (2015) through linear stability analysis and
PDE numerical simulations. Stationary front solutions correspond-
ing to a polarized cell were demonstrated to exist in both the
reaction-diffusion (Mori et al., 2011) and membrane-bulk versions
(Cusseddu et al., 2018) of the wave-pinning model of cell polariza-
tion. When considered on a 1-D bulk domain, coupled membrane-
bulk reaction-diffusion systems become coupled PDE-ODE systems.
Recent studies of coupled PDE-ODE models (Gomez-Marin et al.,
2007; Gou et al., 2015; 2017; Xu and Bressloff, 2017) showed
the possible collective synchronization of localized active units (or
membranes) coupled through a linear bulk diffusion field, even if
each unit is at rest when isolated from the group.

Our work focuses on the spatio-temporal dynamics of Cdc42
during cell growth of fission yeast. Fission yeast (S. pombe) cells
are rod-shaped and grow in length by tip extension, while main-
taining a constant diameter of 3 pm. During their cell cycle, the
cells switch from growing at one end to growing at both ends.
The active Cdc42 molecules localize at the growth site. At the cell
ends, Cdc42 exhibits temporal oscillations with a period around 5
minutes (Das et al., 2012). Earlier mathematical models for cell po-
larity in fission yeast emphasize the role of positive feedbacks on
symmetry breaking (Csikdsz-Nagy et al., 2008; Cerone et al., 2012).
These models assume that some “tip factors” (delivered by mi-
crotubules) are present at the two ends of the fission yeast that
leads to Cdc42 preferentially binding at the two ends of the cell
(Kokkoris et al., 2014; Martin and Arkowitz, 2014). Recent mod-
els for spatio-temporal oscillations of Cdc42 involve both positive
and negative feedback loops, as well as time delays (Das et al.,
2012; Xu and Bressloff, 2016). Several potential positive feedbacks
are presented in a recent review paper (Goryachev and Leda, 2017)
while potential negative feedbacks may involve a Cdc42 GEF (Gua-
nine nucleotide exchange factor) (Das et al., 2015). In Xu and
Jilkine (2018), we used a 1-D coupled PDE-ODE model to include
possible positive and negative feedbacks between Cdc42 and its
GEF, with our analysis of the resulting dynamics focusing on the
fast bulk diffusion limit, for which the full model is reduced to an
ODE model. We then explored in Xu et al. (2019) the effect of in-
trinsic noise on Cdc42 oscillations and compared the dynamics of
the reduced ODE model with its stochastic counterpart.
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Fig. 1. (a) A one-dimensional PDE-ODE model with bulk diffusion in the interior
given by Eq. (1) and binding kinetics at two well-mixed ends given by the ODE sys-
tem (7). (b) A two-dimensional model given by Egs. (11) and (12) with diffusion
along the membrane. Filled circle: membrane-bound molecule. Open circle: cytoso-
lic molecule. Blue: Cdc42. Green: GEF. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

In this work, we relax the fast bulk diffusion assumption and
compare the dynamics of the coupled PDE-ODE system to its well-
mixed ODE limit using linear stability analysis, time-dependent
simulations and numerical bifurcation analysis. We study the ef-
fect of decreasing the bulk diffusion level on the stability of the
symmetric steady state, at which both ends of the cell have the
same amount of Cdc42. We find conditions for a Hopf bifurcation,
and analyze how the Cdc42 and GEF bulk diffusion rates affect its
criticality. We also explore the role of one key biochemical reaction
rate, the GEF dissociation rate, on the emergence of oscillatory dy-
namics. We present numerical simulations showing two different
types of pole-to-pole oscillations, either weakly nonlinear or of re-
laxation type.

In the second part of the paper, we extend the 1-D bulk-cytosol
to a two-dimensional circular domain, with pure diffusion in the
interior, as well as surface diffusion and nonlinear reactions on the
membrane. We also consider a reduced one-dimensional system
of nonlocal reaction-diffusion equations that governs the dynam-
ics of membrane-bound species when assuming a well-mixed bulk.
Linear stability analysis is performed for both the full membrane-
bulk model and its nonlocal reduction. Our aim is to investigate
the symmetry-breaking effects of varying the bulk diffusion coef-
ficients, the membrane diffusion coefficients and the GEF dissoci-
ation rate. Finally, we present numerical results that confirm our
analysis and exhibit a variety of spatio-temporal patterns on a unit
disk, such as stationary Turing patterns, traveling waves and stand-
ing waves.

2. Mathematical models
2.1. One-dimensional PDE-ODE model

We first model the cell as a one-dimensional bulk domain sep-
arating two well-mixed compartments. This simplified geometry is
based on the competition of two growth zones of active Cdc42, lo-
calized at the cell tips, for a common substrate, corresponding to
inactive Cdc42, that diffuses in the cytosol and can become active
at the two tips in the presence of a Cdc42 GEF. We also consider
the spatial distribution of the Cdc42 GEF, found at each cell tip in
its active form or in the cytosol in its inactive form. A schematic
representation of this 1-D model is shown in Fig. 1a.

Let ((x, t) and G(x, t) denote the concentrations of inactive
Cdc42 and GEF in a cytosolic (or bulk) domain of length L, sat-
isfying
aC 9°C 0G 092G
ot~ CoxzT 9t foxz’
where D, and Dy are two constant bulk diffusion coefficients.

Near each of the two tips (i =1, 2), the binding and unbinding
processes are modeled by flux boundary conditions given by, in

0<x<lL. (1)
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x=0,
aC _ oG
Demr| =k (@(®).&(0)CO.0) —kci(t).  Dgz
x=0 x=0
= k" (c1 (£))G(0. 1) — kg (1), (2)
while in x = L the boundary conditions satisfy,
aC " _ hle
~Dem T k*(ca(t), &2(0))C(L, t) —k™ca(8), —Dgo »
= k(2 (1))G(L. t) — kg, (1), (3)

where c;,(t) and g;,(t) denote the concentrations of active Cdc42
and GEF. We assume that active GEF promotes the binding of
Cdc42 on each tip, and this results in the following association rate
kt:

k*(ci. ) = (ko + kearc?)gi. i = 1, 2. (4)

Here we assume a form of positive feedback that was used in
previous models of fission yeast (Csikasz-Nagy et al., 2008) and
(Cerone et al., 2012). The nonlinearity Ci2 is necessary for symme-
try breaking, allowing an asymmetric steady state to emerge. Po-
tential chemical reactions that can lead to such kinetics have been
discussed in Goryachev and Leda (2017). Some form of negative
feedback effect is necessary to obtain the pole-to-pole oscillations
observed in fission yeast (Das et al., 2012). For negative feedback,
we assume that active Cdc42 inhibits the binding of GEF and that
the association rate k°" is given by

kOn

k" (c;) = =1, 2. (5)

1+kc?’ !

We also note that this specific implementation has been dis-
cussed in our previous work (Xu and Jilkine, 2018), where it was
found that negative feedback is more likely to act through inhi-
bition of GEF association rather than upregulation of GEF dissoci-
ation. Finally, the dissociation rates k= and k°ff are chosen to be
linear.

For the rest of the paper, we will employ the following notation
for the binding kinetics:

on

F(C,c.8) = (ko + kearc®)gC —k ¢, G(G.c,g) =

1+«c?

Using this notation, we define the nonlinear ODEs regulating
the active species dynamics as

dei(t .
éi ) _ F(Clecion G0, &i(1)), i=1,2,
dgi(t )
g{rjg ) - G(GClaeg-nr. Gi(0). &(0). i=1,2. (7)

Here, we highlight that protein production and decay are ne-
glected by our model formulation, and that only the exchange
between the active and inactive forms is considered. This results
in the total amount of Cdc42 and GEF being constant over the
timescale on which cell polarization takes place. Hence, our model
formulation implies the following conservation laws:

L
c1(t) +c(t) + / C(x, t)dx = Cer,
0

L
g (D) + 5 (0 + /0 G(x. £)dx = Geor. (8)

where Cior and Gior are the total amount of Cdc42 and GEF.
Finally, we mention the limit of fast bulk diffusion, correspond-

ing to the well-mixed regime, for which the concentrations of in-

active species (C(x, t), G(x, t)) become spatially homogeneous (C(t),

G(t)). Using the conservation laws (8), we can reduce the full cou-
pled PDE-ODE model to a system of four nonlinear ODEs given

dCéEt) — ]-'(C(t)~ Ci(t),g,‘(t)), i=1,2,
% =G(G(t).ci(t). &(t)), i=1.2. ©)

where C(t) and G(t) are defined by

Ciot — €1 (t) — C2(t) Grot —81(t) — g2(t)
— .

L
The model presented here is dimensionless. A justification

of the various parameters (and their values) can be found in
Appendix A.

C(t) = . G = (10)

2.2. Two-dimensional membrane-bulk reaction-diffusion model

In this section we consider the model on a two-dimensional do-
main Q € R? with boundary 92 corresponding to the cell mem-
brane. The geometry of the model is shown in Fig. 1b. We assume
that inactive Cdc42 in the cytosol only undergoes diffusion, with
all the nonlinear binding kinetics taking place near the bound-
ary. We also consider the lateral diffusion of active Cdc42 on the
boundary, with a diffusion coefficient DT". Let ((x, t) denote the
concentration of Cdc42 in the bulk, and c(x, t) denote the con-
centration of active Cdc42 on the membrane. These concentrations
evolve according to a system of reaction-diffusion equations de-
fined by

aC(x,t)

5 =D V2C(x,t), XxeQ, (11a)
ac(x,t) N
FTa DI'Vzic(x, t) + FIC(x.t), c(x,t), g(x,t)], Xe L,
(11b)
—D.(n-VC) = FIC(x,t),c(x,t),g(x,t)], xe 0L, (11¢)

where V2 is the Laplace-Beltrami operator and n represents the
outward unit normal vector to d€2. Similar reaction-diffusion equa-
tions are defined for GEF, the second species; see below.

dG(x, t)

9t :ngzG(x, t), xe, (12a)

8g(axt, I DJ'V2 g(x,t) + GIG(X. t), c(X.£). g(X. )], X € I,
(12b)

—Dg(n- VG) = g[G(x, 1), c(x. ), g(X, )], X €I (12c)

The nonlinear functions 7 and G are as defined in (6). Mass
conservation arises from the formulation of the model, and we
have the following conservation laws:

f C(x. t)dx + / (X, )dX = Cior,
Q oQ

/G(x,t)dx+/ 2%, 1)dX = Gor (13)
Q Q

In Appendix C.3, we demonstrate that Cyr and Gyt must remain
constant and show that the numerical method employed preserves
mass over the timescale of cell polarization.
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2.3. Nonlocal PDE model on a circular domain

Models of polarization often consider the cytosolic forms of
Rho GTPases to be well-mixed (Goryachev and Pokhilko, 2008; Lo
et al., 2014). We conclude this section with the introduction of a
reduced nonlocal reaction-diffusion model governing the dynam-
ics of membrane-bound species in the limit of fast bulk diffu-
sion D — oo. For simplicity, we consider a two-dimensional bulk
domain Q € R? to be a disk of radius R and obtain a nonlocal
reaction-diffusion model for membrane-bound species on a circle.
In the well-mixed bulk, C(t) and G(t) are the spatially homoge-
neous concentrations of inactive Cdc42 and GEF, which are defined
using the conservation laws as

G 1 ~ 1 2
CO) = 1~ 137 [, €0 DX = Ca - ﬁ/o c(6,1)de,
(14a)
Gt 1 ~ 1
G = 7t - @/aszg(x,t)dx_(?avg— ﬁ/o 2(0.1)d6,
(14b)

where Cayg = Crot/(TR?) and Gavg = Grot/(R?) are the average
concentrations. Upon using polar coordinates to parametrize the
Laplace-Beltrami operator, we write V2 = R20gg, with 6 the an-
gular variable, and find that the active species c¢(6, t) and g(0, t)
must satisfy

m 92
0.0 _PEOO.D | FC).c0.0.80.1). 0=0 <27,

(15a)

dg0,t) Dg a% g0t
g(at )=R—§ géz ) £ G(G(t),c(6,1), 8(0,1)), 0=6<27.

(15b)

3. Results
3.1. One-dimensional PDE-ODE model

3.1.1. Steady states
We first consider the steady states of the coupled PDE-ODE sys-
tem (1)-(8). In the bulk domain, the Cdc42 and GEF profiles at a
steady state must satisfy the following boundary value problems:
C//(X) =0, GN(X) =0, C/(O) = C/(L) = G/(O) = G/(L) =0,
O<x<L. (16)
Hence, C(x) = C; and G(x) = G4 are spatially homogeneous.
From the conservation laws (8) we obtain
C, = Cot — C1a — CZa, Gy = Grot — &1a — 824 ) (17)
L L
with the subscript a referring to potential asymmetry ¢, # ¢4 and
Z1a # Z24 between both tips. Next, the active species steady state
solutions satisfy the following system of nonlinear algebraic equa-
tions:
F(Ca, €10, 81a) =0, F(Ca, C2a.824) =0, G(Gq, Cia.81a) =0,
G(Ga, C2q, 824) =0, (18)
from which g;, and g,, are expressed as,
. Lk7C1a
(ko + kear€2,) (Ceot — C1a — C20)”

81a

B Lk=cyq
(ko + kcatC%a)(Ctot —Cla — C2a)

with the corresponding Cdc42 values satisfying a system of two
polynomial equations given by

(19)

82a

H(Clay C2a) =0, H(CZas Cla) =0, (20)

where H(cq, ¢y) is defined by
ko Gior 2 2

H(ci. ) = - (Crot — €1 — C2) (ko + kcatc1)(k0 + kcatcz)
—kk°N¢y (ko + Kear€3) — k™k°¢y (Ko + Kear€?)
—LKk=cy (1 + kcc?) (ko + kear€3) . (21)

Assuming the same binding kinetics for both cell tips causes re-
flection symmetry of solutions with respect to the midpoint L/2. As
a result, interchanging (cq4, g14) With (caq, £24) also satisfies (18).

The steady state is symmetric when both tips possess equal so-
lution values (cs, gs), with g5 defined by

_ Lk—cq
(ko + keat€?) (Coot — 265)”
while ¢ satisfies a third degree polynomial equation given by
(LK~ kK + 2k kcat Grot ) ¢ — k" Keat GrotCrot €2
+(2Lk kM + L2k KT 4 2kok*" Gror )¢5 — kKo GrotCrot = 0. (23)

By Descartes’ rule of signs, it can be shown that Eq. (23) pos-
sesses either one or three positive real roots, and therefore there
always exists a symmetric steady state. Finally, we point out that
the existence of the steady states does not depend on the diffusiv-
ity level, and that the structure of solutions remains the same for
the reduced ODE system (9) in the well-mixed regime.

&s (22)

3.1.2. Linear stability analysis

We now proceed to a linear stability analysis of the symmet-
ric steady state, leaving the linear stability of a general asymmet-
ric steady state to be addressed via numerical bifurcation analysis.
Consider a perturbation of the symmetric steady state given by

Cx,t) =G +@x)eM, Gx,t) =Gs+ Y (x)eM,

a®)) _ (s Uy \ _x )Y _ (s Uz \ it
<g1 (t)> B <g5> " (Vl)e ; (gz (t)) B (gs> " <v2>e ’
(24)

where ¢(x) and v (x) are two eigenfunctions, while (u;, v;)T for
i=1, 2 are the eigenvectors of the linearized dynamics of active
species at the left and right tips. Applying then the conservation
laws (8) yields

L L
u1+u2+f @(X)dx = 0, v1+v2+f ¥ (x)dx = 0, (25)
0 0

and thus any perturbations can only result in a redistribution of
total mass between active and inactive species. Next, upon insert-
ing (24) within the PDE-ODE system (1)-(7) and linearizing about
the symmetric steady state, we obtain an eigenvalue problem

0=Dcpx —Ap, 0=Dg¥x —AY¥, 0<x<lL, (26)
subject to boundary conditions at x = 0 given by
dF dF oF
Degx(0) = 579 (0) + 7 -1 + "
aG G g
Dgwx(o) = afw(o) + %ul + afgvl’ (27)

while on x = L the boundary conditions are
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3]—' 8]—' dF aG G ag
Degx(L) = C‘ﬂ(L) up — Tgvb Dgirx(L) = —Ew(” — -l — g
Finally, from the linearized ODE dynamics we find that the eigenvectors (u;, v;)T satisfy
A - %% %ﬁ <”1> _ (f)c ‘/’(0)> A - %% %jgr (UZ) _ (ac‘p(]“)) (29)
-5 =)\ \Evo -5 A=) \n) \EyO

All the partial derivatives in Eqs. (27)-(29) are evaluated at the symmetric steady state.

vy. (28)

3.1.3. Hopf bifurcation
We first suppose that A # 0. Hence, the only possible bifurcating eigenvalues are purely imaginary and lead to a Hopf bifurcation. Then,
upon solving Eq. (26), we find that the eigenfunctions may be written as the sum of an even (+) and an odd (-) parts,

cosh (wc(5 - x)) o sinh (¢ (§ - x)) cosh (wg(§ - x)) . o Sinh (g (% —x))
cosh (wc5) ~ sinh(wc}) cosh (g% ) ~ sinh (wg})

where w¢ = /A/Dc and wg = ,/A/Dg. Next, the application of the boundary conditions (27) and (28) yields the following expressions for
the even coefficients ¢¢ and ¢0:

: (30)

px) = s Y=y

o 1 a{(ul +up) + (V1 +12) WO — Tg(ul +uz) + ag (Ul +12) (31)
¥ =727 D tanh (wcj) 2 YT T2 Dgtanh (ng) TR

while the odd coefficients ¢° and 0 are given by

(po:_l%%(ul—uz)+%§(v1— 2) yo—_ 7a—g(u1—uz)+ag(v1—u2) )
_ 2 Dewccoth(wcs) + 5~ 2 Dywgcoth (wg5) + 5

Since any solutions of the linearized system can be decomposed into an odd and an even parts, we treat the two different modes
separately.
0dd mode (-) For the odd mode, we have that u; = —uq, v, = —v; and thus

(% u1 + §Zv1) sinh (wc(5 —x)) (52u1 + %4vy) sinh (wg (% — %))
(Dcwc coth (a)cj) + %]Cr) sinh (a)CZ) (Dga)g coth (a)cj) + gg) sinh (a)gz) ’

LY =- (33)

px) =—

which automatically satisfies the constraints (25). We then substitute (33) within (29) and find that (u;,v;)T must be a non-trivial solution
of

% Do coth (w ) L ZDccwc coth (wc%)
Do, coth (wc5) + 3% Dca)c coth (o 5) + % <u1> _ (0) (34)
89 Dgavg coth (wyg ) 39 Dywg coth (wg) Vi 0)
* Dgwg coth (wgh) + 5 * Dgwg coth (w5 + 3¢
which, upon dividing through A # 0, can be rearranged into
(wmmgg%—% % )cg_<% 35)
_0¢ A+ g G _ 3G vy) —\o)"
c coth (wg%) aG g
The eigenvalue parameter X is therefore a root of the following characteristic equation:
_ [OF O0F OF Wy g 9g JdF G
FW=P+MW%W(WJP+mW%WGBJ_%%:Q (36)

In Section 3.1.5, Eq. (36) will be solved numerically for a Hopf bifurcation, i.e. for a pair of roots A = +iA; with A; > 0. In the well-mixed
regime, corresponding to the infinite bulk diffusion limit D¢ ¢ — oo, Eq. (36) reduces to

lim F-(L) =|A—J_| =0, (37)

cg‘)

where [ is the 2 x 2 identity matrix and J_ is a Jacobian matrix defined by

5 %

c g

J-= <>g ‘39) : (38)
dac g

In computing the limit, we have employed the following approximation of the hyperbolic cotangent function for a small argument:

L 2 . A
coth (a)cvg§> N with  wcg=,/ Do < 1.
c.g cg
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In the well-mixed regime, necessary conditions for the symmetric steady state to undergo a Hopf bifurcation are given by

3G AF 3G 3G IF
tr(.) = @ g =0 detU) = 5o g0~ 5 7 O (39)

Even mode (+) For the even mode, we have that uy = uy, v; = v, and thus
(% + &v1) cosh (o (4 —x)) (52u1 + %v1) cosh (g (% - x))

(x)=— L Y =- (40)
¢ (Dcw tanh (wck) + 37 cosh (wc5) 4 (Dgoog tanh (a)cj) + 2¢) cosh (wg5)
Upon substituting (40) within (29), we find that (u;,v;)T is a non-trivial solution of
~ %D tanh (wck) ~ %—?Dcwc tanh (o)
D.w. tanh (a)c%) + 4 D.w. tanh (a)c%) + 9 . 0
. 1 _
_ §iDgwgtanh (wg3) 39 Dgwg tanh (wg5) (111) = <O> (41)
Dywg tanh (wg}) + 52 ~ Dgwytanh (wgh) + 52

For the odd mode, we can divide through A # 0 in (41) to obtain

A4 — @ _dF _IF _3F
tanh (w %) 9C dc T g up) 0 42
_0¢g A+ Wg 9G _ 9g v \o) (42)
dc tanh (wg§) 96 g

which corresponds to the linear system obtained from applying the constraints (25) onto an even eigenfunction. The characteristic equation
is therefore given by

o  OF OF w; 96 9¢| 9Fag
+(4) |: " fanh (k) 9C  dc :| |: " tanh (wg5) G 8g:| dg dc “3)

Once again, in the limit of fast bulk diffusion, the conditions for a Hopf bifurcation associated with the even mode is easily derived.
Upon taking the limit D¢,z — oo in Eq. (43) and using the following approximation of the hyperbolic tangent function:

L L . A
tanh (a)cygi) N gy with @cg = /D— <1,
c.8

we obtain a quadratic equation given by
lim F, (L) =|Al—J,| =0, (44)

cg%

where the Jacobian matrix J; is defined by

_20F L 0F aF
_ L aC ac 9
Ji = ( 9 _20¢°, ag) : (45)
ac L oG g

In the well-mixed regime, necessary conditions for a Hopf bifurcation associated with the even mode are given by tr(Jy) = 0 and
det(J;+) > 0. We will however see that no Hopf bifurcation of the even mode occurs for the nonlinear functions and the parameter values
used in our study, and thus only anti-phase oscillations are observed in both the well-mixed and finite diffusion regimes. The absence
of in-phase oscillations was also noted in a PDE-DDE model with mass conservation Xu and Bressloff (2016). Whether a mass-conserved
PDE-ODE(DDE) model can have in-phase oscillations remains an open question.

3.1.4. Zero-crossing eigenvalues

We now investigate the occurrence of zero-crossing eigenvalues leading to either pitchfork or saddle-node bifurcations. We remark that
a rigorous treatment of the eigenvalue problem defined in Eqs. (25)-(29) would require the introduction of a branch cut in the complex
A-plane along co < M(A) < 0 and I(A) = 0. Fortunately, the limit of A — 0, with A real, has the same effect as the infinite bulk diffusion
limit: all the square roots from the characteristic Eqs. (36) and (43) cancel, and no continuous spectrum is introduced. Therefore, the
solution for A = 0 can be readily obtained by taking the well-defined limit A — O.

0dd mode (—) After taking the limit A — 0 in Eq. (36), we obtain the following condition for the linearized system to have a zero-
crossing eigenvalue associated with the odd mode:

. 0F0G 0GOIF
limF. (A)=det(J.)= —+ — -——+—=0. 46
,\%0() U-) oc dg dc dg (46)
When this condition is satisfied, the system undergoes a pitchfork bifurcation with two branches of asymmetric steady states emerging
from the symmetric steady state.
Even mode (+) We proceed similarly for the even mode. The symmetric steady state undergoes a saddle-node bifurcation when the

following condition is satisfied:

40706 2(0703G 0GIF 079G _9G3F\ _
[29C3G L\ dc aG 9dg aC doc 0g dc 0g )
We highlight that bulk diffusion has no effect on the existence of steady states and on bifurcations resulting from zero-crossing eigen-

values. However, as will be seen in the next section, diffusion does influence the stability of symmetric steady states and possible oscilla-
tory dynamics.

lim F, (2) = det(/,) = (47)
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Fig. 2. Symmetric steady state (red), asymmetric steady state (black) and periodic solution branches (green) for the reduced ODE model in the well-mixed regime, as a
function of k°ff, Other parameter values are given in Table 2. A full line indicates linear stability, while unstable branches are dashed. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Oscillatory dynamics for the reduced ODE model (9) in the well-mixed regime. (a) A zoomed-in view of the bifurcation diagram in Fig. 2(b). (b) Period of oscillations
in the k°f regimes (0, 0.56) and (0.79, 0.99). For the first branch, the period has a minimum near k°f ~ 0.3 and rapidly increases near both k°f =0 and k°f ~ 0.56,
suggesting the occurrence of homoclinic bifurcations as limit cycles collide with asymmetric equilibria. For the branch of periodic solutions emerging from a supercritical
Hopf bifurcation at k°f ~ 0.99, the period increases rapidly at a suspected homoclinic bifurcation near k°f ~ 0.79. (c) Numerical solutions for k°f = 0.9,0.7,0.5. For a high
rate k° = 0.9, weakly nonlinear oscillations are observed. For an intermediate rate k°f = 0.7, numerical solutions evolve to an asymmetric steady state. As k°T further
decreases to 0.5, highly nonlinear relaxation oscillations are observed. For each of the three simulations, the initial conditions correspond to the symmetric steady state (red
horizontal line) plus a small perturbation stimulating the odd mode. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

3.1.5. Numerical bifurcation analysis

Our previous work on the well-mixed version of the model pointed out the importance of membrane residence times of GEF proteins
(set by 1/k°ff) in determining whether Cdc42 proteins were at steady state or undergoing pole-to-pole oscillations Xu and Jilkine (2018).
Hence, we select k°ff and the bulk diffusion coefficients as bifurcation parameters, and numerically investigate their effects on the stability
of the symmetric steady state (c; = ¢, g1 = ). Details of the numerical bifurcation analysis are given in C.1.

We start with the dynamics of the ODE model (7). The intricate succession of bifurcations that results when increasing k°ff is presented
in Fig. 2. The symmetric steady state is unstable for low k°ff values, with linear stability gained through a supercritical Hopf bifurcation
when k°ff ~ 0.99. Further beyond this threshold, two fold bifurcations in k°f ~ 6.23 and k°f ~ 9.17 cause hysteresis and coexistence of
up to three symmetric steady states. We observe that bistability of symmetric steady states occurs in the range (6.24, 7.86), with such
thresholds corresponding to subcritical pitchfork bifurcations connecting branches of asymmetric and symmetric steady states. Finally,
stable and unstable branches of asymmetric steady states are connected via fold bifurcations at k°ff ~ 0.56 and k°ff ~ 11.22.

For the parameter regime considered, stable anti-phase oscillations are observed in the limit of fast bulk diffusion when k°ff is small
(k°ff < 1). A closer view of this regime is shown in panel (a) of Fig. 3, where we observe that oscillations emerge either via supercritical
Hopf or homoclinic bifurcations. Numerical simulations exhibiting the role of the asymmetric equilibrium on the shape of the oscillations
are shown in panel (c) of the same figure. From k°ff = 0.9 to k°ff = 0.5, we observe a transition from weakly to highly nonlinear oscillations.
The intermediate range k°ff e (0.56, 0.79) is characterized by the absence of stable oscillations, with all the trajectories attracted to the
asymmetric steady states.

We consider next the effect of finite bulk diffusion on the emergence of oscillatory dynamics, focusing on the parameter regime where
there is a unique symmetric steady state. We numerically solve the eigenvalue relation (36) for a Hopf bifurcation associated with the
anti-phase mode, i.e. for a pair of roots A = +iA; with A; > 0. The corresponding Hopf stability boundaries in the D, versus Dy parameter
plane are given in panel (a) of Fig. 4, where the region of linear stability of the symmetric steady state is located below the curves. We
point out that fast cytosolic diffusion is sufficient to achieve oscillations and that decreasing k°ff shrinks the linear stability region. Since
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weakly to highly nonlinear oscillations, a finding consistent with the dynamics in the well-mixed regime. The phase shift of half a period between c(t) (blue) and c,(t) (red)
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50

T T T T 50 T T T T 5
45 || === Supercritical HP | sl = =Dy = sk 1 - =D, =1
= =Subcritical HP - =D, =10 | - =D.=10
“I'l A Generalized HP 1 M
35 1 35 ast |
30t E 30 - 3t ! Linear stability -
Q 25t E d 25 Q% 25 !
20 | — 20 — 2t !
Linear |
vy ' stability] ey 1
10 q 10 q 1r
) (0.64,4.9) . (0.63,4.83 ol
[ ] [ - 1 ST 1.08,0.31
e m-—— Linear stability L o= (0.76,5.74) A 280_3 )
0= ! h . . . h h | 0 T I . . . 0 - e e = mm omm
01 02 03 04 05 06 07 08 09 1 02 04 06 08 1 12 0 05 1 15 2
Jeoff Jeoff Jooff
(a) (k°%, D) with D = D, = D,. (b) (k°%, D.) with Dy = 1, 10. (¢) (k°%, D,) with D, = 1, 10.
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(c)) parameter planes. Full and dashed curves indicate respectively super- and subcritical Hopf bifurcations, while triangular points indicate a criticality change (generalized
Hopf point). Other parameter values are given in Table 2.

1/k°ff sets the membrane dwelling time for the GEF, we conclude that increasing this quantity pushes the system into oscillatory dynamics
even for relatively modest diffusion coefficients. Numerical simulations exhibiting anti-phase oscillations with qualitatively different shapes
are shown in panel (b) of the same figure.

Shown next in Fig. 5 are stability diagrams for the symmetric steady state that use k°f as a bifurcation parameter. We note that in
panel (a), the bulk diffusion coefficients are set to be equal, while in panels (b) and (c) only D, or Dy are is allowed to vary. The branching
behavior of the Hopf bifurcation, i.e. whether it is super- or subcritical, was resolved numerically with the software AUTO (cf. Doedel et al.,
2007) and a nonlocal formulation of the PDE-ODE model (see C.1). Letting D = D, = D or letting D, free with D; fixed yields qualitatively
similar stability boundaries, with the second case seemingly converging to the first one as Dg increases. In both cases, the bifurcation
is supercritical when the diffusivity level is above some threshold and it is subcritical in the low diffusion regime. However, stability
boundaries in the Dg versus koff parameter plane have a qualitatively different shape, with the critical diffusivity threshold being inversely
proportional to k°ff, Here, increasing D, tenfold pushes the system further into instability and near the onset of oscillations. Hence, we
conclude that D¢ has a stronger effect on the oscillatory dynamics than Dy.

Next, we compute global bifurcation diagrams along two horizontal slices from panel (a) of Fig. 5. The results are shown in Fig. 6 below
for D = 10 (upper panels (a)-(c)) and D =1 (lower panels (d)-(f)). When D = 10, the symmetric steady state loses stability through a su-
percritical Hopf bifurcation at k°ff ~ 0.81. Further below this threshold, the stable weakly nonlinear anti-phase oscillations are annihilated
by the asymmetric steady state at k°f ~ 0.71, with the oscillatory period undergoing a sharp increase to infinity. As in the well-mixed
regime, relaxation oscillations exist in the range k°f < (0, 0.56).

As predicted by panel (a) of Fig. 5, we find that the symmetric steady state undergoes a subcritical Hopf bifurcation on the horizontal
slice D = 1, near k°ff ~ 0.17. Furthermore, the branch of limit cycles emerging from the Hopf bifurcation gains stability at a fold point near
koff ~ 0.27. Finally, panel (f) of Fig. 6 illustrates a typical hard loss of stability near a subcritical Hopf bifurcation. Notice the absence of
weakly nonlinear oscillations and the direct transition to relaxation oscillations.

We conclude this section with Fig. 7, which gives some explanations behind the emergence of anti-phase relaxation oscillations in the
limit of long GEF membrane residence time. Relaxation oscillations are characterized by long periods of rest followed by sudden sharp
variations and are typical of slow-fast systems. Since k°ff < k—, GEF dissociation is slow compared to Cdc42 dissociation, and active GEF
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this article.)

can thus be seen as a slow variable while active Cdc42 as a fast variable. This results in a more rapid flux on (or off) each pole for Cdc42
(see panel (c)).

3.2. Nonlocal PDE model on a circular domain

In this section, we consider a two-dimensional membrane-bulk model with circular geometry and well-mixed bulk dynamics. This
results in the reduced nonlocal PDE model given by system (15). Our approach combines linear stability analysis and numerical simulations
to predict and explore the formation of spatio-temporal patterns near stability thresholds and away from them, in the highly nonlinear
regime.

We first define the spatially uniform (or trivial) steady state as C(r, ) = C*,G(r, 8) = G*,c(0) = c* and g(f) = g*. Similarly to the
one-dimensional PDE-ODE model, C*,G* and g* satisfy

k=c*
[ko + keat ()2 [(Cavg — Y €*)’

Ct = Cavg — )/C*, G = Gavg - J/g*, g=
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where Gayg = Grot/|€2], Cavg = Ciot/|2| and y = |9€2|/|2| are respectively the average masses and the ratio of the perimeter over the area.
The steady state concentration of active Cdc42 is then found to satisfy the following cubic equation:

[K°Tick™ + 1k keatGavg] (€*) — k" keatGavgCavg (€*)? + [K°Tk™ + K™y (k™ + koGavg) 1c* — k°"koGaygCavg = O, (48)
where y = 2/R for a circle of radius R. In the one-dimensional case, the average masses are defined as Cayg = Ciot/L and Gayg = Giot/L, and
Eq. (48) reduces to Eq. (23) derived for the symmetric steady state of the PDE-ODE model.
3.2.1. Linear stability analysis

We consider the following nonuniform, spatially periodic, perturbations of the trivial steady state:
c(0.t) ="+ upe - g(0,t) = g" + v, n 20, (49)

where once again A € C is the eigenvalue parameter. After substitution of (49) within the system of nonlocal PDEs (15) and upon lineariz-
ing around the trivial steady state, we find that the eigenvector (uy, v;)T must satisfy

Up 0
() - (%) -

where the Jacobian matrix J, is defined by

_pmm | 3F OF —D"n2/R? + 2keacc*g*C* — k= C*[ko + Kear (¢*)?]
]”=< C%ZQ—’_ o mr?ig ag)z( : ON ok (T - %1212 mp2 c;t off)' (51)
Te —DgR*z'i'@ =2Kk°"c*G*/[1 + Kk (c*)?] —Dgn/R -k
For each mode n, the corresponding pair of eigenvalues is given by
21 _

e (n) = trfy, = ,/trén 4detj,1’
where the trace and the determinant are
trfy = —n*Df*/R? — 2 DI /R? + 2kearC'g*C* — (k™ + k°T),  det], = [n?DI'/R* — 2kearc*g*C* + k™~ |[n* D /R + k] + 1,
with 7 defined as

_ 2kckonc*[ko + kcat(c*)Z]C*G*' (52)

[1+K(cr)?]?
As usual, linear stability requires a negative trace and a positive determinant of the Jacobian matrix for each n, therefore yielding the
following inequality to be satisfied by D'

nR?/n?
DI'n? /R? + koff

This inequality places a bound on the minimal diffusion coefficient of Cdc42 for the linear stability of the trivial steady state with
respect to non-spatially homogeneous perturbations. This boundary is plotted in Fig. 8 and verified numerically.

Notice that because of the integral terms within the nonlocal PDE system (15), we cannot simply set n =0 in (51) to recover the
Jacobian matrix associated with spatially uniform perturbations. A similar observation was made by Rdtz and Roger in their stability
analysis of a coupled membrane-bulk reaction-diffusion model for polarity of small GTPases Ritz and Roger (2012). Furthermore, stability
with respect to spatially uniform perturbations, or equivalently, in the absence of membrane diffusion, is required for Turing diffusion-
driven instability (cf. Turing, 1952). For this special case, the Jacobian matrix of the linearized system satisfies

3F ., | OF O

-y + % &

]0:< acy e d (54)
3 -3V T3

2 2
D" > max {—D;" + %(chatc*g*c* — k= k), — - %(chatc*g*c* -k) } (53)
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and necessary conditions for diffusion-driven instability are given by

_9F 9¢ daF  9G _ . 20F 3¢ 0F9dG 0GOF\ K 0FIG 0OFIG

dc dg dg dc e
which have been verified numerically for the parameter values employed in our study (see Appendix B). Restoring membrane diffusion,
two different symmetry-breaking mechanisms may cause loss of stability of the trivial steady state: the stationary or the oscillatory Turing
instabilities, which we describe below.

o The stationary Turing instability, which happens when the Jacobian matrix possesses an eigenvalue at the origin: detJ, = 0, with
n # 0. We note that because of circular symmetry (or O(2) symmetry), an unstable mode always comes in a pair =+ n, and thus the
stationary Turing instability corresponds to a pitchfork bifurcation.

o The oscillatory Turing instability, which happens when the Jacobian matrix possesses a pair of critical eigenvalues on the imaginary
axis: trf, = 0 and detJ, > 0, with n # 0. This instability corresponds to a Hopf bifurcation with O(2) symmetry (cf. van Gils and Mallet-
Paret, 1986), and traveling waves as opposed to stationary patterns are expected to form.

More intricate bifurcations resulting from the interaction of two spatial modes may also be detected when performing linear stability
analysis. One example is the Bogdanov-Takens bifurcation with 0(2) symmetry (cf. Dangelmayr and Knobloch, 1987), which occurs when
the stationary and oscillatory Turing instabilities coincide for the same (nonzero) spatial modes =+ n. At such a bifurcation point, we have
trJ, = 0 and detJ, = 0, and thus the linearized system possesses two zero-eigenvalues of multiplicity two.

3.2.2. Spatio-temporal pattern formation in the nonlocal PDE model

Here, we compare our linear stability analysis against numerical simulations of the nonlocal system of PDEs (15). Simple finite differ-
ences are employed to spatially discretize diffusion terms while nonlocal integral terms are handled using the trapezoidal quadrature rule.
As initial conditions, we take in this section

c(6,0) =c* +upcos (nf + @), g(60,0) =g* +vycos (N6 + @), (56)

where the eigenvector (un, v4)T is a non-trivial solution of (50) and ¢ is an arbitrary angular phase shift.

In Fig. 8, we show three stability diagrams in the (Dg', Di") parameter plane for different koff values. As expected, the trivial steady state
is linearly stable when Cdc42 diffuses fast. Fig. 8 also confirms the destabilizing effect of long GEF membrane residence times, since the
linear stability region shrinks as k°ff decreases. In each diagram, the different spatio-temporal patterns observed via numerical simulations
are labeled with a variety of symbols. For instance, the star and the filled circle respectively indicate a traveling wave and a stationary
pattern, while the empty circle shows the absence of patterns. This non-exhaustive parameter exploration reveals that the spatio-temporal
dynamics thresholds clearly correspond to the stability boundaries shown in Fig. 8, suggesting that in the limit of fast bulk diffusion, all
the identified bifurcations are supercritical.

Some numerically computed spatio-temporal patterns obtained when k°ff = 1 are shown in Fig. 9. For this case, the trivial steady state
is expected to lose stability via pitchfork bifurcations associated with the modes n = 1,2 and 3 (indicated by the blue, red and golden
curves). Nevertheless, our simulations revealed that some patterns that are initially stationary can evolve into traveling waves, and this
phenomenon occurs in the absence of any oscillatory Turing instabilities (see panels (b), (d) and (e)). One potential explanation comes from
the vicinity of multiple stability curves, which causes two or more spatial modes to interact and ultimately leads to a stationary pattern
undergoing a secondary Hopf bifurcation. We also observed “quasi-stationary” patterns with multiple peaks. For instance in Fig. 9(c), two
peaks are seen to collapse and split again immediately after, resulting in a different pattern configuration. Finally, when the ratio D{"/Df'
is very small, a large number of modes become unstable and linear stability analysis cannot be employed to predict the final number of
peaks of a stationary pattern. This phenomenon precisely corresponds to what happens in panel (f), where for Df"/Df' = 0.1, an initial
pattern with three peaks rapidly evolves into a highly localized pattern with a single peak.

At smaller k°ff values, as indicated by the black curve in panels (b-c) of Fig. 8, the loss of stability of the trivial steady state can arise
via a Hopf bifurcation (see Appendix B). This is similar to what is seen in the one-dimensional PDE-ODE model from Section 3.1, where
oscillatory dynamics also require a small GEF dissociation rate. Near those oscillatory Turing instabilities, the formation of traveling waves
is expected. We distinguish between rotating and standing waves, with the latter type often referred to as pole-to-pole oscillations. As
shown in Fig. 10, our numerical experiments revealed that the two types coexist near the Hopf stability boundaries, while away from
them in the highly nonlinear regime the standing waves are only transient.

Finally, for both k°ff = 0.5 and k°ff = 0.1, we notice in Fig. 8 the presence of Bogdanov-Takens bifurcation points associated with the
n =1 spatial mode and indicated by the branching of the black from the blue curves. Traveling waves are expected to interact with
stationary patterns in the neighborhood of such a bifurcation point, and further details about its effect on the dynamics will be given in
Section 3.3 in the context of finite bulk diffusion.

3.3. Two-dimensional membrane-bulk reaction-diffusion model

In this section, we consider the full two-dimensional membrane-bulk reaction-diffusion model with circular geometry. Our aim is to
determine the effects of a finite bulk diffusion field on the spatio-temporal dynamics from Section 3.2. Linear stability analysis is performed
first, followed then by numerical simulations.

3.3.1. Linear stability analysis
We consider a perturbation of the spatially uniform steady state given by

C(r,0,t) =C*+eMd(r,0), G 0,t)=C+eMWU(r0), c@,t)=c"+e p®), gO.t)=g +e "y 0), (57)
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standing waves near the mode n = 1 Hopf stability boundary. Further below this threshold, in DI' =
Each solution is shown in Supplemental Movies S3, S4 and S5.

where ®(r, 0),W(r, ) and ¢(0),¥(0) are respectively the bulk and membrane eigenfunctions, while (C*,G*,c*,g*) is such as introduced
in Section 3.2. Next, upon inserting (57) within Eqs. (11)-(12) and after linearization, we obtain the following eigenvalue problem in the

bulk:

Dc[d>rr(r,9)+%@r(rﬁ)—i—:—z@gg(rﬁ)]—Ad>(r,9)=0, 0<r<R 0<0 <27 (582)
Dg[wrr(r,0)+%\Dr(r,9)+r1—2\1199(r,6)]—A\D(r,9)=0, O<r<R 0<6<2n, (58b)
and on the membrane:
Dgﬂ 9F
¢99(9)+ CD(R 0+ ( 52 ¢(9)+—w(9)_o 0<6<2r, (58¢)
(584)

w99<9>+ ‘I/(R9)+ ¢(9)+( —A)w(e)—o 0<6 <2,
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with boundary conditions given by

D (R.6) = a]:CD(R 0) + —¢(9) + —w(e) DU, (R.6) = 3%(12 0) + 7¢(9>+ fw(e) (58¢)

Here each of the partial derivatives is evaluated at the spatially uniform steady state. Also, the conservation laws (13) yield

2 R 2 2 R 2
/0 /Ocp(r,e)rdrdmfo $(6)RO =0, /O /o\y(r,e)rdrd9+[0 ¥ (0)RO = 0. (58f)

Our aim is to derive, for each spatial mode, the characteristic equations satisfied by the eigenvalue parameter. We consider first the
general case where A is nonzero, followed then by the zero-crossing eigenvalue case.
Nonzero eigenvalue When A # 0, separation of angular and radial variables yields the following expressions for the eigenfunctions:

_ In(a)cr) ind _ Iﬂ(wgr) inf _ in6 _ in6
@n(r,Q)_AnIn(ch)e , U(r,0) =B, (gR)e . On(0) =upe™,  Yn(0) = vpe™, (59)

where we = /A/D¢, wg = \/A/Dg and Iy(z) for n € Z are the usual modified Bessel functions. Next, from the linearized boundary conditions
(58e), Ap and B, are readily found to satisfy

oF 3g 3g
dC un + dg Un ()C un + ag UT!
An =~ T (wR) Bn =~ T (wgR) )g
C [
Dewc o + & Dgwe iy +

Then upon substituting (59) within the linearized membrane reaction-diffusion system, we derive the following linear system to be
satisfied by the eigenvector (up, vp)':

2pm
e = b 5L -pn(M) % ur) _ (0 60
2) 29 n’Dy 2) 99 ) \O) (60)
—qn(A) 3¢ R ( )@
where pn(A) and gn(A) are defined by
Dcw Il (wcR Dyw,l (wgR
pa() = ——— DOh(OR) g o Deosh(@R)
Dewcly(@cR) + GzIn(@cR) Dgwyl}, (a)gR)+ In(a)gR)
Finally, setting the determinant of the matrix in (60) to zero yields the following characteristic equation:
n2Dm oF n2Dy 0G 0F 0G
EA)=[A C —pn(M)=—||A g qa(M) == A A 1
2 (2) [ + = — P )86}[ + 2 — n )ag} PG () 5o 0 =0 (61)

For an oscillatory Turing instability, purely imaginary roots of F,(A) for n # 0 are necessary. Fortunately when treating the spatially
uniform mode, the integral constraints (58f) and the linear system (60) with n =0 lead to an equivalent solvability condition. A rigorous
Turing stability analysis would require us to prove the absence of roots A with 9i(A) > 0 for the characteristic equation Fy(A) = 0, which
cannot simply be verified numerically with the argument principle from complex analysis because of the singularity at the origin. This
challenging task is therefore left for further study. Similar issues were encountered when treating the in-phase mode in the PDE-ODE
model.

Zero-crossing eigenvalue For this special case, a suitable ansatz for the eigenfunctions is given by

n . n . . .
®u(r,0) :AHG) e W (r,0) = Bn<£) e ha(0) = une™.  Yn(0) = vue™, (62)
where from the linearized boundary conditions (58e), A, and B, are found to satisfy
Fun + 5wy Mu, + E’gun
Ap = 7, By=—"—"—7-——"2
DCR ()C DgR 3G

The homogeneous linear system satisfied by the eigenvector (up, v,)" is then given by

TP —pa(0 (u 0
n) = (V). 63
( S OL S fqn<0>f’g ( ) (") *

where py(0) and g,(0) are defined by

Dcn Dgn

0)= ———, _—
Pn(0) Den + RYZ (0 = Dgn + R34

After setting the determinant of the matrix in (63) to zero, we obtain the following necessary condition for a zero-crossing eigenvalue:

g g y g €1g
n2Dm oF || n?Dm 0G dF 0G

E0)=| —% - 0)— || —==< —qn(0 0 0 =0. 64
Tl( ) [ R2 pn( )ac}[ R2 qu( )ag pn( )Qn( )ag ac ( )

When Eq. (64) is satisfied for n # 0, the trivial steady state undergoes a pitchfork bifurcation, corresponding to the stationary Turing
instability.
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Fig. 12. Stable polarized state with k°f = 0.05 and D = 4 (other parameters are the same as in the caption of Fig. 11). In panels (b-c), the level of membrane-bound (active)
proteins is given by the blue curve. The black dot in the same panels indicates the position on the disk with zero azimuthal coordinate. Because of circular symmetry, any
rotations and reflections of this pattern is also a solution. See Supplemental Movie S6. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

3.3.2. Spatio-temporal pattern formation in the two-dimensional model

We now explore the effect of diffusion and GEF membrane residence time on the formation of spatio-temporal patterns on a circular
bulk domain when the inactive species diffuse at finite rates. As bifurcation parameters, we therefore select the bulk and membrane
diffusion coefficients, as well as k°ff, the GEF dissociation rate. The spatial discretization in our numerical method combines a finite element
approach in the bulk with a finite difference approach on the boundary (see C.2 for further details). The initial conditions stimulate a
specific spatial mode n by adding the corresponding eigenfunction to the uniform steady state. Finally, the stability of the uniform steady
state with respect to small perturbations is predicted from a numerical eigenvalue computation, directly by solving (64) and (61).

We present in panel (a) of Fig. 11 a stability diagram in the (k°ff, D) parameter plane, where we assume that both inactive Cdc42 and
GEF diffuse at the same rate D = D = Dg. We remark that the stability boundaries are similar to those arising in the one-dimensional
PDE-ODE model as shown in panel (a) of Fig. 5. In both cases, the simultaneous increase of D, and Dg has a destabilizing effect and
results in a reduction of the region of linear stability of the trivial steady state. However, a key difference between the two diagrams is
the curve of primary instabilities. In 2-D circular geometry, this curve is composed of a pitchfork (blue) and a Hopf (black) bifurcation
segments, both associated with the n =1 spatial mode, that connect in a Bogdanov-Takens bifurcation point in (k°f, D) ~ (0.06, 4.83).
Hence, decreasing k°ff when the bulk diffusion level is above this threshold leads to a loss of stability of the trivial steady state through a
Hopf bifurcation and traveling (or rotating) waves are expected to form. Below the Bogdanov-Takens bifurcation point, our linear stability
analysis predicts a loss of stability through a pitchfork bifurcation, leading to the formation of stationary patterns with accumulation of
proteins in a single location.

As the Hopf curve approaches the pitchfork stability boundary, the pair of critical eigenvalues tends to zero and a slowing down of
the phase velocity of the traveling wave is expected. As shown in panels (b-c) of Fig. 11, this phenomena is observed in our numerical
simulations. Eventually, the wave stops and becomes a stationary pattern (see Fig. 12). Furthermore, in the vicinity of the Bogdanov-
Takens bifurcation point, it is possible to derive a four-dimensional system of ODEs approximating the dynamics of the full bulk-membrane
reaction-diffusion system. Although, such a dimensionality reduction process is beyond the scope of this study, we remark that the analysis
of the resulting normal form could reveal the precise boundary delimiting the regions of existence of traveling waves and stationary
patterns.

For the stationary pattern in Fig. 12, we notice a small GEF dissociation rate (k°f = 0.05), which causes the proteins to mostly accu-
mulate on the membrane. Also, in contrast with coupled bulk-membrane reaction-diffusion systems without mass conservation (cf. Levine
and Rappel, 2005; Gomez et al., 2019; Paquin-Lefebvre et al., 2019), we note that high (low) concentrations on the membrane match with
low (high) concentrations in the bulk.
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Our numerical simulations also revealed the possible subcritical branching of the Hopf bifurcation associated with the n =1 spatial
mode. In Fig. 13, we show the result of two simulations performed near the Hopf stability boundary, where the trivial steady state is
expected to be linearly stable, and observe that a traveling wave can form given a large enough perturbation of the trivial steady state. We
highlight that such a bistable behavior was not observed in Section 3.2, when considering the nonlocal PDE system governing the dynamics
in the well-mixed regime. This would be consistent with our findings in the one-dimensional PDE-ODE model, that the Hopf bifurcation is
subcritical for low level of bulk diffusion, while it is supercritical in the well-mixed regime. The precise determination, through a normal
form computation, of the diffusion level at which the criticality transition occurs, is left for further study.

We now address the existence of standing waves (or pole-to-pole oscillations) in the full coupled membrane-bulk reaction-diffusion
model, and recall that such oscillatory behavior is essential during the process of cell division. Numerical simulations from Fig. 14 suggest



16 F. Paquin-Lefebvre, B. Xu and K.L. DiPietro et al./Journal of Theoretical Biology 497 (2020) 110242
0.2 T T T T
= npitchfork, n = 1
0.18 | | pitchfork, n = 2 Cdcd2 t 5 300.0 Cded2 ¢ — 300.0
pitchfork, n = 3 - N 0.146 015
016 1| pitchfork, n = 4
0.144 0.149
0.14
e 0.142 0.148
*Q" 012 Linear stability
0.1 0.14 0.147
008 - - i o
1
0.04 L /X / T L L L L 0.134 0.144

0.1 0.2 0.3 0.4 0.‘5 0.6 0.7 0.8 0.9 1
D
(a) (DJ", D) with k°T =1, D = 10.

(b) Stationary pattern with two peaks. (c¢) Stationary pattern with three peaks.

Fig. 16. Panel (a): pitchfork stability boundaries in the D" versus Dy’ parameter plane with k°f =1, D = 10 and other parameters taken from Table 2. Panel (b): the stationary
pattern is computed near a mode n = 2 stability boundary, as indicated by the square in panel (a) (see Supplemental Movie S10). Panel (c): the stationary pattern is computed
near a mode n = 3 stability boundary, as indicated by the triangle in panel (a) (see Supplemental Movie S11). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

~N
~N

100

150

Time ¢

(d) DI* = 0.2, DI* = 0.04

200 250 300

100

150

Time ¢

(f) D" = 0.6, DI" = 0.04

200 250

Time ¢

(e) DI* = 0.4, DI* = 0.04

Fig. 17. Effect of reducing the membrane diffusivity ratio D{'/Dy' on pattern formation. In panels (a-c), we observe a transition from a pattern with two peaks to a localized
pattern with a single peak. The same transition is observed in panel (d-f) for an initial weakly nonlinear pattern with three peaks. Other parameters are the same as in the
caption of Fig. 16.

the coexistence of pole-to-pole oscillations and traveling waves near the Hopf stability boundary. The parameter values employed here are
the same as for panel (c) of Fig. 11, although we remark that similar simulation results were obtained for different sets of parameters
near the stability threshold. As shown in Fig. 15, clear transitions between standing and traveling waves are observed away from the Hopf
stability boundary. Overall, those findings are consistent with the dynamics in the limit of fast bulk diffusion (see Section 3.2).

Next, we investigate the formation of patterns with multiple protein accumulation sites, which happens when higher spatial modes
become unstable. For the purpose of avoiding any oscillatory instabilities, we set k°ff =1, D =10, and select the membrane diffusion
coefficients as bifurcation parameters. Shown in panel (a) of Fig. 16 are four stability curves in the D' versus Dg' parameter plane. Each
of these curves is associated with a distinct mode and computed directly from the zero-crossing eigenvalue relation (64). The resulting
diagram is qualitatively similar to its counterpart in the limit of fast bulk diffusion (see panel (a) of Fig. 8). Here also, we note the
stabilizing effect of simultaneously decreasing the bulk diffusion coefficients. Finally, in panels (b-c) of Fig. 16 we show Cdc42 stationary
distributions in the bulk and on the membrane when multiple accumulation sites form.

We conclude this section with simulations showing how the number of peaks of a stationary pattern can be reduced as the GEF
membrane diffusion coefficient increases and as the mode n =1 pitchfork stability boundary is approached. More precisely, in panels (a-
¢) of Fig. 17, we consider the horizontal slice D" = 0.1 and observe a transition from a two-peak to a single peak pattern. In panels (d-f) a



E Paquin-Lefebvre, B. Xu and K.L. DiPietro et al./Journal of Theoretical Biology 497 (2020) 110242 17

Table 1
Comparison of three different model geometries.
1-D PDE-ODE model 1-D nonlocal PDE model (circle) 2-D membrane-bulk model (disk)
Assumptions finite diffusion in the bulk, well-mixed well-mixed in the bulk, finite finite diffusion in the bulk, finite
in each end compartment diffusion on the membrane diffusion on the membrane
Patterns symmetric or asymmetric steady stationary patterns with one or similar as for the nonlocal model
states, anti-phase (pole-to-pole) multiple peaks, traveling or
oscillations standing waves
Bifurcations pitchfork, subcritical or supercritical stationary Turing (pitchfork), similar as for the nonlocal model
Hopf oscillatory Turing (Hopf)
Slower bulk diffusion (1) stability region of symmetric NA (1) stability region of homogeneous
(D =D, =Dy) steady state increases, (2) steady state increases, (2) traveling
supercritical Hopf bifurcation waves slow down near a
becomes subcritical Bogdanov-Takens bifurcation
Slower Cdc42 membrane NA (1) homogeneous steady state loses similar as for the nonlocal model
diffusion stability, (2) stationary patterns or
traveling waves emerge
Slower GEF membrane NA (1) stationary patterns are less similar as for the nonlocal model, but
diffusion localized, (2) formation of traveling stationary patterns with multiple
waves even without Hopf peaks can form
bifurcations
Low GEF dissociation rate anti-phase relaxation oscillations (1) stationary patterns or traveling similar as for the nonlocal model
koff 2~ 0.1 waves can form, (2) that interact
near Bogdanov-Takens bifurcations
High GEF dissociation rate no oscillations (1) no Hopf bifurcations, (2) stationary similar as for the nonlocal model, but
koff =1 patterns with one or several peaks, stationary patterns are less likely to
that can evolve into traveling waves evolve into traveling waves

transition between a three-peak and a single peak pattern is observed on the slice D' = 0.04. We remark that the intermediate patterned
states involve circular motions and peak switching that occur in the absence of any Hopf bifurcations. We believe this phenomena to result
from nonlinear interactions between two or more spatial modes. This was also observed in the nonlocal version of this model, although
here the relatively low level of bulk diffusion allows for smoother switching. Our model suggests that the number of polarized sites is
dependent on membrane diffusion coefficients. As both D" and Dg' decrease, more polarity sites can be observed. Our findings for all
three model variants are summarized in Table 1.

4. Conclusions and discussion
4.1. Conclusions

In conclusion, we have analyzed three spatial model variants of a cell polarization model in order to explore the effect of spatial
dimensionality on pattern formation. We focused on a membrane-bulk model for the Cdc42-GEF system in fission yeast, where the same
reaction kinetics were considered for three, consecutively more complicated, geometries: a one-dimensional PDE-ODE model, a nonlocal
one-dimensional PDE model obtained when the diffusion coefficients of the cytosolic forms D — oo (which is often a limit considered
in models for polarization Goryachev and Pokhilko, 2008; Lo et al., 2014), and a full two-dimensional membrane-bulk model with finite
diffusion in the cytosol and on the membrane. For these models, we analyze how bulk diffusion and lateral diffusion along the membrane
affect the linear stability of a homogeneous steady state. Interestingly, fast membrane diffusion of Cdc42 stabilizes the homogeneous
steady state, while fast bulk diffusion of Cdc42 has a destabilizing effect. Decreasing the GEF dissociation constant k°ff shrinks the regions
of linear stability.

For the 1-D PDE-ODE model, we observe both symmetric and asymmetric distributions of Cdc42 at the two ends, as well as pole-
to-pole oscillations. Hopf bifurcations occur when GEF dissociation is slow compared to Cdc42 dissociation, with bulk diffusion affecting
the amplitude and the shape of the oscillations near the stability thresholds. When bulk diffusion is slow, relaxation oscillations emerge
from a subcritical Hopf bifurcation, while weakly nonlinear oscillations emerge from a supercritical Hopf bifurcations in faster bulk dif-
fusion regime. For the 1-D nonlocal PDE model and the 2-D membrane-bulk model, stationary or oscillatory Turing instabilities, either
corresponding to pitchfork or Hopf bifurcations, can occur when membrane-bound Cdc42 diffuses slowly. All the observed patterns have
a symmetry-breaking effect, either consisting of stationary patterns or traveling waves. Stationary patterns with multiple peaks are ob-
served when the diffusion rates of both membrane-bound species decrease. These stationary patterns are sensitive to perturbations and
can undergo sudden rotations or evolve into traveling waves even in the absence of Hopf bifurcations. The main results are summarized
in Table 1.

Note that there are two different limits that can result in a one-dimensional model. If the reactive compartments at the two cell ends
are assumed to be well-mixed, while finite diffusion is assumed in the bulk, we obtain a one-dimensional PDE-ODE model. If we assume
that the bulk domain is well-mixed and consists of a disk, with lateral diffusion allowed, we obtain a one-dimensional nonlocal PDE model
on a circle. No temporal oscillations with a uniform spatial profile are observed in the nonlocal model. Instead, the dominant patterns are
traveling waves and stationary patterns. In comparison to these 1-D model reductions, the 2-D model exhibits similar spatio-temporal
patterns as the 1-D nonlocal PDE model. On a 2-D circular bulk domain, there are an infinite number of spatial modes associated to the
linearized system, all corresponding to the circular harmonics, and this therefore increases the likelihood of multiple interacting unstable
modes. The Bogdanov-Takens bifurcation with O(2) symmetry is one notable example of this richer bifurcation structure that is absent
from the 1-D PDE-ODE model. One last difference consists in the absence of diffusion-driven instability in the 1-D PDE-ODE model, partly
due because of the well-mixed assumption of the two end compartments.
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4.2. Discussion

The role that spatial segregation between components plays in giving rise to spatio-temporal patterns in cell biology is beginning
to be appreciated. By taking into account spatial segregation between nucleus and cytoplasm, oscillations can emerge in the Hes1 and
p53 pathways (Sturrock et al., 2011). A rigorous analysis showing that diffusion can give rise to oscillations (i.e., treating the diffusion
coefficient as a bifurcation parameter) was presented in Chaplain et al. (2015). Pole-to-pole oscillations of Min proteins in E. coli have
typically been studied using standard reaction-diffusion equations (reviewed in Kruse et al., 2007; Loose et al., 2011). However, bulk-
surface models for Min oscillations have also been proposed (Huang et al., 2003; Halatek and Frey, 2012) and are more realistic in terms
of protein localization. An often overlooked problem in mathematical modeling of signaling networks is the effect of cellular geometry.
Initial models of spatio-temporal phenomena are often studied in an idealized 1-D setting (Jilkine and Edelstein-Keshet, 2011). If a certain
model gains acceptance, then its extension to 2-D or 3-D domains may be done, often with some corrections of parameter values or
reaction terms. However, a systematic analysis of the effect of dimensionality on spatio-temporal behavior of models of cell polarization
as dimensionality increases from 1-D to 2-D is not usually performed. (One notable exception is the 1-D reaction-diffusion (Mori et al.,
2011) and 2-D membrane-bulk versions (Cusseddu et al., 2018) of the wave-pinning model of cell polarization.)

Pattern formation resulting from coupling a diffusion process in a bounded 2-D domain to a nonlinear reaction-diffusion process on the
domain boundary has been studied in Levine and Rappel (2005), Ritz and Réger (2012), Ritz (2015), Paquin-Lefebvre et al. (2019). It was
first shown in Levine and Rappel (2005) that the formation of membrane-bound stationary patterns is possible even when the two species
diffuse in the bulk at the same rate (membrane diffusion was neglected). Ritz and Roger (2012, 2014) analyzed a coupled membrane-bulk
model and its nonlocal reduction for small GTPase. Their model includes a diffusion equation for inactive Cdc42 in the bulk and a pair of
reaction-diffusion equations for active and inactive Cdc42 on the membrane. From a linear stability analysis, they showed that differences
between bulk and lateral diffusion rates can trigger a Turing instability. Fast bulk diffusion and slow membrane diffusion of Cdc42 can
also lead to pattern formation in our model, even in the case of equal membrane diffusivities and equal bulk diffusivities. The major
difference lies in the modeling assumptions about the underlying role of GEF in the activation of Cdc42 proteins. In Rtz and Roger (2012,
2014), GEF is assumed to be at quasi-steady state and is expressed in terms of the concentration of active Cdc42, whereas our model
includes a separate variable for GEF. Furthermore, in Rdtz and Roger (2012, 2014) it is assumed that GEF only activates Cdc42, while our
model has both positive and negative feedback loops that involve GEF. Thus, Hopf bifurcations and oscillatory patterns can occur in our
model, but are not seen in the model of Ritz and Régers (Ridtz and Roger, 2012; 2014). Our results can also be compared with patterning in
regular reaction-diffusion systems, with neither membrane-bulk coupling nor mass conservation. For a disk domain with no-flux boundary
conditions, stationary patterns are expected to form over the full domain, with their building blocks in the linear regime corresponding
to the eigenfunctions of the Laplacian on the disk. In our model, because diffusion was the only process assumed in the bulk, we merely
observed patterning in some layer near the boundary of the bulk. Another scenario is to consider a 1-D reaction-diffusion with periodic
boundary conditions, with no nonlocal coupling. There, one can verify if stationary patterns with multiple peaks exist in a wider parameter
regime, and if they are more stable than in their mass-conserved membrane-bulk counterpart.

Finally, we discuss some limitations and possible extensions of our work. From a biological perspective, our model predicts that spatio-
temporal patterning is more likely to emerge when the GEF dissociation rate k°ff is small compared to the Cdc42 dissociation rate. In
the one-dimensional PDE-ODE model, Cdc42 and GEF oscillate out of phase, while the spatial model with diffusion of membrane-bound
forms predicts that Cdc42 and GEF spatially segregate along the membrane. Our model also predicts that the number of polarized sites
should increase as the membrane diffusion coefficients of both Cdc42 and GEF proteins decrease. While our model only involves one
Cdc42 GEF, fission yeast cells have multiple GEFs. Experimental studies in fission yeast suggest that the GEF Scd1 oscillates from one pole
to the other during cell growth, while no obvious oscillations of another GEF, Gefl, have been reported (Das et al., 2012; 2015). Another
study suggests that Gef1 is distributed in the cytosol (Tay et al., 2018). Recent work suggests that positive feedback involves Scd1, while
negative feedback is achieved through Cdc42 inhibiting Gefl (Hercyk et al., 2019). To take these findings into account, our model with
a single GEF regulator would need to be replaced by a more complicated model with two GEFs, which would be harder to analyze. To
limit active GEF localization to the cell tips in a full two-dimensional model, a space-dependent binding rate k°" should be assumed. It
may also be necessary to include GAP dependent feedback to fully model the fission yeast system (Goryachev and Leda, 2017; Tay et al,,
2018). While the 2-D model geometry may not be applicable to rod-shaped fission yeast, where Cdc42 seems to preferentially bind to
the poles instead of all over the membrane, it is applicable to spherical budding yeast, where positive and negative feedbacks involving
Cdc42, result in stable polarization and oscillatory behaviors. Note that traveling waves of Cdc42 have been observed in budding yeast
under some experimental conditions (Ozbudak et al., 2005).

For the convenience of mathematical analysis, we studied the 2-D model on a circular bulk domain, though fission yeast cells are
rod-shaped. One follow-up question is to consider the effect of domain geometry and growth on the full 2-D membrane-bulk model.
Another question to consider is how the patterning will change if model geometry is assumed to be three-dimensional. In a recent pat-
tern formation study on spherical domains (Diegmiller et al., 2018), Diegmiller et al. reduced a 3-D membrane-bulk model to a nonlocal
reaction-diffusion equation on a 2-D surface by assuming that bulk diffusion is fast. Their model considers autocatalysis and predicts that
a single polarity site would form. Following their framework, we can extend our 1-D nonlocal model to a 2-D surface and explore how
the negative feedback may affect the number of polarity sites. Another potential extension is to take into account anomalous diffusion in
the cytoplasm (Jeon et al., 2011) which raises challenges due to the Robin boundary conditions. Previous work (Henry and Wearne, 2002)
used fractional diffusion for modeling anomalous diffusion assuming an infinite domain. In a bounded domain, appropriate formulation of
boundary conditions is an active area of research (Baeumer et al., 2018).

From a dynamical systems perspective, a weakly nonlinear analysis could be performed to determine the criticality of the bifurcations in
each of the three model variants, and to investigate how stationary patterns and traveling waves interact near Bogdanov-Takens bifurcation
points. Our numerical results also revealed the formation of membrane-bound localized stationary patterns in the limit of small membrane
diffusion coefficients ratio, similar to those studied in Gomez et al. (2019). There, another type of linear stability analysis can be performed,
which consists of linearizing the membrane-bulk PDE system around a localized pattern constructed using matched asymptotic expansion,
as opposed to linearizing around a uniform steady state. Finally, the analytical framework presented here can be used to study the spatio-
temporal dynamics of signaling proteins in other cell biology contexts.
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Appendix A. Parameter values

For the reaction kinetics, we use parameter values from our previously published ODE model (Xu and Jilkine, 2018). The amount of
Cdc42 and the GEF, Ciot and Gyt respectively, are in arbitrary units (analogous to fluorescence), units of time are taken to be minutes
and the characteristic unit of length L =1 is taken to be 9 um (comparable to the initial length of a fission yeast cell when bipolar
polarity emerges). The timescale is set by k= = 4min~! (Das et al., 2012). It follows that after non-dimensionalization (x — x/L,t — tk~) a
dimensionless diffusion coefficient of D = 1 corresponds to D, = 81 um?2/15sec ~ 5.4 um?2/sec in physical units. We assume the diffusion
coefficient of the cytosolic form of the GEF is of the same order of magnitude. Differential mobility of the two forms of Cdc42 is required
for a concentration of Cdc42 at the polarity sites, with inactive form diffusing much faster than the active form (Bendezu et al., 2015). We
assume that the diffusion coefficients of active membrane-bound Cdc42 and GEF are much smaller than the cytosolic diffusion coefficients.
All the parameter values used in the figures are summarized in Table 2.

Table 2

Parameter definitions and values used for simulations.
Description Parameters  2-D Model 1-D Model
Cell size
radius (2-D) R 1 -
length (1-D) L - 1
Cdc42
total amount Cot 1.57R? 1.5L
diffusion coefficient D. [1, oo] [1, oo]
lateral diffusion Dy ~ 0.01 x D, -
autocatalysis ko 0.1 0.1

Keat 40 40

dissociation rate k- 1 1
GEF
total amount Grot 1.57R? 1.5L
diffusion coefficient Dy [1, oo] [1, oo]
lateral diffusion Dg' ~0.01 x Dy -
association rate ken 1 1
strength of -ve feedback « 8 8
dissociation rate kot varied varied

Appendix B. Further analysis of the nonlocal PDE model

We consider here the nonlocal reaction-diffusion from Section 3.2. First, we verify numerically in Fig. 18 the stability condition stated in
Eq. (55) for a range of k°ff values employed in our simulations. This implies linear stability with respect to spatially uniform perturbations.

We then show that k°f needs to be small for the oscillatory Turing instability to be possible. Let J, be the Jacobian matrix defined in
(51), and suppose that it possesses a pair of purely imaginary eigenvalues. It therefore follows that

trfy = —(dc(n) + dg(n)) + 2kearc*g"C* — (k= + k°M) = 0, (65a)

det], = [dc(n) — 2kearC*g*C* + k™ 1[dg(n) + k°T] + 17 > 0, (65b)

where dc(n) = n?D{"/R?* and dg(n) = n?Dy'/R?, with n > 0 as defined in (52). Eq. (65a) implies that

de(n) = 2kearc* g C* — (k= + k°T) — dg(n). (66)
Since d.(n) is positive, we must have

dg(n) < 2kearC*g C* — (k= + ko), (67)

and upon substituting Eq. (66) within (65b), we obtain that
—(dgm) + KT 47 >0, = dg(n) < 77— kF. (68)
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Linear stability in the absence of membrane diffusion
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Fig. 18. Trace and determinant of the Jacobian matrix of the linearized system in the absence of surface diffusion (as defined in Eq. (54)). Notice the negative trace and
positive determinant. Parameter values are given in Table 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Both conditions (67) and (68) imply that dg(n) has to be sufficiently small for a Hopf bifurcation to occur. In particular, we require
dg(n) < min { /7 — kT, 2kearc*g"Cr — k= — k). (69)
The upper bound in (69) needs to be positive to make sure that dg(n) > 0, yielding the following inequality:
k°f < min {f 2kearC* g C* — k*}, (70)

which is satisfied when the GEF dissociation rate k°f is sufficiently small. This is consistent with the stability diagrams as shown in Fig. 8.

Appendix C. Numerical methods
C1. Numerical bifurcation analysis of the coupled PDE-ODE model
Because of mass conservation, simple finite differences of the coupled PDE-ODE model will lead to an ill-posed system. In order to

perform numerical continuation with AUTO (cf. Doedel et al., 2007), we must spatially discretize a nonlocal formulation of the coupled
PDE-ODE model. Let U(x, t) and V(x, t) be intermediate variables defined as

X X
Ut =+ + [ Cnds VD =g®)+e0+ [ Gods (71)
0 0
that satisfy the following boundary conditions:
U@O,6) =c1(®) +ca(t), UL ) =Cor, V(0,8) =g1(t) +8(t), V(L) =Gt (72)

Differentiating U(x, t) with respect to time yields

X X 2
=t ey MR de - R0, a0.210) + FOLD.00.20) + [ D55V ds
= FCO.0.60.8/0) + FCLD. 60, 80) + Do p XD
s=X s=0

= F(Ux(L.t), c2(t), &2(t)) + DU,
and upon applying the same procedure to V(x, t), we obtain the following system of nonlocal reaction-diffusion equations:
Ut = DUy + F(U(L, t), c2(£), 82(t)), Vi = DgVix + G(Vi(L, 1), C2(t), &2(t)), 0 <x <L, (73)
that is coupled to the ODEs governing the dynamics of the local compartments, reformulated as

& FUi-1.0.60.80). B - g0ai-1.0.60.50), (74)
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where i = 1, 2. Next, spatial discretization of this nonlocal PDE system yields

U Ux (t) Va(t)
v : :
W =AW +FW), W= ; L vo=|uo | vo=| vo (75)
G : :
82 UN,1 (t) VN—] (t)
where U;(t) ~ U((j — 1)h,t) and V;(t) ~ V((j — 1)h,t), with h = NI; 3 and N the number of mesh points. The matrix A € R?N<2N and the

nonlinear function F are each defined by

Dc((cy +CZ>’$21+CtoteN72) + ]:(Ctot—hUN4 , Co, gz)

D.L 0 0 Dg((g1+g2)hezl+GE:N2) + g(Gmth;/Nl . Ca, g2)
| o DL o B F(===2.c1.4
A=l o o of FW= g(Lg2 ¢ g : (76)
]:(Ctot*hUNq ,Ca, gz)
Q(% Cz,gz)
where the vectors e; € RN-2 form the standard orthonormal basis and L is the discrete Laplacian:
-2 1 0o ... 0
. 1 -2 1 0
L= W : - (77)
0 1 -2 1
0 0 1 -2

C2. Numerical solution of the two-dimensional bulk-surface model

In this section we describe the numerical method used to solve the coupled bulk-surface reaction-diffusion system 11-(12). We have
Fickian diffusion in the interior € and surface diffusion of membrane-bound components on d2. The bulk-surface problem takes the
general form

acg;, D _pviext). xeQ (78a)
ac(a’i’ D _avZex, 1) +£(C,c), xedQ (78b)
—Dacg’;’ D _fc.c) xeoq. (78¢)

with the following definitions:

C Do 0 Cs D" 0 F
@) ol 6 w8 0

To numerically approximate this system, we discretize the bulk terms C using a P! finite element method (Funken et al., 2011). The
surface terms c are discretized using a finite difference approximation for the Laplace-Beltrami operator V2¢(x, t) (Huiskamp, 1991) based
on a modification to the more commonly used cotangent schemes (Meyer et al.,, 2003). The discretization of (78) leads to a large system
of ODEs with general form

MW = AW + F(W), (80a)
where
K 0 0 0 C DL 0 0 0 G
o K 0 o |G | o DL o0 0 |6
M=lo o 1 o] Y=|| “=lo o ou o | F=|F)| (80b)
0 0 0 I 2 0 0 0  DPL g

where L, K are the stiffness and mass matrices from the finite element discretization, I is the identity matrix, and Ls is the discretized
Laplace-Beltrami operator. The load vectors Gy, G, arise from the finite element approximations of the Neumann boundary condition
(78c) evaluated using a midpoint quadrature rule. The temporal integration of (80) has been performed by two independent methods
with good agreement observed between them. The first method is the implicit second order Crank-Nicolson algorithm. The second is
Radau IIA, a 3-stage implicit Runge-Kutta method of fifth order (Hairer and Wanner, 1996). The nonlinear systems arising at each timestep
are solved by Newton iterations.
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(a) Exact and numerical surface solutions.

(b) Spatial convergence rates.

(¢) Temporal convergence rates.

Fig. 19. Convergence study of the numerical method for the exactly solvable problem (81). Dotted red lines of slope 2 added for comparison. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

In the case of Crank-Nicholson time integration, we demon-
strate the expected second order convergence (in space and time)
by using the following example (MacDonald et al., 2016) on the
unit disk:

%f =V, xeQ, (81a)
acs 2

W:VSCS—FC—CS, XedQ, (81Db)
—%:C—CS, X e 0. (81c)

After discretization of (81) with maximum edge length h =
hmax, the numerical solution (Cp, ¢ ;) satisfies

MW = AW + F(W), (82a)
where
_ (K 0 (G
=0 0) w=(a)
L O G
A:(O Ls), p:(chc&h), (82b)

where G is the Neumann boundary integral (81c) evaluated using a
midpoint quadrature rule. In polar coordinates (r, 8), the example
problem (81) has the exact solution

C(r,0,t) =J (rk)e ¥t cos 0, (83a)
[5pt]cs(0,t) = ;1_(",32 et cosh, (83b)

where J;(z) is a Bessel function of the first kind and k ~ 1.1777.
To show the accuracy of the surface approximation, we plot the
numerical surface solution and the exact solution for various time
points in Fig. 19 (for hmax = 0.1, At = 10-3). To test spatial conver-
gence, we fix At = 10~ and solve (81) for varying levels of spatial
refinement. Fig. 19b shows the expected second order convergence
results for the bulk and surface error. Similarly, we test temporal
convergence by fixing hpmax = 0.005 and integrating (81) to the fi-
nal time t = 0.12 using a sequence of decreasing timesteps. Fig. 19¢
shows the expected second order time convergence for the bulk
and surface errors.

C3. Mass conservation

In this section, we demonstrate that the 2-D coupled
membrane-bulk model as described in Section 2.2 conserves mass.

error in total mass

time

Fig. 20. Error in the total mass for the numerically computed traveling wave shown
in Fig. 14.

We differentiate the conservation law for Cdc42 (13) with respect
to time and obtain, after application of the divergence theorem on
manifold with boundaries,

dCot / D.V2Cdx + / (DVZc + FIC. c. gl)dx
Q aQ

at
=f (De(n - VC) + DI'VZc + FIC, ¢, g])dx.
99

The first and third terms within the integral vanish because of the
boundary condition, and we are left with the integral of the surface
diffusion term over 0€2,

dCeot
dt

which vanishes because of the divergence theorem on manifolds
without boundaries. The same procedure also applies to G, the
total amount of GEF. Finally, we provide evidence that our nu-
merical method preserves mass in Fig. 20. As expected, the mis-
match between the numerical and the “true” mass decreases as
the mesh size h is refined. Quadratic convergence is roughly ob-
served, with the error divided by 4 each time the maximum step
size h is halved.

=/ D"V2cdx = 0,
Q2

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jtbi.2020.110242.
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