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a b s t r a c t 

Reaction-diffusion systems have been widely used to study spatio-temporal phenomena in cell biology, 

such as cell polarization. Coupled bulk-surface models naturally include compartmentalization of cytoso- 

lic and membrane-bound polarity molecules. Here we study the distribution of the polarity protein Cdc42 

in a mass-conserved membrane-bulk model, and explore the effects of diffusion and spatial dimension- 

ality on spatio-temporal pattern formation. We first analyze a one-dimensional (1-D) model for Cdc42 

oscillations in fission yeast, consisting of two diffusion equations in the bulk domain coupled to non- 

linear ODEs for binding kinetics at each end of the cell. In 1-D, our analysis reveals the existence of 

symmetric and asymmetric steady states, as well as anti-phase relaxation oscillations typical of slow-fast 

systems. We then extend our analysis to a two-dimensional (2-D) model with circular bulk geometry, 

for which species can either diffuse inside the cell or become bound to the membrane and undergo a 

nonlinear reaction-diffusion process. We also consider a nonlocal system of PDEs approximating the dy- 

namics of the 2-D membrane-bulk model in the limit of fast bulk diffusion. In all three model variants 

we find that mass conservation selects perturbations of spatial modes that simply redistribute mass. In 

1-D, only anti-phase oscillations between the two ends of the cell can occur, and in-phase oscillations 

are excluded. In higher dimensions, no radially symmetric oscillations are observed. Instead, the only in- 

stabilities are symmetry-breaking, either corresponding to stationary Turing instabilities, leading to the 

formation of stationary patterns, or to oscillatory Turing instabilities, leading to traveling and standing 

waves. Codimension-two Bogdanov–Takens bifurcations occur when the two distinct instabilities coincide, 

causing traveling waves to slow down and to eventually become stationary patterns. Our work clarifies 

the effect of geometry and dimensionality on behaviors observed in mass-conserved cell polarity models. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cell growth and division require long-distance communication

nd coordination between two ends of the cell. To polarize, cells

equire the ability to form distinct cellular domains with dif-

erent molecular components. Establishment of cell polarity re-

ies on local accumulation of signaling molecules on the mem-

rane and has attracted considerable attention from mathemati-

ians and physicists ( Jilkine and Edelstein-Keshet, 2011; Rappel and

delstein-Keshet, 2017; Halatek et al., 2018 ). Positive and nega-

ive feedback loops can result in spontaneous symmetry breaking
∗ Corresponding author. 

E-mail address: ajilkine@nd.edu (A. Jilkine). 
1 Denotes equal contribution. 
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f an initially homogeneous distribution of polarity regulators to

orm one or multiple clusters, as well as dispersal and reformation

f these clusters in an oscillatory manner ( Johnson et al., 2011 ).

hus, polarization involves spatial diffusion processes coupled

ith biochemical reactions occurring within localized signaling

ompartments. 

The master regulator of cell polarity in a variety of organisms,

rom yeast to humans, is the protein Cdc42 ( Etienne-Manneville

nd Hall, 2002; Martin and Arkowitz, 2014 ). Previous mathemat-

cal modeling of Cdc42 in cell polarization has focused primarily

n symmetry breaking and establishment of active Cdc42 cortical

ones in budding yeast, often via a Turing mechanism (reviewed in

oryachev and Leda, 2017 ). Detailed and phenomenological mod-

ls of cell polarization investigated the effects of single or multiple

ositive feedback loops and mass conservation on the formation of

https://doi.org/10.1016/j.jtbi.2020.110242
http://www.ScienceDirect.com
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Fig. 1. (a) A one-dimensional PDE–ODE model with bulk diffusion in the interior 

given by Eq. (1) and binding kinetics at two well-mixed ends given by the ODE sys- 

tem (7) . (b) A two-dimensional model given by Eqs. (11) and (12) with diffusion 

along the membrane. Filled circle: membrane-bound molecule. Open circle: cytoso- 

lic molecule. Blue: Cdc42. Green: GEF. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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a unique polarity zone ( Otsuji et al., 2007; Goryachev and Pokhilko,

2008; Mori et al., 2011; Jilkine et al., 2011; Freisinger et al., 2013;

Chiou et al., 2018 ). In some circumstances, two or more active

Cdc42 domains can coexist for some time, and the basis for the

switch from a single to multiple polarity zones is not yet fully un-

derstood ( Wu and Lew, 2013; Chiou et al., 2018 ). Here we focus on

a model of spatio-temporal oscillations of Cdc42 from pole-to-pole

that have been observed in fission yeast ( Das et al., 2012 ), a model

organism for understanding how cells integrate polarity and spatial

coordination of growth. 

The mathematical modeling of cell polarization typically in-

volves a system of reaction-diffusion equations for the concentra-

tions of membrane-bound active Cdc42 molecules and cytosolic

inactive Cdc42 molecules with no-flux or periodic boundary con-

ditions ( Goryachev and Pokhilko, 2008; Mori et al., 2008; 2011;

Lo et al., 2014 ). This approach does not take into effect the spa-

tial segregation of polarity molecules in the cell. For Cdc42 and

many other polarity molecules, most biochemical reactions of in-

terest happen at the interface between the cytosol and the mem-

brane. Because the active form of the protein is found on the

membrane, while the inactive form is in the cytosol ( Etienne-

Manneville and Hall, 2002 ), a more appropriate formulation would

be a membrane bulk-cytosol model with diffusion in the interior of

the cell, and boundary conditions modeling the exchange between

the membrane and the cytosol. Pattern formation in membrane-

bulk models with applications to cell polarity have previously

been analyzed in Rätz and Röger (2012) , Rätz and Röger (2014) ,

Madzvamuse et al. (2015) through linear stability analysis and

PDE numerical simulations. Stationary front solutions correspond-

ing to a polarized cell were demonstrated to exist in both the

reaction-diffusion ( Mori et al., 2011 ) and membrane-bulk versions

( Cusseddu et al., 2018 ) of the wave-pinning model of cell polariza-

tion. When considered on a 1-D bulk domain, coupled membrane-

bulk reaction-diffusion systems become coupled PDE–ODE systems.

Recent studies of coupled PDE–ODE models ( Gomez-Marin et al.,

2007; Gou et al., 2015; 2017; Xu and Bressloff, 2017 ) showed

the possible collective synchronization of localized active units (or

membranes) coupled through a linear bulk diffusion field, even if

each unit is at rest when isolated from the group. 

Our work focuses on the spatio-temporal dynamics of Cdc42

during cell growth of fission yeast. Fission yeast ( S. pombe ) cells

are rod-shaped and grow in length by tip extension, while main-

taining a constant diameter of 3 μm. During their cell cycle, the

cells switch from growing at one end to growing at both ends.

The active Cdc42 molecules localize at the growth site. At the cell

ends, Cdc42 exhibits temporal oscillations with a period around 5

minutes ( Das et al., 2012 ). Earlier mathematical models for cell po-

larity in fission yeast emphasize the role of positive feedbacks on

symmetry breaking ( Csikász-Nagy et al., 2008; Cerone et al., 2012 ).

These models assume that some “tip factors” (delivered by mi-

crotubules) are present at the two ends of the fission yeast that

leads to Cdc42 preferentially binding at the two ends of the cell

( Kokkoris et al., 2014; Martin and Arkowitz, 2014 ). Recent mod-

els for spatio-temporal oscillations of Cdc42 involve both positive

and negative feedback loops, as well as time delays ( Das et al.,

2012; Xu and Bressloff, 2016 ). Several potential positive feedbacks

are presented in a recent review paper ( Goryachev and Leda, 2017 )

while potential negative feedbacks may involve a Cdc42 GEF (Gua-

nine nucleotide exchange factor) ( Das et al., 2015 ). In Xu and

Jilkine (2018) , we used a 1-D coupled PDE–ODE model to include

possible positive and negative feedbacks between Cdc42 and its

GEF, with our analysis of the resulting dynamics focusing on the

fast bulk diffusion limit, for which the full model is reduced to an

ODE model. We then explored in Xu et al. (2019) the effect of in-

trinsic noise on Cdc42 oscillations and compared the dynamics of

the reduced ODE model with its stochastic counterpart. 
In this work, we relax the fast bulk diffusion assumption and

ompare the dynamics of the coupled PDE–ODE system to its well-

ixed ODE limit using linear stability analysis, time-dependent

imulations and numerical bifurcation analysis. We study the ef-

ect of decreasing the bulk diffusion level on the stability of the

ymmetric steady state, at which both ends of the cell have the

ame amount of Cdc42. We find conditions for a Hopf bifurcation,

nd analyze how the Cdc42 and GEF bulk diffusion rates affect its

riticality. We also explore the role of one key biochemical reaction

ate, the GEF dissociation rate, on the emergence of oscillatory dy-

amics. We present numerical simulations showing two different

ypes of pole-to-pole oscillations, either weakly nonlinear or of re-

axation type. 

In the second part of the paper, we extend the 1-D bulk-cytosol

o a two-dimensional circular domain, with pure diffusion in the

nterior, as well as surface diffusion and nonlinear reactions on the

embrane. We also consider a reduced one-dimensional system

f nonlocal reaction-diffusion equations that governs the dynam-

cs of membrane-bound species when assuming a well-mixed bulk.

inear stability analysis is performed for both the full membrane-

ulk model and its nonlocal reduction. Our aim is to investigate

he symmetry-breaking effects of varying the bulk diffusion coef-

cients, the membrane diffusion coefficients and the GEF dissoci-

tion rate. Finally, we present numerical results that confirm our

nalysis and exhibit a variety of spatio-temporal patterns on a unit

isk, such as stationary Turing patterns, traveling waves and stand-

ng waves. 

. Mathematical models 

.1. One-dimensional PDE–ODE model 

We first model the cell as a one-dimensional bulk domain sep-

rating two well-mixed compartments. This simplified geometry is

ased on the competition of two growth zones of active Cdc42, lo-

alized at the cell tips, for a common substrate, corresponding to

nactive Cdc42, that diffuses in the cytosol and can become active

t the two tips in the presence of a Cdc42 GEF. We also consider

he spatial distribution of the Cdc42 GEF, found at each cell tip in

ts active form or in the cytosol in its inactive form. A schematic

epresentation of this 1-D model is shown in Fig. 1 a. 

Let C ( x, t ) and G ( x, t ) denote the concentrations of inactive

dc42 and GEF in a cytosolic (or bulk) domain of length L , sat-

sfying 

∂C 

∂t 
= D c 

∂ 2 C 

∂x 2 
, 

∂G 

∂t 
= D g 

∂ 2 G 

∂x 2 
, 0 < x < L. (1)

here D c and D g are two constant bulk diffusion coefficients.

ear each of the two tips (i = 1 , 2) , the binding and unbinding

rocesses are modeled by flux boundary conditions given by, in
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 = 0 , 

D c 
∂C 

∂x 

∣∣∣∣
x =0 

= k + (c 1 (t) , g 1 (t)) C(0 , t) − k −c 1 (t) , D g 
∂G 

∂x 

∣∣∣∣
x =0 

= k on (c 1 (t)) G (0 , t) − k off g 1 (t) , (2) 

hile in x = L the boundary conditions satisfy, 

D c 
∂C 

∂x 

∣∣∣∣
x = L 

= k + (c 2 (t) , g 2 (t)) C(L, t) − k −c 2 (t) , −D g 
∂G 

∂x 

∣∣∣∣
x = L 

= k on (c 2 (t)) G (L, t) − k off g 2 (t) , (3) 

here c 1,2 ( t ) and g 1,2 ( t ) denote the concentrations of active Cdc42

nd GEF. We assume that active GEF promotes the binding of

dc42 on each tip, and this results in the following association rate

 
+ : 

 
+ ( c i , g i ) = 

(
k 0 + k cat c 

2 
i 

)
g i , i = 1 , 2 . (4) 

Here we assume a form of positive feedback that was used in

revious models of fission yeast ( Csikász-Nagy et al., 2008 ) and

 Cerone et al., 2012 ). The nonlinearity c 2 
i 
is necessary for symme-

ry breaking, allowing an asymmetric steady state to emerge. Po-

ential chemical reactions that can lead to such kinetics have been

iscussed in Goryachev and Leda (2017) . Some form of negative

eedback effect is necessary to obtain the pole-to-pole oscillations

bserved in fission yeast ( Das et al., 2012 ). For negative feedback,

e assume that active Cdc42 inhibits the binding of GEF and that

he association rate k on is given by 

 
on ( c i ) = 

k on 

1 + κc 2 
i 

, i = 1 , 2 . (5) 

We also note that this specific implementation has been dis-

ussed in our previous work ( Xu and Jilkine, 2018 ), where it was

ound that negative feedback is more likely to act through inhi-

ition of GEF association rather than upregulation of GEF dissoci-

tion. Finally, the dissociation rates k − and k off are chosen to be

inear. 

For the rest of the paper, we will employ the following notation

or the binding kinetics: 

 ( C, c, g ) = (k 0 + k cat c 
2 ) gC − k −c, G ( G, c, g ) = 

k on 

1 + κc 2 
G − k off g 

(6) 

Using this notation, we define the nonlinear ODEs regulating

he active species dynamics as 

dc i (t) 

dt 
= F 

(
C| x =(i −1) L , c i (t) , g i (t) 

)
, i = 1 , 2 , 

dg i (t) 

dt 
= G 

(
G | x =(i −1) L , c i (t) , g i (t) 

)
, i = 1 , 2 . (7) 

Here, we highlight that protein production and decay are ne-

lected by our model formulation, and that only the exchange

etween the active and inactive forms is considered. This results

n the total amount of Cdc42 and GEF being constant over the

imescale on which cell polarization takes place. Hence, our model

ormulation implies the following conservation laws: 

c 1 (t) + c 2 (t) + 

∫ L 
0 

C(x, t) dx = C tot , 

g 1 (t) + g 2 (t) + 

∫ L 
0 

G (x, t) dx = G tot , (8) 

here C tot and G tot are the total amount of Cdc42 and GEF. 

Finally, we mention the limit of fast bulk diffusion, correspond-

ng to the well-mixed regime, for which the concentrations of in-

ctive species ( C ( x, t ), G ( x, t )) become spatially homogeneous ( C ( t ),
 ( t )). Using the conservation laws (8) , we can reduce the full cou-

led PDE–ODE model to a system of four nonlinear ODEs given

y 

dc i (t) 

dt 
= F ( C(t) , c i (t) , g i (t) ) , i = 1 , 2 , 

dg i (t) 

dt 
= G ( G (t) , c i (t) , g i (t) ) , i = 1 , 2 . (9) 

here C ( t ) and G ( t ) are defined by 

(t) ≡ C tot − c 1 (t) − c 2 (t) 

L 
, G ( t) ≡ G tot − g 1 ( t) − g 2 (t) 

L 
. (10)

The model presented here is dimensionless. A justification

f the various parameters (and their values) can be found in

ppendix A . 

.2. Two-dimensional membrane-bulk reaction-diffusion model 

In this section we consider the model on a two-dimensional do-

ain � ∈ R 
2 with boundary ∂� corresponding to the cell mem-

rane. The geometry of the model is shown in Fig. 1 b. We assume

hat inactive Cdc42 in the cytosol only undergoes diffusion, with

ll the nonlinear binding kinetics taking place near the bound-

ry. We also consider the lateral diffusion of active Cdc42 on the

oundary, with a diffusion coefficient D 
m 

c . Let C ( x , t ) denote the

oncentration of Cdc42 in the bulk, and c ( x , t ) denote the con-

entration of active Cdc42 on the membrane. These concentrations

volve according to a system of reaction-diffusion equations de-

ned by 

∂C(x , t) 

∂t 
= D c ∇ 

2 C(x , t) , x ∈ �, (11a)

∂c(x , t) 

∂t 
= D 

m 

c ∇ 
2 
s c(x , t) + F[ C(x , t) , c(x , t) , g(x , t)] , x ∈ ∂�, 

(11b) 

D c (n · ∇C) = F[ C(x , t) , c(x , t) , g(x , t)] , x ∈ ∂�, (11c)

here ∇ 
2 
s is the Laplace-Beltrami operator and n represents the

utward unit normal vector to ∂�. Similar reaction-diffusion equa-

ions are defined for GEF, the second species; see below. 

∂G (x , t) 

∂t 
= D g ∇ 

2 G (x , t) , x ∈ �, (12a)

∂g(x , t) 

∂t 
= D 

m 

g ∇ 
2 
s g(x , t) + G[ G (x , t) , c(x , t) , g(x , t)] , x ∈ ∂�, 

(12b) 

D g (n · ∇G ) = G[ G (x , t) , c(x , t) , g(x , t)] , x ∈ ∂�. (12c)

The nonlinear functions F and G are as defined in (6) . Mass

onservation arises from the formulation of the model, and we

ave the following conservation laws: ∫ 
�
C(x , t) dx + 

∫ 
∂�

c(x , t) dx = C tot , ∫ 
�
G (x , t) dx + 

∫ 
∂�

g(x , t) dx = G tot . (13) 

In Appendix C.3 , we demonstrate that C tot and G tot must remain

onstant and show that the numerical method employed preserves

ass over the timescale of cell polarization. 
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2.3. Nonlocal PDE model on a circular domain 

Models of polarization often consider the cytosolic forms of

Rho GTPases to be well-mixed ( Goryachev and Pokhilko, 2008; Lo

et al., 2014 ). We conclude this section with the introduction of a

reduced nonlocal reaction-diffusion model governing the dynam-

ics of membrane-bound species in the limit of fast bulk diffu-

sion D → ∞ . For simplicity, we consider a two-dimensional bulk

domain � ∈ R 
2 to be a disk of radius R and obtain a nonlocal

reaction-diffusion model for membrane-bound species on a circle.

In the well-mixed bulk, C ( t ) and G ( t ) are the spatially homoge-

neous concentrations of inactive Cdc42 and GEF, which are defined

using the conservation laws as 

(t) ≡ C tot 

| �| −
1 

| �| 
∫ 
∂�

c(x , t) dx = C avg − 1 

πR 

∫ 2 π
0 

c(θ, t) dθ, 

(14a)

G (t) ≡ G tot 

| �| −
1 

| �| 
∫ 
∂�

g(x , t) dx = G avg − 1 

πR 

∫ 2 π
0 

g(θ, t) dθ, 

(14b)

where C avg = C tot / (πR 2 ) and G avg = G tot / (πR 2 ) are the average

concentrations. Upon using polar coordinates to parametrize the

Laplace-Beltrami operator, we write ∇ 
2 
s = R −2 ∂ θθ , with θ the an-

gular variable, and find that the active species c ( θ , t ) and g ( θ , t )
must satisfy 

∂c(θ, t) 

∂t 
= 

D 
m 

c 

R 2 
∂ 2 c(θ, t) 

∂θ2 
+ F(C(t) , c(θ, t) , g(θ, t)) , 0 ≤ θ < 2 π,

(15a)

∂g(θ, t) 

∂t 
= 

D 
m 

g 

R 2 
∂ 2 g(θ, t) 

∂θ2 
+ G(G (t) , c(θ, t) , g(θ, t)) , 0 ≤θ < 2 π . 

(15b)

3. Results 

3.1. One-dimensional PDE–ODE model 

3.1.1. Steady states 

We first consider the steady states of the coupled PDE–ODE sys-

tem (1) –(8) . In the bulk domain, the Cdc42 and GEF profiles at a

steady state must satisfy the following boundary value problems: 

C ′′ (x ) = 0 , G 
′′ (x ) = 0 , C ′ (0) = C ′ (L ) = G 

′ (0) = G 
′ (L ) = 0 , 

0 < x < L . (16)

Hence, C ( x ) ≡ C a and G ( x ) ≡ G a are spatially homogeneous.

From the conservation laws (8) we obtain 

 a = 

C tot − c 1 a − c 2 a 
L 

, G a = 

G tot − g 1 a − g 2 a 
L 

, (17)

with the subscript a referring to potential asymmetry c 1 a 
 = c 2 a and

g 1 a 
 = g 2 a between both tips. Next, the active species steady state

solutions satisfy the following system of nonlinear algebraic equa-

tions: 

F(C a , c 1 a , g 1 a ) = 0 , F(C a , c 2 a , g 2 a ) = 0 , G(G a , c 1 a , g 1 a ) = 0 , 

G(G a , c 2 a , g 2 a ) = 0 , (18)

from which g 1 a and g 2 a are expressed as, 

g 1 a = 

Lk −c 1 a 
(k 0 + k cat c 2 )(C tot − c 1 a − c 2 a ) 

, 
1 a 
 2 a = 

Lk −c 2 a 
(k 0 + k cat c 2 2 a )(C tot − c 1 a − c 2 a ) 

, (19)

ith the corresponding Cdc42 values satisfying a system of two

olynomial equations given by 

(c 1 a , c 2 a ) = 0 , H(c 2 a , c 1 a ) = 0 , (20)

here H ( c 1 , c 2 ) is defined by 

(c 1 , c 2 ) ≡ k on G tot 

L 
(C tot − c 1 − c 2 )(k 0 + k cat c 

2 
1 )(k 0 + k cat c 

2 
2 ) 

−k −k on c 1 (k 0 + k cat c 
2 
2 ) − k −k on c 2 (k 0 + k cat c 

2 
1 ) 

−Lk off k −c 1 (1 + κc 2 1 )(k 0 + k cat c 
2 
2 ) . (21)

Assuming the same binding kinetics for both cell tips causes re-

ection symmetry of solutions with respect to the midpoint L /2. As

 result, interchanging ( c 1 a , g 1 a ) with ( c 2 a , g 2 a ) also satisfies (18) . 

The steady state is symmetric when both tips possess equal so-

ution values ( c s , g s ), with g s defined by 

 s = 

Lk −c s 
(k 0 + k cat c 2 s )(C tot − 2 c s ) 

, (22)

hile c s satisfies a third degree polynomial equation given by (
L 2 k −k off κ + 2 k on k cat G tot 

)
c 3 s − k on k cat G tot C tot c 

2 
s 

+ 

(
2 Lk −k on + L 2 k −k off + 2 k 0 k 

on G tot 

)
c s − k on k 0 G tot C tot = 0 . (23)

By Descartes’ rule of signs, it can be shown that Eq. (23) pos-

esses either one or three positive real roots, and therefore there

lways exists a symmetric steady state. Finally, we point out that

he existence of the steady states does not depend on the diffusiv-

ty level, and that the structure of solutions remains the same for

he reduced ODE system (9) in the well-mixed regime. 

.1.2. Linear stability analysis 

We now proceed to a linear stability analysis of the symmet-

ic steady state, leaving the linear stability of a general asymmet-

ic steady state to be addressed via numerical bifurcation analysis.

onsider a perturbation of the symmetric steady state given by 

C(x, t) = C s + ϕ(x ) e λt , G (x, t) = G s + ψ(x ) e λt , (
c 1 (t) 
g 1 (t) 

)
= 

(
c s 
g s 

)
+ 

(
u 1 
v 1 

)
e λt , 

(
c 2 (t) 
g 2 (t) 

)
= 

(
c s 
g s 

)
+ 

(
u 2 
v 2 

)
e λt , 

(24)

here φ( x ) and ψ( x ) are two eigenfunctions, while ( u i , v i ) 
T for

 = 1 , 2 are the eigenvectors of the linearized dynamics of active

pecies at the left and right tips. Applying then the conservation

aws (8) yields 

 1 + u 2 + 

∫ L 
0 

ϕ(x ) dx = 0 , v 1 + v 2 + 

∫ L 
0 

ψ(x ) dx = 0 , (25)

nd thus any perturbations can only result in a redistribution of

otal mass between active and inactive species. Next, upon insert-

ng (24) within the PDE–ODE system (1) –(7) and linearizing about

he symmetric steady state, we obtain an eigenvalue problem 

 = D c ϕ xx − λϕ, 0 = D g ψ xx − λψ, 0 < x < L, (26)

ubject to boundary conditions at x = 0 given by 

D c ϕ x (0) = 

∂F 

∂C 
ϕ(0) + 

∂F 

∂c 
u 1 + 

∂F 

∂g 
v 1 , 

 g ψ x (0) = 

∂G 
∂G 

ψ(0) + 

∂G 
∂c 

u 1 + 

∂G 
∂g 

v 1 , (27)

hile on x = L the boundary conditions are 
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D
∂G 
∂c 

u 2 − ∂G 
∂g 

v 2 . (28) 

nvectors ( u i , v i ) 
T satisfy (

u 2 

v 2 

)
= 

( ∂F 
∂C 

ϕ(L ) 

∂G 
∂G 

ψ(L ) 

)
. (29) 

symmetric steady state. 

3

 eigenvalues are purely imaginary and lead to a Hopf bifurcation. Then, 

u ten as the sum of an even (+) and an odd (−) parts, 

ϕ  

 

cosh 
(
ω g 

(
L 
2 

− x 
))

cosh 
(
ω g 

L 
2 

) + ψ 
0 
−
sinh 

(
ω g 

(
L 
2 

− x 
))

sinh 
(
ω g 

L 
2 

) , (30) 

w boundary conditions (27) and (28) yields the following expressions for 

t

ϕ
G 
g 
(v 1 + v 2 ) 

 g 
L 
2 

)
+ 

∂G 
∂G 

, (31) 

w

ϕ
G 
g 
(v 1 − v 2 ) 

 g 
L 
2 

)
+ 

∂G 
∂G 

. (32) 

ed into an odd and an even parts, we treat the two different modes 

s

−v 1 and thus 

ϕ
 1 + 

∂G 
∂g 

v 1 
)
sinh 

(
ω g 

(
L 
2 

− x 
))

oth 
(
ω c 

L 
2 

)
+ 

∂G 
∂G 

)
sinh 

(
ω g 

L 
2 

) , (33) 

w te (33) within (29) and find that ( u 1 , v 1 ) 
T must be a non-trivial solution 

o⎛
⎜⎜⎜⎝ = 

(
0 
0 

)
, (34) 

w(
(35) 

characteristic equation: 

F

 

− ∂F 

∂g 

∂G 
∂c 

= 0 . (36) 

furcation, i.e. for a pair of roots λ = ±iλI with λI > 0. In the well-mixed 

r  , Eq. (36) reduces to 

D
(37) 

w fined by 

J (38) 

imation of the hyperbolic cotangent function for a small argument: 

c

 c ϕ x (L ) = −∂F 

∂C 
ϕ(L ) − ∂F 

∂c 
u 2 − ∂F 

∂g 
v 2 , D g ψ x (L ) = −∂G 

∂G 

ψ(L ) −

Finally, from the linearized ODE dynamics we find that the eige
 

λ − ∂F 
∂c 

− ∂F 
∂g 

− ∂G 
∂c 

λ − ∂G 
∂g 

) (
u 1 

v 1 

)
= 

( ∂F 
∂C 

ϕ(0) 

∂G 
∂G 

ψ(0) 

)
, 

( 

λ − ∂F 
∂c 

− ∂F 
∂g 

− ∂G 
∂c 

λ − ∂G 
∂g 

) (

All the partial derivatives in Eqs. (27) –(29) are evaluated at the 

.1.3. Hopf bifurcation 

We first suppose that λ 
 = 0. Hence, the only possible bifurcating

pon solving Eq. (26) , we find that the eigenfunctions may be writ

(x ) = ϕ 
0 
+ 
cosh 

(
ω c 

(
L 
2 

− x 
))

cosh 
(
ω c 

L 
2 

) + ϕ 
0 
−
sinh 

(
ω c 

(
L 
2 

− x 
))

sinh 
(
ω c 

L 
2 

) , ψ(x ) = ψ 
0
+

here ω c = 

√ 

λ/D c and ω g = 

√ 

λ/D g . Next, the application of the 

he even coefficients ϕ 
0 + and ψ 

0 + : 

 
0 
+ = −1 

2 

∂F 
∂c 

(u 1 + u 2 ) + 
∂F 
∂g 

(v 1 + v 2 ) 

D c ω c tanh 
(
ω c 

L 
2 

)
+ 

∂F 
∂C 

, ψ 
0 
+ = −1 

2 

∂G 
∂c 

(u 1 + u 2 ) + 
∂
∂

D g ω g tanh 
(
ω

hile the odd coefficients ϕ 
0 − and ψ 

0 − are given by 

 
0 
− = −1 

2 

∂F 
∂c 

(u 1 − u 2 ) + 
∂F 
∂g 

(v 1 − v 2 ) 

D c ω c coth 
(
ω c 

L 
2 

)
+ 

∂F 
∂C 

, ψ 
0 
− = −1 

2 

∂G 
∂c 

(u 1 − u 2 ) + 
∂
∂

D g ω g coth 
(
ω

Since any solutions of the linearized system can be decompos

eparately. 

Odd mode (−) For the odd mode, we have that u 2 = −u 1 , v 2 = 

(x ) = −
(

∂F 
∂c 

u 1 + 
∂F 
∂g 

v 1 
)
sinh 

(
ω c 

(
L 
2 

− x 
))

(
D c ω c coth 

(
ω c 

L 
2 

)
+ 

∂F 
∂C 

)
sinh 

(
ω c 

L 
2 

) , ψ(x ) = −
(

∂G 
∂c 
u(

D g ω g c

hich automatically satisfies the constraints (25) . We then substitu

f 
 

 

 

 

 

λ −
∂F 
∂c 

D c ω c coth 
(
ω c 

L 
2 

)
D c ω c coth 

(
ω c 

L 
2 

)
+ 

∂F 
∂C 

−
∂F 
∂g 

D c ω c coth 
(
ω c 

L 
2 

)
D c ω c coth 

(
ω c 

L 
2 

)
+ 

∂F 
∂C 

−
∂G 
∂c 
D g ω g coth 

(
ω g 

L 
2 

)
D g ω g coth 

(
ω g 

L 
2 

)
+ 

∂G 
∂G 

λ −
∂G 
∂g 
D g ω g coth 

(
ω g 

L 
2 

)
D g ω g coth 

(
ω c 

L 
2 

)
+ 

∂G 
∂G 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(
u 1 
v 1 

)

hich, upon dividing through λ 
 = 0, can be rearranged into 
 

λ + 
ω c 

coth ( ω c L 2 ) 
∂F 
∂C 

− ∂F 
∂c 

− ∂F 
∂g 

− ∂G 
∂c 

λ + 

ω g 
coth ( ω g L 2 ) 

∂G 
∂G 

− ∂G 
∂g 

) (
u 1 
v 1 

)
= 

(
0 
0 

)
. 

The eigenvalue parameter λ is therefore a root of the following 

 −(λ) ≡
[ 

λ + 

ω c 

coth 
(
ω c 

L 
2 

) ∂F 

∂C 
− ∂F 

∂c 

] [ 

λ + 

ω g 

coth 
(
ω g 

L 
2 

) ∂G 
∂G 

− ∂G 
∂g 

]

In Section 3.1.5 , Eq. (36) will be solved numerically for a Hopf bi

egime, corresponding to the infinite bulk diffusion limit D c , g → ∞
lim 

 c, g →∞ 

F −(λ) = | λI − J −| = 0 , 

here I is the 2 × 2 identity matrix and J − is a Jacobian matrix de

 − = 

( 

∂F 
∂c 

∂F 
∂g 

∂G 
∂c 

∂G 
∂g 

) 

. 

In computing the limit, we have employed the following approx

oth 

(
ω c, g 

L 

2 

)
≈ 2 

Lω c, g 
, with ω c,g = 

√ 

λ

D c,g 
� 1 . 
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ric steady state to undergo a Hopf bifurcation are given by 

(39) 

 2 and thus 

 1 + 
∂G 
∂g 

v 1 
)
cosh 

(
ω g 

(
L 
2 

− x 
))

tanh 
(
ω c 

L 
2 

)
+ 

∂G 
∂G 

)
cosh 

(
ω g 

L 
2 

) . (40) 

n-trivial solution of 

= 

(
0 
0 

)
. (41) 

in 

(42) 

 constraints (25) onto an even eigenfunction. The characteristic equation 

] 

− ∂F 

∂g 

∂G 
∂c 

= 0 . (43) 

or a Hopf bifurcation associated with the even mode is easily derived. 

g approximation of the hyperbolic tangent function: 

(44) 

(45) 

furcation associated with the even mode are given by tr (J + ) = 0 and 

ven mode occurs for the nonlinear functions and the parameter values 

ved in both the well-mixed and finite diffusion regimes. The absence 

mass conservation Xu and Bressloff (2016) . Whether a mass-conserved 

en question. 

leading to either pitchfork or saddle-node bifurcations. We remark that 

) –(29) would require the introduction of a branch cut in the complex 

f λ → 0, with λ real, has the same effect as the infinite bulk diffusion 

43) cancel, and no continuous spectrum is introduced. Therefore, the 

ed limit λ → 0. 

tain the following condition for the linearized system to have a zero- 

(46) 

rk bifurcation with two branches of asymmetric steady states emerging 

ymmetric steady state undergoes a saddle-node bifurcation when the 

 

 

∂G 
∂g 

− ∂G 
∂c 

∂F 

∂g 

)
= 0 . (47) 

of steady states and on bifurcations resulting from zero-crossing eigen- 

 influence the stability of symmetric steady states and possible oscilla- 
In the well-mixed regime, necessary conditions for the symmet

tr (J −) = 

∂F 

∂c 
+ 

∂G 
∂g 

= 0 , det (J −) = 

∂F 

∂c 

∂G 
∂g 

− ∂G 
∂c 

∂F 

∂g 
> 0 . 

Even mode (+) For the even mode, we have that u 1 = u 2 , v 1 = v

ϕ(x ) = −
(

∂F 
∂c 

u 1 + 
∂F 
∂g 

v 1 
)
cosh 

(
ω c 

(
L 
2 

− x 
))

(
D c ω c tanh 

(
ω c 

L 
2 

)
+ 

∂F 
∂C 

)
cosh 

(
ω c 

L 
2 

) , ψ(x ) = −
(

∂G 
∂c 
u(

D g ω g 

Upon substituting (40) within (29) , we find that ( u 1 , v 1 ) 
T is a no⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

λ −
∂F 
∂c 

D c ω c tanh 
(
ω c 

L 
2 

)
D c ω c tanh 

(
ω c 

L 
2 

)
+ 

∂F 
∂C 

−
∂F 
∂g 

D c ω c tanh 
(
ω c 

L 
2 

)
D c ω c tanh 

(
ω c 

L 
2 

)
+ 

∂F 
∂C 

−
∂G 
∂c 
D g ω g tanh 

(
ω g 

L 
2 

)
D g ω g tanh 

(
ω g 

L 
2 

)
+ 

∂G 
∂G 

λ −
∂G 
∂g 
D g ω g tanh 

(
ω g 

L 
2 

)
D g ω g tanh 

(
ω g 

L 
2 

)
+ 

∂G 
∂G 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(
u 1 
v 1 

)

For the odd mode, we can divide through λ 
 = 0 in (41) to obta( 

λ + 
ω c 

tanh ( ω c L 2 ) 
∂F 
∂C 

− ∂F 
∂c 

− ∂F 
∂g 

− ∂G 
∂c 

λ + 

ω g 
tanh ( ω g L 2 ) 

∂G 
∂G 

− ∂G 
∂g 

) (
u 1 
v 1 

)
= 

(
0 
0 

)
, 

which corresponds to the linear system obtained from applying the

is therefore given by 

F + (λ) = 

[ 

λ + 

ω c 

tanh 
(
ω c 

L 
2 

) ∂F 

∂C 
− ∂F 

∂c 

] [ 

λ + 

ω g 

tanh 
(
ω g 

L 
2 

) ∂G 
∂G 

− ∂G 
∂g 

Once again, in the limit of fast bulk diffusion, the conditions f

Upon taking the limit D c , g → ∞ in Eq. (43) and using the followin

tanh 

(
ω c, g 

L 

2 

)
≈ ω c, g 

L 

2 
, with ω c,g = 

√ 

λ

D c,g 
� 1 , 

we obtain a quadratic equation given by 

lim 

D c, g →∞ 

F + (λ) = | λI − J + | = 0 , 

where the Jacobian matrix J + is defined by 

J + = 

(− 2 
L 

∂F 
∂C 

+ 
∂F 
∂c 

∂F 
∂g 

∂G 
∂c 

− 2 
L 

∂G 
∂G 

+ 
∂G 
∂g 

)
. 

In the well-mixed regime, necessary conditions for a Hopf bi

det (J + ) > 0 . We will however see that no Hopf bifurcation of the e

used in our study, and thus only anti-phase oscillations are obser

of in-phase oscillations was also noted in a PDE–DDE model with 

PDE-ODE(DDE) model can have in-phase oscillations remains an op

3.1.4. Zero-crossing eigenvalues 

We now investigate the occurrence of zero-crossing eigenvalues 

a rigorous treatment of the eigenvalue problem defined in Eqs. (25

λ-plane along ∞ < 
 ( λ) ≤ 0 and � (λ) = 0 . Fortunately, the limit o

limit: all the square roots from the characteristic Eqs. (36) and (

solution for λ = 0 can be readily obtained by taking the well-defin

Odd mode (−) After taking the limit λ → 0 in Eq. (36) , we ob

crossing eigenvalue associated with the odd mode: 

lim 

λ→ 0 
F −(λ) = det (J −) = 

∂F 

∂c 

∂G 
∂g 

− ∂G 
∂c 

∂F 

∂g 
= 0 . 

When this condition is satisfied, the system undergoes a pitchfo

from the symmetric steady state. 

Even mode (+) We proceed similarly for the even mode. The s

following condition is satisfied: 

lim 

λ→ 0 
F + (λ) = det (J + ) = 

4 

L 2 
∂F 

∂C 

∂G 
∂G 

− 2 

L 

(
∂F 

∂c 

∂G 
∂G 

+ 

∂G 
∂g 

∂F 

∂C 

)
+ 

(
∂F
∂c

We highlight that bulk diffusion has no effect on the existence 

values. However, as will be seen in the next section, diffusion does

tory dynamics. 
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Fig. 2. Symmetric steady state (red), asymmetric steady state (black) and periodic solution branches (green) for the reduced ODE model in the well-mixed regime, as a 

function of k off . Other parameter values are given in Table 2 . A full line indicates linear stability, while unstable branches are dashed. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Oscillatory dynamics for the reduced ODE model (9) in the well-mixed regime. (a) A zoomed-in view of the bifurcation diagram in Fig. 2 (b). (b) Period of oscillations 

in the k off regimes (0, 0.56) and (0.79, 0.99). For the first branch, the period has a minimum near k off ≈ 0.3 and rapidly increases near both k off = 0 and k off ≈ 0.56, 

suggesting the occurrence of homoclinic bifurcations as limit cycles collide with asymmetric equilibria. For the branch of periodic solutions emerging from a supercritical 

Hopf bifurcation at k off ≈ 0.99, the period increases rapidly at a suspected homoclinic bifurcation near k off ≈ 0.79. (c) Numerical solutions for k off = 0 . 9 , 0 . 7 , 0 . 5 . For a high 

rate k off = 0 . 9 , weakly nonlinear oscillations are observed. For an intermediate rate k off = 0 . 7 , numerical solutions evolve to an asymmetric steady state. As k off further 

decreases to 0.5, highly nonlinear relaxation oscillations are observed. For each of the three simulations, the initial conditions correspond to the symmetric steady state (red 

horizontal line) plus a small perturbation stimulating the odd mode. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

3

nted out the importance of membrane residence times of GEF proteins 

( dy state or undergoing pole-to-pole oscillations Xu and Jilkine (2018) . 

H on parameters, and numerically investigate their effects on the stability 

o erical bifurcation analysis are given in C.1 . 

succession of bifurcations that results when increasing k off is presented 

i s, with linear stability gained through a supercritical Hopf bifurcation 

w ions in k off ≈ 6.23 and k off ≈ 9.17 cause hysteresis and coexistence of 

u of symmetric steady states occurs in the range (6.24, 7.86), with such 

t necting branches of asymmetric and symmetric steady states. Finally, 

s ected via fold bifurcations at k off ≈ 0.56 and k off ≈ 11.22. 

ions are observed in the limit of fast bulk diffusion when k off is small 

( g. 3 , where we observe that oscillations emerge either via supercritical 

H the role of the asymmetric equilibrium on the shape of the oscillations 

a  . 5 , we observe a transition from weakly to highly nonlinear oscillations. 

T absence of stable oscillations, with all the trajectories attracted to the 

a

gence of oscillatory dynamics, focusing on the parameter regime where 

t he eigenvalue relation (36) for a Hopf bifurcation associated with the 

a corresponding Hopf stability boundaries in the D c versus D g parameter 

p tability of the symmetric steady state is located below the curves. We 

p ations and that decreasing k off shrinks the linear stability region. Since 
.1.5. Numerical bifurcation analysis 

Our previous work on the well-mixed version of the model poi

set by 1/ k off) in determining whether Cdc42 proteins were at stea

ence, we select k off and the bulk diffusion coefficients as bifurcati

f the symmetric steady state ( c 1 = c 2 , g 1 = g 2 ). Details of the num

We start with the dynamics of the ODE model (7) . The intricate 

n Fig. 2 . The symmetric steady state is unstable for low k off value

hen k off ≈ 0.99. Further beyond this threshold, two fold bifurcat

p to three symmetric steady states. We observe that bistability 

hresholds corresponding to subcritical pitchfork bifurcations con

table and unstable branches of asymmetric steady states are conn

For the parameter regime considered, stable anti-phase oscillat

 k off < 1). A closer view of this regime is shown in panel (a) of Fi

opf or homoclinic bifurcations. Numerical simulations exhibiting 

re shown in panel (c) of the same figure. From k off = 0 . 9 to k off = 0

he intermediate range k off ∈ (0.56, 0.79) is characterized by the 

symmetric steady states. 

We consider next the effect of finite bulk diffusion on the emer

here is a unique symmetric steady state. We numerically solve t

nti-phase mode, i.e. for a pair of roots λ = ±iλI with λI > 0. The 

lane are given in panel (a) of Fig. 4 , where the region of linear s

oint out that fast cytosolic diffusion is sufficient to achieve oscill
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Fig. 4. Panel (a): Hopf stability boundaries in the D c versus D g plane in the full PDE–ODE model for k off = 0 . 9 (black) and k off = 0 . 5 (red). Other parameter values are given 

in Table 2 . Linear stability regions are located below each curve. Panel (b): for D c = 20 and D g = 1 , increasing the membrane residence time results in a transition from 

weakly to highly nonlinear oscillations, a finding consistent with the dynamics in the well-mixed regime. The phase shift of half a period between c 1 ( t ) (blue) and c 2 ( t ) (red) 

is a clear indication of anti-phase oscillations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Hopf stability boundaries for the symmetric steady state in the full PDE–ODE model in the D versus k off (panel (a)), D c versus k 
off (panel (b)) and D g versus k 

off (panel 

(c)) parameter planes. Full and dashed curves indicate respectively super- and subcritical Hopf bifurcations, while triangular points indicate a criticality change (generalized 

Hopf point). Other parameter values are given in Table 2 . 

at increasing this quantity pushes the system into oscillatory dynamics 

ons exhibiting anti-phase oscillations with qualitatively different shapes 

steady state that use k off as a bifurcation parameter. We note that in 

n panels (b) and (c) only D c or D g are is allowed to vary. The branching 

cal, was resolved numerically with the software AUTO (cf. Doedel et al., 

 Letting D ≡ D c = D g or letting D c free with D g fixed yields qualitatively 

erging to the first one as D g increases. In both cases, the bifurcation 

d and it is subcritical in the low diffusion regime. However, stability 

ly different shape, with the critical diffusivity threshold being inversely 

 further into instability and near the onset of oscillations. Hence, we 

than D g . 

tal slices from panel (a) of Fig. 5 . The results are shown in Fig. 6 below 

When D = 10 , the symmetric steady state loses stability through a su- 

old, the stable weakly nonlinear anti-phase oscillations are annihilated 

 period undergoing a sharp increase to infinity. As in the well-mixed 

steady state undergoes a subcritical Hopf bifurcation on the horizontal 

 emerging from the Hopf bifurcation gains stability at a fold point near 

s of stability near a subcritical Hopf bifurcation. Notice the absence of 

 oscillations. 

tions behind the emergence of anti-phase relaxation oscillations in the 

s are characterized by long periods of rest followed by sudden sharp 

F dissociation is slow compared to Cdc42 dissociation, and active GEF 
1/ k off sets the membrane dwelling time for the GEF, we conclude th

even for relatively modest diffusion coefficients. Numerical simulati

are shown in panel (b) of the same figure. 

Shown next in Fig. 5 are stability diagrams for the symmetric 

panel (a), the bulk diffusion coefficients are set to be equal, while i

behavior of the Hopf bifurcation, i.e. whether it is super- or subcriti

2007 ) and a nonlocal formulation of the PDE–ODE model (see C.1 ).

similar stability boundaries, with the second case seemingly conv

is supercritical when the diffusivity level is above some threshol

boundaries in the D g versus k 
off parameter plane have a qualitative

proportional to k off. Here, increasing D c tenfold pushes the system

conclude that D c has a stronger effect on the oscillatory dynamics 

Next, we compute global bifurcation diagrams along two horizon

for D = 10 (upper panels (a)-(c)) and D = 1 (lower panels (d)-(f)). 

percritical Hopf bifurcation at k off ≈ 0.81. Further below this thresh

by the asymmetric steady state at k off ≈ 0.71, with the oscillatory

regime, relaxation oscillations exist in the range k off ∈ (0, 0.56). 

As predicted by panel (a) of Fig. 5 , we find that the symmetric 

slice D = 1 , near k off ≈ 0.17. Furthermore, the branch of limit cycles

k off ≈ 0.27. Finally, panel (f) of Fig. 6 illustrates a typical hard los

weakly nonlinear oscillations and the direct transition to relaxation

We conclude this section with Fig. 7 , which gives some explana

limit of long GEF membrane residence time. Relaxation oscillation

variations and are typical of slow-fast systems. Since k off < k −, GE
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Fig. 6. Oscillatory dynamics in the full PDE–ODE model for D c = D g = 10 (panels (a)-(c)) and for D c = D g = 1 (panels (d)-(f)). Other parameter values are given in Table 2 . The 

case D = 10 yields qualitatively similar dynamics to that of the well-mixed regime, with the Hopf bifurcation being supercritical. However, when D = 1 the Hopf bifurcation 

is subcritical and a hard loss of stability of the symmetric steady state is observed; see panel (f). 

Fig. 7. Relaxation oscillations in the full PDE–ODE model for D c = D g = 1 , k off = 0 . 1 and other parameter values as in Table 2 . Panel (a): kymograph of inactive Cdc42 level, 

with time on the horizontal axis and space on the vertical axis (see Supplemental Movie S1). Panel (b): trajectories in the phase plane ( c i ( t ), g i ( t )). Panel (c): Cdc42 (blue) 

and GEF (red) fluxes on/off each pole as a function of time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

c riable. This results in a more rapid flux on (or off) each pole for Cdc42 

(

3

k model with circular geometry and well-mixed bulk dynamics. This 

r r approach combines linear stability analysis and numerical simulations 

t near stability thresholds and away from them, in the highly nonlinear 

r

s C ( r, θ ) ≡ C ∗, G ( r, θ ) ≡ G 
∗, c ( θ ) ≡ c ∗ and g ( θ ) ≡ g ∗. Similarly to the 

o

C
c ∗) 

, 
an thus be seen as a slow variable while active Cdc42 as a fast va

see panel (c)). 

.2. Nonlocal PDE model on a circular domain 

In this section, we consider a two-dimensional membrane-bul

esults in the reduced nonlocal PDE model given by system (15). Ou

o predict and explore the formation of spatio-temporal patterns 

egime. 

We first define the spatially uniform (or trivial) steady state a

ne-dimensional PDE–ODE model, C ∗, G 
∗ and g ∗ satisfy 

 
∗ = C avg − γ c ∗, G 

∗ = G avg − γ g ∗, g ∗ = 

k −c ∗

[ k 0 + k cat (c ∗) 2 ](C avg − γ
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Fig. 8. Stability boundaries for the nonlocal PDE model in the (D m g , D 
m 
c ) parameter plane with k off = 1 (panel (a)), k off = 0 . 5 (panel (b)) and k off = 0 . 1 (panel (c)) and other 

parameters the same as in Table 2 . For illustrative purposes, parameter values where we observe a stationary pattern with a single peak, a stationary pattern with two peaks, 

a traveling and a standing waves are labeled by a filled circle, a square, a star and a polygon. A stationary pattern that evolves into a traveling wave is indicated by a star 

superposed on a square. Some secondary stability boundaries associated with higher spatial modes have been omitted. 

tively the average masses and the ratio of the perimeter over the area. 

isfy the following cubic equation: 

 γ (k − + k 0 G avg )] c 
∗ − k on k 0 G avg C avg = 0 , (48) 

, the average masses are defined as C avg = C tot /L and G avg = G tot /L, and 

 of the PDE–ODE model. 

rbations of the trivial steady state: 

(49) 

tion of (49) within the system of nonlocal PDEs (15) and upon lineariz- 

 , v n ) 
T must satisfy 

(50) 

k − C ∗[ k 0 + k cat (c ∗) 2 ] 

 
2 ] 2 −D 

m 

g n 
2 /R 2 − k off 

)
. (51) 

 by 

 [ n 2 D 
m 

c /R 
2 − 2 k cat c 

∗g ∗C ∗ + k −][ n 2 D 
m 

g /R 
2 + k off ] + η, 

(52) 

e determinant of the Jacobian matrix for each n , therefore yielding the 

 

R 2 

n 2 
(2 k cat c 

∗g ∗C ∗ − k −) 

}
. (53) 

cient of Cdc42 for the linear stability of the trivial steady state with 

 is plotted in Fig. 8 and verified numerically. 

 PDE system (15), we cannot simply set n = 0 in (51) to recover the 

A similar observation was made by Rätz and Röger in their stability 

polarity of small GTPases Rätz and Röger (2012) . Furthermore, stability 

 the absence of membrane diffusion, is required for Turing diffusion- 

an matrix of the linearized system satisfies 

(54) 
where G avg = G tot / | �| , C avg = C tot / | �| and γ = | ∂�| / | �| are respec
The steady state concentration of active Cdc42 is then found to sat

[ k off κk − + γ k on k cat G avg ](c 
∗) 3 − k on k cat G avg C avg (c 

∗) 2 + [ k off k − + k on

where γ = 2 /R for a circle of radius R . In the one-dimensional case

Eq. (48) reduces to Eq. (23) derived for the symmetric steady state

3.2.1. Linear stability analysis 

We consider the following nonuniform, spatially periodic, pertu

c(θ, t) = c ∗ + u n e 
λt+ inθ , g(θ, t) = g ∗ + v n e λt+ inθ , n 
 = 0 , 

where once again λ ∈ C is the eigenvalue parameter. After substitu

ing around the trivial steady state, we find that the eigenvector ( u n

[ λI − J n ] 

(
u n 
v n 

)
= 

(
0 
0 

)
, 

where the Jacobian matrix J n is defined by 

J n = 

(−D 
m 

c 
n 2 

R 2 
+ 

∂F 
∂c 

∂F 
∂g 

∂G 
∂c 

−D 
m 

g 
n 2 

R 2 
+ 

∂G 
∂g 

)
= 

(−D 
m 

c n 
2 /R 2 + 2 k cat c 

∗g ∗C ∗ −
−2 κk on c ∗G 

∗/ [1 + κ(c ∗)

For each mode n , the corresponding pair of eigenvalues is given

λ±(n ) = 

tr J n ±
√ 

tr 2 J n − 4 det J n 

2 
, 

where the trace and the determinant are 

tr J n = −n 2 D 
m 

c /R 
2 − n 2 D 

m 

g /R 
2 + 2 k cat c 

∗g ∗C ∗ − (k − + k off ) , det J n =
with η defined as 

η = 

2 κk on c ∗[ k 0 + k cat (c ∗) 2 ] C ∗G 
∗

[1 + κ(c ∗) 2 ] 2 
. 

As usual, linear stability requires a negative trace and a positiv

following inequality to be satisfied by D 
m 

c : 

D 
m 

c > max 

{
−D 

m 

g + 

R 2 

n 2 
(2 k cat c 

∗g ∗C ∗ − k − − k off ) , − ηR 2 /n 2 

D 
m 

g n 
2 /R 2 + k off 

+

This inequality places a bound on the minimal diffusion coeffi

respect to non-spatially homogeneous perturbations. This boundary

Notice that because of the integral terms within the nonlocal

Jacobian matrix associated with spatially uniform perturbations. 

analysis of a coupled membrane-bulk reaction-diffusion model for 

with respect to spatially uniform perturbations, or equivalently, in

driven instability (cf. Turing, 1952 ). For this special case, the Jacobi

J 0 = 

(− ∂F 
∂C 

γ + 
∂F 
∂c 

∂F 
∂g 

∂G 
∂c 

− ∂G 
∂G 

γ + 
∂G 
∂g 

)



F. Paquin-Lefebvre, B. Xu and K.L. DiPietro et al. / Journal of Theoretical Biology 497 (2020) 110242 11 

a y 

t
∂F 

∂c 

∂G 
∂G 

+ 

∂G 
∂g 

∂F 

∂C 

)
+ 

∂F 

∂c 

∂G 
∂g 

− ∂F 

∂g 

∂G 
∂c 

> 0 , (55) 

w ployed in our study (see Appendix B ). Restoring membrane diffusion, 

t bility of the trivial steady state: the stationary or the oscillatory Turing 

i

acobian matrix possesses an eigenvalue at the origin: det J n = 0 , with 

metry), an unstable mode always comes in a pair ± n , and thus the 

on. 

cobian matrix possesses a pair of critical eigenvalues on the imaginary 

nds to a Hopf bifurcation with O (2) symmetry (cf. van Gils and Mallet- 

rns are expected to form. 

 spatial modes may also be detected when performing linear stability 

a 2) symmetry (cf. Dangelmayr and Knobloch, 1987 ), which occurs when 

t me (nonzero) spatial modes ± n . At such a bifurcation point, we have 

t o zero-eigenvalues of multiplicity two. 

3

l simulations of the nonlocal system of PDEs (15). Simple finite differ- 

e nlocal integral terms are handled using the trapezoidal quadrature rule. 

A

c  (56) 

w  ϕ is an arbitrary angular phase shift. 

eter plane for different k off values. As expected, the trivial steady state 

i  destabilizing effect of long GEF membrane residence times, since the 

l  different spatio-temporal patterns observed via numerical simulations 

a he filled circle respectively indicate a traveling wave and a stationary 

p  non-exhaustive parameter exploration reveals that the spatio-temporal 

d  shown in Fig. 8 , suggesting that in the limit of fast bulk diffusion, all 

t

when k off = 1 are shown in Fig. 9 . For this case, the trivial steady state 

i ith the modes n = 1 , 2 and 3 (indicated by the blue, red and golden 

c  that are initially stationary can evolve into traveling waves, and this 

p lities (see panels (b), (d) and (e)). One potential explanation comes from 

t  spatial modes to interact and ultimately leads to a stationary pattern 

u -stationary” patterns with multiple peaks. For instance in Fig. 9 (c), two 

p ing in a different pattern configuration. Finally, when the ratio D 
m 

c /D 
m 

g 

i r stability analysis cannot be employed to predict the final number of 

p onds to what happens in panel (f), where for D 
m 

c /D 
m 

g = 0 . 1 , an initial 

p tern with a single peak. 

 (b-c) of Fig. 8 , the loss of stability of the trivial steady state can arise 

v seen in the one-dimensional PDE–ODE model from Section 3.1 , where 

o r those oscillatory Turing instabilities, the formation of traveling waves 

i , with the latter type often referred to as pole-to-pole oscillations. As 

s o types coexist near the Hopf stability boundaries, while away from 

t ransient. 

e presence of Bogdanov–Takens bifurcation points associated with the 

n from the blue curves. Traveling waves are expected to interact with 

s t, and further details about its effect on the dynamics will be given in 

S

3

e-bulk reaction-diffusion model with circular geometry. Our aim is to 

d mporal dynamics from Section 3.2 . Linear stability analysis is performed 

fi

3

 given by 

C ) = c ∗ + e λt φ(θ ) , g(θ, t) = g ∗ + e λt ψ(θ ) , (57) 
nd necessary conditions for diffusion-driven instability are given b

r J 0 = 

∂F 

∂c 
+ 

∂G 
∂g 

− γ

(
∂F 

∂C 
+ 

∂G 
∂G 

)
< 0 , det J 0 = γ 2 ∂F 

∂C 

∂G 
∂G 

− γ

(
hich have been verified numerically for the parameter values em

wo different symmetry-breaking mechanisms may cause loss of sta

nstabilities, which we describe below. 

• The stationary Turing instability , which happens when the J

n 
 = 0. We note that because of circular symmetry (or O (2) sym

stationary Turing instability corresponds to a pitchfork bifurcati
• The oscillatory Turing instability , which happens when the Ja

axis: tr J n = 0 and det J n > 0 , with n 
 = 0. This instability correspo

Paret, 1986 ), and traveling waves as opposed to stationary patte

More intricate bifurcations resulting from the interaction of two

nalysis. One example is the Bogdanov–Takens bifurcation with O (

he stationary and oscillatory Turing instabilities coincide for the sa

r J n = 0 and det J n = 0 , and thus the linearized system possesses tw

.2.2. Spatio-temporal pattern formation in the nonlocal PDE model 

Here, we compare our linear stability analysis against numerica

nces are employed to spatially discretize diffusion terms while no

s initial conditions, we take in this section 

(θ, 0) = c ∗ + u n cos ( nθ + ϕ ) , g(θ, 0) = g ∗ + v n cos ( nθ + ϕ ) ,

here the eigenvector ( u n , v n ) 
T is a non-trivial solution of (50) and

In Fig. 8 , we show three stability diagrams in the (D 
m 

g , D 
m 

c ) param

s linearly stable when Cdc42 diffuses fast. Fig. 8 also confirms the

inear stability region shrinks as k off decreases. In each diagram, the

re labeled with a variety of symbols. For instance, the star and t

attern, while the empty circle shows the absence of patterns. This

ynamics thresholds clearly correspond to the stability boundaries

he identified bifurcations are supercritical. 

Some numerically computed spatio-temporal patterns obtained 

s expected to lose stability via pitchfork bifurcations associated w

urves). Nevertheless, our simulations revealed that some patterns

henomenon occurs in the absence of any oscillatory Turing instabi

he vicinity of multiple stability curves, which causes two or more

ndergoing a secondary Hopf bifurcation. We also observed “quasi

eaks are seen to collapse and split again immediately after, result

s very small, a large number of modes become unstable and linea

eaks of a stationary pattern. This phenomenon precisely corresp

attern with three peaks rapidly evolves into a highly localized pat

At smaller k off values, as indicated by the black curve in panels

ia a Hopf bifurcation (see Appendix B ). This is similar to what is 

scillatory dynamics also require a small GEF dissociation rate. Nea

s expected. We distinguish between rotating and standing waves

hown in Fig. 10 , our numerical experiments revealed that the tw

hem in the highly nonlinear regime the standing waves are only t

Finally, for both k off = 0 . 5 and k off = 0 . 1 , we notice in Fig. 8 th

 = 1 spatial mode and indicated by the branching of the black 

tationary patterns in the neighborhood of such a bifurcation poin

ection 3.3 in the context of finite bulk diffusion. 

.3. Two-dimensional membrane-bulk reaction-diffusion model 

In this section, we consider the full two-dimensional membran

etermine the effects of a finite bulk diffusion field on the spatio-te

rst, followed then by numerical simulations. 

.3.1. Linear stability analysis 

We consider a perturbation of the spatially uniform steady state

(r, θ, t) = C ∗ + e λt �(r, θ ) , G (r, θ, t) = G 
∗ + e λt �(r, θ ) , c(θ, t
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Fig. 9. A gallery of numerical simulations of the nonlocal model with k off = 1 and membrane diffusion coefficients taken from Fig. 8 (a). Shown above are kymographs of 

membrane-bound active Cdc42, with time on the horizontal axis and space on the vertical axis. Panel (a): weakly nonlinear stationary pattern near a mode n = 1 pitchfork 

stability boundary (see Supplemental Movie S2). Panel (b): for a slightly lower D m c value, the same pattern evolves into a traveling wave. Panel (c): quasi-stationary pattern 

with two peaks near a mode n = 2 pitchfork stability boundary. Panel (d): transition to a traveling wave from an initial pattern with two peaks. Panel (e): transition to a 

traveling wave from an initial pattern with three peaks. Panel (f): transition to a localized stationary pattern with a single peak from an initial pattern with three peaks. 

Fig. 10. Numerically computed traveling waves with k off = 0 . 5 and membrane diffusion coefficients taken from Fig. 8 (b). In panels (a-b), there is coexistence of rotating and 

standing waves near the mode n = 1 Hopf stability boundary. Further below this threshold, in D m c = 0 . 2 , standing waves are only transient and evolve into rotating waves. 

Each solution is shown in Supplemental Movies S3, S4 and S5. 

d membrane eigenfunctions, while ( C ∗, G 
∗, c ∗, g ∗) is such as introduced 

 after linearization, we obtain the following eigenvalue problem in the 

 < R, 0 < θ < 2 π, (58a) 

< R, 0 < θ < 2 π, (58b) 

 < θ < 2 π, (58c) 

< θ < 2 π, (58d) 
where �( r, θ ), �( r, θ ) and φ( θ ), ψ( θ ) are respectively the bulk an
in Section 3.2 . Next, upon inserting (57) within Eqs. (11)–(12) and

bulk: 

D c 

[ 
�rr (r, θ ) + 

1 

r 
�r (r, θ ) + 

1 

r 2 
�θθ (r, θ ) 

] 
− λ�(r, θ ) = 0 , 0 < r

D g 

[ 
�rr (r, θ ) + 

1 

r 
�r (r, θ ) + 

1 

r 2 
�θθ (r, θ ) 

] 
− λ�(r, θ ) = 0 , 0 < r 

and on the membrane: 

D 
m 

c 

R 2 
φθθ (θ ) + 

∂F 

∂C 
�(R, θ ) + 

(
∂F 

∂c 
− λ

)
φ(θ ) + 

∂F 

∂g 
ψ(θ ) = 0 , 0

D 
m 

g 

R 2 
ψ θθ (θ ) + 

∂G 
∂G 

�(R, θ ) + 

∂G 
∂c 

φ(θ ) + 

(
∂G 
∂g 

− λ

)
ψ(θ ) = 0 , 0 
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w

 θ ) = 

∂G 
∂G 

�(R, θ ) + 

∂G 
∂c 

φ(θ ) + 

∂G 
∂g 

ψ(θ ) . (58e) 

H iform steady state. Also, the conservation laws (13) yield ∫
θ + 

∫ 2 π
0 

ψ(θ ) Rdθ = 0 . (58f) 

equations satisfied by the eigenvalue parameter. We consider first the 

g g eigenvalue case. 

l variables yields the following expressions for the eigenfunctions: 

�  u n e 
inθ , ψ n (θ ) = v n e inθ , (59) 

w odified Bessel functions. Next, from the linearized boundary conditions 

(

A

eaction-diffusion system, we derive the following linear system to be 

s(
(60) 

w

) 

 n (ω g R ) 
. 

lds the following characteristic equation: 

F ) q n (λ) 
∂F 

∂g 

∂G 
∂c 

= 0 . (61) 

F n ( λ) for n 
 = 0 are necessary. Fortunately when treating the spatially 

u  (60) with n = 0 lead to an equivalent solvability condition. A rigorous 

T roots λ with 
 ( λ) ≥ 0 for the characteristic equation F 0 (λ) = 0 , which 

c e from complex analysis because of the singularity at the origin. This 

c were encountered when treating the in-phase mode in the PDE–ODE 

m

r the eigenfunctions is given by 

� θ, ψ n (θ ) = v n e inθ , (62) 

w e found to satisfy 

A

 , v n ) 
T is then given by (

(63) 

w

tain the following necessary condition for a zero-crossing eigenvalue: 

F
 

g 

∂G 
∂c 

= 0 . (64) 

dergoes a pitchfork bifurcation, corresponding to the stationary Turing 

i

ith boundary conditions given by 

− D c �r (R, θ ) = 

∂F 

∂C 
�(R, θ ) + 

∂F 

∂c 
φ(θ ) + 

∂F 

∂g 
ψ(θ ) , −D g �r (R,

ere each of the partial derivatives is evaluated at the spatially un

 2 π

0 

∫ R 
0 

�(r, θ ) r dr dθ + 

∫ 2 π
0 

φ(θ ) Rdθ = 0 , 

∫ 2 π
0 

∫ R 
0 

�(r, θ ) r dr d

Our aim is to derive, for each spatial mode, the characteristic 

eneral case where λ is nonzero, followed then by the zero-crossin

Nonzero eigenvalue When λ 
 = 0, separation of angular and radia

n (r, θ ) = A n 
I n (ω c r) 

I n (ω c R ) 
e inθ , �n (r, θ ) = B n 

I n (ω g r) 

I n (ω g R ) 
e inθ , φn (θ ) =

here ω c = 

√ 

λ/D c , ω g = 

√ 

λ/D g and I n ( z ) for n ∈ Z are the usual m

58e) , A n and B n are readily found to satisfy 

 n = −
∂F 
∂c 

u n + 
∂F 
∂g 

v n 

D c ω c 
I ′ n (ω c R ) 
I n (ω c R ) 

+ 
∂F 
∂C 

, B n = −
∂G 
∂c 
u n + 

∂G 
∂g 

v n 

D g ω g 
I ′ n (ω g R ) 
I n (ω g R ) 

+ 
∂G 
∂G 

. 

Then upon substituting (59) within the linearized membrane r

atisfied by the eigenvector ( u n , v n ) 
T : 

 

λ + 

n 2 D m c 

R 2 
− p n (λ) ∂F 

∂c 
−p n (λ) ∂F 

∂g 

−q n (λ) ∂G 
∂c 

λ + 

n 2 D m g 

R 2 
− q n (λ) ∂G 

∂g 

) (
u n 
v n 

)
= 

(
0 
0 

)
, 

here p n ( λ) and q n ( λ) are defined by 

p n (λ) = 

D c ω c I 
′ 
n (ω c R ) 

D c ω c I ′ n (ω c R ) + 
∂F 
∂C 

I n (ω c R ) 
, q n (λ) = 

D g ω g I 
′ 
n (ω g R 

D g ω g I ′ n (ω g R ) + 
∂G 
∂G 

I

Finally, setting the determinant of the matrix in (60) to zero yie

 n (λ) ≡
[
λ + 

n 2 D 
m 

c 

R 2 
− p n (λ) 

∂F 

∂c 

][
λ + 

n 2 D 
m 

g 

R 2 
− q n (λ) 

∂G 
∂g 

]
− p n (λ

For an oscillatory Turing instability, purely imaginary roots of 

niform mode, the integral constraints (58f) and the linear system

uring stability analysis would require us to prove the absence of 

annot simply be verified numerically with the argument principl

hallenging task is therefore left for further study. Similar issues 

odel. 

Zero-crossing eigenvalue For this special case, a suitable ansatz fo

n (r, θ ) = A n 

(
r 

R 

)n 

e inθ , �n (r, θ ) = B n 

(
r 

R 

)n 

e inθ , φn (θ ) = u n e 
in

here from the linearized boundary conditions (58e) , A n and B n ar

 n = −
∂F 
∂c 

u n + 
∂F 
∂g 

v n 
D c 

n 
R 

+ 
∂F 
∂C 

, B n = −
∂G 
∂c 
u n + 

∂G 
∂g 

v n 
D g 

n 
R 

+ 
∂G 
∂G 

. 

The homogeneous linear system satisfied by the eigenvector ( u n
 

n 2 D m c 

R 2 
− p n (0) ∂F 

∂c 
−p n (0) ∂F 

∂g 

−q n (0) ∂G 
∂c 

n 2 D m g 

R 2 
− q n (0) ∂G 

∂g 

) (
u n 
v n 

)
= 

(
0 
0 

)
, 

here p n (0) and q n (0) are defined by 

p n (0) = 

D c n 

D c n + R ∂F 
∂C 

, q n (0) = 

D g n 

D g n + R ∂G 
∂G 

. 

After setting the determinant of the matrix in (63) to zero, we ob

 n (0) ≡
[
n 2 D 

m 

c 

R 2 
− p n (0) 

∂F 

∂c 

][
n 2 D 

m 

c 

R 2 
− q n (0) 

∂G 
∂g 

]
− p n (0) q n (0) 

∂F
∂

When Eq. (64) is satisfied for n 
 = 0, the trivial steady state un

nstability. 
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Fig. 11. Panel (a): stability boundaries in the D versus k off parameter plane. Panels (b-c): numerically computed traveling wave solutions of active Cdc42 along the circular 

membrane. The blue stars in panel (a) indicate where each simulation is performed. As the Bogdanov–Takens bifurcation point is approached, we remark a slowing down of 

the phase velocity of the traveling wave. Membrane diffusion coefficients are equal to D m c = D m g = 0 . 1 , while other parameter values are given in Table 2 . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Stable polarized state with k off = 0 . 05 and D = 4 (other parameters are the same as in the caption of Fig. 11 ). In panels (b-c), the level of membrane-bound (active) 

proteins is given by the blue curve. The black dot in the same panels indicates the position on the disk with zero azimuthal coordinate. Because of circular symmetry, any 

rotations and reflections of this pattern is also a solution. See Supplemental Movie S6. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

el 

idence time on the formation of spatio-temporal patterns on a circular 

 bifurcation parameters, we therefore select the bulk and membrane 

patial discretization in our numerical method combines a finite element 

undary (see C.2 for further details). The initial conditions stimulate a 

 to the uniform steady state. Finally, the stability of the uniform steady 

rical eigenvalue computation, directly by solving (64) and (61) . 
ff, D ) parameter plane, where we assume that both inactive Cdc42 and 

ability boundaries are similar to those arising in the one-dimensional 

he simultaneous increase of D c and D g has a destabilizing effect and 

l steady state. However, a key difference between the two diagrams is 

urve is composed of a pitchfork (blue) and a Hopf (black) bifurcation 

ect in a Bogdanov–Takens bifurcation point in ( k off, D ) ≈ (0.06, 4.83). 

hreshold leads to a loss of stability of the trivial steady state through a 

form. Below the Bogdanov–Takens bifurcation point, our linear stability 

, leading to the formation of stationary patterns with accumulation of 

, the pair of critical eigenvalues tends to zero and a slowing down of 

 panels (b-c) of Fig. 11 , this phenomena is observed in our numerical 

 pattern (see Fig. 12 ). Furthermore, in the vicinity of the Bogdanov–

system of ODEs approximating the dynamics of the full bulk-membrane 

n process is beyond the scope of this study, we remark that the analysis 

delimiting the regions of existence of traveling waves and stationary 

sociation rate ( k off = 0 . 05 ), which causes the proteins to mostly accu- 

brane reaction-diffusion systems without mass conservation (cf. Levine 

, we note that high (low) concentrations on the membrane match with 
3.3.2. Spatio-temporal pattern formation in the two-dimensional mod

We now explore the effect of diffusion and GEF membrane res

bulk domain when the inactive species diffuse at finite rates. As

diffusion coefficients, as well as k off, the GEF dissociation rate. The s

approach in the bulk with a finite difference approach on the bo

specific spatial mode n by adding the corresponding eigenfunction

state with respect to small perturbations is predicted from a nume

We present in panel (a) of Fig. 11 a stability diagram in the ( k o

GEF diffuse at the same rate D ≡ D c = D g . We remark that the st

PDE–ODE model as shown in panel (a) of Fig. 5 . In both cases, t

results in a reduction of the region of linear stability of the trivia

the curve of primary instabilities. In 2-D circular geometry, this c

segments, both associated with the n = 1 spatial mode, that conn

Hence, decreasing k off when the bulk diffusion level is above this t

Hopf bifurcation and traveling (or rotating) waves are expected to 

analysis predicts a loss of stability through a pitchfork bifurcation

proteins in a single location. 

As the Hopf curve approaches the pitchfork stability boundary

the phase velocity of the traveling wave is expected. As shown in

simulations. Eventually, the wave stops and becomes a stationary

Takens bifurcation point, it is possible to derive a four-dimensional 

reaction-diffusion system. Although, such a dimensionality reductio

of the resulting normal form could reveal the precise boundary 

patterns. 

For the stationary pattern in Fig. 12 , we notice a small GEF dis

mulate on the membrane. Also, in contrast with coupled bulk-mem

and Rappel, 2005; Gomez et al., 2019; Paquin-Lefebvre et al., 2019 )

low (high) concentrations in the bulk. 
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Fig. 13. Bistability between the trivial steady state and traveling wave solutions. The blue star just below the stability boundary in panel (a) indicates where the simulation 

is performed. In panel (b), we observe a small perturbation of the trivial steady state that slowly vanishes. However, as shown in panel (c), applying a bigger perturbation 

leads to a traveling wave. This suggests a loss of stability through a subcritical Hopf bifurcation with respect to the n = 1 spatial mode. Other parameters are the same as in 

the caption of Fig. 11 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. Coexistence of rotating and standing waves when k off = 0 . 1 and D = 6 (other parameters are the same as in the caption of Fig. 11 ). In the vicinity of a Hopf 

stability boundary, different initial conditions can either lead to clockwise rotating waves (panel (a)), anticlockwise rotating waves (panel (b)) or standing waves (pole-to- 

pole oscillations, see panel (c)). The traveling waves in each panel are shown in Supplemental Movies S7, S8 and S9. 

Fig. 15. Transition from standing to rotating waves in the highly nonlinear regime, far from any stability boundaries. The blue star in the left panel indicates where the 

simulation is performed (other parameters are the same as in the caption of Fig. 11 ). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

al branching of the Hopf bifurcation associated with the n = 1 spatial 

m ed near the Hopf stability boundary, where the trivial steady state is 

e n form given a large enough perturbation of the trivial steady state. We 

h 3.2 , when considering the nonlocal PDE system governing the dynamics 

i gs in the one-dimensional PDE–ODE model, that the Hopf bifurcation is 

s n the well-mixed regime. The precise determination, through a normal 

f nsition occurs, is left for further study. 

ole oscillations) in the full coupled membrane-bulk reaction-diffusion 

m the process of cell division. Numerical simulations from Fig. 14 suggest 
Our numerical simulations also revealed the possible subcritic

ode. In Fig. 13 , we show the result of two simulations perform

xpected to be linearly stable, and observe that a traveling wave ca

ighlight that such a bistable behavior was not observed in Section 

n the well-mixed regime. This would be consistent with our findin

ubcritical for low level of bulk diffusion, while it is supercritical i

orm computation, of the diffusion level at which the criticality tra

We now address the existence of standing waves (or pole-to-p

odel, and recall that such oscillatory behavior is essential during 
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Fig. 16. Panel (a): pitchfork stability boundaries in the D m c versus D 
m 
g parameter plane with k off = 1 , D = 10 and other parameters taken from Table 2 . Panel (b): the stationary 

pattern is computed near a mode n = 2 stability boundary, as indicated by the square in panel (a) (see Supplemental Movie S10). Panel (c): the stationary pattern is computed 

near a mode n = 3 stability boundary, as indicated by the triangle in panel (a) (see Supplemental Movie S11). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 17. Effect of reducing the membrane diffusivity ratio D m c /D 
m 
g on pattern formation. In panels (a–c), we observe a transition from a pattern with two peaks to a localized 

pattern with a single peak. The same transition is observed in panel (d–f) for an initial weakly nonlinear pattern with three peaks. Other parameters are the same as in the 

caption of Fig. 16 . 

r the Hopf stability boundary. The parameter values employed here are 

ilar simulation results were obtained for different sets of parameters 

etween standing and traveling waves are observed away from the Hopf 

ynamics in the limit of fast bulk diffusion (see Section 3.2 ). 

rotein accumulation sites, which happens when higher spatial modes 

tabilities, we set k off = 1 , D = 10 , and select the membrane diffusion 

6 are four stability curves in the D 
m 

c versus D 
m 

g parameter plane. Each 

directly from the zero-crossing eigenvalue relation (64) . The resulting 

 fast bulk diffusion (see panel (a) of Fig. 8 ). Here also, we note the 

oefficients. Finally, in panels (b–c) of Fig. 16 we show Cdc42 stationary 

umulation sites form. 

number of peaks of a stationary pattern can be reduced as the GEF 

itchfork stability boundary is approached. More precisely, in panels (a–

 a transition from a two-peak to a single peak pattern. In panels (d–f) a 
the coexistence of pole-to-pole oscillations and traveling waves nea

the same as for panel (c) of Fig. 11 , although we remark that sim

near the stability threshold. As shown in Fig. 15 , clear transitions b

stability boundary. Overall, those findings are consistent with the d

Next, we investigate the formation of patterns with multiple p

become unstable. For the purpose of avoiding any oscillatory ins

coefficients as bifurcation parameters. Shown in panel (a) of Fig. 1

of these curves is associated with a distinct mode and computed 

diagram is qualitatively similar to its counterpart in the limit of

stabilizing effect of simultaneously decreasing the bulk diffusion c

distributions in the bulk and on the membrane when multiple acc

We conclude this section with simulations showing how the 

membrane diffusion coefficient increases and as the mode n = 1 p

c) of Fig. 17 , we consider the horizontal slice D 
m 

c = 0 . 1 and observe
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Table 1 

Comparison of three different model geometries. 

1-D PDE–ODE model 1-D nonlocal PDE model (circle) 2-D membrane-bulk model (disk) 

Assumptions finite diffusion in the bulk, well-mixed 

in each end compartment 

well-mixed in the bulk, finite 

diffusion on the membrane 

finite diffusion in the bulk, finite 

diffusion on the membrane 

Patterns symmetric or asymmetric steady 

states, anti-phase (pole-to-pole) 

oscillations 

stationary patterns with one or 

multiple peaks, traveling or 

standing waves 

similar as for the nonlocal model 

Bifurcations pitchfork, subcritical or supercritical 

Hopf 

stationary Turing (pitchfork), 

oscillatory Turing (Hopf) 

similar as for the nonlocal model 

Slower bulk diffusion 

(D ≡ D c = D g ) 

(1) stability region of symmetric 

steady state increases, (2) 

supercritical Hopf bifurcation 

becomes subcritical 

NA (1) stability region of homogeneous 

steady state increases, (2) traveling 

waves slow down near a 

Bogdanov–Takens bifurcation 

Slower Cdc42 membrane 

diffusion 

NA (1) homogeneous steady state loses 

stability, (2) stationary patterns or 

traveling waves emerge 

similar as for the nonlocal model 

Slower GEF membrane 

diffusion 

NA (1) stationary patterns are less 

localized, (2) formation of traveling 

waves even without Hopf 

bifurcations 

similar as for the nonlocal model, but 

stationary patterns with multiple 

peaks can form 

Low GEF dissociation rate 

k off ≈ 0.1 

anti-phase relaxation oscillations (1) stationary patterns or traveling 

waves can form, (2) that interact 

near Bogdanov–Takens bifurcations 

similar as for the nonlocal model 

High GEF dissociation rate 

k off = 1 

no oscillations (1) no Hopf bifurcations, (2) stationary 

patterns with one or several peaks, 

that can evolve into traveling waves 

similar as for the nonlocal model, but 

stationary patterns are less likely to 

evolve into traveling waves 

t ved on the slice D 
m 

c = 0 . 04 . We remark that the intermediate patterned 

s  absence of any Hopf bifurcations. We believe this phenomena to result 

f his was also observed in the nonlocal version of this model, although 

h r switching. Our model suggests that the number of polarized sites is 

d  
m 

g decrease, more polarity sites can be observed. Our findings for all 

t

4

4

of a cell polarization model in order to explore the effect of spatial 

d bulk model for the Cdc42-GEF system in fission yeast, where the same 

r mplicated, geometries: a one-dimensional PDE–ODE model, a nonlocal 

o nts of the cytosolic forms D → ∞ (which is often a limit considered 

i ., 2014 ), and a full two-dimensional membrane-bulk model with finite 

d e analyze how bulk diffusion and lateral diffusion along the membrane 

a tingly, fast membrane diffusion of Cdc42 stabilizes the homogeneous 

s effect. Decreasing the GEF dissociation constant k off shrinks the regions 

o

 asymmetric distributions of Cdc42 at the two ends, as well as pole- 

t  is slow compared to Cdc42 dissociation, with bulk diffusion affecting 

t thresholds. When bulk diffusion is slow, relaxation oscillations emerge 

f tions emerge from a supercritical Hopf bifurcations in faster bulk dif- 

f brane-bulk model, stationary or oscillatory Turing instabilities, either 

c embrane-bound Cdc42 diffuses slowly. All the observed patterns have 

a s or traveling waves. Stationary patterns with multiple peaks are ob- 

s  decrease. These stationary patterns are sensitive to perturbations and 

c in the absence of Hopf bifurcations. The main results are summarized 

i

-dimensional model. If the reactive compartments at the two cell ends 

a  the bulk, we obtain a one-dimensional PDE–ODE model. If we assume 

t ral diffusion allowed, we obtain a one-dimensional nonlocal PDE model 

o are observed in the nonlocal model. Instead, the dominant patterns are 

t -D model reductions, the 2-D model exhibits similar spatio-temporal 

p main, there are an infinite number of spatial modes associated to the 

l  this therefore increases the likelihood of multiple interacting unstable 

m ne notable example of this richer bifurcation structure that is absent 

f bsence of diffusion-driven instability in the 1-D PDE–ODE model, partly 

d tments. 
ransition between a three-peak and a single peak pattern is obser

tates involve circular motions and peak switching that occur in the

rom nonlinear interactions between two or more spatial modes. T

ere the relatively low level of bulk diffusion allows for smoothe

ependent on membrane diffusion coefficients. As both D 
m 

c and D

hree model variants are summarized in Table 1 . 

. Conclusions and discussion 

.1. Conclusions 

In conclusion, we have analyzed three spatial model variants 

imensionality on pattern formation. We focused on a membrane-

eaction kinetics were considered for three, consecutively more co

ne-dimensional PDE model obtained when the diffusion coefficie

n models for polarization Goryachev and Pokhilko, 2008; Lo et al

iffusion in the cytosol and on the membrane. For these models, w

ffect the linear stability of a homogeneous steady state. Interes

teady state, while fast bulk diffusion of Cdc42 has a destabilizing 

f linear stability. 

For the 1-D PDE–ODE model, we observe both symmetric and

o-pole oscillations. Hopf bifurcations occur when GEF dissociation

he amplitude and the shape of the oscillations near the stability 

rom a subcritical Hopf bifurcation, while weakly nonlinear oscilla

usion regime. For the 1-D nonlocal PDE model and the 2-D mem

orresponding to pitchfork or Hopf bifurcations, can occur when m

 symmetry-breaking effect, either consisting of stationary pattern

erved when the diffusion rates of both membrane-bound species

an undergo sudden rotations or evolve into traveling waves even 

n Table 1 . 

Note that there are two different limits that can result in a one

re assumed to be well-mixed, while finite diffusion is assumed in

hat the bulk domain is well-mixed and consists of a disk, with late

n a circle. No temporal oscillations with a uniform spatial profile 

raveling waves and stationary patterns. In comparison to these 1

atterns as the 1-D nonlocal PDE model. On a 2-D circular bulk do

inearized system, all corresponding to the circular harmonics, and

odes. The Bogdanov–Takens bifurcation with O (2) symmetry is o

rom the 1-D PDE–ODE model. One last difference consists in the a

ue because of the well-mixed assumption of the two end compar
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n giving rise to spatio-temporal patterns in cell biology is beginning 

een nucleus and cytoplasm, oscillations can emerge in the Hes1 and 

 that diffusion can give rise to oscillations (i.e., treating the diffusion 

 et al. (2015) . Pole-to-pole oscillations of Min proteins in E. coli have 

s (reviewed in Kruse et al., 2007; Loose et al., 2011 ). However, bulk- 

g et al., 2003; Halatek and Frey, 2012 ) and are more realistic in terms 

ical modeling of signaling networks is the effect of cellular geometry. 

n idealized 1-D setting ( Jilkine and Edelstein-Keshet, 2011 ). If a certain 

ns may be done, often with some corrections of parameter values or 

ensionality on spatio-temporal behavior of models of cell polarization 

med. (One notable exception is the 1-D reaction-diffusion ( Mori et al., 

he wave-pinning model of cell polarization.) 

a bounded 2-D domain to a nonlinear reaction-diffusion process on the 

ätz and Röger (2012) , Rätz (2015) , Paquin-Lefebvre et al. (2019) . It was 

brane-bound stationary patterns is possible even when the two species 

cted). Rätz and Röger (2012, 2014) analyzed a coupled membrane-bulk 

cludes a diffusion equation for inactive Cdc42 in the bulk and a pair of 

embrane. From a linear stability analysis, they showed that differences 

bility. Fast bulk diffusion and slow membrane diffusion of Cdc42 can 

 equal membrane diffusivities and equal bulk diffusivities. The major 

ole of GEF in the activation of Cdc42 proteins. In Rätz and Röger (2012, 

ed in terms of the concentration of active Cdc42, whereas our model 

er (2012, 2014) it is assumed that GEF only activates Cdc42, while our 

GEF. Thus, Hopf bifurcations and oscillatory patterns can occur in our 

Röger, 2012; 2014 ). Our results can also be compared with patterning in 

upling nor mass conservation. For a disk domain with no-flux boundary 

domain, with their building blocks in the linear regime corresponding 

ecause diffusion was the only process assumed in the bulk, we merely 

 Another scenario is to consider a 1-D reaction-diffusion with periodic 

ify if stationary patterns with multiple peaks exist in a wider parameter 

embrane-bulk counterpart. 

ur work. From a biological perspective, our model predicts that spatio- 

ciation rate k off is small compared to the Cdc42 dissociation rate. In 

 of phase, while the spatial model with diffusion of membrane-bound 

embrane. Our model also predicts that the number of polarized sites 

dc42 and GEF proteins decrease. While our model only involves one 

dies in fission yeast suggest that the GEF Scd1 oscillates from one pole 

nother GEF, Gef1, have been reported ( Das et al., 2012; 2015 ). Another 

018 ). Recent work suggests that positive feedback involves Scd1, while 

cyk et al., 2019 ). To take these findings into account, our model with 

plicated model with two GEFs, which would be harder to analyze. To 

nal model, a space-dependent binding rate k on should be assumed. It 

 model the fission yeast system ( Goryachev and Leda, 2017; Tay et al., 

od-shaped fission yeast, where Cdc42 seems to preferentially bind to 

erical budding yeast, where positive and negative feedbacks involving 

 that traveling waves of Cdc42 have been observed in budding yeast 

 2-D model on a circular bulk domain, though fission yeast cells are 

omain geometry and growth on the full 2-D membrane-bulk model. 

 model geometry is assumed to be three-dimensional. In a recent pat- 

 ), Diegmiller et al. reduced a 3-D membrane-bulk model to a nonlocal 

 diffusion is fast. Their model considers autocatalysis and predicts that 

can extend our 1-D nonlocal model to a 2-D surface and explore how 

ther potential extension is to take into account anomalous diffusion in 

 Robin boundary conditions. Previous work ( Henry and Wearne, 2002 ) 

g an infinite domain. In a bounded domain, appropriate formulation of 

018 ). 

sis could be performed to determine the criticality of the bifurcations in 

patterns and traveling waves interact near Bogdanov–Takens bifurcation 

ane-bound localized stationary patterns in the limit of small membrane 

(2019) . There, another type of linear stability analysis can be performed, 

d a localized pattern constructed using matched asymptotic expansion, 

e analytical framework presented here can be used to study the spatio- 

xts. 
4.2. Discussion 

The role that spatial segregation between components plays i

to be appreciated. By taking into account spatial segregation betw

p53 pathways ( Sturrock et al., 2011 ). A rigorous analysis showing

coefficient as a bifurcation parameter) was presented in Chaplain

typically been studied using standard reaction-diffusion equation

surface models for Min oscillations have also been proposed ( Huan

of protein localization. An often overlooked problem in mathemat

Initial models of spatio-temporal phenomena are often studied in a

model gains acceptance, then its extension to 2-D or 3-D domai

reaction terms. However, a systematic analysis of the effect of dim

as dimensionality increases from 1-D to 2-D is not usually perfor

2011 ) and 2-D membrane-bulk versions ( Cusseddu et al., 2018 ) of t

Pattern formation resulting from coupling a diffusion process in 

domain boundary has been studied in Levine and Rappel (2005) , R

first shown in Levine and Rappel (2005) that the formation of mem

diffuse in the bulk at the same rate (membrane diffusion was negle

model and its nonlocal reduction for small GTPase. Their model in

reaction-diffusion equations for active and inactive Cdc42 on the m

between bulk and lateral diffusion rates can trigger a Turing insta

also lead to pattern formation in our model, even in the case of

difference lies in the modeling assumptions about the underlying r

2014) , GEF is assumed to be at quasi-steady state and is express

includes a separate variable for GEF. Furthermore, in Rätz and Rög

model has both positive and negative feedback loops that involve 

model, but are not seen in the model of Rätz and Rögers ( Rätz and 

regular reaction-diffusion systems, with neither membrane-bulk co

conditions, stationary patterns are expected to form over the full 

to the eigenfunctions of the Laplacian on the disk. In our model, b

observed patterning in some layer near the boundary of the bulk.

boundary conditions, with no nonlocal coupling. There, one can ver

regime, and if they are more stable than in their mass-conserved m

Finally, we discuss some limitations and possible extensions of o

temporal patterning is more likely to emerge when the GEF disso

the one-dimensional PDE–ODE model, Cdc42 and GEF oscillate out

forms predicts that Cdc42 and GEF spatially segregate along the m

should increase as the membrane diffusion coefficients of both C

Cdc42 GEF, fission yeast cells have multiple GEFs. Experimental stu

to the other during cell growth, while no obvious oscillations of a

study suggests that Gef1 is distributed in the cytosol ( Tay et al., 2

negative feedback is achieved through Cdc42 inhibiting Gef1 ( Her

a single GEF regulator would need to be replaced by a more com

limit active GEF localization to the cell tips in a full two-dimensio

may also be necessary to include GAP dependent feedback to fully

2018 ). While the 2-D model geometry may not be applicable to r

the poles instead of all over the membrane, it is applicable to sph

Cdc42, result in stable polarization and oscillatory behaviors. Note

under some experimental conditions ( Ozbudak et al., 2005 ). 

For the convenience of mathematical analysis, we studied the

rod-shaped. One follow-up question is to consider the effect of d

Another question to consider is how the patterning will change if

tern formation study on spherical domains ( Diegmiller et al., 2018

reaction-diffusion equation on a 2-D surface by assuming that bulk

a single polarity site would form. Following their framework, we 

the negative feedback may affect the number of polarity sites. Ano

the cytoplasm ( Jeon et al., 2011 ) which raises challenges due to the

used fractional diffusion for modeling anomalous diffusion assumin

boundary conditions is an active area of research ( Baeumer et al., 2

From a dynamical systems perspective, a weakly nonlinear analy

each of the three model variants, and to investigate how stationary 

points. Our numerical results also revealed the formation of membr

diffusion coefficients ratio, similar to those studied in Gomez et al. 

which consists of linearizing the membrane-bulk PDE system aroun

as opposed to linearizing around a uniform steady state. Finally, th

temporal dynamics of signaling proteins in other cell biology conte
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p 2012 ). It follows that after non-dimensionalization (x → x/L, t → tk −) a 

d 1 μm 
2 / 15 sec ≈ 5 . 4 μm 

2 / sec in physical units. We assume the diffusion 

c  magnitude. Differential mobility of the two forms of Cdc42 is required 

f  diffusing much faster than the active form ( Bendezú et al., 2015 ). We 

a c42 and GEF are much smaller than the cytosolic diffusion coefficients. 
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d for simulations. 
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0.1 0.1 

40 40 

1 1 
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1 1 

8 8 

varied varied 

A

.2 . First, we verify numerically in Fig. 18 the stability condition stated in 

E  implies linear stability with respect to spatially uniform perturbations. 

ring instability to be possible. Let J n be the Jacobian matrix defined in 

( values. It therefore follows that 

t (65a) 

d (65b) 

w ed in (52) . Eq. (65a) implies that 

d (66) 

d (67) 

a

− (68) 
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ppendix A. Parameter values 

For the reaction kinetics, we use parameter values from our p

dc42 and the GEF, C tot and G tot respectively, are in arbitrary un

nd the characteristic unit of length L = 1 is taken to be 9 μm 

olarity emerges). The timescale is set by k − = 4 min −1 ( Das et al., 

imensionless diffusion coefficient of D c = 1 corresponds to D c = 8

oefficient of the cytosolic form of the GEF is of the same order of

or a concentration of Cdc42 at the polarity sites, with inactive form

ssume that the diffusion coefficients of active membrane-bound Cd

ll the parameter values used in the figures are summarized in Tab

Table 2 

Parameter definitions and values use

Description Param

Cell size 

radius (2-D) R 

length (1-D) L 

Cdc42 

total amount C tot 
diffusion coefficient D c 
lateral diffusion D m c 

autocatalysis k 0 
k cat 

dissociation rate k −

GEF 

total amount G tot 
diffusion coefficient D g 
lateral diffusion D m g 

association rate k on 

strength of -ve feedback κ

dissociation rate k off

ppendix B. Further analysis of the nonlocal PDE model 

We consider here the nonlocal reaction-diffusion from Section 3

q. (55) for a range of k off values employed in our simulations. This

We then show that k off needs to be small for the oscillatory Tu

51) , and suppose that it possesses a pair of purely imaginary eigen

r J n = −(d c (n ) + d g (n )) + 2 k cat c 
∗g ∗C ∗ − (k − + k off ) = 0 , 

et J n = [ d c (n ) − 2 k cat c 
∗g ∗C ∗ + k −][ d g (n ) + k off ] + η > 0 , 

here d c (n ) = n 2 D 
m 

c /R 
2 and d g (n ) = n 2 D 

m 

g /R 
2 , with η ≥ 0 as defin

 c (n ) = 2 k cat c 
∗g ∗C ∗ − (k − + k off ) − d g (n ) . 

Since d c ( n ) is positive, we must have 

 g (n ) < 2 k cat c 
∗g ∗C ∗ − (k − + k off ) , 

nd upon substituting Eq. (66) within (65b) , we obtain that (
d g (n ) + k off 

)2 + η > 0 , ⇒ d g (n ) < 

√ 

η − k off . 

https://doi.org/10.13039/501100000038
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Fig. 18. Trace and determinant of the Jacobian matrix of the linearized system in the absence of surface diffusion (as defined in Eq. (54) ). Notice the negative trace and 

positive determinant. Parameter values are given in Table 2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

ntly small for a Hopf bifurcation to occur. In particular, we require 

(69) 

 d g ( n ) > 0, yielding the following inequality: 

(70) 

 small. This is consistent with the stability diagrams as shown in Fig. 8 . 

coupled PDE–ODE model will lead to an ill-posed system. In order to 

7 ), we must spatially discretize a nonlocal formulation of the coupled 

efined as 

U

 x 

0 

G (s, t) ds, (71) 

U  V (L, t ) = G tot . (72) 

+ F(C(L, t) , c 2 (t) , g 2 (t)) + 

∫ x 
0 

D c 
∂ 2 C(s, t) 

∂s 2 
ds, 

 t) 
∣∣∣∣
s = x 

− D c 
∂C(s, t) 

∂s 

∣∣∣∣
s =0 

, 

llowing system of nonlocal reaction-diffusion equations: 

U t) , g 2 (t)) , 0 < x < L, (73) 

mpartments, reformulated as 

) , g i (t) ) , (74) 
Both conditions (67) and (68) imply that d g ( n ) has to be sufficie

d g (n ) < min 
{√ 

η − k off , 2 k cat c 
∗g ∗C ∗ − k − − k off 

}
. 

The upper bound in (69) needs to be positive to make sure that

k off < min 
{√ 

η, 2 k cat c 
∗g ∗C ∗ − k −

}
, 

which is satisfied when the GEF dissociation rate k off is sufficiently

Appendix C. Numerical methods 

C1. Numerical bifurcation analysis of the coupled PDE–ODE model 

Because of mass conservation, simple finite differences of the 

perform numerical continuation with AUTO (cf. Doedel et al., 200

PDE–ODE model. Let U ( x, t ) and V ( x, t ) be intermediate variables d

(x, t) = c 1 (t) + c 2 (t) + 

∫ x 
0 

C(s, t) ds, V (x, t) = g 1 (t) + g 2 (t) + 

∫

that satisfy the following boundary conditions: 

(0 , t) = c 1 (t) + c 2 (t ) , U(L, t ) = C tot , V (0 , t) = g 1 (t) + g 2 (t ) ,

Differentiating U ( x, t ) with respect to time yields 

∂U 

∂t 
= 

dc 1 (t) 

dt 
+ 

dc 2 (t) 

dt 
+ 

∫ x 
0 

∂C(s, t) 

∂t 
ds = F(C(0 , t) , c 1 (t) , g 1 (t)) 

= F(C(0 , t) , c 1 (t) , g 1 (t)) + F(C(L, t) , c 2 (t) , g 2 (t)) + D c 
∂C(s,

∂s 

= F(U x (L, t) , c 2 (t) , g 2 (t)) + D c U xx , 

and upon applying the same procedure to V ( x, t ), we obtain the fo

 t = D c U xx + F(U x (L, t) , c 2 (t) , g 2 (t)) , V t = D g V xx + G(V x (L, t) , c 2 (

that is coupled to the ODEs governing the dynamics of the local co

dc i = F ( U x (L (i − 1) , t) , c i (t) , g i (t) ) , 
dg i = G ( V x (L (i − 1) , t) , c i (t
dt dt 
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w tem yields 

W  

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

V 2 (t) 
. . . 

V j (t) 
. . . 

V N−1 (t) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(75) 

w
L 

 − 1 
and N the number of mesh points. The matrix A ∈ R 2 N×2 N and the 

n

A

 N−1 

 
, c 2 , g 2 

)
V N−1 

 
, c 2 , g 2 

)⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (76) 

w nd L is the discrete Laplacian: 

L (77) 

C

e the coupled bulk-surface reaction-diffusion system 11–(12). We have 

F rane-bound components on ∂�. The bulk-surface problem takes the 

g

(78a) 

(78b) 

− (78c) 

w

C
 

 

 

)
. f = 

(
F 

G 

)
. (79) 

 terms C using a P 
1 finite element method ( Funken et al., 2011 ). The 

s ion for the Laplace-Beltrami operator ∇ 
2 
s c ( x , t) ( Huiskamp, 1991 ) based 

o  ( Meyer et al., 2003 ). The discretization of (78) leads to a large system 

o

M (80a) 

w

M

0 0 
0 0 

D 
m 

c L s 0 
0 D 

m 

g L s 

⎞ 

⎟ ⎠ , F = 

⎛ 

⎜ ⎝ 

G 1 

G 2 

F 

G 

⎞ 

⎟ ⎠ , (80b) 

w ment discretization, I is the identity matrix, and L s is the discretized 

L  finite element approximations of the Neumann boundary condition 

( integration of (80) has been performed by two independent methods 

w is the implicit second order Crank-Nicolson algorithm. The second is 

R irer and Wanner, 1996 ). The nonlinear systems arising at each timestep 

a

here i = 1 , 2 . Next, spatial discretization of this nonlocal PDE sys

˙ 
 = A W + F ( W ) , W = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

U 

V 
c 1 
g 1 
c 2 
g 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, U (t) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

U 2 (t) 
. . . 

U j (t) 
. . . 

U N−1 (t) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, V (t) =

here U j (t) ≈ U(( j − 1) h, t) and V j (t) ≈ V (( j − 1) h, t) , with h = 

N
onlinear function F are each defined by 

 = 

⎛ 

⎜ ⎝ 

D c L 0 0 
0 D g L 0 
0 0 0 

⎞ 

⎟ ⎠ , F ( W ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

D c ((c 1 + c 2 ) e 1 + C tot e N−2 ) 
h 2 

+ F 

(
C tot −U

h
D g ((g 1 + g 2 ) e 1 + G tot e N−2 ) 

h 2 
+ G 

(
G tot −

h

F 

(
U 2 −c 1 −c 2 

h 
, c 1 , g 1 

)
G 
(
V 2 −g 1 −g 2 

h 
, c 1 , g 1 

)
F 

(
C tot −U N−1 

h 
, c 2 , g 2 

)
G 
(
G tot −V N−1 

h 
, c 2 , g 2 

)
here the vectors e j ∈ R 

N−2 form the standard orthonormal basis a

 = 

1 

h 2 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−2 1 0 . . . 0 
1 −2 1 . . . 0 
. . . 

. . . 
. . . 

. . . 
. . . 

0 . . . 1 −2 1 
0 . . . 0 1 −2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

2. Numerical solution of the two-dimensional bulk-surface model 

In this section we describe the numerical method used to solv

ickian diffusion in the interior � and surface diffusion of memb

eneral form 

∂ C ( x , t) 

∂t 
= D ∇ 

2 C ( x , t) , x ∈ �

∂ c ( x , t) 

∂t 
= d ∇ 

2 
s c ( x , t) + f ( C , c ) , x ∈ ∂�

D 

∂ C ( x , t) 

∂n 
= f ( C , c ) , x ∈ ∂�. 

ith the following definitions: 

 = 

(
C 
G 

)
, D = 

(
D c 0 
0 D g 

)
, c = 

(
c s 
g s 

)
, d = 

(
D 
m 

c 0
0 D 

m
g

To numerically approximate this system, we discretize the bulk

urface terms c are discretized using a finite difference approximat

n a modification to the more commonly used cotangent schemes

f ODEs with general form 

 
˙ W = A W + F ( W ) , 

here 

 = 

⎛ 

⎜ ⎝ 

K 0 0 0 
0 K 0 0 
0 0 I 0 
0 0 0 I 

⎞ 

⎟ ⎠ , W = 

⎛ 

⎜ ⎝ 

C 
G 

c s 
g s 

⎞ 

⎟ ⎠ , A = 

⎛ 

⎜ ⎝ 

D c L 0 
0 D g L 

0 0 
0 0 

here L , K are the stiffness and mass matrices from the finite ele

aplace-Beltrami operator. The load vectors G 1 , G 2 arise from the

78c) evaluated using a midpoint quadrature rule. The temporal 

ith good agreement observed between them. The first method 

adau IIA, a 3-stage implicit Runge-Kutta method of fifth order ( Ha

re solved by Newton iterations. 
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Fig. 19. Convergence study of the numerical method for the exactly solvable problem (81). Dotted red lines of slope 2 added for comparison. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 20. Error in the total mass for the numerically computed traveling wave shown 

in Fig. 14 . 

W  

t  

m

T  

b  

d

w  

w  

t  

m  

m  

t  

s  

s

S

 

In the case of Crank-Nicholson time integration, we demon-

strate the expected second order convergence (in space and time)

by using the following example ( MacDonald et al., 2016 ) on the

unit disk: 

∂C 

∂t 
= ∇ 

2 C, x ∈ �, (81a)

∂c s 
∂t 

= ∇ 
2 
s c s + C − c s , x ∈ ∂�, (81b)

−∂C 

∂n 
= C − c s , x ∈ ∂�. (81c)

After discretization of (81) with maximum edge length h =
h max , the numerical solution ( C h , c s,h ) satisfies 

M 
˙ W = A W + F ( W ) , (82a)

where 

M = 

(
K 0 
0 I 

)
, W = 

(
C h 
c s,h 

)
, 

A = 

(
L 0 
0 L s 

)
, F = 

(
G 

C h − c s,h 

)
, (82b)

where G is the Neumann boundary integral (81c) evaluated using a

midpoint quadrature rule. In polar coordinates ( r, θ ), the example

problem (81) has the exact solution 

(r, θ, t) = J 1 (rk ) e 
−k 2 t cos θ, (83a)

[5 pt ] c s (θ, t ) = 

J 1 (k ) 

2 − k 2 
e −k 2 t cos θ, (83b)

where J 1 ( z ) is a Bessel function of the first kind and k ≈ 1.1777.

To show the accuracy of the surface approximation, we plot the

numerical surface solution and the exact solution for various time

points in Fig. 19 (for h max = 0 . 1 , �t = 10 −3 ). To test spatial conver-

gence, we fix �t = 10 −4 and solve (81) for varying levels of spatial

refinement. Fig. 19 b shows the expected second order convergence

results for the bulk and surface error. Similarly, we test temporal

convergence by fixing h max = 0 . 005 and integrating (81) to the fi-

nal time t = 0 . 12 using a sequence of decreasing timesteps. Fig. 19 c

shows the expected second order time convergence for the bulk

and surface errors. 

C3. Mass conservation 

In this section, we demonstrate that the 2-D coupled

membrane-bulk model as described in Section 2.2 conserves mass.

f

e differentiate the conservation law for Cdc42 (13) with respect

o time and obtain, after application of the divergence theorem on

anifold with boundaries, 

dC tot 

dt 
= 

∫ 
�
D c ∇ 

2 Cdx + 

∫ 
∂�

(
D 
m 

c ∇ 
2 
s c + F[ C, c, g] 

)
dx 

= 

∫ 
∂�

(
D c (n · ∇C) + D 

m 

c ∇ 
2 
s c + F[ C, c, g] 

)
dx . 

he first and third terms within the integral vanish because of the

oundary condition, and we are left with the integral of the surface

iffusion term over ∂�, 

dC tot 

dt 
= 

∫ 
∂�

D 
m 

c ∇ 
2 
s c dx = 0 , 

hich vanishes because of the divergence theorem on manifolds

ithout boundaries. The same procedure also applies to G tot , the

otal amount of GEF. Finally, we provide evidence that our nu-

erical method preserves mass in Fig. 20 . As expected, the mis-

atch between the numerical and the “true” mass decreases as

he mesh size h is refined. Quadratic convergence is roughly ob-

erved, with the error divided by 4 each time the maximum step

ize h is halved. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jtbi.2020.110242 . 

https://doi.org/10.1016/j.jtbi.2020.110242
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