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Abstract. Use and reuse of an ontology requires prior ontology verifica-

tion which encompasses, at least, proving that the ontology is internally

consistent and consistent with representative datasets. First-order logic
(FOL) model finders are among the only available tools to aid us in this

undertaking, but proving consistency of FOL ontologies is theoretically

intractable while also rarely succeeding in practice, with FOL model
finders scaling even worse than FOL theorem provers. This issue is fur-

ther exacerbated when verifying FOL ontologies against datasets, which
requires constructing models with larger domain sizes.

This paper presents a first systematic study of the general feasibility of

SAT-based model finding with FOL ontologies. We use select spatial on-
tologies and carefully controlled synthetic datasets to identify key mea-

sures that determine the size and difficulty of the resulting SAT prob-

lems. We experimentally show that these measures are closely correlated
with the runtimes of Vampire and Paradox, two state-of-the-art model

finders. We propose a definition elimination technique and demonstrate

that it can be a highly effective measure for reducing the problem size
and improving the runtime and scalability of model finding.

Keywords. ontology verification, first-order logic, satisfiability, model
finding, definitions

1. Introduction

Recently, more and more first-order logic (FOL) ontologies have become available,
ranging from upper ontologies such as DOLCE or GFO to domain ontologies for
space, processes, or the geosciences. But using and reusing them requires exten-
sive prior evaluation [1, 2], including, at the very least, verification of their logi-
cal consistency [3]. This includes (1) verifying an ontology’s internal consistency
that rules out contradictions between axioms by constructing any model, and (2)
checking the ontology’s external consistency with datasets that are representative
of the ontology’s intended domain or application by constructing a model from
these datasets. While ontologies specified in OWL and other Description Log-
ics (DL) are routinely verified both internally and externally even against large
datasets (i.e., ABoxes) [4–6], FOL ontologies are currently verified only internally

1This material is based in part upon work supported by the National Science Foundation
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if at all. The reasons are manifold. Most importantly, the very few model-finding
experiments with FOL ontologies that have been published in the literature are
rather discouraging; model finders routinely time out. They have only been suc-
cessful where very small models with fewer than 20 individuals exist. For exam-
ple, Bos states that model finding “doesn’t seem to scale up very well” [7] af-
ter using Paradox and Mace2 to construct models with up to 17 individuals for
rather simple first-order logic theories, while Baumgartner et al. conclude that
model finding “is a struggle with more than 20 individuals” [8]. Others [9,10] have
also reported little success with FOL model finding though without elaborating
further. Despite these experiences, we revisit the feasibility of model finding with
FOL ontologies here for several reasons:

• Logical verification of FOL ontologies with and without data is key to the
larger endeavor of developing and reliably (re)using FOL ontologies;

• Model-finding with ontologies has much broader utility for other reasoning
tasks such as query answering, data cleaning, or identifying which ontologies
or ontological assumptions are consistent with a dataset; and

• Prior results are 10 years or older with improvements in model finders and
computing resources, especially working memory, since.

We specifically want to identify the key factors that limit model finding with FOL
ontologies and potential approaches for improving its scalability.

To construct a model for a FOL ontology, traditional FOL model finders such
as Paradox [11] or Vampire [12,13] translate the ontology into an equi-satisfiable
Clausal Normal Form (CNF) and then instantiate those clauses for increasing do-
main sizes. This constructs a series of propositional satisfiability (SAT) problems
on which standard SAT solving techniques are used to determine satisfiability
(e.g., by constructing a model) or unsatisfiability, in which case the next domain
size is tried. While SAT solvers capably handle large SAT problems, SAT-based
model finders rarely succeed in constructing models for FOL ontologies. For this
reason, we want to better understand what makes model finding with FOL on-
tologies – with or without data – so difficult in practice. We specifically want to
quantify the size of the resulting SAT problems. To do that, we formalize the
concept of a FOL ontology with data and define various size measures on its FOL-
CNF and SAT conversions relative to the ontology’s axioms and dataset. We show
that not the number and length of sentences in the ontology’s axiomatization,
but the size of its signature and, especially, the number of binary predicates and
predicates of higher arities (including functions, though we concentrate on pred-
icates) are a critical source of the explosion in the SAT problem size. To address
this issue, we introduce a technique – optional definition elimination (ODE) – for
reducing the size of the signature. We theoretically quantify and empirically test
the effectiveness of this technique on different sets of eliminated definitions using
three ontologies. Because model finding results are highly susceptible to seemingly
minuscule differences, we carefully control both the numbers of distinct objects
(the domain size d) and the number of relational assertions for each predicate
via constructing synthetic sample datasets for our experiments. Our results show
that ODE can dramatically reduce the size of the resulting SAT problems and
significantly speed up and scale up model finding in practice.



While we systematically study different sets of definitions for elimination and
different sizes of ABoxes with a total of over 3,000 samples, we were quite re-
stricted in the ontologies we could use for a number of reasons: (1) FOL ontolo-
gies typically only contain structural knowledge without datasets of their own
(i.e. their ABox is empty); (2) because many FOL ontologies are used as refer-
ence ontologies, suitable data sources are not readily available; (3) many FOL
ontologies are not even shared in computer-interpretable formats; and (4) FOL
ontologies with defined predicates of arity greater 2 and for which any data is
available are hard to come by. The chosen spatial ontologies CODI [14], RCC [15]
and INCH [16]2 are ideally suited because all of them are available from COL-
ORE at colore.oor.net, they all contain many defined binary predicates (though
no predicates of higher arity), and we can easily extract suitable datasets from
standard GIS databases using already implemented qualitative spatial operations.

2. Preliminaries

First-Order Logic Syntax and Semantics: A FOL ontology O is a set of sentences
in FOL with equality3. Its nonlogical symbols, i.e., all constants, function symbols,
and predicates, form its signature λ(O). For simplicity, we consider here only
ontologies with predicates and constants in their signature, because each n-ary
function symbol can be encoded as a n+1-ary predicate symbol by adding axioms
that capture its functional nature4. Each predicate symbol Ω ∈ λ(O) has an
arity a(Ω) ≥ 1 and constants have arity 0. An atom is an expression of the form
Ω(t1, ..., tn) where every ti is a term – typically either a constant or a variable.
A literal is an atom or its negation ¬Ω(t1, ..., tn). A FOL formula is constructed
from atoms using the logical connectives ∧,∨,→,↔ and ¬ and/or the quantifiers
∀ and ∃. A FOL sentence is a closed formula, that is, all variables are bound. A
formula is ground if it does not contain any variables, that is, constants are the
only terms therein. A FOL clause is a special kind of FOL sentence, namely a
disjunction of a set of n literals, i.e. L1 ∨ ... ∨ Ln.

An interpretation of an ontology O is a tuple I = 〈D,Φ,Ψ〉 over a non-empty
domain D where Φ maps variables to individuals in D and Ψ maps nonlogical
symbols in λ(O) to individuals (for constants), sets (for unary predicates) and
n-ary relations (for predicates of arity ≥ 2). An interpretation I under which
all sentences in O are true (i.e., are satisfied) is called a model. An ontology is
consistent (or satisfiable) if it has some model. Two ontologies are equi-satisfiable
if they are both either satisfiable or unsatisfiable.

2.1. SAT-Based Model Finding with FOL Ontologies

The Mace-style finite-model building approach [11, 18, 19] used in popular ATPs
(Paradox, Vampire, iProver) uses a two-stage process of, first, clausification and,
second, propositional instantiation to convert a FOL ontology into a set of propo-
sitional clauses before handing them off to a SAT solver.

2The results for INCH are not further discussed here for space reasons, see [17] for details.
3We treat equality as a primitive logical predicate.
4Because constants typically represent objects from the domain of interest, we include them

to allow specifying factual knowledge, i.e., data points.



Clausification: Through applying Skolem’s algorithm (see, e.g. [20]) a FOL on-
tology is converted into an existential quantifier-free clausal normal form (CNF) –
a set of FOL clauses. This process may introduce additional Skolem constants and
functions. Thus, the resulting FOL-CNF ontology, which we refer to as OFOL-CNF,
is not necessarily logically equivalent but still equi-satisfiable to the original on-
tology O. The size of the signature of OFOL-CNF is determined as follows:

Definition 1. Let OFOL-CNF be an ontology’s FOL-CNF representation. Then

1. sf a=n(OFOL-CNF) denotes the set of n-ary Skolem functions introduced by
skolemization. If treated as predicates5, the set sf a=n(OFOL-CNF) adds that
many (n+ 1)-ary predicates to OFOL-CNF.

2. Ωa=n(OFOL-CNF) = {Ω ∈ λ(O) | a(Ω) = n)}∪ sf a=n−1(OFOL-CNF) defines the
set of predicates of arity n, which includes the n-ary predicates from O as well
as any newly introduced (n− 1)-ary Skolem functions.

The size of OFOL-CNF itself is defined in terms of its number of clauses:

Definition 2. Let OFOL-CNF be an ontology’s FOL-CNF representation treated as
set of clauses. Then for any single clause C ∈ OFOL-CNF, the clause-width w(C)
is the number of FOL literals therein.
The formula-width of OFOL-CNF is the maximal clause-width of all clauses in
OFOL-CNF, defined as W (O) = max {w(C)|C ∈ OFOL-CNF}.

Propositionalization of the FOL-CNF ontology: This second step involves in-
stantiating all variables within the FOL-CNF clauses over all combinations of
individuals from a fixed domain. This requires first fixing the domain size (i.e.
the number of distinct individuals) via a set of inequalities [21]. If the domain
size is not known in advance, the model finder starts with domain size 1 and in-
crementally increases it each time the search space is exhausted. If, for example,
the smallest model has 8 individuals, then the model finder will prove 7 SAT
instances to be unsatisfiable before finding an 8th one that is satisfiable.

Note that propositionalization instantiates every predicate of arity n with dn

propositional variables in OCNF-d. For example, each binary predicate leads to d2

and each ternary predicate to d3 propositional variables.

Lemma 1. Let OCNF-d be the propositional instantiation of OFOL-CNF, a FOL
ontology in CNF form with maximal arity a∗, over a domain with d individuals.

Then OCNF-d has Pv =
a∗∑
i=1

(
di · |Ωa=i|

)
propositional variables.

Likewise, each clause in an FOL-CNF ontology is instantiated for every com-
bination of its (implicitly universally quantified) variables, leading to the following
number of propositional clauses Pc.

Lemma 2. Let OFOL-CNF be a FOL-CNF ontology where Cv denotes the sub-
set of clauses with v distinct FOL variables per clause (we refer to v as the

5We only treat n-ary functions here as (n+1)-ary predicate symbols in order to approximate
their influence on the SAT problem size. Model finders typically treat them differently. Because

of that, we do not take into account the additional axioms one would need to capture their
functional nature when treated as predicates.



variable density), and v∗ is the maximal number of variables in any clause in
OFOL-CNF (the maximal variable density). Then for a domain size d, OCNF-d has

Pc =
v∗∑
i=0

(
di · |Cv=i|

)
propositional clauses.

Thus, the ‘size’ of the propositional instantiation OCNF-d can be jointly de-
scribed using Pc and Pv; their ratio r = Pc

Pv
describes its clause density. While our

approach for calculating Pv and Pc is rather naive and only a worst-case mea-
sure, preprocessing techniques built into modern model finders are meant to re-
duce these numbers. Nevertheless, we will show in Section 5 that these calculated
measures are closely correlated to the experimental runtimes of model finders.

3. SAT-based Model Finding for FOL Ontologies with Data

For simply proving the internal consistency of a FOL ontology, no data (i.e. ground
facts) are needed. However, to prove that an ontology is consistent with a given
dataset, we need to take the dataset’s size into account when estimating the size
of the resulting SAT problem. To investigate how the size of OCNF-d changes with
different amounts of data, we adapt the notions of Terminological Box (TBox),
Relations Box (RBox), and Assertion Box (ABox) from Description Logic (DL)
ontologies [22,23]. The TBox and RBox capture axioms that constrain the inter-
pretations of concepts (i.e., unary predicates) and roles (i.e., binary predicates),
respectively. We will not distinguish between them, but draw the distinction be-
tween the TBox (for all terminological axioms) and the ABox, the latter of which
captures assertions about individuals, i.e., ground statements about an individual
being an instance of a particular concept or being related to another individual
via a particular relation.

3.1. Assertion Box (ABox) and Terminology Box (TBox)

A FOL ontology can mix structural knowledge and assertions about individuals,
even in a single sentence. Because clausification tends to separate those to some
degree, we define an ontology’s ABox in terms of its FOL-CNF version.

Definition 3. Let O be an ontology with signature λ(O) and let OFOL-CNF be its
corresponding set of FOL-CNF clauses. Then the FOL assertion box ABox(O) is
the subset of O’s sentences that only yield ground clauses in OFOL-CNF that do
not use symbols outside λ(O)6.

While an ABox may contain disjunctive knowledge – reflected in ground
clauses with multiple literals – many clauses are so-called unit clauses consisting
of only a single literal, which are facts. In our experiments, we limit the ABox
to such unit clauses. For simplicity, we further require that the ABox itself, and
not just its clausal conversion, is represented as a set of ground clauses. In other
words, the ABox is the dataset we want to verify an ontology against.

Definition 4. An ABox(O) is called factual iff it contains only unit clauses.

6Clauses that are ground but use newly introduced Skolem constants or functions are not

considered part of the ABox as the Skolem symbols arise from existential quantifiers.



The spatial ontologies (CODI, RCC, and INCH) we use in our experiments
rely – like many other ontologies – only on unary and binary predicates. If the
ABox for such an ontology is factual, it consists of two kinds of assertions: class
assertions (e.g., ArealRegion(‘penobscotCounty ’)) and relational assertions (e.g.,
Inc(‘i95 ’,‘penobscotCounty ’)). A special kind of assertions we (and many model
finders) add, are so-called distinctness assertions that ensure that distinct con-
stants denote distinct individuals (e.g., ‘i95 ’6=‘penobscotCounty ’).

A FOL ontology’s TBox captures its structural, i.e., non-factual knowledge.
It consists of all sentences that either yield non-ground clauses or that contain
Skolem symbols after conversion to CNF-FOL:

Definition 5. Let O be a FOL ontology and ABox(O) its ABox. Then its
FOL terminology box is defined as TBox(O) = O \ABox(O).

For an ontology with a factual ABox, the TBox will not contain any ground
clauses except possibly ones involving Skolem symbols.

3.2. The Size of the Resulting SAT Problem

The following example demonstrates the clausification and propositionalization
of an FOL ontology and the number of propositional variables and propositional
clauses that are created in the process.

Example 1. Consider ORCC-s as a small subset of RCC’s FOL axiomatization
that consists of one axiom and two definitions with signature λ(O) = {C,P,PP}
denoting contact C(x, y), parthood P (x, y), and proper parthood PP(x, y).

(σC) C(x, y) → C(y, x)
(σP ) P (x, y) ↔ ∀z[C(z, x) → C(z, y)]
(σPP ) PP(x, y) ↔ P (x, y) ∧ ¬P (y, x)

Clause 1 ¬C(x, y) ∨ C(y, x). Clause 2 PP(x, y) ∨ ¬P (x, y) ∨ P (y, x).

Clause 3 P (x, y) ∨ C(f(x, y), x). Clause 4 P (x, y) ∨ ¬C(f(x, y), y).

Clause 5 ¬PP(x, y) ∨ P (x, y). Clause 6 ¬PP(x, y) ∨ ¬P (y, x).

Clause 7 ¬P (x, y) ∨ ¬C(z, x) ∨ C(z, y).

Table 1. FOL-CNF clauses for TBox(ORCC-s). Clauses are joined by conjunctions.

The FOL-CNF version of ORCC-s (Table 1) contains 7 clauses with 4 nonlogical
symbols, which in addition to the 3 predicates from ORCC-s includes one binary
Skolem function f which can be encoded as a ternary predicate. Propositionaliza-
tion for domain size d = 20 yields the following number of propositional variables:

Pv = |Ωa=2| · d2 + |Ωa=3| · d3 = 3 · 202 + 1 · 203 = 9, 200

Out of the 7 clauses, one clause has 3 FOL variables (clause 7) while the
other six all have 2 FOL variables (FOL variables in different clauses are different
for the purpose of propositionalization). For an ABox(O) with exactly one rela-
tional assertion, namely PP(‘m’,‘n’), exactly one ground clause is added. Then
for domain size 20 the following number of propositional clauses are created:

Pc = |C(v=3)| ∗ d3 + |C(v=2)| ∗ d2 + |C(v=1)| ∗ d1 + |C(v=0)| ∗ d0

= 1 · 203 + 6 · 202 + 0 · 201 + 1 · 200 = 10, 401



Thus the number of propositional variables in the SAT representation is
largely dependent upon the number and arity of predicates – each predicate of
arity a results in da propositional variables for domain size d. This number deter-
mines the search space for the propositional SAT problem, which consists (with-
out using any heuristics) of 2Pv possible interpretations. A simple ontology with
b binary and u unary predicates (and no other non-logical symbols) then yields

(2b)d
2 · (2u)d interpretations, which is exponential in both the number of binary

predicates – and more generally the number of predicates of highest arity – and
the domain size d. While modern SAT solvers are able to deal with thousands
of variables and tens of thousands of clauses [24] via highly effective strategies
for pruning the search space, Pv and Pc quickly grow into the millions even for
ontologies with modestly-sized signatures with only a handful of binary predi-
cates. But this also suggests that improvements can be realized by reducing the
total number of predicates, especially those of highest arity to construct larger
and more realistic models. Definition elimination, as formalized in Section 4, can
accomplish this when many predicates are defined. But we first look more closely
at how the ABox impacts the size of the resulting SAT problem.

3.3. The Impact of the Ontology’s ABox on the Size of the SAT Problem

The composition of ABoxes can vary widely: it may contain a handful or thou-
sands of facts, and some predicates may be used much more than others. In the
extreme case, many predicates may only rarely or not at all be used in an ABox.
To study the impact of the ABox in a more systematic way, we need to carefully
control its size and makeup. To do that, we introduce the idea of an (r-d)ABox
where d is the domain size (i.e., the number of distinct individuals in the domain)
and r is a factor that controls how many relational assertions the ABox contains
for each of the ontology’s predicates of arity greater than 1.

Definition 6. Let O be an ontology and D a domain of individuals. ABox(O) is
called an (r-d)ABox iff it only contains the following assertions:

1. For each Ω ∈ λ(O) with arity a(Ω) ≥ 2, ABox(O) contains exactly r ground
positive assertions (i.e. of the form Ω(d1, d2, . . . )) and exactly r ground negated
assertions (i.e. of the form ¬Ω(d′1, d

′
2, . . . ) where di, d

′
i ∈ D;

2. ABox(O) contains at most one sentence of the format Ω(d) for each d ∈ D
where Ω is a unary predicate (i.e. Ω ∈ λ(O) with a(Ω) = 1)7;

3. Distinctness assertions of the form di 6= dj ∈ABox(O) for each pair (di, dj)
∈ D ×D with di 6= dj.

Note that these ABoxes are stratified in the sense that all non-unary pred-
icates are used equally many times. While this may rarely happen in practical
datasets8, it allows us to avoid introducing noise caused by unrelated differences
between ABoxes. Building on Lemmas 1 and 2, the size of the SAT problem
resulting from an ontology with an (r-d)ABox can be calculated as:

7This criteria captures the idea that each individual in the domain can be asserted to be
a member of some class; but this restriction has a limited impact on the overall size of the
resulting SAT problem, which will be dominated by the number of relational assertions.

8To estimate the size of SAT problems resulting from practical datasets, we could treat r as

an maximal number of assertions that use one predicate. But as it turns out, r mostly influences

the number of propositional clauses but rarely the number of propositional variables.



Lemma 3. Let O be a FOL ontology with ABox(O) being an (r-d)ABox thereof.
Then the resulting propositional SAT problem contains

• Pv =
a∗∑
i=1

di · |Ωa=i|+ r ·
a∗∑
i=1

di · |sf A,a=i| propositional variables; and

• Pc =
v∗∑
i=0

di · |CT,v=i|+ r ·
v∗∑
i=0

di · |CA,v=i|) propositional clauses.

where a∗ denotes the maximum arity of predicates (including those resulting from
Skolem functions) and v∗ the maximal variable density in OFOL-CNF.

Pv and Pc are driven by the maximal arity of predicates (a∗) and the maximal
variable density (v∗), respectively, while the ABox’s contribution (the second term
in each equation) is rather small for factual ABoxes without definition elimination:
Pv will not change at all because ground unit clauses yield no Skolem functions,
while Pc increases by the number of facts contained in the ABox. Even for an
ABox with thousands of facts, this is negligible compared to the number of clauses
generated from the TBox for growing domain sizes.

4. Definition Elimination

We will now formalize optional definition elimination as a technique that reduces
an FOL ontology’s signature size. The following example shows how it can po-
tentially reduce the size of the resulting SAT problems.

Example 2. We reuse the TBox from Example 1 with λ = {C,P,PP}. One bi-
nary Skolem function (analogous to a ternary predicate) is introduced by clausifi-
cation. Propositionalization yields 68, 800 and 531, 200 propositional variables for
domain sizes 40 and 80, respectively. Adding one binary predicate O (overlap),
which is explicitly defined by (σO) O(x, y) ↔ ∃z[P (z, x) ∧ P (z, y)], almost dou-
bles the number of propositional variables to 134, 400 and 1, 049, 600 for d = 40
and 80, respectively. This increase is largely attributable to an additional ternary
predicate that captures the introduction of a binary Skolem function as the result
of eliminating the existential quantifier in σO. While the number of FOL-CNF
clauses increases from 7 to 10, one of the new clauses has a variable density of 3.
This leads to an eight-fold increase in the number of propositional clauses from
73, 600 to 640, 000 (for d = 40) and from 550, 400 to 5, 120, 000 (for d = 80).

In this example the addition of just one binary predicate causes large increases
in Pv and Pc. But because the added predicate O is explicitly defined, its removal
does not change the ontology’s satisfiability and O’s interpretation can be easily
constructed after finding a model. To formalize this approach, we first define
optional definitions and the DBox as a maximal set of optional definitions that
can be easily removed from an ontology. They are based on the notion of explicit
definitions [25] as special types of TBox sentences:

Definition 7. An explicit definition of an n-ary predicate Ω ∈ λ(O) in an ontology
O is a sentence σ ∈ TBox(O) of the form

∀x1, . . . , xn[Ω(x1, . . . , xn)↔ α(x1, . . . , xn)]

wherein α is a formula with x1 to xn as only free variables and with λ(O) \Ω as
the only nonlogical symbols. Then Ω is said to be explicitly defined in T .



Optional definitions are explicit definitions of predicates that are not used in
other sentences of the ontology’s TBox:

Definition 8. An explicit definition σ ∈ TBox(O) of a symbol Ω ∈ λ(O) is an
optional definition in O iff Ω does not appear in any sentence in TBox(O) \ σ.

Note that after removing an optional definition from TBox(O), other previ-
ously non-optional explicit definitions can also become optional in TBox(O) \ σ.

Example 3. In ORCC-s, initially σPP is an optional definition but σP is not be-
cause it is used in the definiens of σPP . After removing σPP , σP becomes optional
and can also be removed.

Because of this effect we recursively define larger definition sets, with the
maximal one being referred to as the ontology’s DBox:

Definition 9. A definition set of an ontology O is defined recursively as:

B. The set of all optional definitions in TBox(O) forms a definition set;
R. For any definition set D of O and for any optional definition σ of Ω in

TBox(O) \D, the set D′ defined as follows is a definition set:
D′ = {ς ′|ς ∈ D and ς ′ = ς[Ω(x1, . . . , xn)/α(x1, . . . , xn)]} ∪ {σ},
that is, D′ substitutes all occurrences of Ω in other definitions in D by Ω’s
definiens from σ and adds σ as a new definition to the set.

Definition 10. For an ontology O, DBox(O) is a definition set such that no op-
tional definition exists in TBox(O) \DBox(O).
Ω ∈ λ(T ) is optionally defined in O iff Ω does not appear in TBox(O)\DBox(O).

To study how removing optionally defined predicates impacts the SAT repre-
sentation, we also need to substitute the eliminated predicates in the ABox with-
out changing the ontology’s semantics. This is achieved by replacing assertions
that use optionally defined predicates by defined assertions.

Definition 11. Let O be an ontology and D some definition set of O.
Then ABoxD(O) = ABox(O)

[⋃
σi∈D[Ωi(x1, . . . , xn)/αi(x1, . . . , xn)]

]
.

Any sentence σ ∈ ABoxD(O) with σ /∈ ABox(O) is called a defined assertion.

In other words, ABoxD(O) is O’s ABox with all optionally defined predi-
cates Ωi from D (which typically would be the entire DBox of O) substituted by
their definiens αi. Such an ABox with defined assertions may no longer only con-
tain only ground unit clauses. Defined assertions may contain variables or Skolem
functions introduced during the substitution. For example, a fact O(‘i95’, ‘295w’)
results in the defined assertion ∃z[P (z, ‘i95’) ∧ P (z, ‘295w’)] if O is substituted
by its definiens from Example 2. But the substitution of facts from the ABox by
defined assertions ensures maintaining (non-)satisfiability. This follows directly
from the well-known relationship between explicit and implicit definability for-
malized by Beth’s definability theorem [25]. The following theorem captures this;
the straightforward proof is provided in [17, Sec. 5.3]:

Theorem 1. Let O be a FOL ontology and D be a definition set of O. Then there
is a bijection between the models of

(
TBox(O) \D

)
∪ABoxD(O) and the models

of TBox(O)∪ABox(O), that is, every model of
(
TBox(O) \D

)
∪ABoxD(O) can

be uniquely expanded into a model of TBox(O) ∪ABox(O).



Again, such a bijection exists specifically where D = DBox(O), the maximal
set of optional definitions that can be easily removed without altering the ontol-
ogy’s semantics. This idea forms the basis of our strategy for improving model
finding because

(
TBox(O) \DBox(O)

)
∪ABoxD(O) has a smaller signature than

O ≡ TBox(O) ∪ABox(O) but is equi-satisfiable.
The effect of ODE on the resulting SAT problem’s size is illustrated next.

Example 4. Consider the ontology ORCC-s again with β ≡ PP(‘m’,‘n’) as the
only assertion in the ABox. Now applying ODE only on PP removes σPP from
the TBox and substitutes all occurrences of PP in the ABox with its definiens
P (x, y)∧¬P (y, x). β will become β′ ≡ P (‘m’, ‘n’)∧¬P (‘n’,‘m’). ODE reduces the
ontology’s signature from three to two binary predicates. For a domain size 20,
this reduces the number of propositional variables from 3 ∗ 202 + 1 ∗ 203 = 9, 200
to 2 ∗ 202 + 1 ∗ 203 = 8, 800. Likewise, the number of propositional clauses is
slightly reduced from 10, 400 to 10, 000. A much larger decrease can be realized by
eliminating syntactically more complex definitions, such as the definition σP of
P , which contains an existential quantifier. σP is optionally defined after σPP ’s
removal. Its removal eliminates the ternary predicate, leading to a SAT problem
with only 2 ∗ 202 = 800 propositional variables that arise from its TBox9.

It becomes clear that optional definition elimination is especially useful for
ontologies that have many optionally defined predicates. This is the case for many
spatial ontologies, such as the RCC or CODI, which we use next to study the
benefit of ODE in more detail with respect to the estimated number of proposi-
tional variables and clauses and the actual change in runtimes of model finders.

5. Calculated and Experimental Results

Materials and Experimental Setup: We now present our quantitative and exper-
imental results for two ontologies of qualitative space: CODI [14] and RCC [15].
For space reasons we do not discuss results from a third ontology, the INCH Cal-
culus10, which are included in [17]. Complete FOL axiomatization of CODI11 and
RCC12 are available in the COLORE github repository. CODI and RCC each
have a terminology of a total of 21/6 mostly binary predicates, with 8/5 of those
being explicitly defined. The main reason for working with these ontologies is
that their existing semantic alignment with the Simple Features Access (SFA)
Model [26] – an FOL ontology that bridges qualitative spatial relations with stan-
dard geometric representations as used in GIS databases – allows easy extraction
of datasets from standard GIS datasets.

For constructing (r-d)ABoxes (cf. Def. 6) we first extracted a Master ABox
consisting of 425 spatial objects (i.e. individuals) related via 130,256 ground re-
lational assertions (4,937 positive ones and 125,319 negated ones) that use the
binary predicates (within, overlaps, intersects, crosses and touches) from the SFA
standard. These map to the binary predicates used by CODI and RCC. To con-

9The overall number of propositional variables would be larger if the ABox heavily uses the

eliminated predicate, as that would reintroduce some variables via Skolemization.
10http://colore.oor.net/inch/inch calculus.clif
11http://colore.oor.net/multidim space codi/codi basic.clif
12http://colore.oor.net/mereotopology/rcc basic.clif



struct sample datasets from this Master ABox, we used a stratified sampling pro-
cess to semi-randomly pick 5, 10, 15, or 20 relational assertions for each binary
relation in the ontology’s signature that relate between 20 to 50 individuals (to
fix the domain size). We further added distinctness assertions (inequalities) for
these individuals and, for CODI, class assertions for each unary predicate. This
systematic construction of ABoxes helps attribute performance differences to the
removal of specific predicates as all predicates are used with equal frequency. It
avoids biasing or even hiding the effect of definition elimination that could result
from real datasets, of which one expects a large variations in predicate use: some
may be used much more than others while others potentially not at all.

We conducted our experiments with the state-of-the-art model finders Para-
dox [11] and Vampire [27]13 using 10 dataset samples for each ontology, signature,
and combination of parameters, resulting in a total of 2,080 problems for CODI
and 840 problems for RCC. To discount external effects and extreme outliers
(since problems are created semi-randomly, some are extremely difficult), we only
plot the low mean – the mean of all 10 samples that terminated before the mean
plus one standard deviation (µ+σ). Cases where the majority of samples did not
terminate are indicated as such in our graphs.

5.1. Growth of the Number of Propositional Variables and Clauses

The dashed lines in Fig. 1 show how Pv differs across different sets of eliminated
predicates. Pv increases polynomially with increasing d (cf. Lemma 3) while r has
no impact for CODI and little impact on RCC except for case 1 there. RCC case 1
is special as it is the only case that introduces clauses with a variable density of 3
as shown in the RCC’s ABox measures in Table 2. Pv decreases significantly when
more and more defined predicates are eliminated. For example, the elimination of
the 5 binary predicates SC , Inc, PO , PP and C from CODI (from case 13 to case
1) reduces Pv by roughly two-thirds even though 9 out of 14 binary predicates
are preserved.

The number of propositional clauses Pc is exponential in the maximal variable
density over all FOL-CNF clauses, polynomial in d, and increases linearly (though
minimally) with increasing r. Overall, Pc grows in step with Pv. However, over-
eager ODE can lead to (1) more FOL-CNF clauses, (2) much longer clauses (i.e.
more clauses with a width ≥ 3), and (3) clauses with higher variable density. The
latter two things happen when eliminating all defined predicates, including P ,
from RCC as shown by the ABox calculations for case 1 in Table 2, which results
in the large increases in Pc and Pv shown in Fig. 1. This is caused by the nesting
of optional definitions in RCC: EC is defined in terms of O and both PP and
O are defined in terms of P . The construction of defined assertion then leads to
multiple nested quantifiers, resulting in a high variable density after clausification.

5.2. Experimental Results

While Vampire is consistently faster than Paradox, the model finding times of
both exhibit a similar pattern (especially for CODI) that is also closely corre-
lated to the number of propositional variables. As more defined predicates are

13We also experimented with IProver but the runtimes are very inconsistent but for larger

domain sizes always significantly greater than those for Vampire.



CODI TBox Basic ABox (r = 1)

CT,v with v

FOL variables

CA,v with v

FOL variables
CODI Case defined predicates included Ωa=1, Ωa=2

v=3 v=2 v=1

CT with

w ≥ 3 v=2 v=1 v=0

CA with

w ≥ 3
Ωa=1

1

- (all cases include

22 other predicates) 13, 9 3 32 30 31 12 12 3 7 6

2 PP 13, 10 3 35 30 33 12 12 2 7 6

3 C 13, 11 4 34 30 33 12 9 4 7 5

4 C, PP 13, 12 4 37 30 35 12 9 4 7 5

5 PO 13, 11 4 34 30 33 12 9 5 7 5

6 PO, PP 13, 12 4 37 30 33 12 9 4 7 5

7 PO, PP, C 13, 14 5 39 30 35 12 6 6 7 4

8 Inc 13, 14 5 41 30 43 3 10 5 5 4

9 Inc, PP 13, 13 5 44 30 43 3 10 4 5 4

10 Inc, PP, C, PO 14, 16 7 48 30 45 3 4 8 5 2

11 SC 13, 12 8 34 30 36 9 8 5 2 4

12 SC, PP 13, 13 8 37 30 38 9 8 4 2 4

13 SC, PP, C, PO, Inc 13, 20 12 50 30 51 0 0 10 0 0

RCC TBox Basic ABox (r = 1)

RCC Case defined predicates included Ωa=2

CT,v with v

FOL variables
CT with

w ≥ 3

CA,v with v

FOL variables
CA with

w ≥ 3
Ωa=1,Ωa=2

v=3 v=2 v=1 v=3 v=2 v=1 v=0

1 - (all cases include C) 1 0 1 1 0 4 16 20 5 32 7, 10

2 P 3 1 4 1 2 0 0 8 12 8 3, 2

3 P, PP 4 1 7 1 3 0 0 8 10 6 2, 0

4 P, O 5 2 6 1 3 0 0 1 14 5 0, 0

5 P, PP, O 6 2 9 1 4 0 0 1 12 1 0, 0

6 P, PP,O, EC 7 2 12 1 5 0 0 1 9 0 0, 0

7 P, PP, O, EC, NTTP 8 3 11 1 8 0 0 0 8 0 0, 0

Table 2. Each case represents version of CODI/RCC with a different set of its explicitly defined
binary predicates included. Statistics for the resulting size of the FOL-CNF ontology for the

TBox only (left) and an ABox with r = 1 (i.e. that includes exactly one positive and one negated

assertion for each binary predicate, including the non-optional predicates).

eliminated and Pv decreases, the runtimes decrease as well14. The speed-up can
be significant. For example for d = 20, case 1 contains less than half the number
of propositional variables (3,860) than case 13 (8,260), which contains five addi-
tional binary predicates. This leads to a runtime deduction from 345s to 7s and
from 713s to 134s for r = 5 and r = 20, respectively. This reduction is even more
dramatic for d = 30, where the runtimes decrease from 30,000s (over 8h) to 16s
and 164s for r = 5 and r = 20, respectively.

While there are slight differences about how well certain cases perform (e.g.,
cases 11 and 12 are more difficult for Paradox, whereas cases 8 to 10 are more
difficult for Vampire), invariably CODI case 13 (without ODE) takes the longest
for both solvers, with timeouts encountered consistently for d = 30 (Paradox) or
d = 50 (Vampire). Case 1, which performs the most aggressive ODE, terminates
fastest for Paradox throughout. However, the Vampire results show that removing
as many definitions as possible does not always yield the best performance, in
fact, case 2 which retains the definition of PP performs better. Overall, CODI
demonstrates that ODE can improve model-finding scalability noticeably: In the
best cases the model finders can construct models with up to 50 individuals in
the same times previously needed for half that domain size.

By looking at the RCC results, an even more nuanced story emerges. While
the runtimes mostly follow the trend of Pv, the steep increase in Pc and Pv in

14Beware that the cases are not ordered by Pv , and for CODI not even by the number of

binary predicates preserved in the FOL-CNF ontology as shown column 3 of Table 2.



Figure 1. Low mean model finding times for CODI and RCC for different r-dABoxes using

Paradox and Vampire. The numbered cases along the x-axis correspond to the case numbers in
Table 2. The calculated number Pv (dashed) is plotted against the secondary axis.



case 1 yields a performance worse than without any ODE at all. Pv and Pc are
the lowest in case 2, which removes all optionally defined predicates except for P .
This case keeps both the number of newly introduced Skolem functions and the
number of clauses with higher variable density relatively low. This is the best case
for Vampire for both domain sizes 20 and 30. Paradox performs slightly better on
case 4, which additionally retains O and results in even fewer clauses of highest
variable density (CA,1 is 1 compared to 8 as in cases 2 and 3).

In summary, we find that the quantitative measures of the FOL-CNF ontolo-
gies are good indicators for the expected runtimes of the employed SAT-based
model finders. The results suggest that ODE is beneficial as long as the num-
ber of clauses with high variable density (i.e. with more variables) increases only
marginally. Because such increases arise primarily from the introduction of quan-
tifiers and Skolem functions in defined assertions, the optimal extent of ODE
could be easily automatically determined during the clausification process.

6. Related Work

The elimination of either implicitly [28] or explicitly defined concepts [29] has been
studied for expressive DL ontologies, but not for FOL ontologies. Verification of
FOL ontologies has mostly focused on theorem proving [3,30] as a means to find
inconsistencies or to prove competency questions, while model finding has been
dismissed as infeasible. Prior studies of automated reasoning over FOL ontologies,
such as [9, 31, 32] have focused on the feasibility of theorem proving (as a means
for query answering) rather than model finding. Those studies have shown that
theorem proving scales poorly for large ontologies, but they also noted that the
challenges for model finding are even greater. For example, in the study in [10]
Paradox generated only models up to size 5 and Darwin timed out for most cases,
while [9] also reports to have constructed only very small models. Likewise, no
models for domain sizes larger than 17 were found by [7] using Paradox and
Mace2 even for simple FOL theories. Their limited success let the authors in [8]
conclude that model finding is “a struggle with more than 20 individuals”. Our
study pushes this limit to construct models with up to 120 individuals (for CODI)
through the simple techniques of eliminating optional definitions.

While heuristics for improving SAT solving via various preprocessing tech-
niques abound, most are only employed after clausification and propositionaliza-
tion of an FOL axiomatization. Only few techniques (see [19] for a recent overview)
have been successfully lifted to FOL model finders. For example, syntactic pred-
icate elimination is performed on the CNF version of an ontology by Mace4 [18],
but in our experiments, Mace4 did not even get close to the performance of
Paradox or Vampire. Likewise, iProver eliminates some non-self-referential pred-
icates [33] but behaved much more unpredictably than Paradox or Vampire and
did not scale as well as Vampire.

7. Conclusion and Future Work

This work is only a first step in systematically studying the feasibility of model
finding for FOL ontologies and in identifying avenues to improve FOL model
finding in practice. We have shown that the size of an ontology’s signature, es-



pecially the number of predicates of arity two or higher, has an outsized impact
on the size of models that can be created, while the size of the dataset is much
less critical. We have also shown that optional definition elimination (ODE) can
effectively push the size of models that can be constructed. For example, ODE
reduces the model finding time by over an order of magnitude for CODI, which in
turn allowed us to construct models containing up to 120 individuals in the same
amount of time previously needed to construct models with about 40 individual.
This is a small but noticeable improvement over previous reports that indicated
difficulties constructing any models with 20 or more individuals [7, 8]. Thus, our
results are evidence that external verification of mid-sized FOL ontologies can be
feasible in practice, at least for ontologies with only unary and binary predicates
and wherein many terms are defined. However, as perhaps expected, it is also
clear that model finding for FOL ontologies will likely never compete with the
size of datasets that DL ontologies can be externally verified against.

Future Work It has become clear that ODE cannot be applied blindly, especially
when dealing with ground facts that use the predicates slated for elimination. The
example of RCC showed that eliminating the wrong predicate can significantly
decrease model finding performance. However, simple measures, such as the num-
ber of quantified variables, the number and arity of introduced Skolem functions,
and the number of ABox facts that use a specific predicate can help decide which
predicates to eliminate. Future work needs to develop and study specific heuris-
tics that employ such measures for automatically deciding and applying ODE as
a preprocessing step for FOL model finding. More work is also necessary to study
the effectiveness of ODE for predicates of higher arities and to test ODE on a
more diverse set of FOL ontologies, including much larger ontologies.
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[11] Claessen K, Sörensson N. New techniques that improve MACE-style finite model building.

In: CADE-19 Workshop on Model Computation, Miami Beach, FL; 2003. p. 11–27.
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