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First Paragraph:  

Earth System models predict a decline in ocean phytoplankton biomass1,2 due in large 
part to an expansion of ocean regions dominated by diverse picophytoplankton 
communities3,4. Alternatively, you can predict future ocean phytoplankton biomass based 
on current abundances of diverse populations along environmental gradients using 30 
quantitative realized niche models5. Using a global dataset to calibrate a niche model, we 
project the global biogeography of the very abundant but little studied picoeukaryotic 
phytoplankton. We then combine this niche model with similar models for 
Prochlorococcus and Synechococcus6. We find that cell size differences between lineages 
parallel a latitudinal niche partitioning but a shared overall picophytoplankton biomass 35 
increase along a positive temperature gradient between 25°C and 30°C. Thus, future 
warmer ocean conditions can lead to elevated phytoplankton biomass in low latitude 
regions. Further biogeochemical model analyses suggest that future elevated upper-ocean 
nutrient recycling and lower nutrient requirements of phytoplankton can support 
increasing low latitude phytoplankton biomass. Such a previously unrecognized 40 
phytoplankton biomass response to climate change can have widespread ramifications for 
marine life in the ocean. 
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Main: 45 
Earth System models are central to how we predict the impact of climate change 

on marine systems. Such models have primarily been designed for describing carbon and 
nutrient fluxes but are increasingly called upon for predicting ecosystem behavior 
including changes in the standing stock of ocean phytoplankton7,8. However, 
phytoplankton biomass predictions are uncertain for at least two reasons. First, model-50 
predicted phytoplankton biomass are only cursorily calibrated by regional patterns in 
remotely sensed chlorophyll concentrations. However, the chl:C ratio can vary depending 
on phytoplankton diversity and physiology9 leading to high uncertainty in chlorophyll-
based estimates of phytoplankton biomass10. Secondly, Earth System models utilize a 
simplified ecosystem based on few phytoplankton functional types11. This approach is 55 
limited by requiring identifying and assigning a single set of growth parameters 
describing the physiology of a lineage12 and fails to capture the high diversity known to 
exist within and across phytoplankton communities13. Thus, there is high uncertainty in 
existing estimates of biomass and the unknown role of phytoplankton diversity impedes 
our ability to reliably predict how biomass will respond to growing environmental 60 
changes6,10,12,14. 

High intraspecific diversity can enable the whole lineage to grow across broad 
environmental conditions leading to a wider fundamental niche than predicted from 
individual genotypes (Fig. S1)15. Thus, an alternative to Earth System models for 
predicting future changes to phytoplankton abundances is to establish realized niche 65 
models by quantifying abundances along existing ocean environmental gradients16. This 
approach is based on a simple tenet that the best estimate for future abundances is to find 
regions in the contemporary ocean with analogous environmental conditions (Fig. S1). A 
niche model lacks a mechanistic basis for the distribution of phytoplankton but implicitly 
‘embraces’ the within lineage diversity, interactions between environmental factors, and 70 
poorly understood biotic effects of other organisms.  

We previously applied a niche model approach to project how Prochlorococcus 
and Synechococcus will respond to future ocean conditions6. However, we are missing a 
key phytoplankton group with a substantial but unconstrained biomass: the globally 
distributed and highly diverse picoeukaryotic phytoplankton assemblage4,17,18. Combined, 75 
these three groups constitute the picophytoplankton fraction and nearly all photosynthetic 
biomass in tropical and subtropical oligotrophic waters3,19. Thus, future climate 
projections of total phytoplankton biomass in low latitude ocean regions must include 
picoeukaryotic phytoplankton.  

Here, we used a global dataset to derive a neural network based niche model and 80 
asked what is the abundance and quantitative distribution of picoeukaryotic 
phytoplankton? We next combined this model with ones for Prochlorococcus and 
Synechococcus and asked how do environmental factors influence the abundance and 
niche partitioning among these lineages, and finally, how will total picophytoplankton 
biomass respond to future projected climate changes? 85 

We estimated an annual globally integrated abundance of picoeukaryotic 
phytoplankton of 1.6 x 1026 (±1.8 x 1025) cells. Using a neural network derived niche 
model trained on a geographically diverse dataset (Fig. S2 and Table S1), we were able to 
capture a substantial part of the global variability (Fig. S3, R2 = 0.46±0.01). Regions of 
elevated concentrations (>104 cells/ml) included an area above 45˚N in the North Atlantic 90 
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Ocean, around the North Pacific Current, and a band near the southern subtropical 
convergence zone (Fig. 1). Picoeukaryotic phytoplankton were also projected in high 
abundances near upwelling zones including the eastern equatorial Pacific Ocean, the 
California Current, and the Benguela Upwelling zone. Lower abundances were predicted 
for the oligotrophic gyres and polar regions. We also observed seasonal changes with a 95 
globally integrated abundance minimum of 1.4 x 1026 (±1.1 x 1025) cells and a maximum 
of 1.9 x 1026 (±6.8 x 1024) cells in June and September, respectively (Fig. S4). 

 

 
Figure 1. Global distribution picoeukaryotic phytoplankton abundance. Projected picoeukaryotic 100 
phytoplankton mean annual cell abundance at the sea surface as estimated by our niche model. 
 

We next quantified the niche for picoeukaryotic phytoplankton along light (PAR), 
temperature, and nitrate gradients (Fig. 2). As expected for photosynthetic organisms, we 
observed a strong effect of light availability with the highest levels near the surface. 105 
There was an average increase in abundance by 1.4 orders of magnitude between surface 
and the deep euphotic zone light levels (Fig. 2A). In addition to light, there was a strong 
but non-linear relationship between temperature and cell density (Fig. 2B). The 
abundance was lowest (1.8 x 103 cells/ml) at 0˚C but increased to a maximum abundance 
(2.4 x 104 cells/ml) at 8.5˚C. Beyond the maximum, the abundance declined and reached 110 
a local minimum at ~21˚C. Above this temperature, we saw an increase in cell numbers 
from 4 to 12 x 103 cells/ml leading to intermediate concentrations in tropical waters. We 
also detected a non-linear correlation between nitrate availability and abundance (Fig. 
2C). Low nitrate concentrations had little effect but we found a substantial increase 
peaking at 1.6 µM of nitrate associated with a shift from 4 x 103 to 1 x 104 cells/ml. 115 
Above 1.6 µM, nitrate had a negative correlation to cell abundance reaching a minimum 
of 2 x 103 cells/ml at high nitrate concentrations. This hump shaped distribution may be 
influenced by competition with Prochlorococcus and Synechococcus at the low end and 
larger phytoplankton at the high end of the nutrient gradient. The temperature or nitrate 
dependence of the predicted abundance did not change along gradients of the other 120 
variables suggesting limited interaction terms for these factors. However, the effect of 
PAR was less pronounced at lower temperatures (Fig. S5). In sum, picoeukaryotic 
phytoplankton displayed a clear global biogeography correlated with light, temperature, 
and nutrient availability. 
 125 
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Figure 2. Picoeukaryotic phytoplankton observations and niche model predictions as a function of (a) 
photosynthetic active radiation (PAR), (b) temperature, and (c) nitrate. The line and shaded area represent 
the quantitative niche model output mean and standard deviation based on 100 trained neural networks. The 
niche model represents cell abundance at constant a) temperature and nitrate (15°C and 3.2 µM), b) PAR 130 
and nitrate (1 E m-2 d-1 and 3.2 µM), and c) PAR and temperature (1 E m-2 d-1 and 15˚C). Symbol color 
represents number of overlapping observations in intervals of PAR 100±1.2 E m-2 d-1 temperature 15±7.5˚C, 
and nitrate 100.5±1 µM. See Fig. S4 for interactions between factors. 
 

We observed clear niche partitioning along gradients of light and temperature 135 
among Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton (Fig. 3). The 
relative abundances of all lineages were generally positively influenced by increasing 
light levels (Fig. 3A). Prochlorococcus had an advantage at low light levels. In contrast, 
Synechococcus was strongly negatively related to declining light, whereas picoeukaryotic 
phytoplankton had an intermediate response. At high light levels, Synechococcus 140 
displayed maximum abundance, Prochlorococcus depressed abundances, and 
picoeukaryotic phytoplankton an intermediate response. Small eukaryotic phytoplankton 
like Ostreococcus strains show some light inhibition at elevated light levels (> 1.6 E m-2 
d-1) but can still sustain intermediate growth rates20,21. In contrast, individual 
Prochlorococcus strains can grow at very low light level but can be photoinhibited22. 145 
Further, some Synechococcus strains show limited light inhibition even at extremely high 
light levels but cannot sustain growth at low intensities22. Thus, the distribution along a 
light gradient is consistent with physiological studies of the three groups. Our models 
also revealed niche partitioning along a temperature gradient (Fig. 3B). The abundance of 
the largest sized group, picoeukaryotic phytoplankton, peaked at 8.5˚C. The intermediate 150 
sized Synechococcus peaked at 10˚C, whereas Prochlorococcus as the smallest was most 
common at high temperature. The separation in maxima along a temperature gradient 
corresponded negatively to cell size and thus support past regional studies18. The growth 
rate in all three lineages generally responds positively to temperatures in this range, 
which should lead to a positive relationship between abundance and temperature22,23. 155 
However, the decline in picoeukaryotic phytoplankton and Synechococcus at intermediate 
temperatures and the sharp decline in abundance of Prochlorococcus below 20˚C could 
be the outcome of competition with other phytoplankton linages. We then combined the 
three models to predict changes in total picophytoplankton carbon biomass with 
temperature (Fig. 3C). Changes in picoeukaryotic phytoplankton controlled the 160 
cumulative biomass below ~20˚C, whereas especially changes in Prochlorococcus 
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abundance was important above this threshold. As such, total picophytoplankton biomass 
increased with temperature above ~20˚C. 
 

 165 
 
Figure 3. Niche partitioning among picoeukaryotic phytoplankton, Synechococcus, and Prochlorococcus. 
Predicted cell abundance relative to the difference between minimum and maximum cells/ml as a function 
of (a) photosynthetic active radiation (PAR) at constant temperature and nitrate concentration and (b) 
temperature at constant light and nitrate concentration. (c) Contribution of picoeukaryotic phytoplankton, 170 
Synechococcus, and Prochlorococcus to total picophytoplankton biomass as a function of temperature. 
 

We next quantified the total picophytoplankton carbon biomass in the global 
ocean as well as the contribution by each lineage. The combined mean annual 
picophytoplankton biomass was 0.55±0.03 Pg C in the global ocean, and thus higher than 175 
most biogeochemical model estimations11, but smaller than earlier projections24. 
Picoeukaryotic phytoplankton, Synechococcus, and Prochlorococcus each contributed 
45%, 27%, and 27% of total picophytoplankton carbon biomass, respectively. The niche 
partitioning of each lineage along a temperature gradient translated into clear regional 
differences in their contribution to surface carbon biomass (Fig. 3C and Fig. S6A-C). 180 
Picoeukaryotic phytoplankton dominated picophytoplankton biomass at high latitudes 
and upwelling regions (Fig. S6A). At lower latitudes, Cyanobacteria were more common 
with Prochlorococcus contributing slightly higher biomass proportions than 
Synechococcus (Fig. S6B-C). The combined picophytoplankton biomass varied between 
~5 mg C/m3 in the oligotrophic gyres to ~25 mg C/m3 in temperate regions with high 185 
picoeukaryotic phytoplankton abundances (Fig. S6D).  

We compared our biomass estimations against an Earth System model (GFDL 
ESM2) prediction for the current ocean. Picophytoplankton constituted 53% of global 
ocean surface phytoplankton biomass and were generally equal to (or slightly above) a 
global community ecosystem model estimate of total phytoplankton biomass in most 190 
regions between 60˚N and 60˚S (Fig. S6E)3. As expected, picophytoplankton contributed 
less to overall biomass in polar regions and some upwelling zones, where larger 
phytoplankton lineages proliferate. Our biomass estimate was up to 50% higher than past 
model assessments in some regions including warm parts of the oligotrophic gyres (e.g., 
the Western Pacific Warm Pool). Thus, there was substantial discrepancy between our 195 
estimated picophytoplankton biomass levels and the GFDL ESM2 global model 
predictions. 
 Finally, we combined niche models with estimates of future ocean conditions to 
predict how total picophytoplankton biomass could respond to climate change. 
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Picophytoplankton biomass was sensitive to projected ocean environmental changes and 200 
showed a global increase of 0.05 ± 0.02 Pg C under the high emission RCP8.5 scenario. 
Mean surface biomass between 30˚N and 30˚S was 12 ± 2.4 and 15 ± 1.9 mg/m3 for the 
historic and RCP8.5 scenario (Fig. 4 and Fig. S7). However, there were big regional 
differences leading to places with strong declines (primarily upwelling regions and a 
temperate band around 40˚) or increases (e.g., tropical Indian Ocean). The change in total 205 
picophytoplankton biomass was driven by parallel biomass increases of Synechococcus 
and Prochlorococcus between 20˚C and 30˚C, whereas integrated picoeukaryotic 
phytoplankton biomass stayed flat (Fig. 3C). As total picophytoplankton constitute nearly 
all biomass in oligotrophic regions3,19, we can use the combined niche models as an 
initial estimate for how low latitude total phytoplankton biomass will respond to 210 
environmental changes. Thus, our projection suggests elevated picophytoplankton and 
likely total phytoplankton biomass in most low latitude regions in response to projected 
future climate changes (Fig. 4).  
 

 215 
Figure 4. Projected impact of climate change on total picophytoplankton carbon biomass. Difference in 
surface total picophytoplankton carbon biomass estimated for the end of 21st and 20th centuries based on 
temperature and nitrate concentration simulated under the RCP8.5 and historic CMIP5 scenarios. 
 

Phytoplankton biomass in low latitude regions is traditionally thought to be 220 
negatively controlled by stratification and associated nutrient supply1. We have three 
separate hypotheses for how ocean warming would elevate low-latitude surface biomass 
independently of the vertical nutrient supply. First, small particles may be exported less 
efficiently and organic material is respired faster at high temperature25. As seen for 
particulate iron26, the combined effect will result in a temperature dependent upper ocean 225 
nutrient retention. Such a nutrient retention effect can be illustrated with a simple box 
model (Fig. S8). Here, the phytoplankton biomass in the surface ocean is augmented 
when biomass export is less efficient and nutrients are recycled faster. Secondly, access 
to the large stock of organically bound nutrients (e.g., DOP) in oligotrophic waters may 
be more accessible at elevated temperatures27. Thirdly, ‘frugal’ phytoplankton can 230 
increase cellular C:N or C:P by >50% in warm, nutrient deplete environments28,29. We 
incorporated the three hypotheses into an global biogeochemical model (Fig. 5 and Fig. 
S9). The simulations backed that some combination of modest increases in upper ocean 
nutrient retention and the elemental composition of phytoplankton can support elevated 
surface biomass across low latitude regions independently of the vertical nutrient supply 235 
strength. In contrast, increases in the remineralization of DOP only led to small changes 
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in surface phytoplankton biomass. Thus, phytoplankton biomass may increase in the 
absence of any ‘new’ nutrients in low latitude regions and are sensitive to other 
temperature-driven ecosystem processes.  
 240 

 
Figure 5. Evaluation of ecosystem regulation mechanisms on phytoplankton biomass. Impact of increased 
nutrient retention, DOP remineralization, elemental stoichiometry, and the combined effect for the top 35 m 
ocean biomass.  
 245 

This work presents divergent future predictions for low-latitude phytoplankton in 
a warming world. Earth System models predict a decline whereas our new niche models 
predict an increase in biomass. However, both approaches are associated with significant 
uncertainty. Biomass estimates in Earth System models are generally calibrated against 
chlorophyll despite known variations in chl:C and use a simplified ecosystem description. 250 
Niche models assume phytoplankton biomass will share the same relationship to 
environmental parameters today and in the future and do not include impacts of other 
factors like pH or predation. These uncertainties and the strongly divergent outcomes of 
the two approaches call into question the generally accepted prediction of future declines 
in low-latitude phytoplankton biomass. Before confident predictions can be made, the 255 
potential impacts of other feedbacks such as efficient recycling of nutrients by diverse 
communities12 or phytoplankton with high C:nutrient biomass composition30 must be 
evaluated. Thus, our analyses indicate that a previously uncharacterized positive response 
in total phytoplankton biomass to warming in low latitude environments may be 
important to future ocean biology and ecosystem functioning. 260 

 
Methods: 
Dataset. All analyses were done using Matlab (Mathworks, MA). We obtained 13,771 
picoeukaryotic phytoplankton observations from available public repositories and 
primary sources of a total of 39 cruises and time series covering major ocean regions and 265 
diverse environments (Fig. S2 and Table S1). Picoeukaryotic phytoplankton are defined 
as red fluorescent cells larger than Prochlorococcus and less than 2-3 µm in cell 
diameter. We only considered cell counts by flow cytometry. Samples covered a 
latitudinal range from 71.4˚N to 66.1˚S up to 400 m depth. Ancillary temperature and 
nitrate records were available for all but 2,334 and 6,530 observations, respectively, 270 
which we complemented with 1˚ monthly depth-dependent averages from the World 
Ocean Atlas (www.nodc.noaa.gov). To avoid analytical issues with detection limits, we 
imposed a minimum nitrate concentration of 0.01 µM. We calculated surface PAR (8 d 
averaged, 0.047° grid cell) using SeaWiFS and MODIS observations. Downward PAR 
was estimated using the attenuation coefficient K490 from SeaWiFS and MODIS 275 
(http://oceancolor.gsfc.nasa.gov) and corrected for chlorophyll a31, and a minimum of 10-

3 E/m2d was imposed. 
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Neural network analysis. To partition the non-linear relationship and interactions 
between oceanographic factors and predict the overall distribution of picoeukaryotic 280 
phytoplankton, we trained a feed-forward back-propagation neural network with 10 
nodes and up to 1000 epochs6. We evaluated the inclusion of temperature, PAR (log10 
transformed), and nitrate concentration (log10 transformed) and found that all three 
factors contributed to describing log-transformed abundances of picoeukaryotic 
phytoplankton. We used 50% of the observations for training (selected randomly) and the 285 
rest for validation. Optimization of the network was evaluated using Bayesian 
regularization. This process was repeated 100 times to estimate the variance in 
quantification. We then identified the contribution and interactions of environmental 
factor by sequentially varying each factor between the minimum and maximum observed 
value (100 steps). This was repeated across all 100 trained networks to assess any bias 290 
associated with the data selection and the variation across the ensemble is the reported 
variance. Any bias regarding differences in cruises or in regional effects were not 
detected6. 
 
Biomass contribution. To estimate global cell abundance of picoeukaryotic 295 
phytoplankton, we used as input to our neural network models monthly average 
temperatures and nitrate from the World Ocean Atlas 2005 (1˚x1˚ resolution), and PAR 
and K490 values derived from satellite data (SeaWiFS 0.083˚x0.083˚) and obtained 
predicted abundances for each set of conditions. We estimated annual globally integrated 
cell abundance by integrating monthly cell abundance from surface to 205 m deep (in 300 
layers of 10 m) and a 1˚x1˚ resolution grid. We estimated the annual globally integrated 
cell abundance standard deviation using the 100 trained neural networks. For sea surface 
abundance, we used the first layer. As the neural network analysis was done in log10 
space, we back-transformed cell abundances using a correction of 1.84 (the ratio of the 
mean in regular space against the lognormal mean). Cell abundance for Prochlorococcus, 305 
and Synechococcus were estimated using existing quantitative niche models based on 
temperature and PAR6. We converted cell abundances to biomass using reported cellular 
carbon biomass content estimates for Prochlorococcus (50 fg C/cell), Synechococcus 
(175 fg C/cell), and picoeukaryotic phytoplankton (1500 fg C/cell)32. Total 
picophytoplankton biomass was the sum of the three lineages. For total phytoplankton 310 
biomass, we reported values simulated by the GFDL ESM2 Earth System model33.  
 
Future predictions. To evaluate the effects of future climate change on picoeukaryotic 
phytoplankton abundance and biomass, we used as input to our neural network models 
year values of temperature and nitrate outputs from Earth System models under the 315 
Representative Concentration Pathway 8.5 (RCP8.5 – equivalent to a radiative forcing of 
8.5 W m-2 in 2100) and Historical scenarios. Light fields were identical across 
simulations. We calculated the effect of climate change for each lineage and total 
picophytoplankton biomass as the difference between 2070-2099 and 1970-1999 for the 
RCP8.5 and historical scenarios. We imposed a maximum sea surface temperature of 320 
30˚C as model predictions of higher temperature are uncertain due to poorly constrained 
atmospheric convection feedbacks. The combination of temperature and nitrate in climate 
model projections for the end of the century were well represented in our observation 
dataset, and no extrapolation was necessary (Fig. S10). We used an ensemble of eight 
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Earth System models, CanESM2, CESM1 BGC, GFDL ESM2G, HadGEM2 ES, IPSL 325 
CM5A MR, MIROC ESM, MPI, and NorESM1 ME34 to estimate mean and standard 
deviation values for present and future projections. Standard deviation for climate change 
projection was estimated for the multi-model ensemble. It is important to note that we 
assume limited additional feedback between the predicted changes in phytoplankton 
abundances and nitrate concentration (i.e., beyond what is already captured by the 330 
climate model). 

Our predictions are based on some important assumptions. First, we assume 
perfect lineage niche conservatism35 as the very large population size of lineages suggests 
selection among existing ecotypes rather than de novo mutations will likely be more 
common. Secondly, it is assumed that other abiotic as well as biotic interactions like 335 
predation or competition with other lineages track the applied underlying environmental 
conditions. This may be a reasonable assumption to a first order as larger competing 
phytoplankton as well as grazers and viruses putatively are sensitive to the same 
underlying environmental ranges. Thirdly, climate change may lead to environmental 
conditions not currently present in the ocean (e.g., low pH) leading to changes in niches 340 
and future abundances not captured by our analysis.  
 
Box model design for evaluating the impact of nutrient retention by phytoplankton 
in the euphotic layer. We developed a simple model to illustrate the effect of nutrient 
recycling and retention by phytoplankton in the euphotic layer (Fig. S8). In particular, we 345 
wanted to demonstrate that the standing stock of phytoplankton is sensitive to the degree 
of nutrient recycling and retention. The model captures the major physical and biological 
processes controlling nutrient cycling in the upper ocean in terms of two prognostic 
variables: 𝑃 the living pool of nutrients in phytoplankton, and 𝑁 the dead pool of 
dissolved nutrients. Nutrients from the dead pool are taken up by phytoplankton in the 350 
upper ocean at a rate 𝑢𝑃𝑁 and returned to the dead pool at a rate 𝑘𝑃.  The model includes 
a loss of nutrients by sinking particles at a rate 𝑠𝑃, which is balanced by a net return flux 
𝑞(𝑁! − 𝑁), where 𝑁! is the nutrient concentration in the deep ocean, which is assumed 
constant, and 𝑞 the water-mass exchange rate between the deep and upper ocean.  The 
differential equations governing the above processes are 355 
 

!"
!"
= 𝑞𝑁! + 𝑘𝑃 − 𝑞𝑁 − 𝑢𝑁𝑃,   (1) 

and 
!"
!"
= − 𝑞 + 𝑘 + 𝑠 𝑃 + 𝑢𝑁𝑃.   (2) 

 360 
 These equations can be re-expressed in non-dimensional form  

𝑑𝑛
𝑑𝜏 =  1+ 𝑟𝑝 − 𝑛 − 𝛾𝑛𝑝 

!"
!"
=  −𝑝 − 𝑟𝑝 − 𝜖𝑝 +  𝛾𝑛𝑝,  (3) 

 
in which we have rescaled the dependent and independent variables by 𝑁! and 𝑞 
respectively 365 

𝑛 = !
!!

    ,      𝑝 = !
!!

    ,      𝜏 = 𝑞𝑡   ,  (4) 



Page 10 of 15 

   
and introduced the following dimensionless parameters 
 

𝛾 ≡ !
!
𝑁!   ,       𝑟 ≡ !

!
    ,      𝜖 ≡ !

!
    (5) 370 

 
The steady-state solution, obtained by setting the time derivatives to zero, is given by  

𝑛!! =
!!!!!
!

,   

𝑝!! =  !
!!!

1− !!!!!
!

.  (6) 
  375 

 
To simplify the above expression, we consider parameter values appropriate for low 
latitude ecosystems where picophytoplankton dominates. For the subtropical gyre, we can 
assume that the rate of nutrient uptake is much faster than the vertical supply rate so that 
𝛾 ≫ 1. Two limits are of interest. The first, 𝜖 ≫ 1, corresponding to fast sinking 380 
phytoplankton leading to a low standing stock of biomass in the upper ocean:  
 

𝑝!!  ≈ 𝜖!!.  (7) 
 
The second, 𝜖 ≪ 1, corresponding to more slowly sinking small phytoplankton, leads to a 385 
large stock of biomass in the upper ocean  

 
𝑝!!  ≈ 1− 𝜖 .  (8) 

 
Both solutions are independent of the nutrient supply rate and illustrates that the system 390 
can achieve different levels of biomass regardless of the nutrient supply rate. Instead, the 
biomass level can depend on the efficiency with which nutrients are retained in the upper 
ocean. A low retention efficiency corresponding to particulate sinking rates that are fast 
compared to the supply rate (𝜖 ≫ 1) leads to a low biomass 𝑃 ≈  !

!
𝑁! . Conversely, a 

high retention efficiency corresponding to particulate sinking rates that are slow 395 
compared to the supply rate (𝜖 ≪ 1) leads to a high biomass 𝑃 ≈  𝑁! 1− !

!
. 

 
Design of the ocean biogeochemical model. We wanted to test possible alternatives to 
nutrient supply that can result in an increase in biomass under future climate conditions 
within a 3-D ocean circulation model. Our model reproduced the transport and cycling of 400 
three pools of P, dissolved inorganic P (DIP), dissolved organic P (DOP), and biomass 
(represented by the particulate fraction, POP). The P cycling component simulated the 
exchange of P among the three pools by the processes of production and remineralization 
of organic matter. We then did a sensitivity analysis to evaluate how changes in the 
remineralization and distribution of particles could affect phytoplankton biomass.  405 

The circulation model reproduced global patterns of mass transport for each 
fraction (Table S2). The circulation model was constrained using a data-assimilation 
technique that incorporated observations of several tracers36,37. The model simulated 
transport of the two dissolved forms (DIP and DOP) using an advection and diffusion 
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operator T (T ≡ ∇[U −𝑘∇]), which is a N × N sparse matrix (N : the number of wet grid 410 
boxes). T was constrained by multiple tracers including temperature, salinity, mean sea 
surface height, natural radiocarbon, CFC-11, air-sea heat exchange and freshwater 
sources36,38. Biomass is subject to sinking and remineralization as particulate organic 
matter in the water column following a power law function (i.e., Martin curve). The 
exponential decay (b) was implicitly incorporated into a particle flux divergence operator 415 
(F in Eq: 10) and was optimized as part of the inversion (Table S2). 
 DIP losses were simulated as the phytoplankton uptake as well as transport, and 
DIP gains by remineralization and influx of deep water to the euphotic layer. DIP 
consumption rate was modeled using satellite-derived NPP together with two tunable 
parameters (α and β) (Eq. 9 and Table S2)38.  420 
 

γ = 𝛼 [!"" !!:!]!

!"# !"#
   (9) 

where the unit of NPP was converted to mmol C m-2 s-1,  β  is a dimensionless parameter, 
and RC:P is the carbon to phosphate ratio. The assimilation rate (γ) had the same units as 
α (s-1). Gains of DOP were simulated by DIP assimilation to organic matter and by POP 425 
dissolution, and losses were simulated by DOP remineralization. Gains of POP were 
simulated by DIP assimilation and losses by POP dissolution.  Changes in the three 
components of P cycle are summarized in Eq. 13. 
 

𝑑
𝑑𝑡 + 𝐓 DIP = −γ DIP + 𝜅! DOP + 𝜅! DIP − DIP !"# ,  
!
!"
+ 𝑻 𝐷𝑂𝑃 = 𝜎𝛾 𝐷𝐼𝑃 + 𝜅! 𝑃𝑂𝑃 − 𝜅![DOP],  (10) 430 

𝑑
𝑑𝑡 + 𝐅 POP = 1− σ γ DIP − 𝜅! POP , 

 
where DIP  is volume weighted average DIP concentration, 𝜅! is a geological restore 
term, which is a small value (i.e., 1/10-6 yr) and is used to restored DIP concentration to 
observed global mean; 𝜎 is a parameter that governed the partition of DIP assimilation in 
production of DOP and POP. We used 𝜎 = 1/3, which means that one third of DIP is 435 
produced as DOP and the rest as POP (Eq. 10). 𝜅! is the DOP remineralization rate 
optimized as part of the inversion (Table S2). Finally, 𝜅! is the POP dissolution rate and 
is set at 𝜅! = 1/30 day-1. 
 Most ocean biogeochemical concepts and models include a direct or implied 
control of nutrient supply on upper ocean biomass. Thus, we used the model to explore 440 
three possible alternative mechanisms for regulation of upper ocean biomass and 
manipulated values within their known range. The first mechanism is based on the 
principle that increased temperature leads to smaller surface phytoplankton (like 
Prochlorococcus) with lower sinking speed leading to remineralization closer to the 
surface. To simulate this effect, we modified b in the range of +/- 15%. The second 445 
mechanism is that increase temperature leads to higher remineralization of DOP to DIP. 
To simulate this effect, we modified 𝜅! in the range of +/- 15%. The third mechanism is 
that the C:P ratio of phytoplankton is higher in a warmer, nutrient deplete future ocean 
environment28,39,40. To simulate this effect, we compare biomass levels using C:P based 
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on Redfield proportions (106:1) vs. the empirical relationship determined by Galbraith 450 
and Martiny39. Finally, we tested the effect of a change with a combination of all 
mechanisms. 
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