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Picophytoplankton lineages display clear niche partitioning but overall positive
response to future ocean warming
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First Paragraph:

Earth System models predict a decline in ocean phytoplankton biomass'” due in large
part to an expansion of ocean regions dominated by diverse picophytoplankton
communities™. Alternatively, you can predict future ocean phytoplankton biomass based
on current abundances of diverse populations along environmental gradients using
quantitative realized niche models’. Using a global dataset to calibrate a niche model, we
project the global biogeography of the very abundant but little studied picoeukaryotic
phytoplankton. We then combine this niche model with similar models for
Prochlorococcus and Synechococcus®. We find that cell size differences between lineages
parallel a latitudinal niche partitioning but a shared overall picophytoplankton biomass
increase along a positive temperature gradient between 25°C and 30°C. Thus, future
warmer ocean conditions can lead to elevated phytoplankton biomass in low latitude
regions. Further biogeochemical model analyses suggest that future elevated upper-ocean
nutrient recycling and lower nutrient requirements of phytoplankton can support
increasing low latitude phytoplankton biomass. Such a previously unrecognized
phytoplankton biomass response to climate change can have widespread ramifications for
marine life in the ocean.
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Main:

Earth System models are central to how we predict the impact of climate change
on marine systems. Such models have primarily been designed for describing carbon and
nutrient fluxes but are increasingly called upon for predicting ecosystem behavior
including changes in the standing stock of ocean phytoplankton”®. However,
phytoplankton biomass predictions are uncertain for at least two reasons. First, model-
predicted phytoplankton biomass are only cursorily calibrated by regional patterns in
remotely sensed chlorophyll concentrations. However, the chl:C ratio can vary depending
on phytoplankton diversity and physiology” leading to high uncertainty in chlorophyll-
based estimates of phytoplankton biomass'’. Secondly, Earth System models utilize a
simplified ecosystem based on few phytoplankton functional types''. This approach is
limited by requiring identifying and assigning a single set of growth parameters
describing the physiology of a lineage' and fails to capture the high diversity known to
exist within and across phytoplankton communities'”. Thus, there is high uncertainty in
existing estimates of biomass and the unknown role of phytoplankton diversity impedes
our ability to reliably predict how biomass will respond to growing environmental
changes®1012:14.

High intraspecific diversity can enable the whole lineage to grow across broad
environmental conditions leading to a wider fundamental niche than predicted from
individual genotypes (Fig. S1)"°. Thus, an alternative to Earth System models for
predicting future changes to phytoplankton abundances is to establish realized niche
models by quantifying abundances along existing ocean environmental gradients'®. This
approach is based on a simple tenet that the best estimate for future abundances is to find
regions in the contemporary ocean with analogous environmental conditions (Fig. S1). A
niche model lacks a mechanistic basis for the distribution of phytoplankton but implicitly
‘embraces’ the within lineage diversity, interactions between environmental factors, and
poorly understood biotic effects of other organisms.

We previously applied a niche model approach to project how Prochlorococcus
and Synechococcus will respond to future ocean conditions’. However, we are missing a
key phytoplankton group with a substantial but unconstrained biomass: the globally
distributed and highly diverse picoeukaryotic phytoplankton assemblage™'”'®. Combined,
these three groups constitute the picophytoplankton fraction and nearly all photosynthetic
biomass in tropical and subtropical oligotrophic waters'?. Thus, future climate
projections of total phytoplankton biomass in low latitude ocean regions must include
picoeukaryotic phytoplankton.

Here, we used a global dataset to derive a neural network based niche model and
asked what is the abundance and quantitative distribution of picoeukaryotic
phytoplankton? We next combined this model with ones for Prochlorococcus and
Synechococcus and asked how do environmental factors influence the abundance and
niche partitioning among these lineages, and finally, how will total picophytoplankton
biomass respond to future projected climate changes?

We estimated an annual globally integrated abundance of picoeukaryotic
phytoplankton of 1.6 x 10°° (1.8 x 10>) cells. Using a neural network derived niche
model trained on a geographically diverse dataset (Fig. S2 and Table S1), we were able to
capture a substantial part of the global variability (Fig. S3, R’ = 0.46+0.01). Regions of
elevated concentrations (>10" cells/ml) included an area above 45°N in the North Atlantic
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Ocean, around the North Pacific Current, and a band near the southern subtropical
convergence zone (Fig. 1). Picoeukaryotic phytoplankton were also projected in high
abundances near upwelling zones including the eastern equatorial Pacific Ocean, the
California Current, and the Benguela Upwelling zone. Lower abundances were predicted
for the oligotrophic gyres and polar regions. We also observed seasonal changes with a
globally integrated abundance minimum of 1.4 x 10*° (£1.1 x 10*) cells and a maximum
of 1.9 x 10* (+£6.8 x 10**) cells in June and September, respectively (Fig. S4).

<07 11 23 4.5 9.0 18 36
(x103 cells/ml)

Figure 1. Global distribution picoeukaryotic phytoplankton abundance. Projected picoeukaryotic
phytoplankton mean annual cell abundance at the sea surface as estimated by our niche model.

We next quantified the niche for picoeukaryotic phytoplankton along light (PAR),
temperature, and nitrate gradients (Fig. 2). As expected for photosynthetic organisms, we
observed a strong effect of light availability with the highest levels near the surface.
There was an average increase in abundance by 1.4 orders of magnitude between surface
and the deep euphotic zone light levels (Fig. 2A). In addition to light, there was a strong
but non-linear relationship between temperature and cell density (Fig. 2B). The
abundance was lowest (1.8 x 10° cells/ml) at 0°C but increased to a maximum abundance
(2.4 x 10* cells/ml) at 8.5°C. Beyond the maximum, the abundance declined and reached
a local minimum at ~21°C. Above this temperature, we saw an increase in cell numbers
from 4 to 12 x 10’ cells/ml leading to intermediate concentrations in tropical waters. We
also detected a non-linear correlation between nitrate availability and abundance (Fig.
2C). Low nitrate concentrations had little effect but we found a substantial increase
peaking at 1.6 pM of nitrate associated with a shift from 4 x 10° to 1 x 10" cells/ml.
Above 1.6 uM, nitrate had a negative correlation to cell abundance reaching a minimum
of 2 x 10° cells/ml at high nitrate concentrations. This hump shaped distribution may be
influenced by competition with Prochlorococcus and Synechococcus at the low end and
larger phytoplankton at the high end of the nutrient gradient. The temperature or nitrate
dependence of the predicted abundance did not change along gradients of the other
variables suggesting limited interaction terms for these factors. However, the effect of
PAR was less pronounced at lower temperatures (Fig. S5). In sum, picoeukaryotic
phytoplankton displayed a clear global biogeography correlated with light, temperature,
and nutrient availability.
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Figure 2. Picoeukaryotic phytoplankton observations and niche model predictions as a function of (a)
photosynthetic active radiation (PAR), (b) temperature, and (c) nitrate. The line and shaded area represent
the quantitative niche model output mean and standard deviation based on 100 trained neural networks. The
niche model represents cell abundance at constant a) temperature and nitrate (15°C and 3.2 uM), b) PAR
and nitrate (1 Em™d" and 3.2 uM), and ¢) PAR and temperature (1 E m>d" and 15°C). Symbol color
represents number of overlapping observations in intervals of PAR 10%!* E m?d"' temperature 15+7.5°C,
and nitrate 10" uM. See Fig. S4 for interactions between factors.

Neural network niche model and std

We observed clear niche partitioning along gradients of light and temperature
among Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton (Fig. 3). The
relative abundances of all lineages were generally positively influenced by increasing
light levels (Fig. 3A). Prochlorococcus had an advantage at low light levels. In contrast,
Synechococcus was strongly negatively related to declining light, whereas picoeukaryotic
phytoplankton had an intermediate response. At high light levels, Synechococcus
displayed maximum abundance, Prochlorococcus depressed abundances, and
picoeukaryotic phytoplankton an intermediate response. Small eukaryotic phytoplankton
like Ostreococcus strains show some light inhibition at elevated light levels (> 1.6 E m™
d") but can still sustain intermediate growth rates*>*'. In contrast, individual
Prochlorococcus strains can grow at very low light level but can be photoinhibited®.
Further, some Synechococcus strains show limited light inhibition even at extremely high
light levels but cannot sustain growth at low intensities**. Thus, the distribution along a
light gradient is consistent with physiological studies of the three groups. Our models
also revealed niche partitioning along a temperature gradient (Fig. 3B). The abundance of
the largest sized group, picoeukaryotic phytoplankton, peaked at 8.5°C. The intermediate
sized Synechococcus peaked at 10°C, whereas Prochlorococcus as the smallest was most
common at high temperature. The separation in maxima along a temperature gradient
corresponded negatively to cell size and thus support past regional studies'®. The growth
rate in all three lineages generally responds positively to temperatures in this range,
which should lead to a positive relationship between abundance and temperature®>.
However, the decline in picoeukaryotic phytoplankton and Syrnechococcus at intermediate
temperatures and the sharp decline in abundance of Prochlorococcus below 20°C could
be the outcome of competition with other phytoplankton linages. We then combined the
three models to predict changes in total picophytoplankton carbon biomass with
temperature (Fig. 3C). Changes in picoeukaryotic phytoplankton controlled the
cumulative biomass below ~20°C, whereas especially changes in Prochlorococcus
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abundance was important above this threshold. As such, total picophytoplankton biomass
increased with temperature above ~20°C.

a PAR niche partitioning b Temperature niche partitioning c Lineages contribution
1 1 30 to total picophytoplankton biomass

Relative abundance
Biomass (mg/m?)

= Picoeukaryotic phytoplankton

mmmmm Synechococcus
mmmmm Prochlorococcus
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Figure 3. Niche partitioning among picoeukaryotic phytoplankton, Synechococcus, and Prochlorococcus.
Predicted cell abundance relative to the difference between minimum and maximum cells/ml as a function
of (a) photosynthetic active radiation (PAR) at constant temperature and nitrate concentration and (b)
temperature at constant light and nitrate concentration. (c) Contribution of picoeukaryotic phytoplankton,
Synechococcus, and Prochlorococcus to total picophytoplankton biomass as a function of temperature.

We next quantified the total picophytoplankton carbon biomass in the global
ocean as well as the contribution by each lineage. The combined mean annual
picophytoplankton biomass was 0.55+0.03 Pg C in the global ocean, and thus higher than
most biogeochemical model estimations'', but smaller than earlier projections™.
Picoeukaryotic phytoplankton, Synechococcus, and Prochlorococcus each contributed
45%, 27%, and 27% of total picophytoplankton carbon biomass, respectively. The niche
partitioning of each lineage along a temperature gradient translated into clear regional
differences in their contribution to surface carbon biomass (Fig. 3C and Fig. S6A-C).
Picoeukaryotic phytoplankton dominated picophytoplankton biomass at high latitudes
and upwelling regions (Fig. S6A). At lower latitudes, Cyanobacteria were more common
with Prochlorococcus contributing slightly higher biomass proportions than
Synechococcus (Fig. S6B-C). The combined picophytoplankton biomass varied between
~5 mg C/m’ in the oligotrophic gyres to ~25 mg C/m’ in temperate regions with high
picoeukaryotic phytoplankton abundances (Fig. S6D).

We compared our biomass estimations against an Earth System model (GFDL
ESM2) prediction for the current ocean. Picophytoplankton constituted 53% of global
ocean surface phytoplankton biomass and were generally equal to (or slightly above) a
global community ecosystem model estimate of total phytoplankton biomass in most
regions between 60°N and 60°S (Fig. S6E)’. As expected, picophytoplankton contributed
less to overall biomass in polar regions and some upwelling zones, where larger
phytoplankton lineages proliferate. Our biomass estimate was up to 50% higher than past
model assessments in some regions including warm parts of the oligotrophic gyres (e.g.,
the Western Pacific Warm Pool). Thus, there was substantial discrepancy between our
estimated picophytoplankton biomass levels and the GFDL ESM2 global model
predictions.

Finally, we combined niche models with estimates of future ocean conditions to
predict how total picophytoplankton biomass could respond to climate change.
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Picophytoplankton biomass was sensitive to projected ocean environmental changes and
showed a global increase of 0.05 + 0.02 Pg C under the high emission RCP8.5 scenario.
Mean surface biomass between 30°N and 30°S was 12 + 2.4 and 15 + 1.9 mg/m’ for the
historic and RCP8.5 scenario (Fig. 4 and Fig. S7). However, there were big regional
differences leading to places with strong declines (primarily upwelling regions and a
temperate band around 40°) or increases (e.g., tropical Indian Ocean). The change in total
picophytoplankton biomass was driven by parallel biomass increases of Synechococcus
and Prochlorococcus between 20°C and 30°C, whereas integrated picoeukaryotic
phytoplankton biomass stayed flat (Fig. 3C). As total picophytoplankton constitute nearly
all biomass in oligotrophic regions™'”, we can use the combined niche models as an
initial estimate for how low latitude total phytoplankton biomass will respond to
environmental changes. Thus, our projection suggests elevated picophytoplankton and
likely total phytoplankton biomass in most low latitude regions in response to projected
future climate changes (Fig. 4).

Climate Change impact on total picophytoplankton biomass

30 20 -10 0 10 20 30
(mg/m?)

Figure 4. Projected impact of climate change on total picophytoplankton carbon biomass. Difference in
surface total picophytoplankton carbon biomass estimated for the end of 21st and 20th centuries based on
temperature and nitrate concentration simulated under the RCP8.5 and historic CMIPS scenarios.

Phytoplankton biomass in low latitude regions is traditionally thought to be
negatively controlled by stratification and associated nutrient supply'. We have three
separate hypotheses for how ocean warming would elevate low-latitude surface biomass
independently of the vertical nutrient supply. First, small particles may be exported less
efficiently and organic material is respired faster at high temperature™. As seen for
particulate iron”®, the combined effect will result in a temperature dependent upper ocean
nutrient retention. Such a nutrient retention effect can be illustrated with a simple box
model (Fig. S8). Here, the phytoplankton biomass in the surface ocean is augmented
when biomass export is less efficient and nutrients are recycled faster. Secondly, access
to the large stock of organically bound nutrients (e.g., DOP) in oligotrophic waters may
be more accessible at elevated temperatures®’. Thirdly, ‘frugal’ phytoplankton can
increase cellular C:N or C:P by >50% in warm, nutrient deplete environments™*’. We
incorporated the three hypotheses into an global biogeochemical model (Fig. 5 and Fig.
S9). The simulations backed that some combination of modest increases in upper ocean
nutrient retention and the elemental composition of phytoplankton can support elevated
surface biomass across low latitude regions independently of the vertical nutrient supply
strength. In contrast, increases in the remineralization of DOP only led to small changes
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in surface phytoplankton biomass. Thus, phytoplankton biomass may increase in the
absence of any ‘new’ nutrients in low latitude regions and are sensitive to other
temperature-driven ecosystem processes.

A: Nutrient trapping

B: DOP remineralization C: Elemental stoichiometry D: All effects 16

£ gty

response ratio

Figure 5. Evaluation of ecosystem regulation mechanisms on phytoplankton biomass. Impact of increased
nutrient retention, DOP remineralization, elemental stoichiometry, and the combined effect for the top 35 m
ocean biomass.

This work presents divergent future predictions for low-latitude phytoplankton in
a warming world. Earth System models predict a decline whereas our new niche models
predict an increase in biomass. However, both approaches are associated with significant
uncertainty. Biomass estimates in Earth System models are generally calibrated against
chlorophyll despite known variations in chl:C and use a simplified ecosystem description.
Niche models assume phytoplankton biomass will share the same relationship to
environmental parameters today and in the future and do not include impacts of other
factors like pH or predation. These uncertainties and the strongly divergent outcomes of
the two approaches call into question the generally accepted prediction of future declines
in low-latitude phytoplankton biomass. Before confident predictions can be made, the
potential impacts of other feedbacks such as efficient recycling of nutrients by diverse
communities' or phytoplankton with high C:nutrient biomass composition®’ must be
evaluated. Thus, our analyses indicate that a previously uncharacterized positive response
in total phytoplankton biomass to warming in low latitude environments may be
important to future ocean biology and ecosystem functioning.

Methods:

Dataset. All analyses were done using Matlab (Mathworks, MA). We obtained 13,771
picoeukaryotic phytoplankton observations from available public repositories and
primary sources of a total of 39 cruises and time series covering major ocean regions and
diverse environments (Fig. S2 and Table S1). Picoeukaryotic phytoplankton are defined
as red fluorescent cells larger than Prochlorococcus and less than 2-3 um in cell
diameter. We only considered cell counts by flow cytometry. Samples covered a
latitudinal range from 71.4°N to 66.1°S up to 400 m depth. Ancillary temperature and
nitrate records were available for all but 2,334 and 6,530 observations, respectively,
which we complemented with 1° monthly depth-dependent averages from the World
Ocean Atlas (www.nodc.noaa.gov). To avoid analytical issues with detection limits, we
imposed a minimum nitrate concentration of 0.01 uM. We calculated surface PAR (8 d
averaged, 0.047° grid cell) using SeaWiFS and MODIS observations. Downward PAR
was estimated using the attenuation coefficient K499 from SeaWiFS and MODIS
(http://oceancolor.gsfc.nasa.gov) and corrected for chlorophyll a*', and a minimum of 10°
? E/m*d was imposed.
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Neural network analysis. To partition the non-linear relationship and interactions
between oceanographic factors and predict the overall distribution of picoeukaryotic
phytoplankton, we trained a feed-forward back-propagation neural network with 10
nodes and up to 1000 epochs’. We evaluated the inclusion of temperature, PAR (logio
transformed), and nitrate concentration (log;o transformed) and found that all three
factors contributed to describing log-transformed abundances of picoeukaryotic
phytoplankton. We used 50% of the observations for training (selected randomly) and the
rest for validation. Optimization of the network was evaluated using Bayesian
regularization. This process was repeated 100 times to estimate the variance in
quantification. We then identified the contribution and interactions of environmental
factor by sequentially varying each factor between the minimum and maximum observed
value (100 steps). This was repeated across all 100 trained networks to assess any bias
associated with the data selection and the variation across the ensemble is the reported
Varianceé Any bias regarding differences in cruises or in regional effects were not
detected”.

Biomass contribution. To estimate global cell abundance of picoeukaryotic
phytoplankton, we used as input to our neural network models monthly average
temperatures and nitrate from the World Ocean Atlas 2005 (1°x1° resolution), and PAR
and Kugo values derived from satellite data (SeaWiFS 0.083°x0.083°) and obtained
predicted abundances for each set of conditions. We estimated annual globally integrated
cell abundance by integrating monthly cell abundance from surface to 205 m deep (in
layers of 10 m) and a 1°x1° resolution grid. We estimated the annual globally integrated
cell abundance standard deviation using the 100 trained neural networks. For sea surface
abundance, we used the first layer. As the neural network analysis was done in log;o
space, we back-transformed cell abundances using a correction of 1.84 (the ratio of the
mean in regular space against the lognormal mean). Cell abundance for Prochlorococcus,
and Synechococcus were estimated using existing quantitative niche models based on
temperature and PAR®. We converted cell abundances to biomass using reported cellular
carbon biomass content estimates for Prochlorococcus (50 fg C/cell), Synechococcus
(175 fg C/cell), and picoeukaryotic phytoplankton (1500 fg C/cell)**. Total
picophytoplankton biomass was the sum of the three lineages. For total phytoplankton
biomass, we reported values simulated by the GFDL ESM?2 Earth System model*’.

Future predictions. To evaluate the effects of future climate change on picoeukaryotic
phytoplankton abundance and biomass, we used as input to our neural network models
year values of temperature and nitrate outputs from Earth System models under the
Representative Concentration Pathway 8.5 (RCP8.5 — equivalent to a radiative forcing of
8.5 W m™ in 2100) and Historical scenarios. Light fields were identical across
simulations. We calculated the effect of climate change for each lineage and total
picophytoplankton biomass as the difference between 2070-2099 and 1970-1999 for the
RCP8.5 and historical scenarios. We imposed a maximum sea surface temperature of
30°C as model predictions of higher temperature are uncertain due to poorly constrained
atmospheric convection feedbacks. The combination of temperature and nitrate in climate
model projections for the end of the century were well represented in our observation
dataset, and no extrapolation was necessary (Fig. S10). We used an ensemble of eight

Page 8 of 15



325

330

335

340

345

350

355

360

365

Earth System models, CanESM2, CESM1 BGC, GFDL ESM2G, HadGEM2 ES, IPSL
CM5A MR, MIROC ESM, MPI, and NorESM1 ME?* to estimate mean and standard
deviation values for present and future projections. Standard deviation for climate change
projection was estimated for the multi-model ensemble. It is important to note that we
assume limited additional feedback between the predicted changes in phytoplankton
abundances and nitrate concentration (i.e., beyond what is already captured by the
climate model).

Our predictions are based on some important assumptions. First, we assume
perfect lineage niche conservatism® as the very large population size of lineages suggests
selection among existing ecotypes rather than de novo mutations will likely be more
common. Secondly, it is assumed that other abiotic as well as biotic interactions like
predation or competition with other lineages track the applied underlying environmental
conditions. This may be a reasonable assumption to a first order as larger competing
phytoplankton as well as grazers and viruses putatively are sensitive to the same
underlying environmental ranges. Thirdly, climate change may lead to environmental
conditions not currently present in the ocean (e.g., low pH) leading to changes in niches
and future abundances not captured by our analysis.

Box model design for evaluating the impact of nutrient retention by phytoplankton
in the euphotic layer. We developed a simple model to illustrate the effect of nutrient
recycling and retention by phytoplankton in the euphotic layer (Fig. S8). In particular, we
wanted to demonstrate that the standing stock of phytoplankton is sensitive to the degree
of nutrient recycling and retention. The model captures the major physical and biological
processes controlling nutrient cycling in the upper ocean in terms of two prognostic
variables: P the living pool of nutrients in phytoplankton, and N the dead pool of
dissolved nutrients. Nutrients from the dead pool are taken up by phytoplankton in the
upper ocean at a rate uPN and returned to the dead pool at a rate kP. The model includes
a loss of nutrients by sinking particles at a rate sP, which is balanced by a net return flux
q(N4 — N), where N, is the nutrient concentration in the deep ocean, which is assumed
constant, and g the water-mass exchange rate between the deep and upper ocean. The
differential equations governing the above processes are

% = qNg + kP — gN — uNP, (1)
and
dp

== —(q+k+s)P+uNP. 2

These equations can be re-expressed in non-dimensional form

an _ 1+
) e rp—n—ynp
—=—p-r1p—ep+ ymw, 3)
in which we have rescaled the dependent and independent variables by N; and g
respectively

n=— , pzNi , T=qt , (4
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and introduced the following dimensionless parameters
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The steady-state solution, obtained by setting the time derivatives to zero, is given by

__ l4r+e

nss - y )

1 1+r+e
- (-t
pes = oz (1-72 (6)

To simplify the above expression, we consider parameter values appropriate for low
latitude ecosystems where picophytoplankton dominates. For the subtropical gyre, we can
assume that the rate of nutrient uptake is much faster than the vertical supply rate so that
y > 1. Two limits are of interest. The first, € > 1, corresponding to fast sinking
phytoplankton leading to a low standing stock of biomass in the upper ocean:

Pss =€t (7)

The second, € < 1, corresponding to more slowly sinking small phytoplankton, leads to a
large stock of biomass in the upper ocean

Pss ~1—e€. (8)

Both solutions are independent of the nutrient supply rate and illustrates that the system
can achieve different levels of biomass regardless of the nutrient supply rate. Instead, the
biomass level can depend on the efficiency with which nutrients are retained in the upper
ocean. A low retention efficiency corresponding to particulate sinking rates that are fast

compared to the supply rate (¢ > 1) leads to a low biomass P = %Nd. Conversely, a
high retention efficiency corresponding to particulate sinking rates that are slow

compared to the supply rate (¢ < 1) leads to a high biomass P = N, (1 — 2)

Design of the ocean biogeochemical model. We wanted to test possible alternatives to
nutrient supply that can result in an increase in biomass under future climate conditions
within a 3-D ocean circulation model. Our model reproduced the transport and cycling of
three pools of P, dissolved inorganic P (DIP), dissolved organic P (DOP), and biomass
(represented by the particulate fraction, POP). The P cycling component simulated the
exchange of P among the three pools by the processes of production and remineralization
of organic matter. We then did a sensitivity analysis to evaluate how changes in the
remineralization and distribution of particles could affect phytoplankton biomass.

The circulation model reproduced global patterns of mass transport for each
fraction (Table S2). The circulation model was constrained using a data-assimilation
technique that incorporated observations of several tracers’®’. The model simulated
transport of the two dissolved forms (DIP and DOP) using an advection and diffusion
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operator T (T = V[U —kV]), which is a N X N sparse matrix (N : the number of wet grid
boxes). T was constrained by multiple tracers including temperature, salinity, mean sea
surface height, natural radiocarbon, CFC-11, air-sea heat exchange and freshwater
sources**®, Biomass is subject to sinking and remineralization as particulate organic
matter in the water column following a power law function (i.e., Martin curve). The
exponential decay (b) was implicitly incorporated into a particle flux divergence operator
(F in Eq: 10) and was optimized as part of the inversion (Table S2).

DIP losses were simulated as the phytoplankton uptake as well as transport, and
DIP gains by remineralization and influx of deep water to the euphotic layer. DIP
consumption rate was modeled using satellite-derived NPP together with two tunable

parameters (o and ) (Eq. 9 and Table S2)**,

[NPP/Rc.p]P
[DIP]ops (9)

where the unit of NPP was converted to mmol C m™ s, f is a dimensionless parameter,
and Rc.p is the carbon to phosphate ratio. The assimilation rate (y) had the same units as
a (s). Gains of DOP were simulated by DIP assimilation to organic matter and by POP
dissolution, and losses were simulated by DOP remineralization. Gains of POP were
simulated by DIP assimilation and losses by POP dissolution. Changes in the three
components of P cycle are summarized in Eq. 13.

—% +T| [DIP] = —y[DIP] + x4 [DOP] + K ([DIP] — [DIP]ops),

=+ T| [DOP] = 6y[DIP] + 15, [POP] — K [DOP], (10)
% + F[[POP] = (1 — 0)y[DIP] — «,[POP],

where [DIP] is volume weighted average DIP concentration, k,, is a geological restore
term, which is a small value (i.e., 1/10 yr) and is used to restored DIP concentration to
observed global mean; ¢ is a parameter that governed the partition of DIP assimilation in
production of DOP and POP. We used ¢ = 1/3, which means that one third of DIP is
produced as DOP and the rest as POP (Eq. 10). k, is the DOP remineralization rate
optimized as part of the inversion (Table S2). Finally, k,, is the POP dissolution rate and
is setat k, = 1/30 day™.

Most ocean biogeochemical concepts and models include a direct or implied
control of nutrient supply on upper ocean biomass. Thus, we used the model to explore
three possible alternative mechanisms for regulation of upper ocean biomass and
manipulated values within their known range. The first mechanism is based on the
principle that increased temperature leads to smaller surface phytoplankton (like
Prochlorococcus) with lower sinking speed leading to remineralization closer to the
surface. To simulate this effect, we modified b in the range of +/- 15%. The second
mechanism is that increase temperature leads to higher remineralization of DOP to DIP.
To simulate this effect, we modified k; in the range of +/- 15%. The third mechanism is
that the C:P ratio of phytoplankton is higher in a warmer, nutrient deplete future ocean
environment™>**. To simulate this effect, we compare biomass levels using C:P based
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on Redfield proportions (106:1) vs. the empirical relationship determined by Galbraith
and Martiny”’. Finally, we tested the effect of a change with a combination of all
mechanisms.
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