

1 **Role of ENSO conditions on particulate organic matter concentrations and elemental ratios**
2 **in the Southern California Bight**

4 **Authors:** Adam J. Fagan^{1*†}, Allison R. Moreno^{2†}, and Adam C. Martiny^{1,2,*}

6 **Affiliations:**

7 ¹Department of Earth System Science

8 ²Department of Ecology and Evolutionary Biology

9 University of California

10 CA 92612, Irvine

12 [†]These authors contributed equally to this work

13 *Corresponding Author

14 amartiny@uci.edu

16 **Keywords:**

17 MICRO, Ecological stoichiometry, Marine, ENSO, Redfield

19 **Running title:**

20 Linking ENSO with marine POM concentrations and ratios

22 **Abstract**

23 El Niño Southern Oscillation (ENSO) influences multi-year variation in sea-surface temperature
24 and the intensity of upwelling in many Pacific regions. However, it is currently unknown how El
25 Niño conditions will affect the concentration and elemental ratios of particulate organic matter
26 (POM). To investigate this, we have been quantified POM weekly for six years (2012 to 2017) at
27 the MICRO time-series station in the Southern California Bight. We found a strong influence of
28 the 2015 El Niño on sea-surface temperature and phosphate concentration but to a lesser extent
29 on nitrate availability. The 2015 El Niño also resulted in a short-term depression in POC and
30 POP concentrations, whereas PON concentrations displayed an independent long-term decline
31 regardless of the El Niño event. Reduced POM concentrations resulting from the 2015 El Niño
32 occurred in parallel to high C:P and N:P ratios. Following the changes in PON, C:N continued to
33 climb reaching ~9.4 at the end of our sampling. We suggest that an Eastern Pacific- vs. a Central
34 Pacific-type El Niño as well as a switch in the Pacific Decadal Oscillation phase significantly
35 altered the local response in POM concentrations and ratios.

36
37 **Introduction**

38 El Niño Southern Oscillation (ENSO) is a recurring climate cycle leading to multi-year
39 variation in ocean environmental conditions (Dijkstra and Burges, 2002; McPhaden, 2015). In
40 the California Current System, ENSO regulates sea-surface temperature (SST), upwelling source
41 and intensity, thermocline depth, and large-scale circulation patterns (Chavez, 2002; Checkley
42 and Barth, 2009; McGowan et al., 1998). In the southern part of the California Current
43 Ecosystem (i.e., the Southern California Bight, SCB), El Niño conditions are typically

44 manifested as periods of high temperature and low nutrient availability (Chavez, 2002; King and
45 Barbeau, 2011; Tegner and Dayton, 1987). ENSO variability may have a negative effect on
46 plankton growth and biomass accumulation, however this link has been elusive (Kim et al.,
47 2009). Thus, it is currently unclear how coastal plankton will respond to recent ENSO-driven
48 changes in ocean conditions.

49 There appears to be multiple modes of El Niño events including the Eastern-Pacific (EP)
50 and Central-Pacific (CP) El Niño (Paek et al., 2017; Yu et al., 2012). The two types of El Niño
51 conditions differentially regulate temperature anomalies including a shift in the regional location
52 of maximum sea-surface temperature variability. A high positive temperature anomaly in the
53 North Eastern Pacific Ocean is more indicative of an EP El Niño-type, whereas increased
54 temperatures in the equatorial Pacific Ocean are typically associated with the CP El Niño-type
55 (Paek et al., 2017). Furthermore, different El Niño modes result in spatially divergent patterns of
56 declining vs. increasing phytoplankton biomass and growth (Racault et al., 2017). Generally a
57 change in planktonic biomass and growth has an effect on the overall community structure. In
58 the southern part of the California Current Ecosystem, the EP El Niño can result in significantly
59 shift in community composition of phytoplankton. In contrast, CP El Niño has a proposed
60 limited effect on phytoplankton in SCB. Thus, the mode of El Niño is predicted to differentially
61 impact biogeochemical processes in SCB.

62 A core property of ocean biogeochemistry is the elemental composition and
63 stoichiometric ratios of particulate organic matter (POM). C:N:P of marine communities have
64 traditionally been considered static at Redfield proportions (106C:16N:1P; Redfield, 1958).
65 However, phytoplankton acclimation and adaptation to different ocean environmental conditions
66 can have a large impact on C:N:P (Moreno and Martiny, 2018). Temperature and nutrient
67 limitation are currently thought to be the most important regulators of C:N:P in the surface ocean
68 although the relative contribution of each factor is subject to much debate. Increasing
69 temperature is predicted to correspond to higher C:P and N:P in phytoplankton due to a reduced
70 allocation to P-rich ribosomes (Toseland et al., 2013). Nutrient limitation is predicted to lead to a
71 reduced use of the respective nutrient and higher carbon-to-nutrient ratio although the effect may
72 be higher for P vs. N limitation (Garcia et al., 2016). Temperature and nutrients may also affect
73 stoichiometry via changes in phytoplankton community composition and growth physiology.
74 Smaller cells thriving in warm, nutrient deplete waters are proposed to have higher C:N:P ratios
75 compared to large cell types like diatoms (Klausmeier et al., 2004). Similarly, slower growing
76 cells need fewer P-rich ribosomes and have higher C:N:P (Sterner and Elser, 2002). Thus, shifts
77 in temperature and nutrient concentrations during El Niño conditions are expected to impact
78 phytoplankton community composition, physiology, and associated C:N:P. Based on current
79 theories for the regulation of phytoplankton elemental stoichiometry, we therefore predict higher
80 temperature and nutrient depletion lead to elevated C:N:P.

81 Recent studies have demonstrated considerable regional and temporal variation in C:N:P
82 (Martiny et al., 2013a, Moreno and Martiny, 2018). Higher C:N:P have been associated with
83 warm, nutrient deplete ocean regions dominated by marine Cyanobacteria and other small
84 plankton. In contrast, colder, nutrient replete regions with high abundance of larger
85 phytoplankton like diatoms have depressed C:N:P. A parallel link between environmental
86 changes and C:N:P was also observed in a past study in the Southern California Bight (Martiny

87 et al., 2016). Here, variation in POM concentrations and ratios corresponded to seasonal
88 oscillations in environmental conditions and phytoplankton abundances. Specifically,
89 winter/spring periods with low temperature, high nutrient concentrations and a dominance of
90 large phytoplankton resulted in low C:N:P and vice-versa for warmer periods during the summer
91 and fall. Similar links between environmental conditions, phytoplankton community structure
92 and C:N:P were also found on weekly and multi-year time-scales (Martiny et al., 2016). Based
93 on these observations, we predict that El Niño conditions will positively impact C:N:P, but the
94 strength of the C:N:P response will be modulated by the mode of El Niño.

95 Here, we quantify the changes in SST, macronutrient concentrations, POM
96 concentrations, and POM elemental stoichiometric ratios at the MICRO time-series in the
97 Southern California Bight weekly from the beginning of 2012 to the end of 2017 covering the
98 large El Niño event in 2015. Based on these observations, we aim to quantify how El Niño
99 conditions influence ocean POM concentrations and stoichiometric ratios. We predict that
100 annually temperature would be at the highest and macronutrients at the lowest due to an offshore
101 damping in upwelling during the 2015 El Niño. Through the regulation of phytoplankton
102 ecology, we should see low POM concentrations and high carbon-to-nutrient elemental ratios.
103 The outcome of this study will allow us to further understand how climatic drivers of ocean
104 environmental conditions affect the link between the C, N, and P biogeochemical cycles.

105 **Methods**

106 *Collection*

108 Surface water was collected weekly at the MICRO time-series (33.608°N and
109 117.928°W; Martiny et al., 2016). Two autoclaved bottles are rinsed with ocean water and filled
110 for processing in the lab. Water temperature data is collected from an automated shore station off
111 of Newport Pier as part of the Southern California Coastal Ocean Observing Systems
112 (SCCOOS).

113 Triplicate 300 ml samples for POC/PON or POP from each bottle are filtered within an
114 hour of collection through pre-combusted (500°C, 5 h) 25 mm GF/F filters (Whatman, MA).
115 Each filter is rinsed with Milli-Q water before being fitted in order to remove potential P
116 residues. The filtrate from the initial filtration is collected and used for macronutrient
117 quantification. The filtrate is filtered through a 0.2 µm syringe filter into a 50 ml tube. Triplicates
118 are collected for both macronutrient and stored in the -20 °C freezer.

119

120 *Macronutrients*

121 Nitrate and phosphate samples were collected in prewashed 50 mL Falcon tubes and filtered
122 through a 0.2 µm syringe filter and stored at -20°C until further analysis. Soluble reactive
123 phosphorus (SRP) concentrations were determined using the magnesium induced co-
124 precipitation (MAGIC) protocol and calculated against a potassium monobasic phosphate
125 standard (Karl and Tien, 1992; Lomas et al., 2010). Nitrate samples were treated with a solution
126 of ethylenediaminetetraacetate and passed through a column of copperized cadmium fillings
127 (<http://bats.bios.edu/methods/chapter9.pdf>).

128

129 *Particulate Organic Carbon and Nitrogen*

130 After thawing, POC/PON filters were allowed to dry overnight at 65°C before being packed into
131 a 30 mm tin capsule (CE Elantech, Lakewood, New Jersey). Samples were then analyzed for C
132 and N content on a FlashEA 1112 nitrogen and carbon analyzer (Thermo Scientific, Waltham,
133 Massachusetts), following the protocol of Sharp (1974). POC and PON concentrations were
134 calibrated using known quantities of atropine.

135

136 *Particulate Organic Phosphorus*

137 POP filters are placed in combusted glass vials. Potassium Monobasic Phosphate (1.0
138 mM-P) is used as a standard. 2 ml of Magnesium sulfate (0.017 M; Macron Fine Chemicals) are
139 added to each vial, covered in tin foil, and put into an oven at 80 °C overnight. The vials are
140 wrapped in tinfoil and placed into a 500 °C muffle oven for two hours. Once cooled to room
141 temperature, 5 ml HCl (0.2 M; EMD) is added to each vial and then capped with a Teflon coated
142 cap and placed into the 80 °C oven for 30 min and placed into a 15 ml glass centrifuge tube.
143 Each vial is then washed with 5 ml Milli-Q water and then added to the tubes. 1 ml of mixed
144 reagent is added to each of the tubes, centrifuged at 4000 rpm for one minute and stored in the
145 dark for thirty minutes. Each standard and sample is quantified at 885 nm. This method is
146 modified from Lomas et al., 2010.

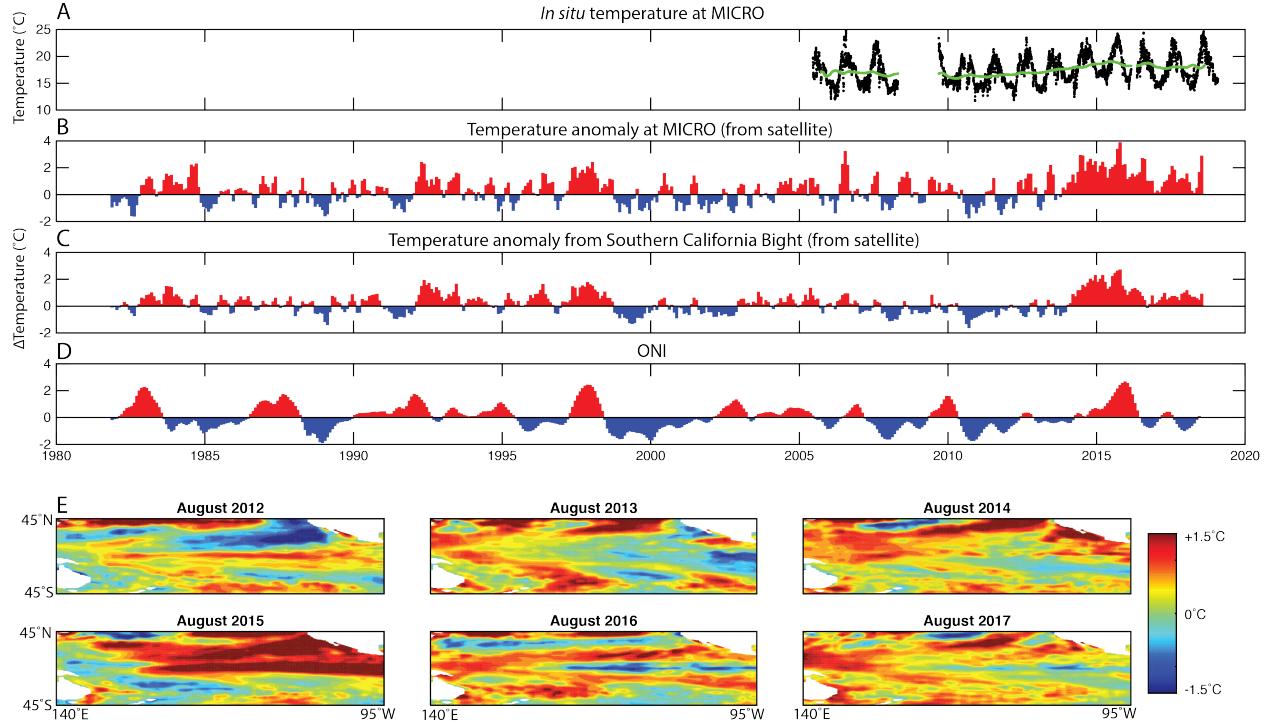
147

148 *Data Analysis*

149 All analyses were done in Matlab (Mathworks, MA). Using the smooth function, a four
150 point moving average was overlaid onto the raw data time-series plots. To determine potential
151 covariations, a Pearson's correlation coefficient was calculated for each pair of variables,
152 followed by a test of statistical significance (p -value ≤ 0.05). Sum of square analysis was
153 conducted on linear regressions to quantify the monthly and annual contributions. To
154 deseasonalize our time series parameters, we apply a seasonal adjustment using a stable seasonal
155 filter applying a 53-point moving average, representing our weekly sampling.

156

157 *El Niño Impacts*

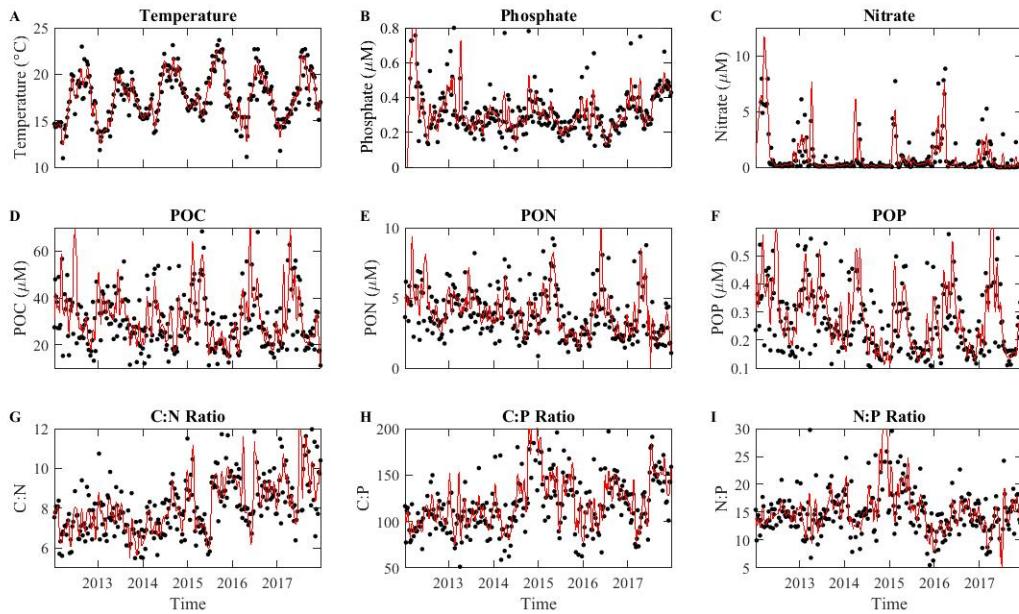

158 We used the ERSSTv5 estimate of the Oceanographic El Niño Index (ONI) (Huang et al.,
159 2017). Regional temperature anomalies are derived by a linear interpolation of the weekly
160 satellite SST optimum interpolation fields to daily fields then averaging the daily values over a
161 month (Reynolds et al., 2002) from 1983 to 2018. To estimate the mean temperature anomaly for
162 Southern California Bight region, we used satellite observations between 29° - 38°N and 115° -
163 124°W.

164

165 **Results**

166 The Oceanic El Niño Index (ONI) data indicate that a strong El Niño event followed La
167 Niña in 2015 (Figure 1). Generally, the ONI index data were significantly correlated with
168 positive temperature anomalies at our MICRO site ($R_{pearson} = 0.38, p < 1e-16$) and more broadly
169 in the SCB ($R_{pearson} = 0.44, p < 1e-22$). In support, El Niño periods including the 2015 event led
170 to positive temperature anomalies of $> 2^{\circ}\text{C}$. One notable disconnect between ONI and the
171 temperature anomalies at MICRO and in SCB was the period following the El Niño 2015 event.
172 Here, ONI suggested a slightly negative anomaly and La Niña conditions. However, SCB and

173 our site still experienced strong positive temperature anomalies. This positive anomaly occurred
 174 during both the summer and winter periods and might be related to an unusually high
 175 temperature in the North Eastern Pacific Ocean (Di Lorenzo and Mantua, 2016). Thus, the 2015
 176 El Niño event led to a positive temperature anomaly in SCB and MICRO, but the period
 177 following was unexpectedly warm.



178 **Figure 1: Multi-year variation in temperature at MICRO and surrounding region.** A: The in
 179 *180* situ daily temperature from 2005 to 2018 from the SCCOOS station on Newport Pier and the 2-
 181 year moving average (green line). B: The temperature anomaly at the MICRO time-series
 182 (estimated from satellite). C: The temperature anomaly in the Southern California Bight. D:
 183 Oceanographic El Niño Index (ONI). E: Central Pacific Ocean temperature anomaly for August
 184 throughout the time-series.

185 To understand the impact of El Niño conditions on the composition of marine POM, we
 186 quantified weekly macronutrient concentrations, POM concentrations, and elemental
 187 stoichiometric ratios from the beginning of 2012 to the end of 2017. Temperature oscillated
 188 annually with a peak in August and trough in January (Figure 2A). In 2015, the average annual
 189 temperature was higher than any other year at 22.4 °C, peaking to 23.7 °C (Figure 2A). As
 190 described earlier, nutrient availability showed a strong seasonal anti-correlation with temperature
 191 (Martiny et al., 2016) as well as some annual differences (Figure 2B). Nitrate concentrations also
 192 oscillated in parallel with phosphate and reached extremely low or undetectable levels during the
 193 summer (Figure 2C). In 2015, the nitrate level did not appear particularly low and stayed in
 194 detectable ranges through most of the year. POM concentrations all peaked during the spring
 195 bloom period and oscillated annually (Figure 2D-F). POC and POP concentrations did not show
 196 any consistent long-term trends, whereas PON levels declined 26% throughout the time-series.
 197 Although a slight increasing trend in C:N appeared from the start of the time series, a clear

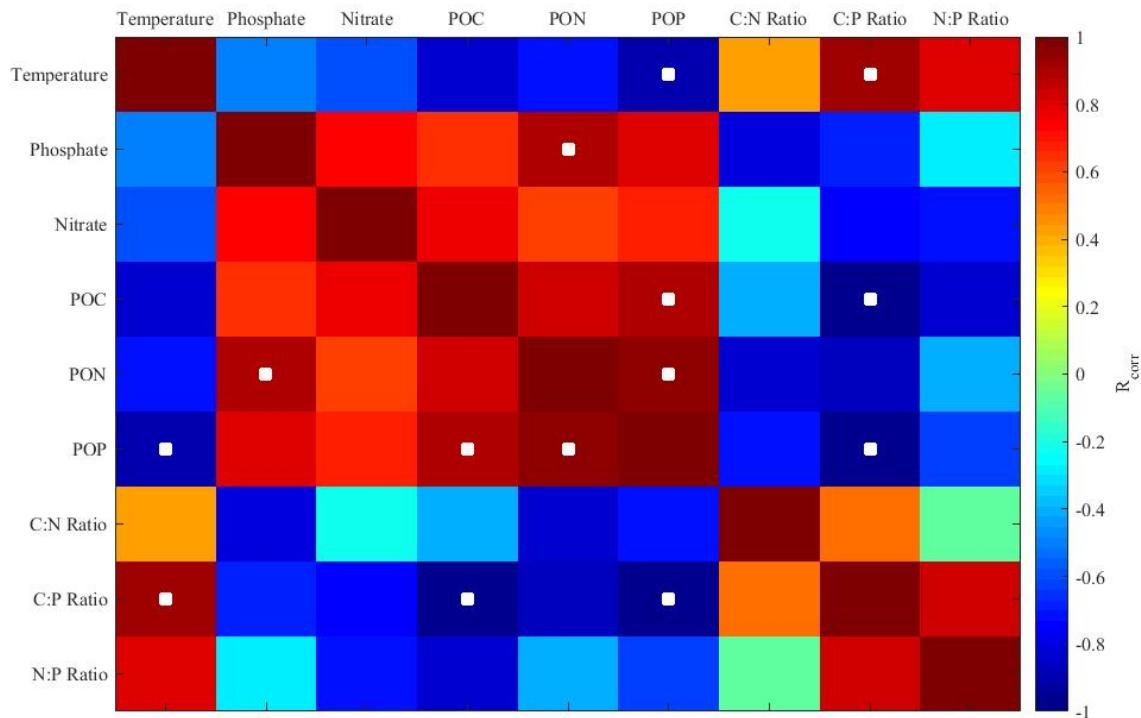
199 increasing trend was obvious after 2014 (Figure 2G). Annually, C:P peaked during the
 200 summer/fall at ~140 although we saw a big spike during the winter of 2014-2015 but this was
 201 not an annually re-occurring phenomenon (Figure 2H). N:P followed the annual oscillation in
 202 C:P with high values of 20 in the summer and also spiked during the same time periods (Figure
 203 2I). Overall, we detected both seasonal and annual variation in both environmental conditions
 204 and POM concentrations and ratios.

205


206

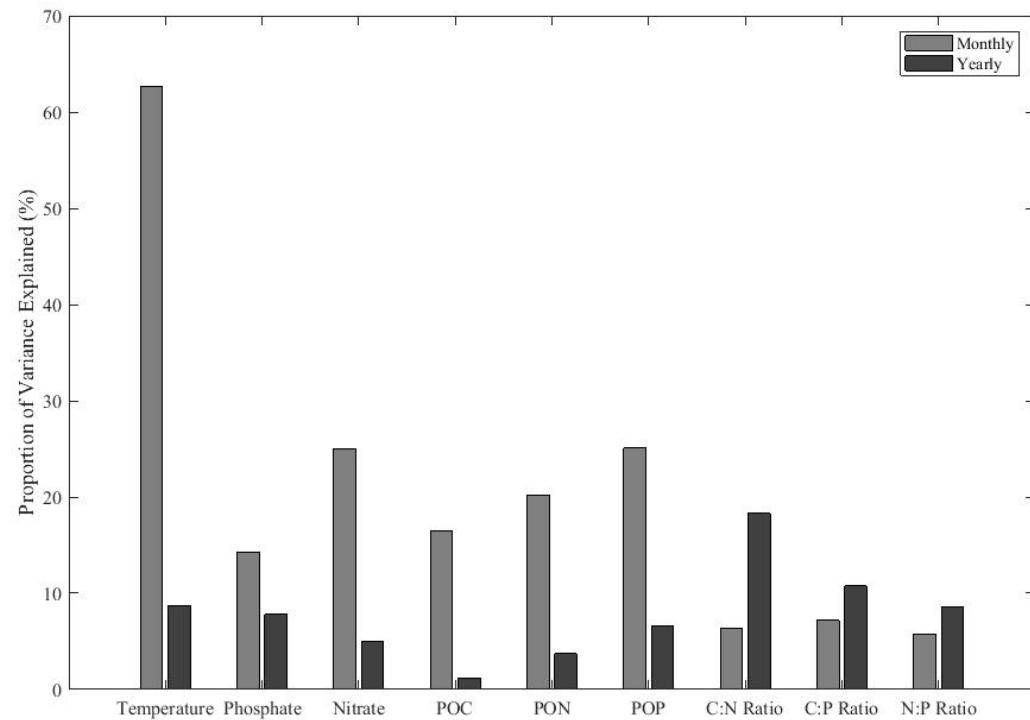
207 **Figure 2: Environmental conditions, macronutrient and POM concentrations and elemental**
 208 **stoichiometric ratios over time at Newport Pier, Newport, CA.** The solid black points represent
 209 the averaged data per week from the period of 1/1/2012 to 12/31/2017. The red line represents a
 210 4-point moving average. Stoichiometric ratios are molar.

211


212 The MICRO study site experienced long-term shifts in oceanographic conditions (Figure
 213 3). Seasonally detrended temperature concentrations has an increasing trend during the sampling
 214 period (Figure 3A). Macronutrient and POM concentrations have a slight decreasing trend,
 215 whereas the C:N and C:P ratios have increasing trends. The strongest positive correlations seen
 216 in the seasonally detrended data is POC and PON with POP demonstrating that the POM
 217 concentrations are linked (Figure 3B). Temperature is positively correlated with macronutrient
 218 and POM concentration and negatively correlated with stoichiometric ratios (Figure 3B). Thus,
 219 temperature is most likely the leading contributor to overall trends seen throughout the time
 220 series.

221

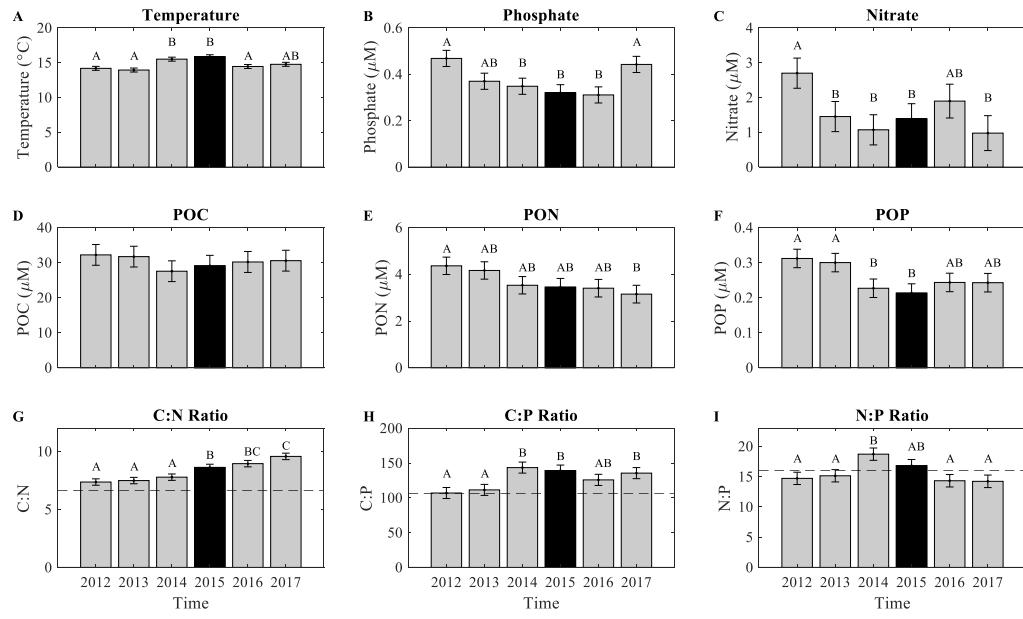
222
223 **Figure 3: Seasonally detrended values and correlations in environmental conditions,**
224 **macronutrients and POM concentrations, and stoichiometric ratios.** A.) Deasonal trends
225 over time for each factor. Statistical deseasonal trends quantified using a Mann-Kendal analysis
226 ($p < 0.05$). B.) Pearson correlation coefficient for each pair of factors. Redder squares signify a
227 strong positive correlation between the two variables, while blue squares signify a strong
228 negative correlation between the two variables. Large black squares represent a correlation of 1.
229 The small black squares indicate that the correlation is statistically significant.


230
231 Many factors showed significant positive or negative correlations (Figure 4).
232 Temperature and nutrient concentrations show negative correlations, whereby warm periods had
233 low nutrient concentrations and vice-versa for cold periods. POM concentrations were
234 significantly correlated among each other and were generally correlated with environmental
235 conditions. Warmer periods had low POM concentrations. In addition, C:P showed a positive
236 relationship to temperature as we have higher C:P during the summer months. Thus, the
237 observed correlations support earlier observations at MICRO as well as broader spatial patterns
238 in the ocean (Martiny et al., 2013b, 2016).

239

240 **Figure 4: The Pearson correlation coefficient for each pair of factors.** Red squares signify a
 241 strong positive correlation between the two variables, while blue squares signify a strong
 242 negative correlation between the two variables. The white squares indicate that the correlation is
 243 statistically significant.

244


245

246 **Figure 5: The contribution of monthly and annual variation for environmental conditions and**
247 **POM concentrations and ratios.** The remaining variance represents variance associated with
248 short-term events and measurement errors. Proportions are calculated using the sum of squares
249 from the linear regression data shown in Figure 6.

250
251 We sought to quantify the amount of variability for environmental conditions, POM
252 concentration, and ratio that is attributable to monthly versus annual variance. In general, we
253 found that monthly compared to annual variance explained a higher proportion environmental
254 metrics and POM concentrations (Figure 5). For temperature, monthly and annual variance
255 explains a large fraction of total variability, with monthly changes making-up the majority.
256 Monthly nitrate accounts for the second highest variability but the least in annual variability,
257 with phosphate being vice versa. Similar to temperature and nutrients, monthly variability is
258 greater among POM concentrations. As POM concentrations generally cycle in unison, there was
259 less monthly variance in POM ratios. In contrast, we saw a larger proportion of variance in POM
260 ratios between years. Monthly variation has more control on the environmental conditions and
261 POM concentrations, whereas annual processes dominated for stoichiometric ratios. Thus, we
262 should expect that especially POM stoichiometric ratio will be sensitive to El Niño events.
263

264 *Impact of the 2015 El Niño event*

265 The 2015 El Niño event had some impact on the POM concentrations and ratios at
266 MICRO. Temperature was highest in 2015 (Figure 6A). The phosphate concentration was low in
267 2015, although 2016 had lower levels (Figure 6B). However, nitrate concentrations were not
268 particularly low that year and both 2014 and 2017 had lower levels (Figure 6C). POM
269 concentrations showed divergent annual trends. Both POC and POP showed low levels in 2014
270 and 2015, which could be indicative of an El Niño effect. In contrast, PON showed a declining
271 trend throughout the sampling period leading to a 26% drop in concentration (Figure 6E). The
272 change in PON coincided with a continually rising C:N and a high average ratio of 9.4 in 2017.
273 (Figure 6G). In contrast, C:P and N:P were at their highest in late 2014 and all of 2015 (Fig. 2H
274 and 2I). Thus, it appeared that the POM C:P and N:P were sensitive to the 2015 El Niño event,
275 whereas C:N showed a divergent long-term increase.
276

277

278 **Figure 6: The average annual variability in environmental conditions, POM concentrations,**
 279 **and ratios.** The annual variations in August quantified using a linear decomposition of annual
 280 and monthly variation. Error bars represent the standard deviation. The letters above each bar
 281 represent a post hoc Tukey multiple comparison test ($p < 0.05$), where similar letters show no
 282 statistical difference. The dashed lines across the stoichiometric ratios indicates the static
 283 Redfield ratio ($C:N = 6.6$, $C:P = 106$, and $N:P = 16$), strictly used for comparison purposes.

285 Discussion

Our time-series data suggests that the 2015 El Niño event impacted SST, phosphate conditions, POM concentrations, and stoichiometric ratios in our study region. The El Niño event resulted in unusually high temperature conditions and lower phosphate concentrations. Such environmental conditions are starting to resemble open-ocean conditions although the POM concentrations are still much higher than common oligotrophic regions. The high C:P and N:P ratios during the El Niño event support our hypothesis although the underlying drivers are unclear. Due to the strong seasonal link between temperature, phosphate and phytoplankton community at our site, we are unable to identify the exact mechanism resulting in high C:P and N:P.

295 The C:N ratio appeared to be regulated by different ecosystem processes than C:P and
296 N:P. At our study site, we saw a long-term decline in PON concentration that led to high C:N.
297 We hypothesize that the observed trend in C:N is regulated by a declining nitrate supply and N
298 limitation (Moreno and Martiny, 2018, Geider and LaRoche, 2002). The nitrate concentration
299 followed a different multi-year trajectory in comparison to phosphate and temperature leading to
300 lower nitrate concentrations in later years. It is unclear if changing nitrate levels were driven by
301 differences in nutrient run-off or by offshore shifts in source water and upwelling strength. In
302 1998, the Santa Ana Regional Water Quality Control Board started regulating nitrogen run-off
303 near our study site. This regulation has led to a decline in terrestrial nitrogen inputs (French et
304 al., 2006). Furthermore, shifts in the source water for the SCB has led to declining
305 phosphate:nitrate levels in subsurface waters (at the $\sigma_\theta = 26.5$ kgm³ isopycnal surface; Bograd

306 et al., 2014). Thus, there could be multiple ultimate causes for the observed declining nitrate
307 level, but we predict that the lower nitrate availability and plankton N stress has proximately led
308 to higher C:N ratios.

309 We expect that the observed correspondence between changing environmental conditions
310 and C:N:P are in at least in part driven by shifts in phytoplankton community composition and
311 physiological state. Our past work has demonstrated that increasing temperature and declining
312 nutrient availability as observed during the El Niño event lead to increasing abundance of
313 picophytoplankton lineages at the expense of larger eukaryotic phytoplankton (Martiny et al.,
314 2016). Several studies have suggested that smaller phytoplankton lineages have higher C:P and
315 N:P ratios (Klausmeier et al., 2004). Furthermore, phytoplankton will acclimate to increasing
316 temperature and lower nutrient availability leading to higher cellular carbon-to-nutrient ratios.
317 Both mechanisms could possibly explain the elevated C:P and N:P seen in late 2014 and 2015
318 but our data does not allow for a direct identification of the underlying mechanism controlling
319 the shift in POM stoichiometry.

320 El Niño events can vary in their expression leading to unique impacts on the
321 environmental conditions and biogeochemical functioning of the SCB (Capotondi et al., 2015;
322 Jacox et al., 2016). The 2015 event is likely an ‘Eastern Pacific’ type leading to a temperature
323 anomaly in the North Eastern Pacific Ocean (Paek et al., 2017). However, there was also a strong
324 temperature anomaly in the equatorial section of the Pacific and a high overall warming of most
325 of the eastern part of the basin. As such, the biogeochemical impact of the 2015 El Niño event
326 may diverge from a traditional ‘Central Pacific’ event. In addition to the El Niño event, we also
327 saw a strong positive temperature and negative nitrate anomaly in 2016 and 2017. Such a long
328 term warming of the region may be caused by a shift in the Pacific Decadal Oscillation (PDO;
329 Newman et al., 2016). A positive PDO leads to overall high temperatures in the central/eastern
330 part of the Pacific Ocean (Mantua et al., 1997) and a $>2^{\circ}\text{C}$ temperature anomaly in the SCB. The
331 underlying physical driver of the PDO is currently not clear but a shift in the phase could suggest
332 elevated temperatures in the SCB for years to come. This would further lead to low POM
333 concentrations but high C:nutrient ratios.

334 El Niño events can act as a natural ‘experiment’ to understand climate change effects on
335 POM concentrations and stoichiometric ratios. Future climate scenarios predict increased SST
336 and more stratified waters and El Niño events share these characteristics. Due to the offshore
337 topography at MICRO, the local conditions share similarities with pelagic waters rather than
338 typical coastal regions. Thus, our findings suggest that elevated temperature cause changes in
339 nutrient availability phytoplankton ecology with clear implications for POM concentrations and
340 ratios. However, it is unclear whether or not future El Niño events will superimpose on or blend
341 into the already high ocean temperatures in the region. If the former, we predict large changes in
342 the biogeochemical and ecosystem functioning of the SCB in the future.

343
344

345 **Acknowledgement**

346 We would like to thank Professor Yu for advice on ENSO cycles, and Tanya Lam, Sarah Bowen,
347 and Jenna Lee for contributing to the MICRO time-series. Financial support for this work was
348 provided by the UCI Undergraduate Research Opportunities Program (to AF), NSF Graduate
349 Research Fellowship Program (to ARM) and NSF Biological Oceanography (OCE-1848576 to
350 ACM).

351 **References**

352 Bograd, S. J., Pozo, M., Di, E., Castro, C. G., Schroeder, I. D., Goericke, R., et al. (2014). Changes in
 353 source waters to the Southern California Bight. *Deep. Res. Part II*, 1–11.
 354 doi:10.1016/j.dsr2.2014.04.009.

355 Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J. Y., Braconnot, P., et al. (2015).
 356 Understanding enso diversity. *Bull. Am. Meteorol. Soc.* 96, 921–938. doi:10.1175/BAMS-D-13-
 357 00117.1.

358 Chavez, F. P. (2002). Biological and chemical consequences of the 1997-1998 El Niño in central
 359 California waters Biological and chemical consequences of the 1997 – 1998 El Niño in central
 360 California waters. *Prog. Oceanogr.* 54, 205–232.

361 Checkley, D. M., and Barth, J. A. (2009). Progress in Oceanography Patterns and processes in the
 362 California Current System. *Prog. Oceanogr.* 83, 49–64. doi:10.1016/j.pocean.2009.07.028.

363 Di Lorenzo, E., and Mantua, N. (2016). Multi-year persistence of the 2014/15 North Pacific marine
 364 heatwave. *Nat. Clim. Chang.* 6, 1042–1047. doi:10.1038/nclimate3082.

365 Dijkstra, H. A., and Burges, G. (2002). Fluid Dynamics of El Niño Variability. *Annu. Rev. Fluid Mech.*,
 366 531–558. doi:10.1146/annurev.physchem.57.032905.104621.

367 French, C., Wu, L., Meixner, T., Kabashima, J., and Jury, W. A. (2006). Modeling nitrogen transport in
 368 the Newport Bay / San Diego Creek watershed of Southern California. *Agric. Water Manag.* 81,
 369 199–215. doi:10.1016/j.agwat.2005.03.006.

370 Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., et al. (2017).
 371 Extended Reconstructed Sea Surface Temperature , Version 5 (ERSSTv5): Upgrades , Validations
 372 , and Intercomparisons. *Am. Meterological Soc.* 5, 8179–8205. doi:10.1175/JCLI-D-16-0836.1.

373 Jacox, M. G., Hazen, E. L., Zaba, K. D., Rudnick, D. L., Edwards, C. A., Moore, A. M., et al. (2016).
 374 Impacts of the 2015–2016 El Niño on the California Current System: Early assessment and
 375 comparison to past events. *Geophys. Res. Lett.* 43, 7072–7080. doi:10.1002/2016GL069716.

376 Karl, D. M., and Tien, G. (1992). MAGIC: A sensitive and precise method for measuring dissolved
 377 phosphorus in aquatic environments. *Limnol. Oceanogr.* 37, 105–116.
 378 doi:10.4319/lo.1992.37.1.0105.

379 Kim, H., Webster, P. J., and Curry, J. A. (2009). Impact of Shifting Patterns of Pacific Ocean Warming
 380 on North Atlantic Tropical Cyclones. *Science (80-)*. 325, 77–80.

381 King, A. L., and Barbeau, K. A. (2011). Dissolved iron and macronutrient distributions in the southern
 382 California Current System. *J. Geophys. Res. Ocean.* 116. doi:10.1029/2010JC006324.

383 Lomas, M. W., Burke, A. L., Lomas, D. A., Bell, D. W., Shen, C., Dyhrman, S. T., et al. (2010). Sargasso
 384 Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP).
 385 *Biogeosciences* 7, 695–710. doi:10.5194/bg-7-695-2010.

386 Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C. (1997). A Pacific Interdecadal
 387 Climate Oscillation with Impacts on Salmon Production. *Bull. Am. Meteorol. Soc.*, 1069–1079.

388 Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J. K., Levin, S. A., et al. (2013a).
 389 Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. *Nat.*
 390 *Geosci.* 6, 1–5. doi:10.1038/ngeo1757.

391 Martiny, A. C., Talarmin, A., Mouginot, C., Lee, J. A., Huang, J. S., Gellene, A. G., et al. (2016).
 392 Biogeochemical interactions control a temporal succession in the elemental composition of marine
 393 communities. *Limnol. Oceanogr.* 61, 531–542. doi:10.1002/lno.10233.

394 Martiny, A. C., Vrugt, J. A., Primeau, F. W., and Lomas, M. W. (2013b). Regional variation in the
 395 particulate organic carbon to nitrogen ratio in the surface ocean. *Global Biogeochem. Cycles* 27,
 396 723–731. doi:10.1002/gbc.20061.

397 McGowan, J. A., Cayan, D. R., and Dorman, L. M. (1998). Climate-Ocean Variability and Ecosystem
 398 Response in the Northeast Pacific. *Science (80-)*. 281.

399 McPhaden, M. J. (2015). Playing hide and seek with El Niño. *Nat. Clim. Chang.* 5, 791–795.
 400 doi:10.1038/nclimate2775.

401 Moreno, A. R., and Martiny, A. C. (2018). Ecological Stoichiometry of Ocean Plankton. *Ann. Rev. Mar.*

402 *Sci.* 10, 43–69. doi:10.1146/annurev-marine-121916-063126.

403 Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., et al. (2016). The
404 Pacific Decadal Oscillation, Revisited. *Am. Meterological Soc.* 29, 4399–4427. doi:10.1175/JCLI-
405 D-15-0508.1.

406 Paek, H., Yu, J. Y., and Qian, C. (2017). Why were the 2015/2016 and 1997/1998 extreme El Niños
407 different? *Geophys. Res. Lett.* 44, 1848–1856. doi:10.1002/2016GL071515.

408 Racault, M.-F., Sathyendranath, S., Brewin, R. J. W., Raitsos, D. E., Jackson, T., and Platt, T. (2017).
409 Impact of El Niño Variability on Oceanic Phytoplankton. *Front. Mar. Sci.* 4, 1–15.
410 doi:10.3389/fmars.2017.00133.

411 Redfield, A. C. (1958). The biological control of the chemical factors in the environment. *Am. Sci.* 46, 1–
412 18.

413 Reynolds, R. W., Rayner, N. A., Smith, T. M., Stoker, D. C., and Wang, W. (2002). An Improved In Situ
414 and Satellite SST Analysis for Climate. *J. Clim.* 15, 1609–1625.

415 Sharp, J. H. (1974). Improved analysis for “particulate” organic carbon and nitrogen from seawater.
416 *Limnol. Oceanogr.* 19, 984–989. doi:10.4319/lo.1974.19.6.0984.

417 Tegner, M. J., and Dayton, P. K. (1987). El Nino Effects on Southern California Kelp Forest
418 Communities. *Adv. Ecol. Res.* 17, 243–279.

419 Toseland, A., Daines, S. J., Clark, J. R., Kirkham, A., Strauss, J., Uhlig, C., et al. (2013). The impact of
420 temperature on marine phytoplankton resource allocation and metabolism. *Nat. Clim. Chang.* 3,
421 979–984. doi:10.1038/nclimate1989.

422 Yu, J. Y., Zou, Y., Kim, S. T., and Lee, T. (2012). The changing impact of El Nio on US winter
423 temperatures. *Geophys. Res. Lett.* 39. doi:10.1029/2012GL052483.

424