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Main Text 

Summary 
 

Linking ‘omics measurements with biogeochemical cycles is a widespread challenge in microbial 
community ecology. Here, we propose applying genomic adaptation as ‘biosensors’ for microbial 
investments to overcome nutrient stress. We then integrate this genomic information with a trait-based 
model to predict regional shifts in the elemental composition of marine plankton communities. We 
evaluated this approach using metagenomic and particulate organic matter samples from the Atlantic, 
Indian, and Pacific Ocean. We find that our genome-based trait-model significantly improves our 
prediction of particulate C:P (carbon : phosphorus) across ocean regions. Furthermore, we detect 
previously unrecognized ocean areas of iron, nitrogen, and phosphorus stress. In many ecosystems, it can 
be very challenging to quantify microbial stress. Thus, a carefully calibrated genomic approach could 
become a widespread tool for understand microbial responses to environmental changes and the 
biogeochemical outcomes. 
 
Introduction 
 
Linking genomics and other ‘omics measurements with biogeochemical cycles is a widespread challenge 
in microbial community ecology. Currently, most ‘omics observations are used to quantify shifts in 
diversity and functional potential. In contrast, we rarely use microbial ‘omics data to understand and 
constrain large-scale energy or nutrient fluxes. This lack of convergence between microbial ‘omics 
information and ecosystem or global models may limit our ability to predict future changes to global 
biogeochemical cycles. 
 
It is well-established that the cellular and community regulation of elemental requirements and 
composition (i.e., carbon : nitrogen : phosphorus, C:N:P) are important for linking the global carbon and 
nutrient cycles [1]. There is an intense debate about the interaction between microbial diversity and 
environmental changes in regulating C:N:P for both terrestrial and aquatic environments [1,2]. The 
chemical composition of a cell is affected by many environmental factors, but nutrient availability is 
emerging as central [3]. Nutrient availability impacts the elemental composition of a community in 
multiple ways. Physiologically, the overall nutrient level impacts the growth rate [4]. In addition, cells are 
sensitive to the supply ratio of N vs. P (and other nutrients) relative to the biomass ratio [5]. Microbial 
lineages can also have unique resource requirements and thus experience a shared environment 
differently at a physiological level. For example, the marine cyanobacterium Prochlorococcus appears to 
have a lower P requirement compared to larger phytoplankton [6] and co-existing diatoms can have 
unique N:P [7]. Thus, the interaction between microbial diversity and nutrient stress plays a complex role 
in regulating ecosystem C:N:P. 
 
It is a challenge to define and quantify the nutritional environment experienced by microorganisms. First, 
the concentrations of inorganic phosphorus and nitrogen are commonly below detection limits in many 
marine environments [8]. Second, most microorganisms can utilize multiple alternative forms of nutrients 
[9–12]. Ammonium is energetically the most favored form of nitrogen. When ammonium is in low 
supply, microorganisms can shift in some order to urea, nitrate, or organically bound nitrogen [13]. There 
are several unknowns associated with the use of alternative resources. We rarely quantify the 
concentration and chemical form of alternative nutrients or the chemical nature of organically bound N 
or P. Either assumptions are made about what substrate microorganisms are using, or there are 
difficulties obtaining isotopically labelled compounds for more complex alternative nutrient sources 
making it a challenge to evaluate their role. Furthermore, the resource costs associated with the use of 
many alternative nutrients are broadly unknown, leading to ill-defined trade-offs for nutrient 
assimilation. For example, cells need to invest N when upregulating acquisition proteins leading to trade-
offs between nutrient investments and uptake [14]. Finally, there is variation among individual lineages 
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in the extent they can rely on alternative nutrient forms [15]. Thus, it is currently impossible to predict 
microbial nutrient use and associated biogeochemical roles even with a perfect chemical characterization 
of an environment. 
 
Marine microorganisms show clear genomic evidence for adaptation to specific nutritional environments 
through gene gain and loss [16–18]. Such genomic changes reflect a shift from simple to more complex 
nutrient forms under limiting conditions. This pattern has been detected in many microorganisms but is 
clearly illustrated in marine cyanobacteria. In regions with a replete inorganic phosphate supply, 
Prochlorococcus genomes mainly contain transporters directly associated with inorganic phosphate [19]. 
However, Prochlorococcus adapts to low phosphate supply via the gain of genes associated with 
regulation and the use of alternative forms. In regions with severe P stress, Prochlorococcus genomes 
contain genes for alkaline phosphate to cleave off phosphate from organic molecules [20,21]. Here, 
alkaline phosphatase and a few other proteins can be highly induced to utilize organic P as an alternative 
P source [19,22]. Prochlorococcus adapts to N stress in a parallel fashion, whereby cells from high N areas 
only contain genes for ammonium uptake [23]. In regions with stronger N stress, Prochlorococcus 
genomes sequentially include genes for urea, nitrite and ultimately nitrate assimilation. Thus, the genome 
content of Prochlorococcus (and other marine microorganisms) closely corresponds to the underlying 
environmental conditions and thereby describes the cellular strategies for nutrient acquisition [24]. 
 
We propose using genomic shifts among microbial communities as a ‘biosensor’ for in situ nutritional 
environments in order to improve predictions of C:N:P variability across ocean regions. Specifically, we 
combine the distribution of genes with a trait model to simulate cellular investment strategies and predict 
C:N:P.  We assume that genome streamlining in Cyanobacteria will lead to clear nutrient investment 
trends. However, increasing cell genomes sizes in the larger Cyanobacteria, Synechococcus, reveals a 
more generalist lifestyle. We show that in comparison to both traditional abiotic and common trait 
models, the incorporation of nutrient trait variation quantified using metagenomics greatly improves our 
ability to predict shifts in C:N:P. This work illustrates how we can use ‘omics observations to improve our 
understanding of global biogeochemical cycles in ways that would be challenging to achieve with abiotic 
characterizations alone. 
 
Methods 
 
Sample collection 
Seawater samples were collected from the western Atlantic Ocean (AE1319 – Aug/Sep 2013, BV46 –  Oct 
2011), central Pacific Ocean (NH1418 – Sept 2014), and the eastern Indian Ocean (IO9N – Mar/Apr 2016) 
(Supplementary Figure 1; Supplementary Table 1). On each cruise samples for DNA, flow cytometry, 
particulate organic matter, uptake rate kinetics, and nutrients were collected as described previously 
[3,25–28]. Fifty-four stations were selected for metagenomics analysis where these corresponding 
measurements were taken. Select data is already available on BCO-DMO (uptake rate kinetics, nutrient 
concentrations, cell abundances, and particulate elemental concentrations) for the Atlantic AE1319 and 
BV46 (https://www.bco-dmo.org/project/2178) and Indian Ocean I09N cruises (https://www.bco-
dmo.org/project/628972).  Results have previously been reported describing the cyanobacterial diversity 
[28,29], cell quotas and abundances [26,27], uptake rate kinetics [25,26], and particulate organic matter 
ratios [3] along several transects.  
 
Particulate organic matter 
All particulate organic matter samples for carbon, nitrogen and phosphorus were collected on pre-
combusted (4 hours at 500°C) GF/F filters with a nominal pore size of 0.7 µm. A nylon mesh prefilter 
with a pore size of 30 µm was used to remove rarer biomass to remove larger plankton and particles. POP 
filters were rinsed with 0.17M Na2SO4 at time of collection to remove residual dissolved organic 
phosphorus.  All filters were stored frozen until analysis in lab. POC/PON samples were measured using 
a Flash 1112 EA elemental analyzer (Thermo Scientific, Waltham, MA, USA) for the I09 transect against 
an Atropine (C17H23NO3) standard curve (range 0.2-1.5 mg). For the NH1418, AE1319, and BV46 transects 
POC/PON samples were measured on either Control Equipment 240-XA or 440-XA elemental analyzer 
using acetanilide as a standard [30].  POP samples were analyzed using an ash/hydrolysis colorimetric 
method described previously [31]. Briefly, 2 mL of 0.017M MgSO4 was added to the filter and KH2PO4 
standards in acid-washed scintillation vials and dried overnight at 90°C. The filters were exposed to high 



temperatures 500°C for 2 hours and acidified in 0.2M HCL at 90°C. After a mixed reagent was added, the 
samples were analyzed on a spectrophotometer at 885nm.  
 
Uptake rate kinetics 
On the Atlantic (AE1319, BV46) and Pacific (NH1418) Ocean transects, phosphate uptake rate kinetics 
were taken for whole community and taxa-specific groups (e.g. Synechococcus & Prochlorococcus) using 
methods previously described [25]. Incubations were performed using 10 mL seawater aliquots within 
3°C of ambient temperature during time of collection (~23°C). Kinetics experiments for phosphate were 
performed with increasing DIP additions up to 100nM, and ended at a final concentration of 100uM.  
 
On the Indian Ocean GO-SHIP transect (I09N), whole community bottle incubations were performed for 
uptake of 15N-labeled ammonia, urea, and nitrate [26]. The incubations were performed in 2L 
polycarbonate bottles over a 6-hr period at ambient seawater temperature. N incubations were mixed to a 
final concentration of 0.03µM, which is below the detection limit and reflective of the N-limiting 
conditions throughout the I09N transect. 
 
Cell abundances using flow cytometry 
Samples for flow cytometry and cell sorting were collected previously and are presented elsewhere [26–
28]. Briefly, the samples were sorted using a FACSJazz or Influx flow cytometer (BD, Franklin Lakes, NJ, 
USA). Samples were preserved using a 0.5% paraformaldehyde solution (final concentration), kept in the 
dark for 1 hour to fix at 5°C, and then stored frozen at -80°C until analysis. Populations of Synechococcus 
were determined with a gate in orange (585nm), Prochlorococcus based on forward scatter and red 
fluorescence.  
 
Nutrients 
For the NH1418, AE1319, and BV46 cruises, phosphate was measured using the MAGIC-SRP high 
sensitivity method [32]. Nitrate was measured as using a cadmium reduction assay as previously 
described [28]. 
Nutrients data for the I09N cruise were provided by Jim Swift/SIO and Susan Becker/SIO and are 
available at https://cchdo.ucsd.edu. 
 
Metagenomics – library and sequencing 
For DNA, 4-10 L seawater samples were collected with a 0.22 µm Sterivex filter and preserved with Lysis 
Buffer (50 mM Tris -HCl pH 7.6, 20 mM EDTA pH 8.0, 400 mM NaCl, 0.75 M sucrose) and frozen at -80˚C 
until further processing. Whereas a GF/D (2.7 µm nominal pore size) glass fiber prefilter was used for all 
Pacific and Atlantic sites [28], no prefilter was used for DNA collections for Indian Ocean sites. As a 
minor percentage of the total community composed of eukaryotes [26], we assumed this was an 
acceptable comparison. However, it is possible that we are missing particle associations greater than 2.7 
µm in the Atlantic and Pacific Ocean. DNA was extracted as described previously [28,33,34] and diluted 
(Atlantic/Pacific: 0.5ng/µl, Indian: 1ng/µl) for sequencing. Metagenomic libraries were prepared using 
Nextera Library Prep Kit (Illumina, San Diego, CA) with a modified PCR mixture. 1 ul was 0.5-1ng of 
DNA was tagmented using the Nextera DNA Prep Kit tagmentation enzyme and incubated for 10 
minutes at 55°C. The Nextera XT barcodes were annealed to metagenome fragments using the following 
PCR protocol. For PCR, we used 20μl of a master mix containing 0.5 μL Phusion High Fidelity buffer 
(New England Biolabs, Ipswich, MA), 0.5 μL dNTPs (New England Biolabs, Ipswich, MA), 0.25 μL 
Phusion High Fidelity polymerase (New England Biolabs, Ipswich, MA), and 14.25 μL of PCR water. 
Equimolar samples were pooled and the quality was checked and quantified using a Bioanalyzer 
(Agilent, Santa Clara, CA). The pooled library was sequenced on an HiSeq - 4000 (Illumina, San Diego, 
CA) producing paired end reads (2 x 150 bp). Low quality reads and adapters were removed using 
trimmomatic 0.35 [35] with a sliding window of 4:15 and minimum length set to 36. PhiX was filtered out 
using BBduk2 tool BBMap (BBMap - Bushnell B. - sourceforge.net/projects/bbmap/, k = 31, hdist = 1). 
Sequences were aligned and mapped to a curated reference database (Supplementary Table 4) using 
Bowtie2 [36] with the following settings; --local -D 15 -R 2 -L 15 -N 1 --gbar 1 --mp 3. High quality contigs 
were assembled and processed with Anvi’o [37]. Pangenome gene clusters were identified using the 
DIAMOND algorithm [38] and summarized in Anvi’o. Metagenomes are available through BioProject 
(SRA PRJNA598881) at the following link:  https://www.ncbi.nlm.nih.gov/sra/PRJNA598881. 
 
Nutrient assimilation gene frequencies 



Prochlorococcus and Synechococcus genes associated with assimilation for iron, nitrogen, and 
phosphorus were identified based on prior studies (Supplementary Information 1) [17,21,23,24,39,40]. 
Several genes of unknown function are listed as uknX, but are included due to their association with low 
P availability in Prochlocococcus [41] , and close proximity to known regulatory P assimilation genes in 
the MED4 genome.  Based on these past studies, we filtered out genes if present in all Synechococcus and 
Prochlorococcus to detect variation in lineage coverage. We found the relative gene frequency by scaling 
to the median coverage of single copy core genes (SCCG) [41] across 54 stations. We identified the relative 
gene frequency for each nutrient listed in Supplementary Information 1, per station, and per taxa 
(Synechococcus and Prochlorococcus) as follows: 
 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑔𝑒𝑛𝑒	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦0121	32	4565 = 8 9:
𝑔𝑒𝑛𝑒	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒0121

𝑚𝑒𝑑𝑖𝑎𝑛	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑆𝐶𝐶𝐺4565
AB
𝑡𝑜𝑡𝑎𝑙	𝑟𝑒𝑎𝑑𝑠012DE1
𝑡𝑜𝑡𝑎𝑙	𝑟𝑒𝑎𝑑𝑠4565

FG
012DE1H
	32	4565

 

 
Next, we conducted three separate Principle Component Analysis (PCA) for N, P, and Fe assimilation 
genes, respectively (Supplementary Figure 4). Each relative gene frequency was scaled between 0 and 1 
across the 54 stations as inputs to the PCA (n x m matrix of n stations and m normalized gene 
frequencies). A total of four gene indices were produced for each station, where N/P gene = first 
component of PCA; 

𝑁JKLK	MNDOPQDNDODOORH	 
𝑃JKLK	TU21OPDODOORH 
𝑁JKLK	MNDOPQDNDODOORH 
𝑃JKLK	TU21OPDODOORH  

These N and P gene indices for Prochlorococcus and Synechococcus were subsequently incorporated into 
an trait model to predict C:P. 
 
ATOM-gene Model 
We developed the ATOM-gene model to predict phytoplankton C:P ratios from temperature, irradiance, 
and metagenomic data on phosphorus and nitrogen nutrient-uptake gene abundance. The ATOM-gene 
model shares its basic structure with the trait-based phytoplankton model developed by Moreno et. al. 
[42]. It predicts the C:P of particulate organic matter in the surface ocean using a multi-step process. 
ATOM-gene first characterizes phytoplankton according to several key functional traits, namely their 
radius (r) and their allocation of biomass to biosynthetic proteins and ribosomes (E), to photosynthetic 
proteins (L), to structural components (S), and to nutrient uptake proteins (A). ATOM-gene also 
represents a luxury nutrient storage pool. Each trait-combination corresponds both to a functional 
response to environmental conditions, and to a cell quotas of C, N, and P, which we derived from 
biophysics, physiology, and statistical modeling. The functional response determines the growth rate of 
cells with each trait-combination (r, E, L, A) in each possible environment, which consist of temperature 
(T), irradiance (L), and metagenomic uptake gene abundance indices Pgene and Ngene. Traditionally, in 
trait-based phytoplankton models, the functional response to environmental conditions requires nutrient 
concentrations to calculate growth rates. However, nitrate + nitrite and phosphate nutrient concentrations 
are frequently below standard assay detection limits. Furthermore, nutrient concentrations were not great 
predictors across regions. Therefore, we needed genes to detect unseen nutrient stress variability. Here, 
we treat nutrient concentrations as latent variables, which are not directly observed, and model their 
concentration using the metagenomic data. 
 
Given the irradiance, temperature, and nutrient-uptake gene abundances in a given sampling location, 
ATOM-gene uses the functional responses to determine the trait-combination with the fastest growth 
rate, and predicts that these traits and the resulting C:P characterize the plankton community and 
particulate organic matter at that sampling site. 
 
ATOM-gene is part of a family of trait-based models that we have developed to predict C:P ratios in 
phytoplankton, and which extend the model in Moreno et. al. [42] in important ways. First, ATOM-gene 
does not just model phosphorus availability like [42], but also models nitrogen availability. ATOM-gene 
includes an additional resource investment pool, representing variable allocations of biomass to surface 
membrane and periplasmic proteins for nutrient uptake of phosphorus. Lastly, we parameterized the 
trait-based model in [42] using point estimates of physiological parameters taken from the literature, only 



using statistical methods to predict luxury P-storage. Here we integrated the entire ATOM-gene model 
into a Bayesian statistical framework, allowing us to incorporate uncertainty in our understanding of key 
physiological processes (such as the temperature dependence or different biochemical processes). 
 
Below we describe the model and its parameters. Summaries of the model parameters, and the prior 
distributions for statistical parameters, can be found in Supplementary Tables 5, 6 and 7. Phytoplankton 
traits determine C:P according to: 
  

(P:C) =
𝐸P^ + 𝛾Pa + Pstor

𝐸CM + 𝐿CM + 𝛾Ca +
c(CdefCg)

hN

. 

 
Here P:C is the phosphorus to carbon ratio. PE and Pγ  are the specific fraction of phosphorus in the 
biosynthetic protein and structure pool, respectively, with units of gP/g. Their phosphorus content arises 
from ribosomes in the case of the biosynthetic apparatus, which we model as having a ribosome fraction 
of αl, and DNA/RNA in the case of the structural pool, which we model as occupying a total fraction 
γDNA of cellular biomass. Pstor  is the level of luxury P storage, in units of gP/g. The symbol CP is the 
specific fraction of carbon in proteins, with units of gC/g, CDNA is the specific fraction of carbon in DNA, 
and Clip is the specific fraction of carbon in carbon in lipids, and γlip is the fraction of cellular biomass in 
lipids. The fraction of cellular biomass in the inner and outer membranes and periplasmic space is o

p
, 

which we assume is half membrane and half periplasmic space. A is the fraction of the periplasmic space 
occupied by proteins. CM is the carbon fraction of the inner and outer membranes, which we assume are 
composed partially of proteins and partially of phospholipids. molP and molC are the molar masses of 
phosphorus and carbon.  
 
The traits must satisfy several constraints. The sum of allocations to cytoplasmic components should 
equal the cytoplasmic fraction of the cell: 

𝐸 + 𝐿 + γ
DNA
+ γ

lip
= 1 −

α
𝑟  

Furthermore, the fraction of the periplasmic volume allocated to proteins satisfies 2rAmin < 𝐴 < 1.  
 
To predict the stoichiometry in a given environment, ATOM-gene selects the trait combination with the 
fastest growth rates. Environmental conditions and traits translate into rates of biosynthesis µ^, 
photosynthesis µy, nitrogen uptake µN, and phosphorus uptake µP, with overall growth rate determined 
by the slowest of these processes: 

µ = min(µ^,µy, µN, µP). 
The biosynthesis rate depends linearly on the investment E: 

 µ^ = 𝑘T(𝑇)E,  
where the biosynthetic efficiency decreases with temperature with a 𝑄ÄÅÇ = 2. The photosynthesis 
functional response comes from Geider et. al. (see the formulation Moreno et. al. 2018): 

µy =
𝑓(𝐼, 𝑇)𝐿
1 + ϕT

, 

where we allow the photosynthesis rate to have a non-trivial temperature dependence. Here 𝑇 is the 
temperature in degrees centigrade, 𝐼 is the irradiance measured in µmolPhotons/𝑚h/𝑠, and ϕT is the 
carbon cost of synthesis in gC/gC. The functional response 𝑓(𝐼, 𝑇) to light is described in Moreno et. al. 
2018, and depends on temperature according to a 𝑄ÄÅ,photo . We assume diffusion-limited growth to derive 
the nitrogen and phosphorus dependent growth rates: 
 

µN =
4𝜋𝐷N[Nmodel]𝑟

𝑄N
, 𝜇P =

4𝜋𝐷P[Pmodel]𝑟𝐴
𝑄P

. 

𝑄å =
4π𝑟émolN

ρ𝑝ëNU íì𝐸 + 𝐿 + α𝐴/(2𝑟)îNprot + γDNA  NDNA + 𝛼/(2𝑟)NMñ
 

 



𝑄P =
4𝜋𝑟émolP

𝜌𝑝dry(EPE + γDNA   PDNA)
 . 

 
We treat concentrations of bioavailable nitrogen and phosphate as latent variables, modeled using the 
gene frequencies for nitrogen and phosphate uptake genes in Prochlorococcus and Synechococcus, 
respectively. 
 

log[Nmodel] = log[NÅ] − 𝑐NNgene ,			log[Pmodel] = log[PÅ] − 𝑐PPgene. 
 
The terms N0, P0, 𝑐N, and 𝑐P are model parameters, and Ngene and Pgene are the gene indices introduced 
earlier. The diffusion coefficients (𝐷N, 𝐷P) decrease with temperature using 𝑄ÄÅö = 1.5. ATOM-gene then 
finds the trait combination with the largest µ. At the optimal solution either: 
 

𝜇^ = 𝜇y = 𝜇å < 𝜇M				(N-limitation),	
𝜇^ = 𝜇y = 𝜇M < 𝜇å				(P-limitation),	
𝜇^ = 𝜇y = 𝜇M = 𝜇å			(Co-limitation). 

 
ATOM-gene subsequently determines C:P from this optimal strategy. If the strategy is N-limited, then we 
assume that the cell does luxury P-storage proportional to the modeled P-concentration: 
    Pstor = Cstor[Pmodel]max(0, µ† − µ),  
where µ° is a growth rate cutoff above which luxury storage stops.  
 We selected a prior probability distribution over model parameters (Supplementary Table 2) and 
implemented ATOM-Gene within the STAN probabilistic programming language (Carpenter et. al.). We 
integrated C:P, N and P gene indices, temperature, and irradiance (averaged over the top 50 meters), and 
calculated the posterior probability distribution over model parameters assuming a log-normal 
probability distribution for C:P: 
 

(C:P)obs ∼ lognormalí(C:P)Atom-geneìI,T,Ngene,Pgene, σîñ. 
 
We performed this Bayesian optimization for the gene indices computed from both Prochlorococcus and 
Synechococcus leading to a statistical model of C:P.  
 
Galbraith-Martiny and P-Regression Model 
The Galbraith-Martiny model [43] calculates P:C as a linear function of phosphate concentration: 
 

(P:C)GM = 6.9𝑥10é[Pobs] + 6.0𝑥10©é. 
 
We also created a P-regression based model (Preg) by refitting the Galbraith-Martiny GM model just to 
the data-set gathered here, assuming a lognormal error model: 
 

(P:C)Preg ∼ lognormalì𝜅[Pobs] + [PÅ], 𝜎î. 
 
Yvon-Durocher Model and T-Regression Model 
The Yvon-Durocher model [44] expresses phytoplankton C:P as an exponential function of temperature: 

log (C:P)YD = 𝛱(𝑇 − 15) + 𝑏, 
where 𝛱 = 0.037DC©Äand 𝑏 = 5.010. We also created a T-Regression based model by refitting the Yvon-
Durocher model to the data-set gathered here, assuming lognormal errors: 

(C:P)Treg ∼ lognormal(𝛱(𝑇 − 15) + 𝑏, 𝜎). 
 
Moreno-Hagstrom Model 
The Moreno-Hagstrom model [42] uses the radius (r) and allocation of biomass to biosynthesis (E) and 
photosynthesis (L) to model C:P, by calculating the trait-combination that leads to maximal growth for 
each combination of irradiance (I), temperature (T), and phosphorus (P).  The Moreno-Hagstrom model 
models luxury-P storage as a linear function of P, so that: 
 



(C:P)MH =
1

ì(C:P)structure + 𝑓storage[Pobs]î
. 

 
It should be noted the relationship between polyphosphate storage and ambient P concentrations has 
been demonstrated to have an inverse relationship in subtropical North Atlantic Synechococcus [45], but 
the direction appears to be regional dependent [46]. 
 
Results 
 
We quantified the variation in the Carbon-to-Phosphorus (C:P) elemental stoichiometry across ocean 
environmental gradients in the Atlantic, Indian and Pacific Ocean (Figure 1). Generally, C:P ratios 
decreased towards colder water and higher nutrient concentrations. This pattern was present in the 
temperate region in the North Atlantic (Figure 1A) and equatorial upwelling in the Pacific Ocean. (Figure 
1B). However, in the Indian Ocean C:P decreased toward lower phosphate concentrations and warmer 
water (Figure 1C) and thus showed the opposite relationship to temperature [3]. Statistical models based 
solely on phosphate (G-M) or temperature (Y-D) were unable to capture the C:P trends in the Indian 
Ocean and showed significant biases (Figure 2). All models overestimated C:P in large parts of the Indian 
Ocean and either over- or underestimated C:P in the equatorial Pacific Ocean. This bias remained even if 
we refitted the G-M and Y-D models observations from this study suggesting a structural bias. We next 
tested a more complex previously published trait-based model (Moreno et al), but this model had strong 
bias, too. Thus, existing models driven by common abiotic factors were unable to predict shifts in the 
elemental stoichiometry of marine communities. 
 
The incorporation of genomically-derived resource acquisition traits into our model greatly improved the 
prediction of regional shifts in elemental stoichiometry (Figure 2, R2 = 0.51 for ATOM-Syn. gene, R2 = 0.26 
for ATOM-Pro. gene). The models incorporating genomically derived traits remained superior in a 
comparison based on information criteria computed using cross-validation [47] (Supplemental Table 7). 
We derived resource acquisition traits in Prochlorococcus and Synechococcus (the two most abundant 
phytoplankton in these samples) [26] from metagenomes. We then used relative gene frequency of 
nitrogen and phosphorus acquisition genes to develop an index for the induction of nutrient acquisition 
machinery for each nutrient and lineage (Supplementary Figure 4). This index assumes cyanobacterial 
lineages adapt to their environment through genome streamlining and the presence or absence of 
nutrient acquisition genes are directly related to nutrient stress. We found that shifts in adaptation and 
investment strategies for nutrient uptake led to lower bias in all the regions (Figure 1, Figure 5). For 
example, this was the only model that captured the latitudinal gradient in C:P in the Indian Ocean 
(Figure 1). ATOM-gene is a nonlinear model, and predicted elevated C:P when either the N or P gene 
index is close to the max. The difference between the North Atlantic Subtropical Gyre and the North 
Indian is that the gene indices diverge more in the Subtropical North Atlantic. The P gene index is 
notably higher in the Subtropical North Atlantic than the North Indian. Thus, the nutrient limitation is 
more extreme in the Subtropical North Atlantic, compared with the North Indian. Similarly, the South 
Indian has higher C:P because the N gene index peaks there (and the same is true in a few North Pacific 
data points). Thus, the ATOM-gene model was able to incorporate a previously unknown pattern of 
nutrient gene frequencies to predict the regional shifts in C:P. 
 
The frequency of nutrient acquisition genes helped resolve variation in nutrient stress at very low 
nutrient concentrations. We observed a significant correlation between shifts in nutrient acquisition gene 
frequencies and the ambient nutrient concentration (Figure 3). This was seen for both phosphorus and 
nitrogen acquisition genes and their respective inorganic nutrient concentrations. However, the ambient 
nutrient concentration of phosphorus and especially nitrogen was below detection limit in many samples. 
Additionally, we observed higher relative gene frequencies for iron in the Subtropical Indian Ocean, 
Equatorial Pacific, and the North Atlantic in Prochlorococcus metagenomes (Figure 4a). Whereas higher 
iron stress in Indian Ocean overlaps with low macronutrient availability, high macronutrient availability 
is typical of the Equatorial Pacific and Temperate North Atlantic, as shown by N and P relative gene 
frequencies (Figure 4). Here we detected large variations in gene frequencies suggesting corresponding 
shifts in nutrient stress. Thus, metagenomic analyses across diverse ocean regions provided a high-
sensitivity quantification of nutrient stress. 
 



The frequency of Prochlorococcus acquisition genes suggested regional shifts in nutrient stress by both a 
single and multiple nutrients. As seen in earlier studies, we detected a high frequency of P acquisition 
genes for Prochlorococcus in the subtropical North Atlantic Ocean below 39˚N, where phosphate 
concentrations were low (Figure 4A)[41]. This included genes responsible for the regulation and uptake 
of dissolved organic P, arsenate detoxification, and several of unknown function. We also saw elevated P 
acquisition genes for Prochlorococcus in the north Indian Ocean and Bay of Bengal (between 1˚ and 
17˚N). In contrast, P acquisition genes were low in all samples from the Pacific Ocean and south Indian 
Ocean. Prochlorococcus N acquisition genes showed a different biogeographical pattern. Urea acquisition 
genes were frequent in all samples with the exception of the high nitrate areas in the equatorial Pacific 
Ocean and temperate waters in the North Atlantic Ocean. Nitrite and nitrate acquisition genes were 
frequent throughout the Indian Ocean (with the exception of samples on the equator) and in the northern 
part of the Pacific Ocean transect. However, nitrite and nitrate genes were less common in the North 
Atlantic subtropical waters. Iron acquisition genes were common in equatorial Pacific Ocean. Thus, we 
detected a clear biogeography of genes involved in N, P, and Fe in Prochlorococcus. 
  
We observed a partial correspondence between the frequency of nutrient acquisition genes in 
Prochlorococcus and Synechococcus suggesting some lineage-specific adaptations to specific ocean 
environmental conditions (Figure 4A). Overall, the regional shifts in Prochlorococcus and Synechococcus 
genome content were significantly correlated (Mantel test R = 0.65, p-value < 0.001). In Synechococcus, 
there was also a high frequency of P acquisition genes in the subtropical North Atlantic Ocean and north 
Indian Ocean (Figure 4C). However, it appeared that the Indian Ocean area with high P acquisition genes 
spread further south in Synechococcus compared to Prochlorococcus. N acquisition genes were also 
frequent in nearly all samples for Synechococcus, whereas the genes were more geographically restricted 
in Prochlorococcus. There was some evidence of increase in Synechococcus iron acquisition genes in the 
equatorial Pacific Ocean, but the pattern was not strong. This method is favorable within the relatively 
stable environments inhabited by Synechococcus and Prochlorococcus leading to the selection for 
specialized ecotypes. The gene index results are more distinct for Prochlorococcus (Figure 4), likely due to 
their higher degree of genomic streamlining. Thus, the biogeographical shifts in nutrient acquisition 
genes were more pronounced for Prochlorococcus compared to Synechococcus. 
 
The variation in nutrient acquisition genes may be linked to shifts in stress by one or more nutrients 
(Figure 4b,d; Supplementary Figure 4). The frequency of nutrient acquisition genes suggested P stress but 
also some N co-stress in the western North Atlantic Ocean and north Indian Ocean. The North Pacific 
Ocean and south Indian Ocean appeared to be N stressed. The equatorial Pacific Ocean was iron stressed. 
However, the gene frequencies suggested that a brief transition region around 10˚N in the North Pacific 
Ocean experienced co-stress by N and Fe. Synechococcus appeared to be stressed by N in temperate 
North Atlantic Ocean waters whereas Prochlorococcus appeared more stressed by iron. Similarly, 
Synechococcus showed evidence of P stress in parts of the south Indian Ocean but this was not seen in 
Prochlorococcus. Shifts in the relative gene frequency corresponded to shifts in clade ecotypes 
(Supplementary Figure 2). Thus, metagenomic analyses of phytoplankton populations suggested regional 
shifts in stress by one or multiple nutrients. 
 
We used additional ecosystem measurements to verify the predictions from ATOM-gene and the overall 
resource investment strategies. In the Indian Ocean, uptake kinetics for the ATOM-Gene model were 
positively correlated with observed uptake rates for nitrate, ammonium, and urea (Figure 5, 
Supplementary Table 3). The implied nutrient distributions matched our observations of increasing N 
northwards and vice versa for P into the subtropical Indian Ocean gyre. Increases in N and P uptake 
rates, cellular investment in photosynthesis and biosynthesis, and cell volume corresponded to reduced 
nitrogen stress (Supplementary Table 3). The aforementioned parameters were significantly correlated to 
higher in situ N uptake rates and lower relative N gene frequency for Prochlorococcus and 
Synechococcus. Phosphorus stress appeared to have little impact on C:P and cellular uptake traits in the 
Indian Ocean, unlike the other two basins (Supplementary Figure 5). Although P investment increased 
into the subtropical Indian Ocean gyre, there was little influence on P luxury uptake and storage 
(Supplementary Figure 10).  Supplementary Figures 8 and 9 show draws from the posterior-predictive 
distribution of C:P.  We give summaries of the posterior distribution over model parameters in 
Supplementary Tables 8 and 9, where 𝑅± = 1 suggests convergence of the Markov Chain Monte Carlo 
integrator. Supplementary Figures 6 and 7 show the posterior draws for each pair of variables. Only 
larger cells in the temperate North Atlantic exhibited P storage in the ATOM-Gene model. The small 



number of data points with metagenome information prevented tight inference of parameter values, but 
the posterior distribution favors the hypothesis that the effect of nutrient stress on cell size and ribosomal 
content is the strongest driver of C:P in the regions sampled, with smaller than expected roles for 
temperature and luxury storage. This is reflected by the posterior favoring small values of the luxury 
storage parameter and higher values of the Q10 for photosynthetic processes. Consequently, the 
interaction between N and P stress as seen in the genomic observations could be the underlying 
mechanism leading to latitudinal shifts in C:P. 
 
Discussion 
 
Linking ‘omics with global biogeochemistry is a major research challenge and opportunity [48–51]. A 
great deal of molecular data is being generated [52,53], but there is a limited current application of this 
new knowledge towards understanding large-scale changes in the Earth system [54]. Trait-based 
approaches are attractive for scaling from individual organisms to key ecosystem functions by using a 
model intermediate [55,56]. We here use this approach as an intermediate for linking genomic 
information with ocean biogeochemical processes. By quantifying the spatial variation due to differences 
in nutrient assimilation genes, we improved our predictions of C:P across three major ocean basins 
(Figure 1 and 2). The ATOM-gene model allowed for multiple nutrient indexes (N and P), where in situ 
nutrient observations were undetectable, resulting in significant improvements to the existing trait model 
[42]. Importantly, the gene index quantifies cyanobacterial adaptation to nutrient stressors in regions for 
which we have limited knowledge (e.g., the central Indian Ocean). Nutrient stress may occur through 
diffusive limitation at low ambient concentrations, the magnitude of nutrient fluxes, the ratio of nutrient 
supply, or nutrient co-limitation. Additionally, both Synechococcus and Prochlorococcus can utilize 
different P and N sources [57]. Thus, genome shifts integrate these unknowns through the selective 
pressure to retain particular genes in nutrient-poor biomes. 
 
The frequency of nutrient assimilation genes greatly improved our understanding of nutrient stress and 
elemental stoichiometry of marine communities. In particular, the results showed surprising patterns of P 
and N stress in the less studied Indian Ocean. Our results support a recent analysis of Synechococcus and 
Prochlorococcus elemental quotas, leading to a gradient of N, P, and Fe stress in the Indian Ocean [58]. 
The Bay of Bengal showed evidence of P stress but lower N:P and C:P ratios. We attribute this 
contradictory observation to an interaction between N and P stress as the upregulation of P uptake 
proteins is restricted by N stress [59]. Culture studies have shown that N and P stress interact in 
controlling the overall cellular physiology and C:N:P [5]. However, it has been a challenge to translate 
these findings to field communities. Some of this confusion originates from difficulties in constraining 
external N and possibly P sources from atmospheric deposition and N-fixation. This leads to a poorly 
constrained N:P supply ratio. It is unclear why we see evidence of increased P stress near the Bay of 
Bengal, but it is tempting to attribute it to elevated N-fixation [8,60]. Similar to recent observations of 
dissolved and particulate Fe, we saw indications of Fe stress via Prochlorococcus Fe assimilation genes in 
the Subtropical Indian Ocean gyre [58,61]. We also saw a high presence of Fe assimilation genes in 
regions with low C:P, where Synechococcus and Prochlorococcus cell abundances remained elevated [28]. 
As expected, this was seen for the equatorial Pacific HNLC region [62].  Our data also support past 
studies indicating that the subtropical North Atlantic Ocean [63] and the southern Indian Ocean [58] 
could experience some iron stress. Thus, our genomic techniques are unveiling regions, where we have a 
limited understanding of trace-metal stress. 
 
Our approach is based on an assumption of rapid adaptation leading to direct association between 
genome content and environmental conditions [64–67]. Tropical and subtropical ocean regions have fast 
bacterial turnover leading to rapid selection and genome streamlining [68]. However, environments with 
slow bacterial turnover may include ecotypes or genes that reflect past environmental conditions. 
Different lineages may also experience unique stress [69] whereas we here only analyzed the abundant 
marine Cyanobacteria. Our dataset includes few representative stations from high latitudes, where light 
or temperature may be the dominant selective factors [70,71]. In such conditions, transcriptomics or 
proteomics may be more applicable. However, these techniques suffer from their own caveats like strong 
diel cycles [72,73] or low correlation between RNA and protein expression [74,75]. Thus, the exact link 
between ‘omics measurements and biogeochemical processes needs to be tailored to the system of 
interest. 
 



‘Omics techniques can be powerful for understanding the environmental conditions experienced by 
microorganisms. This principle is also applied in other ecosystem settings. A high presence of 
Proteobacteria in the human gut may be an indicator of an imbalance in the redox potential and  
‘ecosystem’ dysbiosis [76]. Similarly, the presence of ammonia monooxygenase may be indicative of 
nitrification [77]. In many ecosystems, it can be very challenging to quantify microbial physiology and 
stress. Thus, a carefully calibrated genomic approach could become a widespread tool for understand 
microbial responses to environmental changes and the biogeochemical outcomes. 
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Figures and Tables 
 
Table 1: Mean environmental characteristics for each ocean cruise transect. Pro = Prochlorococcus, Syn = 
Synechococcus, Pmax = maximum uptake rate, Ks = half saturation PO4 concentration. BD = below 
detection and NA = not measured. Pmax (maximum uptake of PO4) and Ks (half saturation concentration 
of PO4) are calculated according to Micheaelis-Menton functional kinetics for the whole community [25]; 
Puptakei =(Pmax * [Pi]) / ([Pi] + Ks).  
 
Figure 1: Observations and predictions of seston elemental stoichiometry. In situ measurements of 
particulate organic matter C:P are shown in gray, with selected stations in black where nutrient uptake 
incubations were performed for the (a) Atlantic (b) Pacific and (c) Indian Oceans [3]. Predicted C:P is 
shown by the ATOM-Syn trait-gene model (blue) and Galbraith-Martiny [43] phosphate regression model 
(red). Additional environmental variables of temperature (green), photosynthetically active radiation 
(purple), and phosphate (orange) are shown below for the (d) Atlantic (e) Pacific and (f) Indian Oceans 
from Supplementary Table 2.  
 
Figure 2. Trait model C:P bias. Statistical results for the predicted C:P models showing (a) Coefficient of 
determination (b) residuals (log10 (predictions) – log10 (observations)) across stations where surface C:P 
measurements were taken. Red indicates a positive bias, and blue negative bias. Since the distribution of 
C:P data looks much more lognormal we plotted the bias of the log-transformed data and models, and 
computed the percentage of variance of the log-transformed data that the models explained. The 
coefficient of determination was calculated as;  
R2 = 1 – [mean(log10(observations) - log10(predictions))^2)/(mean((log10(observations)-mean(log10(observations))^2))]. 
 
Figure 3. PCA component 1 versus nutrient concentrations. In situ nutrient concentrations for phosphate 
and nitrate are plotted against the first  principle component calculated from relative gene frequencies for 
(a) Prochlorococcus phosphorus assimilation genes (R2 = 0.65, p-value < 0.001 ), (b) Synechococcus 
phosphorus assimilation genes (R2 = 0.52, p-value < 0.001, (c) Prochlorococcus nitrogen assimilation genes 
(R2 = 0.78, p-value < 0.001), and (d) Synechococcus nitrogen assimilation genes (R2 = 0.02, p-value = 0.35). 
High sensitivity phosphate measurements (filled red) were done using a MAGIC-SRP assay [32]. 
Otherwise nitrate and phosphate observations were taken using standard methods (open circles)[78]. DL 
= Detection limit.  
 
Figure 4.  Variation among relative gene frequencies between stations. Green = nitrogen, Purple = 
phosphorus, red = iron. Matrices based on normalized gene frequency are significantly correlated 
(Mantel test R = 0.65, p-value < 0.001). The heatmaps for (a) Prochlorococcus and c) Synechococcus 
cluster the relative gene frequencies along the top according to functional role for each station row. The 
Principle Component Analysis (PCA) plots for (b) Prochlorococcus and (d) Synechococcus show the 
variation among stations that is solely attributed to differences in relative gene frequencies. If the overall 
contribution of N, P, or Fe genes cluster along one direction, we have added a textbox labeled “N stress, P 



stress, or Fe Stress” to panels (b) and (d). Prochlorococcus relative gene frequencies cluster the stations 
according to these three nutrient stressors. Synechococcus relative gene frequencies cluster the stations 
mainly along two (Fe and P stress), with weak contributions from N relative gene frequencies. A red 
asterisk (*) has been added to samples deeper than 50m.  
 
Figure 5. Evaluation of nutrient stress indices against ATOM-Gene and in situ uptake parameters in the 
Indian Ocean. Relative gene frequencies of (a) nitrogen and (b) phosphorus genes is shown for 
Prochlorococcus (blue) and Synechococcus (orange-red). ATOM-Gene estimates for (c) N uptake and (d) 
P uptake normalized to cell volume are compared to the in situ parameters of (e) Absolute uptake of N 
species (nitrate-green, urea-purple ammonium-gold) and (f) the ratio of particulate organic carbon to 
phosphorus. In situ uptake rates and C:P are presented in [3,26]. Absolute uptake rates measure the 
accumulation of a substrate within particles.   
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Supplementary Figure 1: Map of transects AE1319/BVAL46 (Atlantic), NH1418 (Pacific), and 
I09 (Indian Ocean). Observations for the a) C:P ratios and b) temperature (° Celsius) are shown 
with select stations labeled. Metagenomic samples AE1319_124 and BV46_195 are located at 
same site, but collected on different transects.  
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Supplementary Figure 2: Clade abundance of (a) Prochlorococcus and (b) Synechococcus 
according to supplementary table 4.  
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Supplementary Figure 3: Total reads mapped per station. 
  



 
 
Supplementary Figure 4: Principle component analysis for stations using normalized gene 
coverages related to (a) Nitrogen, (b) Phosphorus, and (c) Iron acquisition. 
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Supplementary Figure 5: Boxplots of half saturation concentrations for phosphate in the North 
Atlantic (NA) and Pacific oceans. Average ambient phosphate concentrations are shown with an 
asterisk (*) for each region. 
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Supplementary Figure 6: Pair-plot of posterior distribution for ATOM-gene model based on 
Synechococcus gene indices. 
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Supplementary Figure 7: Pair-plot of posterior distribution for ATOM-gene model based on 
Prochlorococcus gene indices. 
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Supplementary Figure 8: Samples from posterior predictive distribution for ATOM-gene model 
based on Synechococcus gene indices. 



Supplementary Figure 9: Samples from posterior predictive distribution for ATOM-gene model 
based on Prochlorococcus gene indices. 



 
Supplementary Figure 10: Map of relative gene frequencies and ATOM-Gene model traits for 
Synechococcus (Syn) and Prochlorococcus (Pro). 
  



 
Supplementary Table 1: Particulate organic matter observations for transects I09, NH1418, 
AE1319. 

Metagenome 
SampleID Latitude Longitude Depth Datetime POC PON POP CN CP NP 
unitless [° N] [°W] [m] unitless [µmol/L] [µmol/L] [nmol/L] unitless unitless unitless 
AE1319_8 55.00 -49.00 5.00 26-Aug-2013  7.5 1.04 89.96 7.21 83.37 11.56 
AE1319_44 53.00 -46.00 25.00 27-Aug-2013  11.52 1.52 121.62 7.58 94.72 12.50 
AE1319_84 51.00 -43.00 20.00 28-Aug-2013  5.29 0.6 57.67 8.82 91.73 10.40 
AE1319_105 49.00 -40.00 5.00 29-Aug-2013  5.66 0.63 48.06 8.98 117.77 13.11 
AE1319_143 47.00 -42.00 45.00 30-Aug-2013  12.99 1.75 116.54 7.42 111.46 15.02 
AE1319_197 45.00 -45.00 40.00 31-Aug-2013  14.51 1.91 120.7 7.60 120.22 15.82 
AE1319_192 45.00 -45.00 5.00 31-Aug-2013  4.84 0.44 36.34 11.00 133.19 12.11 
AE1319_227 43.00 -47.50 20.00 01-Sep-2013  7.16 0.98 68.43 7.31 104.63 14.32 
AE1319_269 39.00 -52.50 5.00 03-Sep-2013  1.61 0.11 9.48 14.64 169.83 11.60 
AE1319_325 35.00 -57.50 5.00 05-Sep-2013  1.58 0.17 11.67 9.29 135.39 14.57 
AE1319_424 31.67 -64.17 5.00 08-Sep-2013  1.42 0.18 9.8 7.89 144.90 18.37 
BV46_195 31.67 -64.17 5.00 05-Oct-2011  nan nan 9.58 nan nan nan 
BV46_199 31.67 -64.17 30.00 05-Oct-2011  nan nan 11.91 nan nan nan 
BV46_205 31.67 -64.17 100.00 05-Oct-2011  nan nan 5.49 nan nan nan 
BV46_382 23.67 -65.07 5.00 11-Oct-2011  nan nan 5.47 nan nan nan 
BV46_386 23.67 -65.07 40.00 11-Oct-2011  nan nan 6.72 nan nan nan 
BV46_394 23.67 -65.07 120.00 11-Oct-2011  nan nan 6.24 nan nan nan 
NH1418_17 18.00 -157.00 5.00 20-Sep-2014  1.48 0.16 6 9.25 246.67 26.67 
NH1418_104 12.00 -155.22 80.00 22-Sep-2014  1.5 0.21 13.26 7.14 113.12 15.84 
NH1418_100 12.00 -155.22 20.00 22-Sep-2014  1.5 0.25 8.53 6.00 175.85 29.31 
NH1418_130 10.00 -154.52 5.00 23-Sep-2014  1.71 0.25 9.92 6.84 172.38 25.20 
NH1418_134 10.00 -154.52 50.00 23-Sep-2014  2.55 0.35 20.64 7.29 123.55 16.96 
NH1418_232 3.00 -151.74 80.00 26-Sep-2014  1.99 0.32 17.65 6.22 112.75 18.13 
NH1418_258 0.00 -150.70 50.00 27-Sep-2014  3.01 0.53 29.41 5.68 102.35 18.02 
NH1418_262 0.00 -150.70 5.00 27-Sep-2014  3.96 0.69 28.35 5.74 139.68 24.34 
NH1418_322 -3.00 -149.67 5.00 28-Sep-2014  2.63 0.42 20.06 6.26 131.11 20.94 
NH1418_328 -3.00 -149.67 80.00 28-Sep-2014  2.34 0.39 20.75 6.00 112.77 18.80 
IN231 17.00 89.80 5.00 24-Apr-2016  1.66 0.27 13.82 6.19 119.86 19.45 
IN221 14.50 89.60 5.00 22-Apr-2016  1.65 0.25 14.64 6.70 112.58 16.82 
IN213 12.70 88.50 5.00 21-Apr-2016  1.71 0.26 13.25 6.57 128.96 19.65 
IN205 10.80 87.30 5.00 20-Apr-2016  1.90 0.29 17.57 6.62 107.99 16.31 
IN176 9.50 87.10 5.00 16-Apr-2016  1.94 0.30 16.21 6.42 119.89 18.72 
IN168 8.00 88.20 5.00 16-Apr-2016  2.08 0.33 18.35 6.29 113.25 18.14 
I09_REG168 7.98 94.87 25.00 21-Mar-2016  2.06 0.31 15.33 6.73 134.44 19.91 
IN161 6.50 89.30 5.00 15-Apr-2016  2.07 0.32 17.61 6.45 117.44 18.21 
IN151 4.70 90.80 5.00 13-Apr-2016  1.93 0.30 15.31 6.37 125.80 19.90 
IN143 3.00 91.80 5.00 12-Apr-2016  2.09 0.33 16.74 6.34 124.86 19.70 
IN135 1.50 92.30 5.00 11-Apr-2016  1.81 0.31 14.86 5.86 122.09 20.87 
IN129 0.50 93.00 5.00 11-Apr-2016  1.91 0.30 17.61 6.31 108.49 17.19 
IN111 -2.20 94.10 5.00 08-Apr-2016  1.75 0.24 15.29 7.29 114.77 15.77 
IN105 -3.10 94.40 5.00 08-Apr-2016  1.92 0.29 14.24 6.68 134.91 20.28 
IN099 -4.50 94.90 5.00 07-Apr-2016  2.02 0.28 15.44 7.24 130.93 18.07 
I09_REG99 -4.53 94.87 20.00 07-Apr-2016  1.88 0.27 12.75 7.00 147.80 21.26 
IN092 -6.60 95.00 5.00 05-Apr-2016  1.70 0.27 13.31 6.32 127.69 20.22 
IN086 -8.20 95.00 5.00 05-Apr-2016  1.59 0.24 13.24 6.60 119.89 18.16 
IN078 -10.30 95.00 5.00 03-Apr-2016  1.85 0.30 14.71 6.32 125.99 20.13 
IN074 -11.40 95.00 5.00 03-Apr-2016  1.78 0.31 15.29 5.84 116.29 19.95 
IN066 -13.60 95.00 5.00 01-Apr-2016  1.54 0.26 12.85 6.04 119.96 19.91 
IN052 -17.60 95.00 5.00 30-Mar-2016  1.63 0.22 11.76 7.33 138.35 18.92 
I09_REG40 -20.76 95.00 20.00 29-Mar-2016  1.59 0.23 9.22 6.81 172.49 25.43 
IN040 -20.80 95.00 5.00 29-Mar-2016  1.74 0.22 12.48 8.09 139.77 17.33 
IN027 -24.70 95.00 5.00 26-Mar-2016  1.68 0.24 10.32 7.11 162.53 22.85 
IN021 -26.50 95.00 5.00 25-Mar-2016  1.68 0.23 11.17 7.64 150.59 20.21 
IN017 -28.30 95.00 5.00 25-Mar-2016  1.74 0.20 11.74 8.59 148.37 17.32 

 
  



Supplementary Table 2: Inputs to ATOM models for transects I09, NH1418, AE1319. Temp = 
temperature, PAR = photosynthetically active radiation, PCA1 = first principle component in 
Sup. Fig. 4, P = phosphorus, N = nitrogen, Syn = Synechococcus, and Pro = Prochlorococcus. 

Metagenome 
ID 

Station 
ID 

Temp. 
Celsius 

PAR 
µmolPhotons/m2/s 

PO4 
mol/L 

NO3 
mol/L 

P-gene 
PCA1 Syn 

N-Gene 
PCA1 Syn 

P-Gene 
PCA1 Pro 

N-Gene 
PCA1 Pro 

AE1319_8 4AE1319 10.38 118.27 1.70E-07 8.00E-07 -0.86 -0.01 -0.85 -1.66 

AE1319_44 5AE1319 11.73 124.44 1.70E-07 8.00E-07 -0.88 0.16 -0.67 -1.43 

AE1319_84 6AE1319 13.23 131.75 7.00E-08 5.00E-09 -0.57 -0.30 -0.67 -1.40 

AE1319_105 7AE1319 15.7 150.15 1.10E-07 5.00E-09 -0.51 -0.34 0.34 -0.98 

AE1319_143 8AE1319 6.82 158.45 1.50E-07 5.00E-09 -0.64 -0.29 -0.63 -1.21 

AE1319_192 9AE1319 13.53 174.31 1.10E-07 5.00E-09 -0.55 -0.15 0.22 -1.28 

AE1319_227 10AE1319 11.19 138.66 1.60E-07 5.00E-09 -0.51 0.07 -0.71 -1.41 

AE1319_269 12AE1319 26.29 154.08 5.00E-09 5.00E-09 1.03 -0.60 2.13 0.08 

AE1319_325 14AE1319 26.58 146.34 5.00E-09 5.00E-09 0.82 -0.41 1.96 0.28 

AE1319_424 16AE1319 27.93 170.15 5.00E-09 5.00E-09 0.94 -0.84 1.94 0.02 

NH1418_17 2NH1418 27.7 213.95 1.84E-07 1.00E-08 -0.26 0.82 -0.79 1.31 

NH1418_100 5NH1418 28.4 198.61 1.94E-07 1.00E-08 -0.35 0.71 -1.01 0.48 

NH1418_130 7NH1418 24.45 157.19 2.62E-07 2.10E-07 -0.54 0.72 -1.00 -0.31 

NH1418_262 14NH1418 27.05 226.84 4.41E-07 4.41E-06 -0.46 0.31 -0.89 -1.41 

NH1418_322 16NH1418 27.1 233.55 5.08E-07 5.74E-06 -0.62 0.13 -0.85 -1.55 

IN231 194I09 29.3896 237.12 5.00E-09 5.00E-09 0.06 0.17 0.44 0.62 

IN221 189I09 30.1723 241.27 5.00E-09 5.00E-09 0.59 -0.18 1.54 0.38 

IN213 185I09 30.7808 244.49 5.00E-09 5.00E-09 0.37 -0.24 1.36 0.49 

IN205 181I09 31.1124 243.14 5.00E-09 5.00E-09 0.51 -0.33 1.24 0.36 

IN176 166I09 30.8228 237.93 5.00E-09 5.00E-09 0.50 -0.47 1.65 0.87 

IN168 162I09 31.1195 236.36 5.00E-09 5.00E-09 0.38 -0.53 0.13 0.53 

IN161 158I09 30.8352 221.52 5.00E-08 5.00E-09 0.21 -0.39 -0.41 0.61 

IN151 153I09 30.5958 209.91 2.00E-08 5.00E-09 0.30 -0.35 -0.66 0.64 

IN143 149I09 30.5419 179.87 2.00E-08 5.00E-09 0.43 -0.51 0.09 0.60 

IN135 145I09 30.6921 176.72 1.00E-08 5.00E-09 0.36 -0.40 0.78 -0.13 

IN129 142I09 30.5922 196.79 1.00E-08 5.00E-09 0.60 -0.59 1.12 -0.09 

IN111 133I09 30.6844 202.49 3.00E-08 5.00E-09 0.32 -0.37 0.03 0.47 

IN105 130I09 30.7045 184.59 5.00E-09 5.00E-09 0.47 -0.28 -0.47 0.38 

IN099 127I09 30.4647 202.59 5.00E-09 5.00E-09 0.10 -0.19 -0.69 1.06 

IN092 123I09 30.4743 181.97 3.00E-08 5.00E-09 -0.16 0.05 -0.68 1.15 

IN086 120I09 30.7553 181.54 4.00E-08 5.00E-09 0.10 -0.17 -0.70 1.11 

IN078 116I09 30.2587 171.33 6.00E-08 5.00E-09 -0.16 0.64 -0.75 1.24 

IN074 114I09 29.7976 178.74 5.00E-08 5.00E-09 -0.14 0.76 -0.71 1.23 

IN066 110I09 28.8714 160.28 5.00E-08 5.00E-09 -0.20 0.24 -0.79 1.19 

IN052 103I09 27.189 215.61 5.00E-08 5.00E-09 -0.50 0.50 -0.94 1.13 

IN040 97I09 26.2812 199.17 8.00E-08 5.00E-09 -0.42 0.85 -0.88 0.59 

IN027 90I09 24.1685 206.61 7.00E-08 5.00E-09 -0.42 0.98 -0.95 1.52 

IN021 87I09 24.2902 186.32 9.00E-08 5.00E-09 -0.54 0.86 -0.91 1.14 

IN017 84I09 22.3724 199.43 7.00E-08 5.00E-09 0.00 0.75 -0.98 1.04 



Supplementary 3: Correlations between in situ observations, gene frequencies, and ATOM-Gene 
properties. Significant correlations (p-value < 0.05) are indicated by a star (*), with negative 
relationships in blue and positive in red. 
 

R Correlation Coefficient 
N gene 
freq Pro 

P gene 
freq Pro 

N gene 
freq Syn 

P gene 
Freq Syn 

NO3 
rho 

Urea 
rho 

NH4 
rho CPObs 

CP Literature T-regression model 
[mol C/mol P] -0.55* 0.74* -0.77* 0.79* 0.55* 0.67* 0.67* -0.62* 

CP Literature Trait model 
[mol C/mol P] -0.53* 0.74* -0.77* 0.75* 0.51* 0.64* 0.65* -0.63* 

CP P-regression model 
[mol C/mol P] 0.53* -0.72* 0.79* -0.79* -0.56* -0.68* 0.69* 0.64* 

CP Pro Gene model 
[mol C/mol P] 0.78* -0.48* 0.55* -0.64* -0.51* -0.55* 0.44* 0.26 

CP ATOM Syn Gene model 
[mol C/mol P] 0.44* -0.47* 0.73 -0.61 -0.64 -0.66 -0.70 0.67* 

CP T-regression model 
[mol C/mol P] -0.37 0.54* -0.87* 0.63* 0.67* 0.63* 0.81* -0.80* 

CP Literature T-regression mode 
[mol C/mol P]l -0.38 0.54* -0.87* 0.64* 0.67* 0.63* 0.81* -0.80* 

Biosynthesis investment Pro  -0.80* 0.51* -0.59* 0.67* 0.54* 0.57* 0.47* -0.29 
Biosynthesis investment Syn -0.44* 0.48* -0.75* 0.62* 0.66* 0.67* 0.71* -0.67* 

Photosynthesis investment Pro -0.83* 0.49* -0.73* 0.73* 0.69* 0.60* 0.68* -0.47* 
Biosynthesis investment Syn -0.44* 0.42* -0.77* 0.61* 0.70* 0.62* 0.77* -0.71* 

N or P limitation Pro -0.52* 0.86* -0.37 0.49* 0.19 0.35 0.32 -0.46 
N or P limitation Syn -0.67* 0.68* -0.77* 0.87* 0.75* 0.67* 0.75* -0.58 
N uptake affinity Pro 

[L/s] -0.82* 0.43* -0.69* 0.72* 0.69* 0.52* 0.65* -0.34* 
N uptake affinity Syn 

[L/s] -0.34 0.25 -0.65* 0.46* 0.67* 0.55* 0.69* -0.50* 
N uptake rate Pro 

[mol N/s] -0.68* 0.18 -0.44* 0.49* 0.46* 0.23 0.42* -0.05 
N uptake rate Syn 

[mol N/s] -0.05 -0.09 -0.28 0.05 0.37 0.25 0.38 -0.21 
P uptake affinity Pro 

[L/s] -0.84* 0.45* -0.69* 0.73* 0.69* 0.52* 0.65* -0.35 
P uptake affinity Syn 

[L/s] -0.36 0.27 -0.66* 0.48* 0.68* 0.56* 0.70* -0.51* 

P uptake investment Pro 0.82* -0.45* 0.66* -0.69* -0.63* -0.57* 0.58* 0.35 
P uptake investment Syn 0.82* -0.45* 0.66* -0.69* -0.63* -0.57* 0.58* 0.35 
P quota (non-luxury) Pro 

[mol P/cell] -0.71* 0.22 -0.48* 0.54* 0.51* 0.26 0.48* -0.11 
P quota (non-luxury) Syn 

[mol P/cell] -0.07 -0.08 -0.30 0.08 0.40 0.27 0.40 -0.21 
P uptake rate Pro 

[mol P/s] -0.68* 0.18 -0.44* 0.49* 0.45* 0.23 0.42 -0.05 
P uptake rate Syn 

[mol P/s] -0.05 -0.09 -0.28 0.05 0.37 0.25 0.38 -0.21 
Cell volume Pro 

[(mu m)^3] -0.74* 0.27 -0.47* 0.54* 0.54* 0.26 0.51 -0.15 
Cell volume Syn 

[(mu m)^3] -0.13 -0.05 -0.36 0.14 0.47 0.32 0.46 -0.25 
Cell radius Pro 

[mu m] -0.81* 0.38 -0.61* 0.66* 0.62* 0.46* 0.57* -0.25 
Cell radius Syn 

[mu m] -0.33 0.23 -0.62* 0.43* 0.65* 0.54* 0.66* -0.48* 



Supplementary Table 4: Genomes and clade assignments for Prochlorococcus and 
Synechococcus 

Taxa Genome Clade 
Synechococcus GEYO Syn.CRD1 
Synechococcus MITS9508 Syn.CRD1 
Synechococcus MITS9509 Syn.CRD1 
Synechococcus UW179A Syn.CRD1 
Synechococcus CC9311 Syn.I 
Synechococcus UW179B Syn.I 
Synechococcus WH8016 Syn.I 
Synechococcus WH8020 Syn.I 
Synechococcus CC9605 Syn.II 
Synechococcus N19 Syn.II 
Synechococcus N32 Syn.II 
Synechococcus REDSEA_S02_B4 Syn.II 
Synechococcus UW86 Syn.II 
Synechococcus WH8109 Syn.II 
Synechococcus WH8102 Syn.III 
Synechococcus BL107 Syn.IV 
Synechococcus CC9902 Syn.IV 
Synechococcus RS9916 Syn.IX 
Synechococcus NKBG042902 Syn.Other 
Synechococcus PCC7335 Syn.Other 
Synechococcus CC9616 Syn.UC-A 
Synechococcus KORDI_100 Syn.UC-A 
Synechococcus WH7805 Syn.VI 
Synechococcus RS9917 Syn.VIII 
Synechococcus KORDI_49 Syn.WPC1 
Synechococcus KORDI_52 Syn.WPC2 
Synechococcus CB0101 Syn.X 
Synechococcus CB0205 Syn.X 
Synechococcus GFB01 Syn.X 
Synechococcus RCC307 Syn.X 
Synechococcus WH5701 Syn.X 
Synechococcus UW106 Syn.XV 
Synechococcus UW69 Syn.XV 
Synechococcus UW105 Syn.XVI 
Synechococcus UW140 Syn.XVI 
Prochlorococcus EQPAC1 HLI 
Prochlorococcus MED4 HLI 
Prochlorococcus MIT9515 HLI 
Prochlorococcus AS9601 HLII 
Prochlorococcus GP2 HLII 
Prochlorococcus MIT0604 HLII 
Prochlorococcus MIT9123 HLII 
Prochlorococcus MIT9201 HLII 
Prochlorococcus MIT9215 HLII 
Prochlorococcus MIT9301 HLII 
Prochlorococcus MIT9302 HLII 
Prochlorococcus MIT9312 HLII 
Prochlorococcus MIT9314 HLII 
Prochlorococcus MIT9322 HLII 
Prochlorococcus MIT9401 HLII 
Prochlorococcus SB HLII 
Prochlorococcus SCGCAAA795_I06 HLII 
Prochlorococcus SCGCAAA795_I15 HLII 
Prochlorococcus SCGCAAA795_M23 HLII 
Prochlorococcus UH18301 HLII 
Prochlorococcus HNLC1 HLIII-IV 
Prochlorococcus HNLC2 HLIII-IV 
Prochlorococcus RS50 HLII 
Prochlorococcus XMU1401 HLII 
Prochlorococcus XMU1403 LLI 
Prochlorococcus XMU1408 LLI 
Prochlorococcus MIT0801 LLI 
Prochlorococcus NATL1A LLI 
Prochlorococcus NATL2A LLI 
Prochlorococcus PAC1 LLI 
Prochlorococcus MIT0601 LLII-III 
Prochlorococcus MIT0602 LLII-III 
Prochlorococcus MIT9211 LLII-III 
Prochlorococcus SS120 LLII-III 
Prochlorococcus MIT0701 LLIV 
Prochlorococcus MIT1312 LLIV 
Prochlorococcus MIT1313 LLIV 
Prochlorococcus MIT1318 LLIV 
Prochlorococcus MIT1327 LLIV 
Prochlorococcus MIT1342 LLIV 
Prochlorococcus MIT9303 LLIV 
Prochlorococcus MIT9313 LLIV 

  



 
 
Supplementary Table 5: Descriptions, values, and units of fixed model parameters. 

 

Parameter Description Units Value

DN Di↵usivity of Nitrate at 25� 10�3m2/hr 1.6⇥ 10�9

DP Di↵usivity of Phosphate at 25� 10�3m2/hr 1.6⇥ 10�9

Q10,D Q10 for di↵usivity 1.5

Q10,k Q10 for biosynthesis 2.0

pdry Dry mass fraction of the cell 0.47

PDNA Phosphorus mass fraction in DNA gP/g 0.095

Prib Phosphorus mass fraction in ribosomes gP/g 0.047

Nprot Nitrogen mass fraction in proteins gN/g 0.16

NDNA Nitrogen mass fraction in DNA gN/g 0.16

Nrib Nitrogen mass fraction in ribosomes gN/g 0.16

Cprot Carbon mass fraction in proteins gC/g 0.53

Clipid Carbon mass fraction in lipids gC/g 0.76

CDNA Carbon mass fraction in DNA gC/g 0.36

molP Molar mass of Phosphorus g/mol 31.0

molN Molar mass of Nitrogen g/mol 14.0

molC Molar mass of Carbon g/mol 12.0

fprot Protein fraction of cell membranes 0.25

fprotL Protein fraction of light harvesting apparatus 0.70

�S Specific Carbon cost of synthesis gC/gC 0.67

DN Di↵usivity of Nitrate at 25� 10�3m2/hr 1.6⇥ 10�9

DP Di↵usivity of Phosphate at 25� 10�3m2/hr 1.6⇥ 10�9

Q10,D Q10 for di↵usivity 1.5

Q10,k Q10 for biosynthesis 2.0

pdry Dry mass fraction of the cell 0.47

PDNA Phosphorus mass fraction in DNA gP/g 0.095

Prib Phosphorus mass fraction in ribosomes gP/g 0.047

Nprot Nitrogen mass fraction in proteins gN/g 0.16

NDNA Nitrogen mass fraction in DNA gN/g 0.16

Nrib Nitrogen mass fraction in ribosomes gN/g 0.16

Cprot Carbon mass fraction in proteins gC/g 0.53

Clipid Carbon mass fraction in lipids gC/g 0.76

CDNA Carbon mass fraction in DNA gC/g 0.36

molP Molar mass of Phosphorus g/mol 31.0

molN Molar mass of Nitrogen g/mol 14.0

molC Molar mass of Carbon g/mol 12.0

fprot Protein fraction of cell membranes 0.7

�S Specific Carbon cost of synthesis gC/gC 0.67



Supplementary Table 6: Prior probability distribution and model parameter description for 
ATOM-gene 

 
  

Parameter Description Units Prior

Q10,photo Q10 of photosynthesis Unif(1.0, 2.0)

↵E Ribosome fraction of synthetic apparatus Unif(0.3, 1.0)

↵S Radius at which cell is all periplasm and membrane µm Unif(0.15, 0.50)

kST0 Specific Synthesis rate of synthetic apparatus at 25� 1/hr Unif(0.01, 0.35)

�DNA DNA fraction of cell Unif(0.0, 0.05)

Amin Minimal allocation to periplasmic uptake proteins Unif(0.0, 1.0)

� Mass fraction of other structural components Unif(0.1, 0.3)

µc Growth cuto↵ above which luxury storage does not occur 1/day Unif(0.0, 1.0)

fstor Strength of luxury P storage L/molC Unif(0.0, 5⇥ 104)

N0L Intercept in gene-N prediction model log10(molN/L) Unif(�7,�5)

P0L Intercept in gene-P prediction model log10(molP/L) Unif(�8,�6)

CN Relationship between N-genes and N availability log10(molN/L) Unif(1, 4)

CP Relationship between P-genes and P availability log10(molP/L) Unif(1, 4)



 
Supplementary Table 7: Model comparison using information criteria derived from leave-one-
out cross validation (loo-cv), calculated using Pareto Smoothed Importance Sampling (Vehtari 
et. al. 2017). Lower numbers suggest better out of sample performance. P_waic estimates 
effective number of model parameters. 

 
  

Model Rank waic p waic weight se

Syn. Genes 1 -36.3739 7.04761 0.95492 14.225

Pro. Genes 2 -21.788 5.098 0.0255918 12.0595

T. Reg 3 -17.067 3.7877 0.0151752 13.9073

P. Reg 4 -12.0807 3.6576 0.0028125 14.5828

Trait Nutrient 5 -11.0926 3.64052 0.0015 13.8015



Supplementary Table 8: Fit summary for ATOM-gene model based on Synechococcus gene 
indices. 

 

Parameter Mean semean sd 2.5% 25% 50% 75% 97.5% neff R̂

Q10Photo 1.71 0.0008 0.21 1.20 1.59 1.74 1.87 1.99 68115 1.00

↵E 0.58 0.0009 0.20 0.31 0.40 0.55 0.73 0.96 48519 1.00

fStor 3.87 0.012 3.01 0.12 1.08 3.23 6.37 9.62 61137 1.00

�PC 0.17 0.00009 0.022 0.14 0.16 0.17 0.19 0.22 67848 1.00

↵S 0.17 0.0003 0.074 0.10 0.12 0.15 0.20 0.38 83546 1.00

�DNA 0.033 0.00005 0.013 0.0038 0.025 0.037 0.044 0.049 83496 1.00

� 0.20 0.0002 0.057 0.11 0.16 0.21 0.25 0.30 109790 1.00

Amin 0.48 0.0009 0.30 0.019 0.21 0.47 0.74 0.97 101914 1.00

µC 0.33 0.0012 0.25 0.013 0.13 0.27 0.47 0.90 39307 1.00

N0L -5.82 0.0018 0.50 -6.82 -6.19 -5.79 -5.41 -5.04 77370 1.00

P0L -6.44 0.0012 0.33 -7.21 -6.65 -6.38 -6.17 -6.02 79733 1.00

CProN 1.53 0.0014 0.38 1.02 1.22 1.47 1.78 2.37 75134 1.00

CProP 1.21 0.00057 0.17 1.01 1.07 1.16 1.30 1.61 83768 1.00



Supplementary Table 9: Fit summary for ATOM-gene model based on Prochlorococcus gene 
indices. 

 

Parameter Mean semean sd 2.5% 25% 50% 75% 97.5% neff R̂

Q10photo 1.68 0.00 0.22 1.16 1.54 1.71 1.86 1.99 40283 1.00

↵E 0.59 0.00 0.19 0.31 0.42 0.57 0.75 0.96 52962 1.00

fstor 3.75 0.01 2.95 0.07 1.07 3.11 6.12 9.57 58790 1.00

�CP 0.14 0.00 0.02 0.11 0.13 0.14 0.15 0.18 63347 1.00

↵S 0.24 0.00 0.11 0.10 0.15 0.22 0.31 0.47 88589 1.00

�DNA 0.03 0.00 0.01 0.00 0.02 0.04 0.04 0.05 93835 1.00

� 0.20 0.00 0.06 0.11 0.15 0.20 0.25 0.30 117586 1.00

Amin 0.47 0.00 0.30 0.02 0.20 0.46 0.73 0.97 107015 1.00

µC 0.43 0.00 0.27 0.02 0.19 0.39 0.65 0.95 26373 1.00

N0L -6.07 0.00 0.54 -6.94 -6.52 -6.10 -5.63 -5.08 75875 1.00

P0L -6.90 0.00 0.52 -7.84 -7.31 -6.91 -6.47 -6.05 35628 1.00

CsynN 2.27 0.00 0.71 1.11 1.71 2.22 2.79 3.72 65479 1.00

CsynP 1.73 0.00 0.57 1.03 1.28 1.60 2.07 3.09 34158 1.00
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