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Main Text

Summary

Linking ‘omics measurements with biogeochemical cycles is a widespread challenge in microbial
community ecology. Here, we propose applying genomic adaptation as ‘biosensors’ for microbial
investments to overcome nutrient stress. We then integrate this genomic information with a trait-based
model to predict regional shifts in the elemental composition of marine plankton communities. We
evaluated this approach using metagenomic and particulate organic matter samples from the Atlantic,
Indian, and Pacific Ocean. We find that our genome-based trait-model significantly improves our
prediction of particulate C:P (carbon : phosphorus) across ocean regions. Furthermore, we detect
previously unrecognized ocean areas of iron, nitrogen, and phosphorus stress. In many ecosystems, it can
be very challenging to quantify microbial stress. Thus, a carefully calibrated genomic approach could
become a widespread tool for understand microbial responses to environmental changes and the
biogeochemical outcomes.

Introduction

Linking genomics and other ‘omics measurements with biogeochemical cycles is a widespread challenge
in microbial community ecology. Currently, most ‘omics observations are used to quantify shifts in
diversity and functional potential. In contrast, we rarely use microbial ‘omics data to understand and
constrain large-scale energy or nutrient fluxes. This lack of convergence between microbial ‘omics
information and ecosystem or global models may limit our ability to predict future changes to global
biogeochemical cycles.

It is well-established that the cellular and community regulation of elemental requirements and
composition (i.e., carbon : nitrogen : phosphorus, C:N:P) are important for linking the global carbon and
nutrient cycles [1]. There is an intense debate about the interaction between microbial diversity and
environmental changes in regulating C:N:P for both terrestrial and aquatic environments [1,2]. The
chemical composition of a cell is affected by many environmental factors, but nutrient availability is
emerging as central [3]. Nutrient availability impacts the elemental composition of a community in
multiple ways. Physiologically, the overall nutrient level impacts the growth rate [4]. In addition, cells are
sensitive to the supply ratio of N vs. P (and other nutrients) relative to the biomass ratio [5]. Microbial
lineages can also have unique resource requirements and thus experience a shared environment
differently at a physiological level. For example, the marine cyanobacterium Prochlorococcus appears to
have a lower P requirement compared to larger phytoplankton [6] and co-existing diatoms can have
unique N:P [7]. Thus, the interaction between microbial diversity and nutrient stress plays a complex role
in regulating ecosystem C:N:P.

It is a challenge to define and quantify the nutritional environment experienced by microorganisms. First,
the concentrations of inorganic phosphorus and nitrogen are commonly below detection limits in many
marine environments [8]. Second, most microorganisms can utilize multiple alternative forms of nutrients
[9-12]. Ammonium is energetically the most favored form of nitrogen. When ammonium is in low
supply, microorganisms can shift in some order to urea, nitrate, or organically bound nitrogen [13]. There
are several unknowns associated with the use of alternative resources. We rarely quantify the
concentration and chemical form of alternative nutrients or the chemical nature of organically bound N
or P. Either assumptions are made about what substrate microorganisms are using, or there are
difficulties obtaining isotopically labelled compounds for more complex alternative nutrient sources
making it a challenge to evaluate their role. Furthermore, the resource costs associated with the use of
many alternative nutrients are broadly unknown, leading to ill-defined trade-offs for nutrient
assimilation. For example, cells need to invest N when upregulating acquisition proteins leading to trade-
offs between nutrient investments and uptake [14]. Finally, there is variation among individual lineages
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in the extent they can rely on alternative nutrient forms [15]. Thus, it is currently impossible to predict
microbial nutrient use and associated biogeochemical roles even with a perfect chemical characterization
of an environment.

Marine microorganisms show clear genomic evidence for adaptation to specific nutritional environments
through gene gain and loss [16-18]. Such genomic changes reflect a shift from simple to more complex
nutrient forms under limiting conditions. This pattern has been detected in many microorganisms but is
clearly illustrated in marine cyanobacteria. In regions with a replete inorganic phosphate supply,
Prochlorococcus genomes mainly contain transporters directly associated with inorganic phosphate [19].
However, Prochlorococcus adapts to low phosphate supply via the gain of genes associated with
regulation and the use of alternative forms. In regions with severe P stress, Prochlorococcus genomes
contain genes for alkaline phosphate to cleave off phosphate from organic molecules [20,21]. Here,
alkaline phosphatase and a few other proteins can be highly induced to utilize organic P as an alternative
P source [19,22]. Prochlorococcus adapts to N stress in a parallel fashion, whereby cells from high N areas
only contain genes for ammonium uptake [23]. In regions with stronger N stress, Prochlorococcus
genomes sequentially include genes for urea, nitrite and ultimately nitrate assimilation. Thus, the genome
content of Prochlorococcus (and other marine microorganisms) closely corresponds to the underlying
environmental conditions and thereby describes the cellular strategies for nutrient acquisition [24].

We propose using genomic shifts among microbial communities as a ‘biosensor’ for in situ nutritional
environments in order to improve predictions of C:N:P variability across ocean regions. Specifically, we
combine the distribution of genes with a trait model to simulate cellular investment strategies and predict
C:N:P. We assume that genome streamlining in Cyanobacteria will lead to clear nutrient investment
trends. However, increasing cell genomes sizes in the larger Cyanobacteria, Synechococcus, reveals a
more generalist lifestyle. We show that in comparison to both traditional abiotic and common trait
models, the incorporation of nutrient trait variation quantified using metagenomics greatly improves our
ability to predict shifts in C:N:P. This work illustrates how we can use “omics observations to improve our
understanding of global biogeochemical cycles in ways that would be challenging to achieve with abiotic
characterizations alone.

Methods

Sample collection

Seawater samples were collected from the western Atlantic Ocean (AE1319 — Aug/Sep 2013, BV46 — Oct
2011), central Pacific Ocean (NH1418 — Sept 2014), and the eastern Indian Ocean (IO9N —Mar /Apr 2016)
(Supplementary Figure 1; Supplementary Table 1). On each cruise samples for DNA, flow cytometry,
particulate organic matter, uptake rate kinetics, and nutrients were collected as described previously
[3,25-28]. Fifty-four stations were selected for metagenomics analysis where these corresponding
measurements were taken. Select data is already available on BCO-DMO (uptake rate kinetics, nutrient
concentrations, cell abundances, and particulate elemental concentrations) for the Atlantic AE1319 and
BV46 (https: / / www.bco-dmo.org /project/2178) and Indian Ocean I09N cruises (https:/ /www.bco-
dmo.org/project/628972). Results have previously been reported describing the cyanobacterial diversity
[28,29], cell quotas and abundances [26,27], uptake rate kinetics [25,26], and particulate organic matter
ratios [3] along several transects.

Particulate organic matter

All particulate organic matter samples for carbon, nitrogen and phosphorus were collected on pre-
combusted (4 hours at 500°C) GF/F filters with a nominal pore size of 0.7 pm. A nylon mesh prefilter
with a pore size of 30 um was used to remove rarer biomass to remove larger plankton and particles. POP
filters were rinsed with 0.17M Na.SO. at time of collection to remove residual dissolved organic
phosphorus. All filters were stored frozen until analysis in lab. POC/PON samples were measured using
a Flash 1112 EA elemental analyzer (Thermo Scientific, Waltham, MA, USA) for the 109 transect against
an Atropine (C.H.NO,) standard curve (range 0.2-1.5 mg). For the NH1418, AE1319, and BV46 transects
POC/PON samples were measured on either Control Equipment 240-XA or 440-XA elemental analyzer
using acetanilide as a standard [30]. POP samples were analyzed using an ash /hydrolysis colorimetric
method described previously [31]. Briefly, 2 mL of 0.017M MgSO. was added to the filter and KH.PO.

standards in acid-washed scintillation vials and dried overnight at 90°C. The filters were exposed to high



temperatures 500°C for 2 hours and acidified in 0.2M HCL at 90°C. After a mixed reagent was added, the
samples were analyzed on a spectrophotometer at 885nm.

Uptake rate kinetics

On the Atlantic (AE1319, BV46) and Pacific (NH1418) Ocean transects, phosphate uptake rate kinetics
were taken for whole community and taxa-specific groups (e.g. Synechococcus & Prochlorococcus) using
methods previously described [25]. Incubations were performed using 10 mL seawater aliquots within
3°C of ambient temperature during time of collection (~23°C). Kinetics experiments for phosphate were
performed with increasing DIP additions up to 100nM, and ended at a final concentration of 100uM.

On the Indian Ocean GO-SHIP transect (I09N), whole community bottle incubations were performed for
uptake of "“N-labeled ammonia, urea, and nitrate [26]. The incubations were performed in 2L
polycarbonate bottles over a 6-hr period at ambient seawater temperature. N incubations were mixed to a
final concentration of 0.03uM, which is below the detection limit and reflective of the N-limiting
conditions throughout the I09N transect.

Cell abundances using flow cytometry

Samples for flow cytometry and cell sorting were collected previously and are presented elsewhere [26—
28]. Briefly, the samples were sorted using a FACSJazz or Influx flow cytometer (BD, Franklin Lakes, NJ,
USA). Samples were preserved using a 0.5% paraformaldehyde solution (final concentration), kept in the
dark for 1 hour to fix at 5°C, and then stored frozen at -80°C until analysis. Populations of Synechococcus
were determined with a gate in orange (585nm), Prochlorococcusbased on forward scatter and red
fluorescence.

Nutrients

For the NH1418, AE1319, and BV46 cruises, phosphate was measured using the MAGIC-SRP high
sensitivity method [32]. Nitrate was measured as using a cadmium reduction assay as previously
described [28].

Nutrients data for the I09N cruise were provided by Jim Swift/SIO and Susan Becker/SIO and are
available at https: / /cchdo.ucsd.edu.

Metagenomics — library and sequencing

For DNA, 4-10 L seawater samples were collected with a 0.22 ym Sterivex filter and preserved with Lysis
Buffer (50 mM Tris -HCI pH 7.6, 20 mM EDTA pH 8.0, 400 mM NaCl, 0.75 M sucrose) and frozen at -80°C
until further processing. Whereas a GF/D (2.7 um nominal pore size) glass fiber prefilter was used for all
Pacific and Atlantic sites [28], no prefilter was used for DNA collections for Indian Ocean sites. As a
minor percentage of the total community composed of eukaryotes [26], we assumed this was an
acceptable comparison. However, it is possible that we are missing particle associations greater than 2.7
pm in the Atlantic and Pacific Ocean. DN A was extracted as described previously [28,33,34] and diluted
(Atlantic/Pacific: 0.5ng/ul, Indian: Ing/ul) for sequencing. Metagenomic libraries were prepared using
Nextera Library Prep Kit (Illumina, San Diego, CA) with a modified PCR mixture. 1 ul was 0.5-1ng of
DNA was tagmented using the Nextera DNA Prep Kit tagmentation enzyme and incubated for 10
minutes at 55°C. The Nextera XT barcodes were annealed to metagenome fragments using the following
PCR protocol. For PCR, we used 20l of a master mix containing 0.5 uL Phusion High Fidelity buffer
(New England Biolabs, Ipswich, MA), 0.5 uL dNTPs (New England Biolabs, Ipswich, MA), 0.25 uL
Phusion High Fidelity polymerase (New England Biolabs, Ipswich, MA), and 14.25 uL of PCR water.
Equimolar samples were pooled and the quality was checked and quantified using a Bioanalyzer
(Agilent, Santa Clara, CA). The pooled library was sequenced on an HiSeq - 4000 (Illumina, San Diego,
CA) producing paired end reads (2 x 150 bp). Low quality reads and adapters were removed using
trimmomatic 0.35 [35] with a sliding window of 4:15 and minimum length set to 36. PhiX was filtered out
using BBduk2 tool BBMap (BBMap - Bushnell B. - sourceforge.net/projects/bbmap/, k = 31, hdist = 1).
Sequences were aligned and mapped to a curated reference database (Supplementary Table 4) using
Bowtie2 [36] with the following settings; --local -D 15 -R 2 -L 15 -N 1 --gbar 1 --mp 3. High quality contigs
were assembled and processed with Anvi’o [37]. Pangenome gene clusters were identified using the
DIAMOND algorithm [38] and summarized in Anvi'o. Metagenomes are available through BioProject
(SRA PRJNA598881) at the following link: https:/ /www.ncbi.nlm.nih.gov/sra/PRINA598881.

Nutrient assimilation gene frequencies



Prochlorococcus and Synechococcus genes associated with assimilation for iron, nitrogen, and
phosphorus were identified based on prior studies (Supplementary Information 1) [17,21,23,24,39,40].
Several genes of unknown function are listed as uknX; but are included due to their association with low
P availability in Prochlocococcus [41], and close proximity to known regulatory P assimilation genes in
the MED4 genome. Based on these past studies, we filtered out genes if present in all Synechococcus and
Prochlorococcus to detect variation in lineage coverage. We found the relative gene frequency by scaling
to the median coverage of single copy core genes (SCCG) [41] across 54 stations. We identified the relative
gene frequency for each nutrient listed in Supplementary Information 1, per station, and per taxa
(Synechococcus and Prochlorococcus) as follows:

relative gene frequencygene in taxa =

genomes
in taxa

( gene coveragegene ) total readsenome
median coverage of SCCGqxa total reads;q,q

Next, we conducted three separate Principle Component Analysis (PCA) for N, P, and Fe assimilation
genes, respectively (Supplementary Figure 4). Each relative gene frequency was scaled between 0 and 1
across the 54 stations as inputs to the PCA (21 x m matrix of 72 stations and mnormalized gene
frequencies). A total of four gene indices were produced for each station, where N/P gene = first
component of PCA;

N,

gene Prochlorococcus

P,

gene Synechococcus
N,

gene Prochlorococcus

P,

gene Synechococcus
These N and P gene indices for Prochlorococcus and Synechococcus were subsequently incorporated into
an trait model to predict C:P.

ATOM-gene Model

We developed the ATOM-gene model to predict phytoplankton C:P ratios from temperature, irradiance,
and metagenomic data on phosphorus and nitrogen nutrient-uptake gene abundance. The ATOM-gene
model shares its basic structure with the trait-based phytoplankton model developed by Moreno et. al.
[42]. It predicts the C:P of particulate organic matter in the surface ocean using a multi-step process.
ATOM-gene first characterizes phytoplankton according to several key functional traits, namely their
radius (r) and their allocation of biomass to biosynthetic proteins and ribosomes (E), to photosynthetic
proteins (L), to structural components (S), and to nutrient uptake proteins (A). ATOM-gene also
represents a luxury nutrient storage pool. Each trait-combination corresponds both to a functional
response to environmental conditions, and to a cell quotas of C, N, and P, which we derived from
biophysics, physiology, and statistical modeling. The functional response determines the growth rate of
cells with each trait-combination (r, E, L, A) in each possible environment, which consist of temperature
(T), irradiance (L), and metagenomic uptake gene abundance indices Pyee and Ngey,. Traditionally, in
trait-based phytoplankton models, the functional response to environmental conditions requires nutrient
concentrations to calculate growth rates. However, nitrate + nitrite and phosphate nutrient concentrations
are frequently below standard assay detection limits. Furthermore, nutrient concentrations were not great
predictors across regions. Therefore, we needed genes to detect unseen nutrient stress variability. Here,
we treat nutrient concentrations as latent variables, which are not directly observed, and model their
concentration using the metagenomic data.

Given the irradiance, temperature, and nutrient-uptake gene abundances in a given sampling location,
ATOM-gene uses the functional responses to determine the trait-combination with the fastest growth
rate, and predicts that these traits and the resulting C:P characterize the plankton community and
particulate organic matter at that sampling site.

ATOM-gene is part of a family of trait-based models that we have developed to predict C:P ratios in
phytoplankton, and which extend the model in Moreno et. al. [42] in important ways. First, ATOM-gene
does not just model phosphorus availability like [42], but also models nitrogen availability. ATOM-gene
includes an additional resource investment pool, representing variable allocations of biomass to surface
membrane and periplasmic proteins for nutrient uptake of phosphorus. Lastly, we parameterized the
trait-based model in [42] using point estimates of physiological parameters taken from the literature, only



using statistical methods to predict luxury P-storage. Here we integrated the entire ATOM-gene model
into a Bayesian statistical framework, allowing us to incorporate uncertainty in our understanding of key
physiological processes (such as the temperature dependence or different biochemical processes).

Below we describe the model and its parameters. Summaries of the model parameters, and the prior
distributions for statistical parameters, can be found in Supplementary Tables 5, 6 and 7. Phytoplankton
traits determine C:P according to:

EPg +yP, + Py,

C,,+ACp)*
ECp + LCp + yC,, + XEut4CP)

(P:C) =

Here P:C is the phosphorus to carbon ratio. Pg and P, are the specific fraction of phosphorus in the
biosynthetic protein and structure pool, respectively, with units of gP/g. Their phosphorus content arises
from ribosomes in the case of the biosynthetic apparatus, which we model as having a ribosome fraction
of ag, and DNA /RNA in the case of the structural pool, which we model as occupying a total fraction
Ypna Of cellular biomass. Py, is the level of luxury P storage, in units of gP/g. The symbol Cp is the
specific fraction of carbon in proteins, with units of gC/g, Cpya is the specific fraction of carbon in DNA,
and Cy, is the specific fraction of carbon in carbon in lipids, and Yiip 18 the fraction of cellular biomass in

lipids. The fraction of cellular biomass in the inner and outer membranes and periplasmic space is %,

which we assume is half membrane and half periplasmic space. A is the fraction of the periplasmic space
occupied by proteins. Cy; is the carbon fraction of the inner and outer membranes, which we assume are
composed partially of proteins and partially of phospholipids. molp and mol¢ are the molar masses of
phosphorus and carbon.

The traits must satisfy several constraints. The sum of allocations to cytoplasmic components should
equal the cytoplasmic fraction of the cell:

o
E+L+y +v. =1—;

Furthermore, the fraction of the periplasmic volume allocated to proteins satisfies 2rA;, < 4 < 1.

To predict the stoichiometry in a given environment, ATOM-gene selects the trait combination with the
fastest growth rates. Environmental conditions and traits translate into rates of biosynthesis pg,
photosynthesis p;, nitrogen uptake iy, and phosphorus uptake pp, with overall growth rate determined
by the slowest of these processes:

= min(pg, 1y, Ky, Hp)-
The biosynthesis rate depends linearly on the investment E:

ue = ks(T)E,
where the biosynthetic efficiency decreases with temperature with a Q,, = 2. The photosynthesis
functional response comes from Geider et. al. (see the formulation Moreno et. al. 2018):
fU, 7L
H = 1+ b
where we allow the photosynthesis rate to have a non-trivial temperature dependence. Here T is the
temperature in degrees centigrade, I is the irradiance measured in pmolPhotons/m?/s, and ¢y is the
carbon cost of synthesis in gC/gC. The functional response f (I, T) to light is described in Moreno et. al.
2018, and depends on temperature according to a Qg photo - We assume diffusion-limited growth to derive
the nitrogen and phosphorus dependent growth rates:

_ 4'T[DN [Nmodel] r _ 47TDP [Pmodel] rA

u - ) l'l -
N N ’ Qp
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PPary ((E +L+ O‘A/(ZT))Nprot + Ypna Npna + a’/(ZT)NM)
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We treat concentrations of bioavailable nitrogen and phosphate as latent variables, modeled using the
gene frequencies for nitrogen and phosphate uptake genes in Prochlorococcus and Synechococcus,
respectively.

1Og[NmodeI] = 10g[N0] - CNNgene' 10g[PmodeI] = 1Og[P0] - CPPgene'

The terms Ny, Py, ¢y, and ¢p are model parameters, and Ngene and Py are the gene indices introduced
earlier. The diffusion coefficients (Dy, Dp) decrease with temperature using Q;op = 1.5. ATOM-gene then
finds the trait combination with the largest p. At the optimal solution either:

U = u, = py < pp (N-limitation),
Up =, = pp < gy (P-limitation),
Ug =t = pp = uy (Co-limitation).

ATOM-gene subsequently determines C:P from this optimal strategy. If the strategy is N-limited, then we
assume that the cell does luxury P-storage proportional to the modeled P-concentration:

Ps’cor = Cstor [Pmodel] max(O, He — ll),
where (¢ is a growth rate cutoff above which luxury storage stops.

We selected a prior probability distribution over model parameters (Supplementary Table 2) and
implemented ATOM-Gene within the STAN probabilistic programming language (Carpenter et. al.). We
integrated C:P, N and P gene indices, temperature, and irradiance (averaged over the top 50 meters), and
calculated the posterior probability distribution over model parameters assuming a log-normal
probability distribution for C:P:

(C:P)yps ~ lognormal ((C:P) Atom-gene (LT, Ngenes Pgenes 0)).

We performed this Bayesian optimization for the gene indices computed from both Prochlorococcus and
Synechococcus leading to a statistical model of C:P.

Galbraith-Martiny and P-Regression Model
The Galbraith-Martiny model [43] calculates P:C as a linear function of phosphate concentration:

(P:Q)am = 6.9x103[Pyye] + 6.0x1073.

We also created a P-regression based model (Preg) by refitting the Galbraith-Martiny GM model just to
the data-set gathered here, assuming a lognormal error model:

(P:C)preg ~ lognormal(K[PobS] + [PO],O').

Yvon-Durocher Model and T-Regression Model
The Yvon-Durocher model [44] expresses phytoplankton C:P as an exponential function of temperature:
log (C:P),, = II(T — 15) + b,
where IT = 0.037°C 'and b = 5.010. We also created a T-Regression based model by refitting the Yvon-
Durocher model to the data-set gathered here, assuming lognormal errors:
(C:P)Treg ~ lognormal(II(T — 15) + b, 0).

Moreno-Hagstrom Model

The Moreno-Hagstrom model [42] uses the radius (r) and allocation of biomass to biosynthesis (E) and
photosynthesis (L) to model C:P, by calculating the trait-combination that leads to maximal growth for
each combination of irradiance (I), temperature (T), and phosphorus (P). The Moreno-Hagstrom model
models luxury-P storage as a linear function of P, so that:
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(C:P)yy = :
MH ((C:P)structure + f;torage [Pobs])

It should be noted the relationship between polyphosphate storage and ambient P concentrations has
been demonstrated to have an inverse relationship in subtropical North Atlantic Synechococcus [45], but
the direction appears to be regional dependent [46].

Results

We quantified the variation in the Carbon-to-Phosphorus (C:P) elemental stoichiometry across ocean
environmental gradients in the Atlantic, Indian and Pacific Ocean (Figure 1). Generally, C:P ratios
decreased towards colder water and higher nutrient concentrations. This pattern was present in the
temperate region in the North Atlantic (Figure 1A) and equatorial upwelling in the Pacific Ocean. (Figure
1B). However, in the Indian Ocean C:P decreased toward lower phosphate concentrations and warmer
water (Figure 1C) and thus showed the opposite relationship to temperature [3]. Statistical models based
solely on phosphate (G-M) or temperature (Y-D) were unable to capture the C:P trends in the Indian
Ocean and showed significant biases (Figure 2). All models overestimated C:P in large parts of the Indian
Ocean and either over- or underestimated C:P in the equatorial Pacific Ocean. This bias remained even if
we refitted the G-M and Y-D models observations from this study suggesting a structural bias. We next
tested a more complex previously published trait-based model (Moreno et al), but this model had strong
bias, too. Thus, existing models driven by common abiotic factors were unable to predict shifts in the
elemental stoichiometry of marine communities.

The incorporation of genomically-derived resource acquisition traits into our model greatly improved the
prediction of regional shifts in elemental stoichiometry (Figure 2, R: = 0.51 for ATOM-Syn. gene, R: = 0.26
for ATOM-Pro. gene). The models incorporating genomically derived traits remained superior in a
comparison based on information criteria computed using cross-validation [47] (Supplemental Table 7).
We derived resource acquisition traits in Prochlorococcus and Synechococcus (the two most abundant
phytoplankton in these samples) [26] from metagenomes. We then used relative gene frequency of
nitrogen and phosphorus acquisition genes to develop an index for the induction of nutrient acquisition
machinery for each nutrient and lineage (Supplementary Figure 4). This index assumes cyanobacterial
lineages adapt to their environment through genome streamlining and the presence or absence of
nutrient acquisition genes are directly related to nutrient stress. We found that shifts in adaptation and
investment strategies for nutrient uptake led to lower bias in all the regions (Figure 1, Figure 5). For
example, this was the only model that captured the latitudinal gradient in C:P in the Indian Ocean
(Figure 1). ATOM-gene is a nonlinear model, and predicted elevated C:P when either the N or P gene
index is close to the max. The difference between the North Atlantic Subtropical Gyre and the North
Indian is that the gene indices diverge more in the Subtropical North Atlantic. The P gene index is
notably higher in the Subtropical North Atlantic than the North Indian. Thus, the nutrient limitation is
more extreme in the Subtropical North Atlantic, compared with the North Indian. Similarly, the South
Indian has higher C:P because the N gene index peaks there (and the same is true in a few North Pacific
data points). Thus, the ATOM-gene model was able to incorporate a previously unknown pattern of
nutrient gene frequencies to predict the regional shifts in C:P.

The frequency of nutrient acquisition genes helped resolve variation in nutrient stress at very low
nutrient concentrations. We observed a significant correlation between shifts in nutrient acquisition gene
frequencies and the ambient nutrient concentration (Figure 3). This was seen for both phosphorus and
nitrogen acquisition genes and their respective inorganic nutrient concentrations. However, the ambient
nutrient concentration of phosphorus and especially nitrogen was below detection limit in many samples.
Additionally, we observed higher relative gene frequencies for iron in the Subtropical Indian Ocean,
Equatorial Pacific, and the North Atlantic in Prochlorococcus metagenomes (Figure 4a). Whereas higher
iron stress in Indian Ocean overlaps with low macronutrient availability, high macronutrient availability
is typical of the Equatorial Pacific and Temperate North Atlantic, as shown by N and P relative gene
frequencies (Figure 4). Here we detected large variations in gene frequencies suggesting corresponding
shifts in nutrient stress. Thus, metagenomic analyses across diverse ocean regions provided a high-
sensitivity quantification of nutrient stress.



The frequency of Prochlorococcus acquisition genes suggested regional shifts in nutrient stress by both a
single and multiple nutrients. As seen in earlier studies, we detected a high frequency of P acquisition
genes for Prochlorococcus in the subtropical North Atlantic Ocean below 39°N, where phosphate
concentrations were low (Figure 4A)[41]. This included genes responsible for the regulation and uptake
of dissolved organic P, arsenate detoxification, and several of unknown function. We also saw elevated P
acquisition genes for Prochlorococcus in the north Indian Ocean and Bay of Bengal (between 1° and
17°N). In contrast, P acquisition genes were low in all samples from the Pacific Ocean and south Indian
Ocean. Prochlorococcus N acquisition genes showed a different biogeographical pattern. Urea acquisition
genes were frequent in all samples with the exception of the high nitrate areas in the equatorial Pacific
Ocean and temperate waters in the North Atlantic Ocean. Nitrite and nitrate acquisition genes were
frequent throughout the Indian Ocean (with the exception of samples on the equator) and in the northern
part of the Pacific Ocean transect. However, nitrite and nitrate genes were less common in the North
Atlantic subtropical waters. Iron acquisition genes were common in equatorial Pacific Ocean. Thus, we
detected a clear biogeography of genes involved in N, P, and Fe in Prochlorococcus.

We observed a partial correspondence between the frequency of nutrient acquisition genes in
Prochlorococcus and Synechococcus suggesting some lineage-specific adaptations to specific ocean
environmental conditions (Figure 4A). Overall, the regional shifts in Prochlorococcus and Synechococcus
genome content were significantly correlated (Mantel test R = 0.65, p-value < 0.001). In Synechococcus,
there was also a high frequency of P acquisition genes in the subtropical North Atlantic Ocean and north
Indian Ocean (Figure 4C). However, it appeared that the Indian Ocean area with high P acquisition genes
spread further south in Synechococcus compared to Prochlorococcus. N acquisition genes were also
frequent in nearly all samples for Synechococcus, whereas the genes were more geographically restricted
in Prochlorococcus. There was some evidence of increase in Synechococcus iron acquisition genes in the
equatorial Pacific Ocean, but the pattern was not strong. This method is favorable within the relatively
stable environments inhabited by Synechococcus and Prochlorococcusleading to the selection for
slgecialized ecotypes. The gene index results are more distinct for Prochlorococcus (Figure 4), likely due to
their higher degree of genomic streamlining. Thus, the biogeographical shifts in nutrient acquisition
genes were more pronounced for Prochlorococcus compared to Synechococcus.

The variation in nutrient acquisition genes may be linked to shifts in stress by one or more nutrients
(Figure 4b,d; Supplementary Figure 4). The frequency of nutrient acquisition genes suggested P stress but
also some N co-stress in the western North Atlantic Ocean and north Indian Ocean. The North Pacific
Ocean and south Indian Ocean appeared to be N stressed. The equatorial Pacific Ocean was iron stressed.
However, the gene frequencies suggested that a brief transition region around 10°N in the North Pacific
Ocean experienced co-stress by N and Fe. Synechococcus appeared to be stressed by N in temperate
North Atlantic Ocean waters whereas Prochlorococcus appeared more stressed by iron. Similarly,
Synechococcus showed evidence of P stress in parts of the south Indian Ocean but this was not seen in
Prochlorococcus. Shifts in the relative gene frequency corresponded to shifts in clade ecotypes
(Supplementary Figure 2). Thus, metagenomic analyses of pﬁytoplankton populations suggested regional
shifts in stress by one or multiple nutrients.

We used additional ecosystem measurements to verify the predictions from ATOM-gene and the overall
resource investment strategies. In the Indian Ocean, uptake kinetics for the ATOM-Gene model were
positively correlated with observed uptake rates for nitrate, ammonium, and urea (Figure 5,
Supﬂlzllementary Table 3). The implied nutrient distributions matched our observations of increasing N
northwards and vice versa for P into the subtropical Indian Ocean gyre. Increases in N and P uptake
rates, cellular investment in photosynthesis and biosynthesis, and cell volume corresponded to reduced
nitrogen stress (Supplementary Table 3). The aforementioned parameters were significantly correlated to
higher in situ N uptake rates and lower relative N gene frequency for Prochlorococcus and
Synechococcus. Phosphorus stress appeared to have little impact on C:P and cellular uptake traits in the
Indian Ocean, unlike the other two basins (Supplementary Figure 5). Although P investment increased
into the subtropical Indian Ocean gyre, there was little influence on P luxury uptake and storage
(Supplementary Figure 10). Supplementary Figures 8 and 9 show draws from the posterior-predictive
distribution of C:P. We give summaries of the posterior distribution over model parameters in
Supplementary Tables 8 and 9, where R = 1 suggests convergence of the Markov Chain Monte Carlo
integrator. Su}zl}flementary Figures 6 and 7 show the posterior draws for each pair of variables. Only
larger cells in the temperate North Atlantic exhibited P storage in the ATOM-Gene model. The small



number of data points with metagenome information prevented tight inference of parameter values, but
the posterior distribution favors the hypothesis that the effect of nutrient stress on cell size and ribosomal
content is the strongest driver of C:P in the regions sampled, with smaller than expected roles for
temperature and luxury storage. This is reflected by the posterior favoring small values of the luxury
storage parameter and higher values of the Q10 for photosynthetic processes. Consequently, the
interaction between N and P stress as seen in the genomic observations could be the underlying
mechanism leading to latitudinal shifts in C:P.

Discussion

Linking ‘omics with global biogeochemistry is a major research challenge and opportunity [48-51]. A
great deal of molecular data is being generated [52,53], but there is a limited current application of this
new knowledge towards understanding large-scale changes in the Earth system [54]. Trait-based
approaches are attractive for scaling from individual organisms to key ecosystem functions by using a
model intermediate [55,56]. We here use this approach as an intermediate for linking genomic
information with ocean biogeochemical processes. By quantifying the spatial variation due to differences
in nutrient assimilation genes, we improved our predictions of C:P across three major ocean basins
(Figure 1 and 2). The ATOM-gene model allowed for multiple nutrient indexes (N and P), where in situ
nutrient observations were undetectable, resulting in significant improvements to the existing trait model
[42]. Importantly, the gene index quantifies cyanobacterial adaptation to nutrient stressors in regions for
which we have limited knowledge (e.g., the central Indian Ocean). Nutrient stress may occur through
diffusive limitation at low ambient concentrations, the magnitude of nutrient fluxes, the ratio of nutrient
supply, or nutrient co-limitation. Additionally, both Synechococcus and Prochlorococcus can utilize
different P and N sources [57]. Thus, genome shifts integrate these unknowns through the selective
pressure to retain particular genes in nutrient-poor biomes.

The frequency of nutrient assimilation genes greatly improved our understanding of nutrient stress and
elemental stoichiometry of marine communities. In particular, the results showed surprising patterns of P
and N stress in the less studied Indian Ocean. Our results support a recent analysis of Synechococcus and
Prochlorococcus elemental quotas, leading to a gradient of N, P, and Fe stress in the Indian Ocean [58].
The Bay of Bengal showed evidence of P stress but lower N:P and C:P ratios. We attribute this
contradictory observation to an interaction between N and P stress as the upregulation of P uptake
proteins is restricted by N stress [59]. Culture studies have shown that N and P stress interact in
controlling the overall cellular physiology and C:N:P [5]. However, it has been a challenge to translate
these findings to field communities. Some of this confusion originates from difficulties in constraining
external N and possibly P sources from atmospheric deposition and N-fixation. This leads to a poorly
constrained N:P supply ratio. It is unclear why we see evidence of increased P stress near the Bay of
Bengal, but it is tempting to attribute it to elevated N-fixation [8,60]. Similar to recent observations of
dissolved and particulate Fe, we saw indications of Fe stress via Prochlorococcus Fe assimilation genes in
the Subtropical Indian Ocean gyre [58,61]. We also saw a high presence of Fe assimilation genes in
regions with low C:P, where Synechococcus and Prochlorococcus cell abundances remained elevated [28].
As expected, this was seen for the equatorial Pacific HNLC region [62]. Our data also support past
studies indicating that the subtropical North Atlantic Ocean [63] and the southern Indian Ocean [58]
could experience some iron stress. Thus, our genomic techniques are unveiling regions, where we have a
limited understanding of trace-metal stress.

Our approach is based on an assumption of rapid adaptation leading to direct association between
genome content and environmental conditions [64—67]. Tropical and subtropical ocean regions have fast
bacterial turnover leading to rapid selection and genome streamlining [68]. However, environments with
slow bacterial turnover may include ecotypes or genes that reflect past environmental conditions.
Different lineages may also experience unique stress [69] whereas we here only analyzed the abundant
marine Cyanobacteria. Our dataset includes few representative stations from high latitudes, where light
or temperature may be the dominant selective factors [70,71]. In such conditions, transcriptomics or
proteomics may be more applicable. However, these techniques suffer from their own caveats like strong
diel cycles [72,73] or low correlation between RNA and protein expression [74,75]. Thus, the exact link
between ‘omics measurements and biogeochemical processes needs to be tailored to the system of
interest.



‘Omics techniques can be powerful for understanding the environmental conditions experienced by
microorganisms. This principle is also applied in other ecosystem settings. A high presence of
Proteobacteria in the human gut may be an indicator of an imbalance in the redox potential and
‘ecosystem’ dysbiosis [76]. Similarly, the presence of ammonia monooxygenase may be indicative of
nitrification [77]. In many ecosystems, it can be very challenging to quantify microbial physiology and
stress. Thus, a carefully calibrated genomic approach could become a widespread tool for understand
microbial responses to environmental changes and the biogeochemical outcomes.
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Figures and Tables

Table 1: Mean environmental characteristics for each ocean cruise transect. Pro = Prochlorococcus, Syn =
Synechococcus, Pmax = maximum uptake rate, Ks = half saturation PO. concentration. BD = below
detection and NA = not measured. Pmax (maximum uptake of PO,) and Ks (half saturation concentration
of PO)) are calculated according to Micheaelis-Menton functional kinetics for the whole community [25];
Puptake =(Pmax * [P]) / ([P] + Ks).

Figure 1: Observations and predictions of seston elemental stoichiometry. [nn sifu measurements of
particulate organic matter C:P are shown in gray, with selected stations in black where nutrient uptake
incubations were performed for the (a) Atlantic (b)Pacific and (c)Indian Oceans [3]. Predicted C:P is
shown by the ATOM-Syn trait-gene model (blue) and Galbraith-Martiny [43] phosphate regression model
(red). Additional environmental variables of temperature (green), photosynthetically active radiation
(purple), and phosphate (orange) are shown below for the (d) Atlantic (e)Pacific and (£)Indian Oceans
from Supplementary Table 2.

Figure 2. Trait model C:P bias. Statistical results for the predicted C:P models showing (a) Coefficient of
determination (b)residuals (log. (predictions) — log.(observations)) across stations where surface C:P
measurements were taken. Red indicates a positive bias, and blue negative bias. Since the distribution of
C:P data looks much more lognormal we plotted the bias of the log-transformed data and models, and
computed the percentage of variance of the log-transformed data that the models explained. The
coefficient of determination was calculated as;

R:=1 - [mean(log.observations) - log.(predictions))"2) / (mean((log.(observations)-mean(log.(observations))2))].

Figure 3. PCA component 1 versus nutrient concentrations. /nn situnutrient concentrations for phosphate
and nitrate are plotted against the first principle component calculated from relative gene frequencies for
(a) Prochlorococcus phosphorus assimilation genes (R: = 0.65, p-value < 0.001 ) (b) Synechococcus
phosphorus assimilation genes (R: = 0.52, p-value < 0.001, (c) Prochlorococcus nitrogen assimilation genes
(R:=0.78, p-value <0.001), and (d) Synechococcus nitrogen assimilation genes (R: = 0.02, p-value = 0.35).
High sensitivity phosphate measurements (filled red) were done using a MAGIC-SRP assay [32].
Otherwise nitrate and phosphate observations were taken using standard methods (open circles)[78]. DL
= Detection limit.

Figure 4. Variation among relative gene frequencies between stations. Green = nitrogen, Purple =
phosphorus, red = iron. Matrices based on normalized gene frequency are significantly correlated
(Mantel test R = 0.65, p-value < 0.001). The heatmaps for (a) Prochlorococcus and c¢) Synechococcus
cluster the relative gene frequencies along the top according to functional role for each station row. The
Principle Component Analysis (PCA) plots for (b) Prochlorococcus and (d) Synechococcus show the
variation among stations that is solely attributed to differences in relative gene frequencies. If the overall
contribution of N, P, or Fe genes cluster along one direction, we have added a textbox labeled “N stress, P



stress, or Fe Stress” to panels (b)and (d). Prochlorococcus relative gene frequencies cluster the stations
according to these three nutrient stressors. Synechococcus relative gene frequencies cluster the stations
mainly along two (Fe and P stress), with weak contributions from N relative gene frequencies. A red
asterisk (*) has been added to samples deeper than 50m.

Figure 5. Evaluation of nutrient stress indices against ATOM-Gene and in situ uptake parameters in the
Indian Ocean. Relative gene frequencies of (a)nitrogen and (b)phosphorus genes is shown for
Prochlorococcus (blue) and Synechococcus (orange-red). ATOM-Gene estimates for (¢)N uptake and (d)
P uptake normalized to cell volume are compared to the in situ parameters of (e) Absolute uptake of N
species (nitrate-green, urea-purple ammonium-gold) and (#) the ratio of particulate organic carbon to
phosphorus. In situ uptake rates and C:P are presented in [3,26]. Absolute uptake rates measure the
accumulation of a substrate within particles.
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Supporting information 1: Table of nutrient assimilation genes
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according to supplementary table 4.
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Supplementary Figure 3: Total reads mapped per station.
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Supplementary Figure 8: Samples from posterior predictive distribution for ATOM-gene model
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Supplementary Figure 10: Map of relative gene frequencies and ATOM-Gene model traits for
Synechococcus (Syn) and Prochlorococcus (Pro).



Supplementary Table 1: Particulate organic matter observations for transects 109, NH1418,

AE1319.

Metagenome

SampleID Latitude | Longitude | Depth | Datetime POC PON POP CN CP NP
unitless [°N] [°W] [m] unitless [umol/L] | [umol/L] | [nmol/L] | unitless | unitless | unitless
AE1319 8 55.00 -49.00 5.00 | 26-Aug-2013 7.5 1.04 89.96 7.21 83.37 11.56
AE1319 44 53.00 -46.00 25.00 | 27-Aug-2013 11.52 1.52 121.62 7.58 94.72 12.50
AE1319 84 51.00 -43.00 20.00 | 28-Aug-2013 5.29 0.6 57.67 8.82 91.73 10.40
AEI1319 105 49.00 -40.00 5.00 | 29-Aug-2013 5.66 0.63 48.06 898 | 117.77 13.11
AEI1319 143 47.00 -42.00 45.00 | 30-Aug-2013 12.99 1.75 116.54 7.42 | 11146 15.02
AEI1319 197 45.00 -45.00 40.00 | 31-Aug-2013 14.51 1.91 120.7 7.60 | 120.22 15.82
AEI1319 192 45.00 -45.00 5.00 | 31-Aug-2013 4.84 0.44 36.34 11.00 | 133.19 12.11
AEI1319 227 43.00 -47.50 20.00 | 01-Sep-2013 7.16 0.98 68.43 7.31 104.63 14.32
AE1319 269 39.00 -52.50 5.00 | 03-Sep-2013 1.61 0.11 9.48 14.64 | 169.83 11.60
AEI1319 325 35.00 -57.50 5.00 | 05-Sep-2013 1.58 0.17 11.67 9.29 | 135.39 14.57
AE1319 424 31.67 -64.17 5.00 | 08-Sep-2013 1.42 0.18 9.8 7.89 | 144.90 18.37
BV46_195 31.67 -64.17 5.00 | 05-Oct-2011 nan nan 9.58 | nan nan nan
BV46_199 31.67 -64.17 30.00 | 05-Oct-2011 nan nan 1191 | nan nan nan
BV46_205 31.67 -64.17 | 100.00 | 05-Oct-2011 nan nan 549 | nan nan nan
BV46_382 23.67 -65.07 5.00 | 11-Oct-2011 nan nan 547 | nan nan nan
BV46_386 23.67 -65.07 40.00 | 11-Oct-2011 nan nan 6.72 | nan nan nan
BV46_394 23.67 -65.07 | 120.00 | 11-Oct-2011 nan nan 6.24 | nan nan nan
NH1418 17 18.00 -157.00 5.00 | 20-Sep-2014 1.48 0.16 6 9.25 | 246.67 26.67
NH1418 104 12.00 -155.22 80.00 | 22-Sep-2014 1.5 0.21 13.26 7.14 | 113.12 15.84
NH1418 100 12.00 -155.22 20.00 | 22-Sep-2014 1.5 0.25 8.53 6.00 | 175.85 29.31
NH1418 130 10.00 -154.52 5.00 | 23-Sep-2014 1.71 0.25 9.92 6.84 | 172.38 25.20
NH1418 134 10.00 -154.52 50.00 | 23-Sep-2014 2.55 0.35 20.64 7.29 | 12355 16.96
NH1418 232 3.00 -151.74 80.00 | 26-Sep-2014 1.99 0.32 17.65 6.22 | 112.75 18.13
NH1418 258 0.00 -150.70 50.00 | 27-Sep-2014 3.01 0.53 29.41 5.68 | 102.35 18.02
NH1418 262 0.00 -150.70 5.00 | 27-Sep-2014 3.96 0.69 28.35 5.74 | 139.68 24.34
NH1418 322 -3.00 -149.67 5.00 | 28-Sep-2014 2.63 0.42 20.06 6.26 | 131.11 20.94
NH1418 328 -3.00 -149.67 80.00 | 28-Sep-2014 2.34 0.39 20.75 6.00 | 112.77 18.80
IN231 17.00 89.80 5.00 | 24-Apr-2016 1.66 0.27 13.82 6.19 | 119.86 19.45
IN221 14.50 89.60 5.00 | 22-Apr-2016 1.65 0.25 14.64 6.70 | 112.58 16.82
IN213 12.70 88.50 5.00 | 21-Apr-2016 1.71 0.26 13.25 6.57 | 128.96 19.65
IN205 10.80 87.30 5.00 | 20-Apr-2016 1.90 0.29 17.57 6.62 | 107.99 16.31
IN176 9.50 87.10 5.00 | 16-Apr-2016 1.94 0.30 16.21 642 | 119.89 18.72
IN168 8.00 88.20 5.00 | 16-Apr-2016 2.08 0.33 18.35 6.29 | 113.25 18.14
109_REG168 7.98 94.87 25.00 | 21-Mar-2016 2.06 0.31 15.33 6.73 134.44 19.91
IN161 6.50 89.30 5.00 | 15-Apr-2016 2.07 0.32 17.61 6.45 117.44 18.21
IN151 4.70 90.80 5.00 | 13-Apr-2016 1.93 0.30 15.31 6.37 | 125.80 19.90
IN143 3.00 91.80 5.00 | 12-Apr-2016 2.09 0.33 16.74 6.34 | 124.86 19.70
IN135 1.50 92.30 5.00 | 11-Apr-2016 1.81 0.31 14.86 5.86 | 122.09 20.87
IN129 0.50 93.00 5.00 | 11-Apr-2016 1.91 0.30 17.61 6.31 108.49 17.19
IN111 -2.20 94.10 5.00 | 08-Apr-2016 1.75 0.24 15.29 729 | 114.77 15.77
IN105 -3.10 94.40 5.00 | 08-Apr-2016 1.92 0.29 14.24 6.68 | 13491 20.28
IN099 -4.50 94.90 5.00 | 07-Apr-2016 2.02 0.28 15.44 7.24 | 130.93 18.07
109 _REG99 -4.53 94.87 20.00 | 07-Apr-2016 1.88 0.27 12.75 7.00 | 147.80 21.26
IN092 -6.60 95.00 5.00 | 05-Apr-2016 1.70 0.27 13.31 6.32 | 127.69 20.22
IN086 -8.20 95.00 5.00 | 05-Apr-2016 1.59 0.24 13.24 6.60 | 119.89 18.16
IN078 -10.30 95.00 5.00 | 03-Apr-2016 1.85 0.30 14.71 6.32 | 125.99 20.13
IN074 -11.40 95.00 5.00 | 03-Apr-2016 1.78 0.31 15.29 584 | 116.29 19.95
IN066 -13.60 95.00 5.00 | 01-Apr-2016 1.54 0.26 12.85 6.04 | 119.96 19.91
IN052 -17.60 95.00 5.00 | 30-Mar-2016 1.63 0.22 11.76 7.33 138.35 18.92
109_REG40 -20.76 95.00 20.00 | 29-Mar-2016 1.59 0.23 9.22 6.81 172.49 25.43
IN040 -20.80 95.00 5.00 | 29-Mar-2016 1.74 0.22 12.48 8.09 | 139.77 17.33
IN027 -24.70 95.00 5.00 | 26-Mar-2016 1.68 0.24 10.32 7.11 162.53 22.85
IN021 -26.50 95.00 5.00 | 25-Mar-2016 1.68 0.23 11.17 7.64 | 150.59 20.21
INO17 -28.30 95.00 5.00 | 25-Mar-2016 1.74 0.20 11.74 8.59 | 14837 17.32




Supplementary Table 2: Inputs to ATOM models for transects 109, NH1418, AE1319. Temp =
temperature, PAR = photosynthetically active radiation, PCA1 = first principle component in
Sup. Fig. 4, P = phosphorus, N = nitrogen, Syn = Synechococcus, and Pro = Prochlorococcus.

Metagenome Station Temp. PAR PO4 NO3 P-gene N-Gene P-Gene N-Gene

1D 1D Celsius | pmolPhotons/m2/s mol/L mol/L PCA1 Syn | PCA1 Syn | PCA1 Pro | PCA1 Pro
AE1319 8 4AE1319 10.38 118.27 1.70E-07 | 8.00E-07 -0.86 -0.01 -0.85 -1.66
AEI1319 44 SAE1319 11.73 124.44 1.70E-07 | 8.00E-07 -0.88 0.16 -0.67 -1.43
AEI1319 84 6AE1319 13.23 131.75 7.00E-08 | 5.00E-09 -0.57 -0.30 -0.67 -1.40
AEI1319 105 7AE1319 15.7 150.15 1.10E-07 | 5.00E-09 -0.51 -0.34 0.34 -0.98
AEI1319 143 8AE1319 6.82 158.45 1.50E-07 | 5.00E-09 -0.64 -0.29 -0.63 -1.21
AE1319 192 9AE1319 13.53 174.31 1.10E-07 | 5.00E-09 -0.55 -0.15 0.22 -1.28
AE1319 227 | 10AE1319 11.19 138.66 1.60E-07 | 5.00E-09 -0.51 0.07 -0.71 -1.41
AE1319 269 | 12AE1319 26.29 154.08 5.00E-09 | 5.00E-09 1.03 -0.60 2.13 0.08
AEI1319 325 14AE1319 26.58 146.34 5.00E-09 | 5.00E-09 0.82 -0.41 1.96 0.28
AE1319 424 | 16AE1319 27.93 170.15 5.00E-09 | 5.00E-09 0.94 -0.84 1.94 0.02
NH1418 17 2NH1418 27.7 213.95 1.84E-07 | 1.00E-08 -0.26 0.82 -0.79 1.31
NH1418 100 SNH1418 28.4 198.61 1.94E-07 | 1.00E-08 -0.35 0.71 -1.01 0.48
NH1418 130 7NH1418 24.45 157.19 2.62E-07 | 2.10E-07 -0.54 0.72 -1.00 -0.31
NH1418 262 | 14NH1418 27.05 226.84 4.41E-07 | 4.41E-06 -0.46 0.31 -0.89 -1.41
NH1418 322 | 16NH1418 27.1 233.55 5.08E-07 | 5.74E-06 -0.62 0.13 -0.85 -1.55
IN231 194109 29.3896 237.12 5.00E-09 | 5.00E-09 0.06 0.17 0.44 0.62
IN221 189109 30.1723 241.27 5.00E-09 | 5.00E-09 0.59 -0.18 1.54 0.38
IN213 185109 30.7808 244.49 5.00E-09 | 5.00E-09 0.37 -0.24 1.36 0.49
IN205 181109 31.1124 243.14 5.00E-09 | 5.00E-09 0.51 -0.33 1.24 0.36
IN176 166109 30.8228 237.93 5.00E-09 | 5.00E-09 0.50 -0.47 1.65 0.87
IN168 162109 31.1195 236.36 5.00E-09 | 5.00E-09 0.38 -0.53 0.13 0.53
IN161 158109 30.8352 221.52 5.00E-08 | 5.00E-09 0.21 -0.39 -0.41 0.61
IN151 153109 30.5958 20991 2.00E-08 | 5.00E-09 0.30 -0.35 -0.66 0.64
IN143 149109 30.5419 179.87 2.00E-08 | 5.00E-09 0.43 -0.51 0.09 0.60
IN135 145109 30.6921 176.72 1.00E-08 | 5.00E-09 0.36 -0.40 0.78 -0.13
IN129 142109 30.5922 196.79 1.00E-08 | 5.00E-09 0.60 -0.59 1.12 -0.09
IN111 133109 30.6844 202.49 3.00E-08 | 5.00E-09 0.32 -0.37 0.03 0.47
IN105 130109 30.7045 184.59 5.00E-09 | 5.00E-09 0.47 -0.28 -0.47 0.38
IN099 127109 30.4647 202.59 5.00E-09 | 5.00E-09 0.10 -0.19 -0.69 1.06
IN092 123109 30.4743 181.97 3.00E-08 | 5.00E-09 -0.16 0.05 -0.68 1.15
IN086 120109 30.7553 181.54 4.00E-08 | 5.00E-09 0.10 -0.17 -0.70 1.11
IN078 116109 30.2587 171.33 6.00E-08 | 5.00E-09 -0.16 0.64 -0.75 1.24
IN074 114109 29.7976 178.74 5.00E-08 | 5.00E-09 -0.14 0.76 -0.71 1.23
IN066 110109 28.8714 160.28 5.00E-08 | 5.00E-09 -0.20 0.24 -0.79 1.19
IN052 103109 27.189 215.61 5.00E-08 | 5.00E-09 -0.50 0.50 -0.94 1.13
IN040 97109 26.2812 199.17 8.00E-08 | 5.00E-09 -0.42 0.85 -0.88 0.59
IN027 90109 24.1685 206.61 7.00E-08 | 5.00E-09 -0.42 0.98 -0.95 1.52
INO21 87109 24.2902 186.32 9.00E-08 | 5.00E-09 -0.54 0.86 -0.91 1.14
INO17 84109 22.3724 199.43 7.00E-08 | 5.00E-09 0.00 0.75 -0.98 1.04




Supplementary 3: Correlations between in situ observations, gene frequencies, and ATOM-Gene
properties. Significant correlations (p-value < 0.05) are indicated by a star (*), with negative
relationships in blue and positive in red.
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Supplementary Table 4: Genomes and clade assignments for Prochlorococcus and
Synechococcus

Taxa Genome Clade

Synechococcus GEYO n.CRD1
Synechococcus MITS9508 n.CRD1
Synechococcus MITS9509 n.CRD1

Synechococcus UWI79A n.CRD1
Synechococcus CC9311 n.I
Synechococcus UW179B n.I
Synechococcus WHS8016 n.I
Synechococcus WHS8020 n.I
Synechococcus CC9605 n.Il
Synechococcus N19 n.Il
Synechococcus N32 n.Il

Synechococcus REDSEA S02 B4
Synechococcus Uws6
Synechococcus WHS8109
Synechococcus WHS8102
Synechococcus BL107
Synechococcus CC9902
Synechococcus RS9916
Synechococcus NKBG042902
Synechococcus PCC7335
Synechococcus CC9616
Synechococcus KORDI 100
Synechococcus WH7805
Synechococcus RS9917
Synechococcus KORDI 49
Synechococcus KORDI 52
Synechococcus CB0101
Synechococcus CB0205
Synechococcus GFBO1
Synechococcus RCC307
Synechococcus WHS5701
Synechococcus UW106
Synechococcus Uwe69

n.VIII
n.WPC1
n.WPC2

wnln|nln|vn|n|nln|vv|n|uln|lnnln|vv|ln|nln|vvnln|yv|lvn|v v |n|uv|n|nln
E B
<

Synechococcus UW105 n.XVI
Synechococcus Uw140 n.XVI
Prochlorococcus EQPACI HLI
Prochlorococcus MED4 HLI
Prochlorococcus MIT9515 HLI
Prochlorococcus AS9601 HLII
Prochlorococcus GP2 HLII
Prochlorococcus MIT0604 HLII
Prochlorococcus MIT9123 HLII
Prochlorococcus MIT9201 HLII
Prochlorococcus MIT9215 HLII
Prochlorococcus MIT9301 HLII
Prochlorococcus MIT9302 HLII
Prochlorococcus MIT9312 HLII
Prochlorococcus MIT9314 HLII
Prochlorococcus MIT9322 HLII
Prochlorococcus MIT9401 HLII
Prochlorococcus SB HLII

Prochlorococcus SCGCAAAT95 106 HLII
Prochlorococcus SCGCAAAT95 115 HLII
Prochlorococcus SCGCAAAT95 M23 HLII

Prochlorococcus UHI18301 HLII
Prochlorococcus HNLCI1 HLII-IV
Prochlorococcus HNLC2 HLII-IV
Prochlorococcus RS50 HLII
Prochlorococcus XMU1401 HLII
Prochlorococcus XMU1403 LLI
Prochlorococcus XMU1408 LLI
Prochlorococcus MIT0801 LLI
Prochlorococcus NATLIA LLI
Prochlorococcus NATL2A LLI
Prochlorococcus PACI LLI
Prochlorococcus MIT0601 LLII-IIT
Prochlorococcus MIT0602 LLII-IIT
Prochlorococcus MIT9211 LLII-IIT
Prochlorococcus SS120 LLII-IIT
Prochlorococcus MIT0701 LLIV
Prochlorococcus MIT1312 LLIV
Prochlorococcus MIT1313 LLIV
Prochlorococcus MIT1318 LLIV
Prochlorococcus MIT1327 LLIV
Prochlorococcus MIT1342 LLIV
Prochlorococcus MIT9303 LLIV

Prochlorococcus MIT9313 LLIV




Supplementary Table 5: Descriptions, values, and units of fixed model parameters.

Parameter Description Units Value

Dy Diffusivity of Nitrate at 25° 1073m?/hr 1.6 x 107°
Dp Diffusivity of Phosphate at 25° 103m?/hr 1.6 x 107°
Q10,p Q10 for diffusivity 1.5

Q10,k Q1o for biosynthesis 2.0

Ddry Dry mass fraction of the cell 0.47
Ppna Phosphorus mass fraction in DNA gP/g 0.095

Puib Phosphorus mass fraction in ribosomes gP/g 0.047
Nprot Nitrogen mass fraction in proteins eN/g 0.16
Npna Nitrogen mass fraction in DNA gN/g 0.16

Niib Nitrogen mass fraction in ribosomes gN/g 0.16

Corot Carbon mass fraction in proteins gC/eg 0.53

Ciipid Carbon mass fraction in lipids gC/g 0.76
Cpna Carbon mass fraction in DNA gC/g 0.36

molp Molar mass of Phosphorus g/mol 31.0

moly Molar mass of Nitrogen g/mol 14.0

molc Molar mass of Carbon g/mol 12.0

fprot Protein fraction of cell membranes 0.25
forotL Protein fraction of light harvesting apparatus 0.70

dg Specific Carbon cost of synthesis gC/eC 0.67

Dy Diffusivity of Nitrate at 25° 1073m?/hr 1.6 x 107°
Dp Diffusivity of Phosphate at 25° 1073m?/hr 1.6 x 107°
Q10,0 Q10 for diffusivity 1.5

Q10,k Q10 for biosynthesis 2.0

Ddry Dry mass fraction of the cell 0.47
Ppna Phosphorus mass fraction in DNA gP/g 0.095

Puip Phosphorus mass fraction in ribosomes gP/g 0.047
Nprot Nitrogen mass fraction in proteins gN/g 0.16
Npna Nitrogen mass fraction in DNA gN/g 0.16

Niib Nitrogen mass fraction in ribosomes gN/g 0.16

Cprot Carbon mass fraction in proteins gC/g 0.53

Ciipid Carbon mass fraction in lipids gC/eg 0.76
CpNa Carbon mass fraction in DNA gC/eg 0.36

molp Molar mass of Phosphorus g/mol 31.0

moly Molar mass of Nitrogen g/mol 14.0

molc¢ Molar mass of Carbon g/mol 12.0

fprot Protein fraction of cell membranes 0.7

by Specific Carbon cost of synthesis gC/gC 0.67




Supplementary Table 6: Prior probability distribution and model parameter description for

ATOM-gene

Parameter Description Units Prior

Q10,photo Q10 of photosynthesis Unif(1.0,2.0)
ag Ribosome fraction of synthetic apparatus Unif(0.3,1.0)
ag Radius at which cell is all periplasm and membrane pm Unif (0.15, 0.50)
ksTo Specific Synthesis rate of synthetic apparatus at 25° 1/hr Unif (0.01,0.35)
YDNA DNA fraction of cell Unif(0.0,0.05)
Anmin Minimal allocation to periplasmic uptake proteins Unif (0.0, 1.0)

vy Mass fraction of other structural components Unif(0.1,0.3)
Lhe Growth cutoff above which luxury storage does not occur 1/day Unif(0.0,1.0)
fstor Strength of luxury P storage L/molC Unif(0.0,5 x 10%)
Nor Intercept in gene-N prediction model log;(moIN/L)  Unif(—7,—5)
Por Intercept in gene-P prediction model log;o(molP/L)  Unif(— 8, 6)
Cn Relationship between N-genes and N availability log;,(moIN/L)  Unif(1,4)

Cp Relationship between P-genes and P availability log;,(molP/L)  Unif(1,4)




Supplementary Table 7: Model comparison using information criteria derived from leave-one-
out cross validation (loo-cv), calculated using Pareto Smoothed Importance Sampling (Vehtari
et. al. 2017). Lower numbers suggest better out of sample performance. P_waic estimates
effective number of model parameters.

Model Rank waic p-waic  weight se

-36.3739  7.04761  0.95492 14.225
-21.788  5.098 0.0255918  12.0595

Syn. Genes 1
2

T. Reg 3 -17.067  3.7877  0.0151752 13.9073
4
5

Pro. Genes

P. Reg -12.0807 3.6576  0.0028125 14.5828
Trait Nutrient -11.0926  3.64052 0.0015 13.8015




Supplementary Table 8: Fit summary for ATOM-gene model based on Synechococcus gene
indices.

Parameter Mean Semean  Sd 2.5% 25%  50% 5%  97.5%  nesy R

Q10Photo 1.71 0.0008 0.21 1.20 1.59 1.74 1.87 1.99 68115 1.00

oFp 0.58 0.0009 0.20 0.31 0.40 055 073 096 48519  1.00
Istor 3.87 0.012 3.01 0.12 1.08 323 637 9.62 61137  1.00
opc 0.17 0.00009 0.022 0.14 0.16 0.17 019 0.22 67848  1.00
g 0.17 0.0003  0.074 0.10 0.12 015 020 038 83546  1.00
YDNA 0.033  0.00005 0.013 0.0038 0.025 0.037 0.044 0.049 83496 1.00
vy 0.20 0.0002  0.057 0.11 0.16 021 025 030 109790  1.00
Anin 0.48 0.0009 030 0.019 021 047 074 097 101914  1.00
we 0.33 0.0012 0.25 0.013 0.13 027 047 0.90 39307  1.00
Nor, -5.82  0.0018  0.50 -6.82 -6.19 -5.79 -541 -5.04 77370  1.00
Por, -6.44 0.0012 0.33 -7.21 -6.65 -6.38 -6.17 -6.02 79733  1.00
CproN 1.53 0.0014 038 1.02 1.22 147 1.78 237 75134  1.00

Cpror 1.21 0.00057 0.17  1.01 1.07 116 130 1.61 83768  1.00




Supplementary Table 9: Fit summary for ATOM-gene model based on Prochlorococcus gene
indices.

Parameter Mean Semean sd 25% 25% 50% 5%  97.5%  neys R

Q10photo 1.68 0.00 0.22 1.16 154 1.71 1.86 1.99 40283 1.00

oFp 0.59 0.00 0.19 031 042 057 0.75 0.96 52962  1.00
Sstor 3.75 0.01 295 0.07r 107 311 6.12 9.57 58790  1.00
ocp 0.14 0.00 0.02 011 013 014 0.15 0.18 63347  1.00
g 0.24 0.00 0.11 0.10 0.15 0.22 031 047 88589  1.00
7DNA 0.03 0.00 0.01 0.00 0.02 0.04 0.04 0.05 93835  1.00
vy 0.20 0.00 0.06 0.11 015 020 0.25 0.30 117586  1.00
Anin 0.47 0.00 0.30 0.02 020 046 0.73 0.97 107015 1.00
we 0.43 0.00 0.27 0.02 019 039 065 0.95 26373 1.00
Nor, -6.07  0.00 0.54 -6.94 -6.52 -6.10 -5.63 -5.08 75875  1.00
Por, -6.90  0.00 052 -7.84 -731 -691 -6.47 -6.05 35628 1.00
CsynN 2.27 0.00 071 111 171 222 279 3.72 65479  1.00

Ceynp 1.73 0.00 0.57 1.03 128 1.60 2.07 3.09 34158  1.00
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