AntiDote: Attention-based Dynamic Optimization
for Neural Network Runtime Efficiency

Fuxun Yu!, Chenchen LiuZ, Di Wangg, Yanzhi Wang4, Xiang Chen'!
1George Mason University, Fairfax, VA, USA
2University of Maryland, Baltimore County, Baltimore, MD, USA
3Micr0s0ft, Redmond, WA, USA
ANortheastern University, Boston, MA, USA
{fyu2, xchen26} @ gmu.edu, ccliu@umbc.edu, wangdi@microsoft.com, yanz.wang @northeastern.edu

Abstract—Convolutional Neural Networks (CNNs) achieved
great cognitive performance at the expense of considerable
computation load. To relieve the computation load, many op-
timization works are developed to reduce the model redundancy
by identifying and removing insignificant model components,
such as weight sparsity and filter pruning. However, these works
only evaluate model components’ static significance with internal
parameter information, ignoring their dynamic interaction with
external inputs. With per-input feature activation, the model
component significance can dynamically change, and thus the
static methods can only achieve sub-optimal results. Therefore,
we propose a dynamic CNN optimization framework in this work.
Based on the neural network attention mechanism, we propose
a comprehensive dynamic optimization framework including (1)
testing-phase channel and column feature map pruning, as well
as (2) training-phase optimization by targeted dropout. Such a
dynamic optimization framework has several benefits: (1) First, it
can accurately identify and aggressively remove per-input feature
redundancy with considering the model-input interaction; (2)
Meanwhile, it can maximally remove the feature map redundancy
in various dimensions thanks to the multi-dimension flexibility;
(3) The training-testing co-optimization favors the dynamic
pruning and helps maintain the model accuracy even with very
high feature pruning ratio. Extensive experiments show that
our method could bring 37.4%~54.5% FLOPs reduction with
negligible accuracy drop on various of test networks.

Index Terms—Neural Network, Pruning, Attention Mechanism

I. Introduction

In the past few years, Convolutional Neural Networks
(CNNs) have achieved extrodinary accuracy boost on various
cognitive tasks, such as image classification [1], object detec-
tion [2], speech recognition [3], etc. However, the increasingly
larger model structure also introduces tremendous computation
load, causing considerable performance issues. For example,
a CNN model for natural language processing (NLP) —
BERT Large consists of 345 million parameters. Its huge
memory occupancy makes it even impossible to be trained
on a single V100 GPU with 16GB memory [4].

To reduce the CNN computation load, many optimization
works have been proposed to reduce the model redundancy
by identifying and removing insignificant components. Han et
al. considered the weight magnitude as the significance cri-
teria and introduced weight sparsity regularization for model
compression [5]. To improve the sparsity irregularity in [5],

structural pruning was also proposed to achieve practical
computation acceleration [6], [7]. Li et al. defined the ¢;-norm
of the convolutional filter weights for significance evaluation
and removed small filters for less computation load [8], [9].

Although these works demonstrate good performance, all
these works only evaluate model components’ static signif-
icance with internal parameter information, ignoring their
dynamic interaction with external inputs. As CNN models
are trained for discriminating class-level features, every single
input may have certain feature activation variance: generic sig-
nificant neurons may not be activated by particular inputs [18],
while some insignificant neurons with rare feature preference
maybe specifically favored [21]. Such a variance suggests that
the model components’ significance should be evaluated with
a dynamic manner through the practical input testing process.

Recently, many research works have leveraged such a
dynamic manner for CNN model optimization on various
component levels. On feature map level, the ImageNet-2017
winner SENET found that different inputs have significant
impact on the feature channel significance. And dynamic
feature channel pruning can achieve outstanding computation
acceleration [10]. On convolutional filter level, Yu ef al. also
reveal that, regardless of filter weight, certain filters constrain
particular class-specific features with significant activation
impact. Therefore, filters with significant weight can be also
aggressively pruned according to specific class inputs [11].

Compared to the conventional works based static compo-
nent significance, the dynamic optimization has two major
advantages: (1) Qualitatively, it can identify every compo-
nent’s significance more accurately in the practical testing
phase by considering the dynamic feature-input interaction. (2)
Quantitatively, dynamic optimization enables more aggressive
redundancy elimination with per-input component significance
evaluation, while the static methods can only identify a general
redundancy based on the whole dataset.

However, current dynamic CNN optimization works still
have certain limitations: (1) How to achieve an evaluation
metric for dynamic significance evaluation? (2) How to apply
the dynamic optimization in different model dimensions, espe-
cially the non-structured ones? (3) How to develop particular
dynamic optimization schemes for both testing and training
phases to achieve comprehensive performance improvement?



2 TN

Input Feature Map

|
|
|
|
|
|
|
|
|
|
|
|
|
W |
Input Image - |
|
\

Layer |

Channel Attention

Spatial Attention

Pruned Channels

!‘/I liyl | 51.599% Q
® #1‘: l‘ﬂ.q;
Pruned Columns Sparse Output

d
Feature Map Layer I+1

Proposed Dynamic Channel and Spatial Column Pruning

Fig. 1. Channel and Spatial Attention-based Dynamic Pruning Framework. Deeper colors denote the channel or spatial column has larger attention coefficients
and will be reserved. Other channels and columns will be regarded as redundancy and be removed and the computation related can be thus skipped for efficiency.

To solve these problems, we propose AntiDote: an attention-
based dynamic CNN optimization framework. Specifically, we
have the following contribution:

o We establish a dynamic feature significance criteria based
on the attention mechanism. Focusing on the feature map
level, such a criteria could effectively demonstrate per-
input feature activation and corresponding model redun-
dancy in computation.

e We propose a comprehensive dynamic feature pruning
method with two dedicated schemes: channel-wise prun-
ing and spatial column pruning, which can flexibly prune
redundant features in different dimensions;

o« We propose a corresponding attention based training
algorithm coupled with targeted dropout, which greatly
enhances the model testing-phase accuracy against dy-
namic pruning hurts.

Fig. 1 gives a systematical overview of our dynamic opti-
mization method. Between any two consecutive convolutional
layers, we utilize the attention-based mechanism to evaluate
the importance of different components of feature map and
then generate the feature pruning mask. The mask will be
applied back onto the feature map and to remove the channel-
wise and spatial-wise redundancy structurally. By doing so,
we could remove the non-essential computation in the next
layer for runtime efficiency optimization.

Combining attention-based model feature pruning and the
comprehensive testing/training optimization methods, the pro-
posed AntiDote framework achieves expected computation
load reduction. Extensive experiments show that our method
can bring 37.4%~54.5% FLOPs reduction for different CNN
models (VGG and ResNet) and different datasets (CIFAR and
ImageNet) with negligible or no accuracy drop, which consis-
tently outperforms state-of-the-art optimization methods.

I1. Preliminary
A. Dynamic Neural Network Optimization

As we mentioned before, static pruning neglects one key
factor that the model parameter importance can be different
w.r.t different inputs. In other words, for every batch of inputs
during model inference, there may still remain some non-
important parameters or computations due to the limitation
of static pruning. This provide a new dimension to conduct
model computation reduction by dynamic pruning.

Following this lead, runtime neural pruning [12] used
a reinforcement learning-based method to conduct dynamic
channel pruning conditioned on different inputs. Another
recent work [13] proposed to add a channel-wise sparsity
regularization term during training to enable the dynamic
channel pruning during inference. All these dynamic pruning
works focus on reducing the channel of feature maps but again
neglect another dimension, which is the spatial dimension. Our
method consider both channel-wise and spatial-wise feature
map redundancy, and thus could achieve better performance.

B. Neural Network Attention Mechanism

Neural network attention mechanism is firstly introduced in
the language processing models [14] and is soon exploited to
help achieve the state-of-the-art performance in many vision
tasks, like image classification and object detection. For exam-
ple, SENET [10] proposed to use channel attention to reweigh
different channels of feature maps, which won the 1st place in
ImageNet-2017 image classification competition. In SENET,
each channel will be predicted with an attention coefficient
(between O and 1), which will be used to maintain or shrink
the values of that channel. Based on similar mechanism, the
spatial attention mechanism [15] is then introduced to predict
and reweigh each spatial column of the feature maps.

From the perspective of models, the attention mechanism
uses the predicted coefficients to help the model focus on
the important features (e.g. important channels or key spatial
locations are multiplied with coefficients close to 1), and
therefore are called attention mechanism. By contrast, in
our redundancy removal context, such attention coefficients
could also tell us where the non-important features are (e.g.
whose coefficients are close to 0). Therefore, we propose the
attention-based dynamic feature pruning method.

IT1. Attention-based Testing-Phase Optimization:
Dynamic Channel and Spatial Feature Map Pruning

In this section, we introduce our testing-phase optimization
by attention-based dynamic feature pruning, which consists of
two schemes: channel pruning and spatial column pruning.

A. Channel and Spatial Attention Coefficient Formulation

We first give the formal definition of channel and spatial
attention. Given an intermediate feature map F' € R ¢*1*W



(here, C, H,W is the channel depth, height, width of the
feature map), the channel attention coefficient can be obtained
by calculating the average of feature map entries in the spatial
dimension H *x W:

1 H W
Achannel(F, C) = m Z ZFC(/IH])’ (1)
i

where Acpannet(F,c) is channel attention for the selected
channel c. For a given feature map F' € R ©*"*W the channel
attention Apgnner(F) is a C—dimensional vector, each entry
of which corresponds to one channel of the feature map F'. In
a neural network, the channel attention is usually calculated by
adding a global average pooling layer behind the convolution
and ReL.U layer.

Similarly, the spatial attention coefficient calculates feature
map’s mean in the dimension of depth C:

C
1 .
Aspatial (Fa h: w) = 6 Z FhﬂU (Z) (@)

As such, a feature map F € R “*H*W would have a spatial

attention matrix Agpqtiqr(F') of HxW size (so-called attention
heat map), each entry of which corresponds to a spatial
location of the feature map.

In previous works [10], [14], such attention coefficients are
usually passed through a sigmoid layer to be normalized into
a (0,1) range, and then be multiplied back to the feature map.
It guides the model to dynamically put better attentions, but
it can hardly remove feature components for neural network
acceleration. In this work, we propose to overcome the above
challenge by using a further-binarized mask to improve the
attention mechanism in pruning context. Based on this, two
dynamic feature map pruning schemes are developed: channel-
wise pruning and spatial-wise column pruning.

B. Dynamic Feature Map Pruning

1) Dynamic channel pruning: During neural network for-
ward phase, a common convolutional layer will generate a
3-dimensional feature map F € R ©*H*W (the first batch
dimension is omitted for simplicity). Based on Eq. 1, channel-
wise attention vector Acpanner(F') is obtained to evaluate
the importance of each channel. With these coefficients, a
binary mask Mcpanner(F) will be generated, which is a C-
length binary vector to determine the redundancy removal. The
channel-wise mask can be generated by setting the mask of
top-k attention entries to be True or False, as is described by
Eq. 3. The value of k depends on the overall feature map
depth and the reserved percentage hyperparamter p, which is
selected based on our later layer sensitivity analysis.

True, 1If ¢ € topk(Achannel),
M(F,c) = k =int(px C); 3)
False, Otherwise.

Here, topk returns to the indexes of all top-k entries in the
channel attention vector. The channel mask True indicates the
current feature map channel will be reserved, while the other

channels whose masks are set to False will be masked out and
not participate in the next layer’s convolution computation.

Different from static channel pruning that the selected
channels are permanently pruned, in our case the pruned
channels are dynamically pruned based on the attention w.r.t.
the current input. More specifically, for other inputs which use
this channel, it can be fully recovered by the input dependent
new binary mask. As such, the proposed method can achieve
per-input redundancy removal and thus achieve larger pruning
ratio than traditional static methods, as is shown in Sec. V.

2) Dynamic spatial column pruning: Similar to the channel
pruning, dynamic spatial column pruning removes feature map
columns at different spatial locations according to the spatial
attention coefficients. Based on the spatial attention coeffi-
cients, a mask Mpq1iq(F) will also be generated. For spatial
column pruning, the mask Mypaiqi(F) is @ H = W matrix,
each entry of which corresponds to reserving or removing a
column of the feature map:

True, (h,w) € topk(Aspatiai),
M(F, h,w) = k=int(px H*W); @
False, Otherwise.

topk here returns to all the 2-dimension indexes with the top
attention coefficients. The same as channel pruning, the spatial
mask will be applied onto the feature map and the unimportant
columns will be removed from the feature map.

Note that both of the dynamic channel and spatial column
pruning target at pruning redundant feature maps, which is
different from previous filter weights pruning: the removed
feature map components skip the further convolution operation
and hence reduce the computation load in the next layer.

C. Attention-based vs. Random Pruning Results Analysis

Attention mechanism has been proved to be effective in
improving model performance. However in terms of channel
and column pruning, there is no guarantee that it can still
provide us good performance. Therefore, in this section, we
conduct comparison experiments to evaluate the effectiveness
of attention mechanism in dynamic pruning: (1) attention-
based pruning, (2) random pruning, and (3) the inversed
attention pruning. Here the inversed attention pruning means
that we firstly prune the channels with the largest attention
coefficients, i.e. the opposite priority with attention-based
pruning. For simplicity, we choose the last block of VGG16
and ResNet56 as the pruning targets. Then dynamic channel
pruning based on three criteria is conducted with different
pruning ratios to observe the accuracy drop. The experimental
results are shown in Fig. 2.

Clearly, we can find that attention-based pruning outper-
forms the random pruning by significant large margins. Take
the pruning ratio 0.4 as an example: the accuracy gap between
attention-based and random pruning can achieve 70% and
40% on VGG and ResNet, which clearly demonstrate the
effectiveness of attention coefficients for channel pruning.
Meanwhile, when we conduct the inversed-attention pruning,
the accuracy drops very quickly: For VGG16, we can observe



Regular attention —s— Inversed attention Random drop
1 VGG16 ResNet56
0.8
g 0.6
g : 70% Gap. 40% Gap.
<@
204
0.2
0

001 03 05 07 09 001 03 05 07 09

Pruning Ratio >

Fig. 2. Attention-based and Random Pruning Accuracy Drop Comparison.

that dropping only 10% channel will lead to nearly 80%
accuracy drop. This further proves that these top-attention
channels are the most essential components, without which
the neural network’s classification performance can hardly be
maintained. Similar conclusions could be drawn for dynamic
spatial column pruning, which will be demonstrated in the
later experiment section.

IV. Attention-based Training-Phase Optimization:
Dynamic Training with Targeted Dropout

To relieve the model’s dependency on less important feature
components, we concurrently propose a optimized training
algorithm TTD: Training with Targeted Dropout. With the new
training algorithm, model’s accuracy drop resilience against
dynamic pruning hurt will be greatly improved, thus providing
better dynamic pruning performance.

A. Training with Targeted Dropout

The design motivation of 77D is to relieve the target model’s
prediction dependency on less important feature components,
so that pruning these components will induce less damage to
the model performance. Therefore, we propose to integrate
dropout mechanism into the model training process. By doing
dropout, the model inference process can gradually become
robust to the dynamic feature map dropping. Meanwhile, to
mimic the similar dropping effects as attention-based pruning,
the dropout must also target at dropping attention-based less-
important feature components. Therefore, it’s called targeted
dropout. This is also the main difference between our dropout
mechanism from random dropout: the latter one is usually used
for totally different purposes, e.g. to avoid over-fitting.

For implementation, the main difference of our 77D training
algorithm with traditional training is we add a dynamic tar-
geted dropout layer after each convolutional layer. During the
forward phase, the targeted dropout layer will dropout the non-
important feature map components (channels and columns).
This can be done by conducting element-wise multiplication
with the generated attention binary mask in Eq. 3:

F, =F ® Mspatial(ha 11))7
FN = Fl ® Mcha,nnel (C)a

where ® denotes the element-wise multiplication. During
multiplication, the mask values will be broadcasted: spatial

(5

Pruning Ratio

Yy
e
%

0.6
04
0.2

Accurac

0 01 0.2 03 04 05 06 0.7 08 09 1
mBlock1 Block2 Block3 Block4 mBlock5

o

B. (ResNet56)

e
%

[LLITTFr

01 02 03 04 05 06 0.7 08 09 1
-Blockl Block2 mBlock3 = = Acc. Drop Tolerance
Fig. 3. Block Sensitivity Analysis: Accuracy drop trends are different for
different blocks, thus they should be set with different pruning ratios.

Accuracy
e
=)

S 2
(SRS

attention coefficients will be broadcasted and multiply with
every entry along the channel dimension, and vice versa. F"
is the final feature map output with targeted channel-wise and
column-wise sparsity. During the backward phase, the dynamic
dropout layer will just conduct the regular back-propagation
without any specific operations.

By introducing the attention-based targeted dropout effect,
the TTD training will gradually relieve the model’s prediction
dependency on less-important features (since they are often
dropped during training), but increase their focus on most
important ones. Therefore, the dynamic pruning of those non-
important feature components will induce minimum or no
effects to the model accuracy during test-phase inference.

B. Layer Sensitivity Analysis and Dropout Ratio Ascent

The TTD algorithm introduces the targeted dropout into
the training process to enable the dynamic pruning during
test. Whereas, different layers of a model can have varied
amount of redundancy. This requires the targeted dropout
ratios to be carefully tuned otherwise it will greatly hurt the
model convergence speed and final accuracy. Therefore, we
draw some experience from previous static pruning works and
follow the layer sensitivity analysis practice to set the dropout
ratio for different layers.

Take VGG16 network as an example. VGG16 has 5 con-
volutional blocks with [2, 2, 3, 3, 3] convolutional layers
and one 2x2 MaxPooling layer at the end of each block. To
avoid massive hyper-parameter tuning and to maintain policy
consistency with block-wise ResNet structure, we analyze the
average block sensitivity and set an aggressive dropout upper
bound for each block. For example, Fig. 3 shows the block
sensitivity analysis for VGG and ResNet. Take VGG as an
example: An aggressive pruning ratio per block e.g. [0.2,
0.2, 0.6, 0.6, 0.9] can cause the pruned model’s accuracy
dropping to less than 70%, which can be hardly recovered
back. Therefore, we set this threshold as the upper bound



TABLE I
EXPERIMENT RESULTS ON CIFAR AND IMAGENET DATASETS.

CNN Pruning Baseline Baseline Final FLOPs Final Accuracy

Models Methods Accuracy(%) FLOPs FLOPs Reduction(%) Accuracy(%) Drop(%)
L1 Pruning* [8] 93.3 - 2.06E+08 34.2 93.4 -0.1
VGG16 Taylor Pruning* [19] 93.3 - 1.85E+08 44.1 92.3 1.0
(CIFAR10) GM Pruning* [20] 93.6 - 2.11E+08 35.9 93.2 0.4
FO Pruning* [21] 934 - 1.85E+08 44.1 93.3 0.1
Proposed 93.3 3.13E+08 1.46E+08 53.5 93.1 0.2
L1 Pruning* [8] 93.0 - 0.91E+08 27.6 93.1 -0.1
ResNet56 Taylor Pruning* [19] 92.9 - 0.71E+08 43.0 92.0 0.9
(CIFAR10) FO Pruning* [21] 92.9 - 0.71E+08 43.0 93.3 -0.4
Proposed 93.0 1.28E+08 0.80E+08 37.4 932 -0.2
L1 Pruning* [8] 73.1 - 1.96E+08 37.3 72.3 0.8
VGG16 Taylor Pruning* [19] 73.1 - 1.96E+08 37.3 72.5 0.6
(CIFAR100) FO Pruning* [21] 73.1 - 1.96E+08 37.3 73.2 -0.1
Proposed: Setting-1 73.1 3.13E+08 1.87E+08 40.4 73.2 -0.1
Proposed: Setting-2 73.1 3.13E+08 1.72E+08 44.9 72.9 0.2
L1 Pruning* [8] 78.5 - 0.76E+10 50.6 76.6 0.8
VGG16 Taylor Pm-ning* [19] 78.5 - 0.76E+10 50.6 71.3 0.6
(ImageNet100) FO Pruning* [21] 78.5 - 0.76E+10 50.6 79.5 -1.0
Proposed: Setting-1 78.5 1.52E+10 0.74E+10 51.2 79.6 -1.1
Proposed: Setting-2 78.5 1.52E+10 0.69E+10 54.5 79.4 -0.9

* 1ndicates the methods’ performance 1s refered from [20], [21].

pruning ratio, and then use dropout ratio ascent during 77D
training. The dropout ratio will start with a warm-up ratio,
for example 0.1 for each block. After the model converges
during the current ratio, we will ascent the ratio for each
block with a small step-size (e.g. 0.05) to try reaching the
maximum pruning ratio. And the training will stop when the
target pruning ratio and a satisfying accuracy is achieved.

After TT'D training, the model is then fully-prepared for
dynamic pruning with the same ratio during test inference.
Therefore, our method doesn’t require any further fine-tuning
or retraining process, which is another great advantage.

V. Experimental Evaluation

In this section, we evaluate our proposed dynamic pruning
methods on various of CNN models (e.g. VGG16, and ResNet)
on CIFAR10/100, as well as ImageNet.

A. Experimental Setup

Our experiments are conducted using deep learning frame-
work PyTorch. On CIFARI10/CIFAR100 dataset, we use the
similar data augmentation including random horizontal flip,
random crop and 4-pixel padding. By default, we use the
cosine learning rate decaying [17] (0.1—=0) for TT'D training
process of all models. Several state-of-the-art static pruning
methods are chosen as baseline for comparison, including
¢1-norm Pruning [8], Taylor Pruning [19], Geometric Mean
Pruning (GM) [20], Function-Oriented Pruning (FO) [21].

B. Experimental Results on CIFAR and ImageNet

a) VGGI16 on CIFARIO: The first model we evaluated is
the VGG16 on CIFAR10. VGG16 has 13 convolutional layers
in 5 blocks. For each block, there are 2-2-3-3-3 layers with
64-128-256-512-512 filters (of 3x3 filter size) per layer. The
experimental results are shown in Table I. On this model, the
best channel pruning ratio per block we find is [0.2, 0.2, 0.6,

0.9, 0.9], which matches the sensitivity analysis in Sec. IV-B.
Beyond this ratio, the accuracy can hardly be compensated by
TTD training. Since the feature map spatial size is too small
(e.g. the last 9 layers’ feature map size are ranged from 8x8
to 2x2), pruning spatial columns on VGGI16 always brings
unrecoverable accuracy drop. Therefore, spatial pruning ratio
for this model is set to O for all layers.

Comparing our pruning ratio with previous work, our chan-
nel pruning ratios [0.2, 0.2, 0.6, 0.9, 0.9] greatly outnumber
the previous state-of-the-art static methods: The best FO
pruning [21] can only achieve [0.17, 0.1, 0.1, 0.45, 0.65].
This proves our hypothesis that our dynamic method can
aggressively and accurately remove more dynamic per-input
redundancy which static method fails to. As a result, our best
performance of dynamic pruning is 53.5% FLOPs reduction
with 0.2% accuracy drop, 9.4% higher FLOPs reduction than
the best FO Pruning with only 0.1% accuracy difference.

b) ResNet56 on CIFARIO: The next model we evaluated
is ResNet56 on CIFAR10. Different from VGG16 with wide
layers, ResNet56 has three groups containing 16 convolutional
layers per group. And it has at most 64 convolutional filters
in one layer. Thus, the channel redundancy in ResNet56 is
relatively limited compared to VGG16. By contrast, its feature
map size are from 32x32 to minimum 8x8, which can contain
more redundancy. Therefore, for this network, we prune less
channels but more spatial columns. Due to the skip connection,
we need to maintain the same size of input and output
channels of even layers in every group. Therefore, the dynamic
pruning is only conducted in the odd layers in the group.
The dynamic pruning setting for this network is channel-
wise pruning ratio: [0.3, 0.3, 0.6], and spatial-wise pruning
ratio: [0.6, 0.6, 0.6]. The final performance is 37.4% FLOPs
reduction with slight 0.2% accuracy improvement, which is
comparable with previous FO pruning results.



c) VGGI6 on CIFARIOO: We also test our dynamic
pruning method’s performance using VGG16 on CIFAR100.
One conservative pruning setting (Setting-1) is [0.2, 0.2, 0.2,
0.8, 0.9] channel-wise ratio, with zero spatial pruning ratio for
all layers due to the same reason of small feature map size.
Compared to all baseline methods, this setting could achieve
the highest FLOPs reduction (40.4%) as well as the highest
accuracy (73.2%). We also conduct a more aggressive pruning
setting (Setting-2) with [0.3, 0.2, 0.2, 0.9, 0.9] channel-wise
ratio and zero spatial ratio. In this setting, a 0.5% accuracy
drop is observed but we could push the FLOPs reduction to
44.9%, which is 4.5% more than Setting-1 model.

d) VGGI6 on ImageNet100: To validate our method’s
performance on large-scale image datasets, we test our pruning
methods using VGG16 model on ImageNet100 dataset with
the same setting as [21]. Different from CIFAR datasets,
images in ImageNet has a size of 224x224x3. Therefore, the
spatial dimension of the feature map in this model is much
larger than CIFAR model. With the similar FLOPs reduction
as the baseline, our setting-1 model brings 51.2% FLOPs
reduction. The setting is [0.1, 0, 0, 0, 0.2] for channel-wise
ratio, and [0.5, 0.5, 0.5, 0.5, 0.5] for spatial ratio. In Setting-
2, we further achieve 54.5% FLOPs reduction with increased
spatial ratio [0.5, 0.5, 0.5, 0.6, 0.6] and without accuracy drop.
This further proves our method’s good capability in removing
model redundancy on large-scale datasets.

C. The Redundancy Existence in Various Dimension

In above experiments, we calculate the FLOPs reduction all
together. But if we calculate the channel and spatial redun-
dancy separately, we could find that the model redundancy
can exist in very arbitrary dimensions. As shown in Fig. 4, on
ImageNet VGG16, the removed channel-wise redundancy only
accounts for 2.4% FLOPs reduction but the spatial-column
redundancy accounts for 52.1%. This implies that about half
of feature map redundancy exists in the spatial dimension.
However, remind that with the same VGG structure on CIFAR
with 32x32 image size, the major redundancy is removed in
a opposite channel-wise manner (all spatial ratio is zero).
While for ResNet56 model, a moderate amount of channel
redundancy (18.2%) as well as similar amount of spatial
redundancy (19.2%) can be removed simultaneously.

Such difference highlights the fact that the feature map
redundancy can exist in various of dimensions with different

Feature Map Redundancy Composition

VGG16-IMGNET100

VGG16-CIFAR100

VGG16-CIFAR10

R
0 0.2 0.4 0.6 0.8 1
= Channel Reundancy Spatial Reundancy

Fig. 4. The redundancy composition varies in channel and spatial dimensions.

input scales and model structures. Therefore, the previous
channel-only pruning can hardly remove the spatial redun-
dancy in the feature maps. By comparison, our new designed
spatial column pruning and its combination with channel
pruning method can conduct much more flexible and thorough
feature map redundancy removal, which thus achieve the best
performance in most test settings.

VI. Conclusion

In this work, we propose a dynamic feature map prun-
ing method based on attention mechanism. Specifically, we
consider both channel and spatial column redundancies and
removed them by our proposed dynamic pruning methods.
Meanwhile, to enhance the pruning performance, we propose
a training with targeted dropout method to further improve
the pruned model accuracy. Extensive experiments validate
our method’s effectiveness and show that our method achieves
better performance than previous state-of-the-art methods.

REFERENCES

[1] J. Deng, and et al, “Imagenet: A Large-scale Hierarchical Image
Database,” IEEE International Conference on Computer Vision and
Pattern Recognition, 2009.

[2] S. Ren, and et al, “Faster R-CNN: Towards Real-time Object Detection
with Region Proposal Networks,” Advances in Neural Information
Processing Systems, 2015.

[3] A. Graves, and et al, “Speech Recognition with Deep Recurrent Neural
Networks,” IEEE International Conference on Acoustics, Speech and
Signal Processing, 2013.

[4] J. Devlin, and et al, “Bert: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding,” arXiv:1810.04805, 2018.

[51 S.Han, and et al, “Learning Both Weights and Connections for Efficient
Neural Network,” Advances in Neural Information Processing Systems,
2015.

[6] Y. Wang, and et al, “Non-structured DNN Weight Pruning Considered
Harmful,” arXiv:1907.02124, 2019.

[71 W. Wen, and et al, “Learning Structured Sparsity in Deep Neural
Networks,” Advances in Neural Information Processing Systems, 2016.

[81 H. Li, and et al, “Pruning Filters for Efficient Convnets,”
arXiv:1608.08710, 2016.

[9] Y. He, and et al, “Channel Pruning for Accelerating Very Deep Neural

Networks,” IEEE International Conference on Computer Vision, 2017.

J. Hu, and et al, “Squeeze-and-Excitation Networks,” IEEE Conference

on Computer Vision and Pattern Recognition, 2018.

F. Yu, and er al, “Distilling Critical Paths in Convolutional Neural

Networks,” arXiv:1811.02643, 2018.

J. Lin, and et al, “Runtime Neural Pruning,” Advances in Neural

Information Processing Systems, 2017.

X. Gao, and et al, “Dynamic Channel Pruning: Feature Boosting and

Suppression,” arXiv:1810.05331, 2018.

A. Vaswani, and et al, “Attention is All You Need,” Advances in Neural

Information Processing Systems, 2017.

S. Woo, and et al, "CBAM: Convolutional Block Attention Module,”

European Conference on Computer Vision, 2018.

X. Ma, and et al, “Tiny but Accurate: a Pruned, Quantized and

Optimized Memristor Crossbar Framework for Ultra Efficient DNN

Implementation,” arXiv:1908.10017, 2019.

1. Loshchilov, and et al, “SGDR: Stochastic Gradient Descent with Warm

Restarts,” arXiv:1608.03983, 2016.

C.XK. Yeh, and et al, “DEEP-TRIM: Revisiting L1 Regularization for

Connection Pruning of Deep Neural Network,” Open Review, 2018.

M. Pavlo, and er al, “Pruning Convolutional Neural Networks for

Resource Efficient Transfer Learning.” arXiv:1611.06440, 2016.

Y. He, and et al, “Filter Pruning via Geometric Median for Deep

Convolutional Neural Networks Acceleration,” IEEE Conference on

Computer Vision and Pattern Recognition, 2019.

Z. Qin, and et al, “Functionality-Oriented Convolutional Filter Pruning,”

British Machine Vision Conference, 2019.

[10]
(11]
[12]
[13]
[14]
[15]

[16]

[17]
(18]
[19]

[20]

[21]



