
DC-CNN: Computational Flow Redefinition for
Efficient CNN through Structural Decoupling

Fuxun Yu1, Zhuwei Qin1, Di Wang2, Ping Xu1, Chenchen Liu3, Zhi Tian1, Xiang Chen1
1George Mason University, Fairfax, VA, USA

2Microsoft, Redmond, WA, USA
2University of Maryland, Baltimore County, Baltimore, MD, USA

{fyu2, zqin, pxu3, ztian1, xchen26}@gmu.edu, wangdi@microsoft.com, ccliu@umbc.edu

Abstract—Recently Convolutional Neural Networks (CNNs)
are widely applied into novel intelligent applications and systems.
However, the CNN computation performance is significantly
hindered by its computation flow, which computes the model
structure sequentially by layers with massive convolution oper-
ations. Such a layer-wise sequential computation flow can cause
certain performance issues, such as resource under-utilization,
huge memory overhead, etc. To solve these problems, we propose
a novel CNN structural decoupling method, which could decouple
CNN models into “critical paths” and eliminate the inter-layer
data dependency. Based on this method, we redefine the CNN
computation flow into parallel and cascade computing paradigms,
which can significantly enhance the CNN computation perfor-
mance with both multi-core and single-core CPU processors. Ex-
periments show that, our DC-CNN framework could reduce 24%
to 33% latency on multi-core CPUs for CIFAR and ImageNet.
On small-capacity mobile platforms, cascade computing could
reduce the latency by average 24% on ImageNet and 42% on
CIFAR10. Meanwhile, the memory reduction could also reach
average 21% and 64%, respectively.

Index Terms—Neural Network, Computation Optimization

I. INTRODUCTION

With excellent learning capability and classification accu-
racy, CNNs have been widely adopted in various cognitive
applications and systems. However, such satisfying CNN
functionalities are usually based on massive neuron volumes
and multi-layer interconnections. These complex structures
and huge workloads bring significant concerns regarding the
computation performance, such as computation latency, mem-
ory occupation, energy consumption, etc. Previously, many
works have been proposed to optimize the CNN computation
performance by reducing the computation load through model
compression (e.g., filter pruning [1]–[3], weight sparsity [4]),
hardware specific optimization (e.g., loop-untiling [5], fuse-
layer [6]), etc. Although these optimization works have
demonstrated their effectiveness, they are mostly limited by

The first core is fully
occupied during inference.

The other cores are
almost idle.

0 ms 200 ms 400 ms 600 ms

C
PU
 C
or
es

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 1: Core Under-Utilization during CNN Inference

Fig. 2: DC-CNN Framework Overview

the sequential CNN computation flow in a sequential layer-
by-layer manner [7], [8]. Such a layer-based computation
flow is defined by the inevitable inter-layer data dependency.
Specifically, the subsequent layers have to wait for the previous
layer’s whole output feature map for further computation.
Therefore, certain performance issues may occur: (1) For
high-performance multi-core platforms, the CNN inference
may suffer from resource under-utilization if without good
parallelism support. Fig. 1 shows a profiled CPU time-line
when running VGG-16 inference on an Intel 16-core Xeon
CPU. While the first core keeps running for 720ms, the
other 15 cores are almost idle during 98% processing time.
(2) For small embedded systems like mobile platforms, the
limited capacity like memory resources can also become the
bottleneck for running CNNs.

To tackle these challenges, in this work, we first propose to
resolve the data dependency in Fig. 2 (a)-like CNN models. As
shown in Fig. 2 (b), leveraging effective neuron functionally
interpretation, we can group the class-specific filters and
identify the critical model structure (i.e. critical paths) for
individual classes. Then by structural connectivity pruning,
we could decouple a CNN model into independent class-
specific sub-networks as shown in Fig. 2 (c). Based on this
CNN structural decoupling method, we then propose a novel
CNN computation framework – DC-CNN. Two computing
paradigms are proposed for different computing scenarios: For
large-scale multi-core systems, as shown in Fig. 2 (d), we in-
troduce the novel path-based parallelism into the computation

flow. By deploying the independent sub-networks into parallel
cores, the resource utilization is significantly enhanced, which
brings much inference latency reduction. For small-capacity
systems like mobile platforms, as shown in Fig. 2 (e), we pro-
pose a cascade computation flow, which processes independent
sub-networks in a sequential manner. In this way, the sub-
layer convolution could bring significant memory reduction
compared to conventional full-layer-wise computation flow.
With these two paradigms, the CNN computation flow is
redefined by a general software-system co-design methodology
for better computation performance.

Experiments show that, the parallel paradigm in our DC-
CNN framework could provide at most 33% inference latency
reduction on multi-core CPUs for both CIFAR and ImageNet
datasets. For the cascade paradigm, it could provide aver-
age 24% (ImageNet) and 42% (CIFAR) latency reduction
on mobile platforms. Meanwhile, it also achieves average
21% (ImageNet) and 64% (CIFAR) less memory occupation
with negligible accuracy drop.

II. PRELIMINARY AND MOTIVATION

A. Sequential CNN Computation Flow

Many previsou works have been targeting at optmizing
the computation flow of convolutional neural networks [6],
[9]. For example, CUDA support could map the computation
workload in the same convolutional layer to different GPU
cores [10]. H. Dogan and et al. proposed a shared-memory
based multi-core architecture and synchronization mechanism
for the parallelism [11]. M. Peeman and et al. proposed a
memory-centric accelerator to fully-optimize the convolutional
computation’s data locality pattern to reduce the extensive
memory overhead [12].

Though proved to be effective, many of these techniques
are designed for particular computing platforms. As a result,
many of them lack expected generality and adaptability. When
applying such methods onto different embedded systems like
mobile CPUs, the adaptability problems become even severer.

B. CNN Filter Function Interpretation

As aforementioned, current architectural optimization works
mainly focus on hardware perspectives but lack the analysis
from the more general CNN model perspective.

Recently, some interpretation works are proposed to analyze
the CNN structure from a perspective of neuron functionality.
For example: D. Bau and et al. [13] demonstrated that, the
filters have distinct functionality divergence across layers and
eventually only extract class-specific features. Moreover, A.
Nguyen and et al. [14], [15] designed a novel visualization
technique to illustrate the neuron’s activation preference pat-
tern. Utilizing this technique, Fig. 3 visualizes the prefered
patterns of selected filters in the convolutional layers of
a VGG-16 model [16]. It is obvious that, with the layer
depth increment, the filters’ maximized activation patterns
demonstrate clearer class objects (i.e. “bird” in Fig. 3). As
a result, the filters with the same “bird” preference compose
of a determinant “path” structure for this class activation (the

Fig. 3: Filter Functionality Divergence across Layers

orange dots) across the deeper convolutional layers. In the
next section, we will identify the ubiquity of such structures
(referred as critical paths) in CNN models.

III. CLASS-SPECIFIC CRITICAL PATH DISTILLATION

We propose several ways to quantitatively interpret con-
volutional filters’ class-specific functionalities and validate its
correctness. Based on this, we identify the independent critical
paths for different classes in CNN models.

A. Filter Functionality Interpretation

For the ith filter in the lth convolutional layer – F li ,
we can interpret its functionality by analyzing its activation
and gradients of the nth class. First, given an input x, the
confidence of the nth class can be formulated as:

Zn(x) = FL ◦ · · · ◦ F l ◦ · · · ◦ F 1(x),

where Al(x) = F l ◦ · · · ◦ F 1(x) =
∐

Al
i(x),

(1)

where Zn(x) is the nth class’s confidence output in the
final logit layer L, F l is the lth layer’s full convolutional
computation, Al is lth layer output feature maps consisting
of each filter i’s output feature map Ali, and

∐
denotes the

stack operation of feature maps. Based on this definition, the
filter functionality can be interpreted by two approaches:

1) Activation Preference Interpretation: Given different
sets of test images xn from N classes, the filter’s mean
activation of each class can be formulated as:

Actni = E(||Al
i(x

n
p)||1), p is the pool size of nth class, (2)

where ||.||1 is the `1 norm, E is the mean function. If the
images from the n-th class can cause a significant Actni value
than other classes, we can assume the filter F li has a higher
class preference to the n-th class.

2) Activation Significance Analysis: According to the first-
order Taylor expansion [17], a filter’s activation significance
can be evaluated by the gradients of the output. In other words,
the gradient Gradni can describe the differential impact of
filter i’s feature map to the nth class’s confidence:

Grad
n
i = ||

∂Zn(Al
i)

∂Al
i

||1, Zn
(A

l
i + δ) ≈ Zn

(A
l
i) +

∂Zn(Al
i)

∂Al
i

· δ (3)

where a larger Gradni indicates that a small change of δ on
Ali will cause big influence to Zn. Similarly, if filter i has a
significant Gradni , we can interpret that the filter i has more
contribution to the n-th class.

3) Filter’s Class-Specific Index: Combining both activation
preference and activation significance based on Taylor Expan-

TABLE I: Filters class exclusiveness distribution across layers.

Conv. Layer 1 2 3 4 5 6 7

Filters Amount 64 64 128 128 256 256 256

STD of Sn
i 0.02 0.04 0.05 0.12 0.20 0.16 0.14

Conv. Layer 8 9 10 11 12 13

Filters Amount 512 512 512 512 512 512

STD of Sn
i 0.35 0.33 0.40 0.57 0.82 0.79

*Average normalized standard deviation (STD) of Sn
i for each filter, which shows

the extent of filter’s class preference bias.

sion, we derive the class-specific index – Sni to identify a
convolutional filter’s function exclusiveness to a specific class:

Sn
i = Actni ∗Gradni , n∗ = Argmaxn(S

n
i), (4)

where n∗ is the priori functional target class of the filter i.

B. Functionality Interpretation Cross-Verification

We conduct a series of experiments to validate the proposed
class-specific index and explore the potential functionality
divergence and independence between different classes. Fig. 4
shows a pair of interpretation examples for the classes of “cat”
(a) and “dog” (b) in the Conv5 1 layer. For each figure, the
left column shows the distribution maps of all the filters’ Actni
and Gradni values corresponding to each class. It’s clear that:

(1) The same distribution patterns of activation and gradi-
ent maps indicates the consistency of the two interpretation
approaches. Combining two distribution maps according to
Eq. 4, we select out the top-3 filters with maximum Sni , and
their visualization patterns demonstrate clear corresponding
class objects with distinct features. Therefore, three methods
cross-verify the correctness of our functionality analysis.

(2) Meanwhile, the most activated neurons for two classes
are barely overlapped when we compare two sets of distribu-
tion maps in Fig. 4 (a) and (b). Such exclusiveness between
classes implies there exists great independence between dif-
ferent set of class-specific convolutional filters.

(3) We further calculate all the convolutional filters’ class-
specific indexes from a VGG-16 model trained on CIFAR-
10. As shown in Table. 1, the average normalized standard
deviation (STD) of filters’ n-class Sni gradually increases
with the layer depth. This trend qualitatively verifies the the
functionality divergence in Fig. 3, and also demonstrates the
ubiquity of the class-biased filters in deeper layers.

Neuron#431

Neuron#44

Neuron#20

(a) Class-3: Cat

3.Visualization1. Activation

2. Gradient

Neuron#473

Neuron#294

Neuron#125

(b) Class-5: Dog

3. Visualization1. Activation

2. Gradient

Fig. 4: Class-Specific Filter Functionality Interpretation

Airplane Automobile bird Cat Deer

Dog Frog Horse Ship Truck

C
la
ss
 C
on
fid
en
ce

Fig. 5: Per-Class Critical Path’s Classification Confidence

C. Independent Class-Specific Critical Path Distillation

Based on the filter’s functional exclusiveness analysis, we
then propose to group all the filters with the same class
activation preference together across different convolutional
layers. These filter groups thus form critical paths, which
can be regarded as the meta-architecture for the corresponding
class. Since the convolutional filters in different critical paths
have significantly diverged activation preferences and very less
shared features to share, the critical paths in deeper layers
should have rare data dependency with each other. Therefore,
we conduct the connectivity pruning between different paths
and assure each path is independent from the other paths.

As shown in Fig. 5, in the VGG-16 model trained on
CIFAR-10, we identified and tested the critical paths’ clas-
sification performance. Each sub-figure shows one path’s pre-
diction confidence distribution, where green lines denote input
from its functional target class, red lines otherwise. Clearly,
even without other filter’s support, each critical path alone can
effectively detect corresponding class inputs with distinctively
high confidence. In other words, the strong activation along
the critical path can directly trigger the corresponding classi-
fication result without relying on other paths.

Based on the function interpretation, we can now success-
fully distill the independent class-specific critical paths. Based
on this, we next propose a structural model decoupling method
for flexible model optimization.

IV. STRUCTURAL MODEL DECOUPLING

A. Overview of Structural Model Decoupling

Fig. 6 shows a conceptual model decoupling overview and
the detailed implementation between two consecutive layers
(the blue shadowed part). Our model structural decoupling
transforms a CNN model into three parts: the shared layers,
the decoupled layers, and the final logits, as shown in the
upper part. (1) The shared layers are kept as the original model
structure without decoupling, since these layers mainly extract
multi-functional features that are generally utilized by all
classes. (2) In the decoupled layers, we decouple the original
convolutional layers into N independent critical paths. This is
finally implemented by group convolution with N groups. (3)
The logit node of each class is connected at the end of each
corresponding path to generate the confidence for each class.

In the original structure in Fig. 6 (a), each filter needs to
convolve with all feature maps produced by the previous layer.
While in the decoupled structure in Fig. 6 (b), every class-
specific filter only convolves with intra-path feature maps,

(a) Conventional Structure (b) Decoupled Structure

Shared Layers
Decoupled Layers

Layer i Layer
i+1Feature Maps

Neurons

Path-1

Path-k

…

Logit
LayerConvolutional Layers

Logit
Layer

Fig. 6: Comparison of Original and Decoupled Structures

which is a very small portion. Therefore, the decoupled model
eliminates many conventional model’s inter-layer data de-
pendency but conducts the same classification functionalities.
Without these inter-path data dependency, the novel decoupled
structure enables us to conduct flexible computation flow
redefinition as we will show in the next section.

B. Decoupling Configuration Optimization

For a pre-trained CNN, it is critical to properly determine
how many layers to be decoupled (decoupling depth), as well
as how many filters should be chosen for each critical path
(filter ratio). Higher depth and lower filter ratio mean more
layers are decoupled with less filters in each path, reducing
more computation workload but inducing larger accuracy
drop. Therefore, optimizing the configuration to trade-off the
performance and accuracy is critical to model decoupling.

Specifically, we use configuration search to determine the
optimal parameters: (1) The decoupling depth D: we conduct
a line-search (one to the maximum model depth); (2) The per-
layer filter ratio FR: we search the global filter ratio for each
layer to reduce the search space. And then a line-search from
20% to 1% is conducted. We then retrain the decoupled models
and record their retrain accuracies. Fig. 7 shows the search
space and results with VGG-16 on CIFAR10. As expected, the
increasing decoupling depth and reducing filter ratio gradually
downgrade the model accuracy. In most cases, accuracy drop
can be effectively compensated by the retraining process until
the optimal point: 7 layers decoupled with 1% filters reserved
per path. Therefore, this configuration will be selected for the
best computation efficiency and the smallest accuracy drop.

V. CNN COMPUTATION FLOW REDEFINITION

In this section, we redefine the CNN computation flow
and introduce two adapted paradigms for multi-core parallel
processors and small-capacity embedded systems.

Fig. 7: Structural Decoupling Configuration Search Space

A. Parallel Computing Paradigm for Multi-Core Systems
The model decoupling method reforms a CNN model into

a set of independent sub-networks, which introduce a new
type of intrinsic model parallelism. Therefore, we design a
novel parallel paradigm to enhance the resource utilization and
improve computation performance for multi-core systems.

1) Parallel Computing Paradigm Overview: As illustrated
in Fig. 2 (d), the major difference of our parallel computing
paradigm from convention flow is within the decoupled model
layers. Due to the decoupling-enabled parallelism, each critical
path can be easily deployed to different cores of multi-core
system. Meanwhile, it does not require dedicated hardware
parallelism supports, such as core synchronization or inter-
core communication mechanism since these paths are inde-
pendent with each other. Compared with previous parallelism
works [11], [12], our proposed paradigm serves as a software-
level solution with no need of developing specialized archi-
tectural parallel assistance, which is an great advantage for
generality on different systems.

2) Performance Enhancement Analysis:
a) Computation Reduction: Given a base CNN model,

suppose we could decouple N sub-networks in the latter D
layers, each with 1/N of original number of filters per layer.
Then in each sub-network, one neuron only convolves with
1/N slices of the original full-size feature maps as illustrated
in Fig. 6 (b). Thus, the computation workload reduction is:

C
−
(N,D) = (1−

1

N
)

D∑
d=2

Cd. (5)

Cd is the original FLOPs of the d-th decoupled layer. And
d starts from 2 since the first decoupled layer convolve with
full-size feature map and thus has no workload reduction.

b) Latency Reduction: The latency reduction comes from
two sources: computation workload reduction and the multi-
core parallelism. (1) The computation reduction factor is N
times for the decoupled layers as mentioned before. (2) The
parallelism reduction factor depends on N sub-networks and
P parallel cores: When number of cores is larger than number
of paths (P ≥ N), partial cores will be utilized with full-path
parallelism factor N . Otherwise, all cores will be fully utilized
to process the sub-networks with full-core parallelism factor
P . Therefore, the expected latency reduction is:

T
−
(N,P) = α×

D∑
d=2

Td, where α =


(1−

1

P×N
), if N ≥ P ,

(1−
1

N×N
), if N < P ,

(6)

α is the latency reduction ratio, and Td is the original com-
putation time for each layer d.
B. Cascade Computing Paradigm for Single-Core Systems

The proposed DC-CNN framework can also facilitate the
cascade computation on small-capacity platforms to reduce
the inference latency and runtime memory occupation.

1) Cascade Computing Paradigm Overview: As illustrated
in Fig. 2 (e), the major contribution of our cascade flow is
we enabled the network to run critical paths in a sequential
manner, instead of layers. By doing so, the small-capacity
system only needs to store feature maps for a small subnetwork

TABLE II: Scalability Test of Proposed Model Structural Decoupling

Dataset Classes Baseline Acc. Scratch Acc. #FLOPs Decouple Config Retrain Acc. Final #FLOPs FLOPs Reduc.

CIFAR10 10 92.1% 92.1% 3.13E+08 D = 7, FR = 1% 92.1% 1.56E+08 50.2%
ImageNet10 10 70.2% 93.2% 1.54E+10 D = 6, FR = 10% 92.8% 1.08E+10 29.8%

CIFAR100

100 73.1% 73.1% 3.13E+08 D = 6, FR = 1% 72.3% 2.08E+08 33.5%
40 72.1% 79.4% 3.13E+08 D = 7, FR = 4% 78.1% 1.98E+08 36.7%
30 72.8% 82.3% 3.13E+08 D = 7, FR = 4% 81.8% 1.96E+08 37.4%
20 71.2% 85.1% 3.13E+08 D = 7, FR = 4% 84.7% 1.86E+08 40.6%

at any time, which greatly reduces the runtime memory
occupation and the potential memory access overhead [12].

2) Performance Enhancement Analysis: Here we analyze
the theoretical performance in latency and memory reduction.

a) Latency Reduction Analysis: Without parallelism, the
latency reduction in cascade flow only comes from the com-
putation workload reduction in Eq. 5. Therefore, the latency
reduction can be directly formulated:

T− = (1− 1

N
)

D∑
d=2

Td. (7)

And as we will show later, the theoretical latency reduction
matches our real performance quite well in real mobile testing.

b) Runtime Memory Reduction Analysis: In the shared
layers of our decoupled models, the cascade computing flow
occupies the same runtime memory as the conventional struc-
ture. While in the decoupled layers, the output feature map
size is deducted to 1/N of original size (if one path is 1/N
of original layer), since we only run one path per time.

VI. EXPERIMENTAL EVALUATION

A. Scalability Analysis for Structural Model Decoupling

We evaluate the scalability and generality of our model de-
coupling method in two aspects: higher image data complexity
and more class composition complexity. Complementarily, we
also demonstrate that our method has high flexibility to support
highly customized class composition.

1) Scalability with Image Data Complexity: We test our
method with ImageNet datasets (10 classes are randomly
chosen) to show the scalability for input data complexity.
The baseline model is a full-size pre-trained model trained
on the whole ImageNet datasets, and baseline accuracy is its
test accuracy on the subset of classes. We then train a model
from scratch on the chosen ImageNet subset (with higher
scratch accuracy 93.2%). The structural decoupling results are
shown in Table II. By decoupling 6 layers with 10% filter
ratio, our decoupled model maintains 92.8% accuracy (with
0.4% accuracy drop compared to high scratch accuracy) but
reduces model computation workload by 35.2%, which proves
our method’s generality on large-scale inputs.

2) Scalability with Class Composition Complexity: To ver-
ify the scalability for more complex class composition, we
generalize previous 10 classes to 100 classes scenario. Ex-
periments on CIFAR100 proves our method’s high scalability
with more classes: under the 100-class setting, the optimal
decoupled configuration is D = 6, FR = 1%, providing 33.4%
FLOPs reduction with only 0.8% accuracy drop.

TABLE III: Parallel Performance for CIFAR

Inference Latency Reduction
Mode Orignal Ours. Theory Practical

CPU-1 4175ms 3163ms 29.8% 24.2%
CPU-2 4321ms 2864ms 32.5% 33.7%
CPU-4 4298ms 2857ms 32.9% 33.5%
CPU-8 4290ms 2845ms 33.3% 33.6%

CPU-16 4275ms 2831ms 33.6% 33.7%

TABLE IV: Parallel Performance for ImageNet

Inference Latency Reduction
Mode Orignal Ours. Theory Practical

CPU-1 14.95 s 11.35 s 29.8% 24.1%
CPU-2 15.12 s 11.01 s 31.5% 27.2%
CPU-4 15.08 s 10.38 s 32.3% 31.2%
CPU-8 15.06 s 10.33 s 32.7% 31.4%

CPU-16 15.10 s 10.21 s 32.8% 32.4%

3) Add-on: Customizable Class Composition: The pro-
posed structural decoupling also supports users to further
reduce model’s computation workload according to their cus-
tomization needs. To do so, it requires the fully interpretation
of the model parameters, which can hardly be done by pre-
vious pruning methods. To demonstrate our high flexibly, we
evaluate three such customized settings: reserving a random
subsets of classes (20, 30, 40) in CIFAR100. To optimize for
such settings, we flexibly remove all unnecessary critical paths
of non-required classes. Experiments show that, our decoupled
models with flexible class composition can provide 36%∼41%
FLOPs reduction on all settings with negligible accuracy loss.

B. Performance of Parallel Paradigm

Then we evaluate the proposed parallel computing paradigm
performance on the server-level Intel Xeon 16-core CPU. The
experimental results on CIFAR and ImageNet are shown in
Table III and Table IV. Both models are decoupled with
decoupling depth D = 6, filter ratio FR = 10% with no accuracy
loss. The model inference latency is tested on one batch of
images (CIFAR: 128, ImageNet: 32). CPU-i means the model
inference process can utilize up to i physical cores of the CPU,
which is done by setting the number of parallel threads. The
theoretic latency reduction is calculated according to Eq. 6,
and the practical reduction is averaged on 100 running.

As Table III shows, our parallel computing paradigm on
CIFAR brings a 24∼34% latency reduction compared to
original sequential computation flow. The ImageNet results in
Table IV show similar latency reduction rates. With increasing
parallelism from CPU-2 to CPU-16, the latency reduction ratio
increases to the maximum ∼33.7%, which exactly matches the
theoretic analysis result (33.6%) calculated by Eq. 6.

TABLE V: Performance of Cascade Computation for CIFAR10 and ImageNet10

Original Model Decoupled Model Theoretical Practical
Dataset &

Model Settings
Mobile

Platforms
Latency

(ms)
Memory

(MB)
Latency

(ms)
Memory

(MB)
#FLOPs

Reduction
Latency

Reduction
Latency

Reduction
Memory

Reduction

CIFAR10
(D=7, FR=1%)

Nexus-5X* 95 155.1 56 55.2 50.68% 53.24% 41.05% 64.41%
Pixel-XL* 98 161.3 57 58.8 50.15% 50.15% 41.84% 63.55%
Honor-8 137 164.3 75 52.5 50.15% 50.15% 45.26% 68.05%
Nexus-4 330 158.5 185 58.4 50.15% 50.15% 43.94% 63.15%

CIFAR10
(D=6, FR=1%)

Nexus-5X* 95 155.1 65 70.2 33.54% 33.54% 31.57% 54.74%
Honor-8 137 164.3 85 68.5 33.54% 33.54% 37.96% 58.31%

ImageNet
(D=6, FR=10%)

Nexus-5X* 1455 281.1 1122 223.2 29.81% 31.30% 22.86% 20.60%
Honor-8 1532 290.3 1145 226.5 29.81% 31.30% 25.26% 21.98%

Note: [*] denotes evaluation is done on Android Studio Emulator, otherwise evaluation is done on real mobile phones.

Finally, to better illustrate our parallel paradigm, Fig. 8
shows the decoupled layers’ parallel computation details,
which demonstrate the great enhancement of core utilization.
C. Performance of Cascade Paradigm

We then evaluate our cascade computation paradigm on
four different mobile platforms and evaluate their real latency
and memory reduction performance. Specifically, the Tensor
Lite models are loaded into an Android application, and
the inference latency is on one single image. The memory
evaluated here is the average peak runtime memory of the
application monitored by Android Studio tracing.

Table V shows the overall performance comparison of
cascade computation of the decoupled model and the original
model. On all four test platforms, our decoupled cascade
model consistently provides lower latency and memory oc-
cupation than original model. For quantitative comparison,
we calculate the theoretic latency reduction ratio based on
Eq. 7. Take the settings of CIFAR10 (D=7, FR=1%) as an
example: The theoretical latency reduction is 50.68%, and the
practical latency results demonstrate a range of 41.1%∼45.3%
latency reduction on different platforms. Considering different
platforms’ runtime dynamics, the latency reduction is roughly
consistent with our theoretical analysis.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

C
PU
 C
or
es

Path-1:

Decoupled Layers

Inference Time

Fig. 8: Parallel Flow: Multi-Core Utilization Enhancement

Decoupled CIFAR

Decoupled ImageNet

Original CIFAR

Original ImageNet

155.1MB

281.1MB

55.2MB

223.2MB

Reduction: 64.41%

Reduction: 20.60%

A
llo
ca
te
d
M
em
or
y
Si
ze

Run Time

Fig. 9: Cascade Flow: Memory Reductions on Nexus-5X.

The memory reduction gain is also significant and consistent
for different settings according to the results. Fig. 9 shows the
runtime memory traces by Android Studio to better illustrate
the memory reduction. Each spike on the memory traces
denotes the peak allocated memory for one inference. Clearly,
through our structural model decoupling and cascade com-
puting paradigm, we can bring the CIFAR10 model average
64.4% memory reduction (and 20.6% for ImageNet model) on
Nexus-5X, which is a significant reduction for mobile devices.

VII. CONCLUSION

In this work, we proposed a novel model structural de-
coupling method. Based on the method, two computation
paradigms: parallel and cascade computation are proposed
in our DC-CNN framework to adapt to large-capacity and
resource-constrained scenarios. Extensive experiments demon-
strated that DC-CNN framework’s generality and scalability.

REFERENCES

[1] J.-H. Luo and et al., “Thinet: A filter level pruning method for deep
neural network compression,” arXiv:1707.06342, 2017.

[2] H. Li and et al., “Pruning filters for efficient convnets,”
arXiv:1608.08710, 2016.

[3] Y. He and et al., “Channel pruning for accelerating very deep neural
networks,” in Proc. of ICCV, 2017.

[4] S. Han and et al., “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,”
arXiv:1510.00149, 2015.

[5] C. Zhang and et al., “Optimizing fpga-based accelerator design for deep
convolutional neural networks,” in Proc. of FPGA, 2015.

[6] M. Alwani and et al., “Fused-layer cnn accelerators,” in MICRO, 2016.
[7] G. Li and et al., “Block convolution: towards memory-efficient inference

of large-scale cnns on fpga,” 2018.
[8] Y. Ma and et al., “Optimizing loop operation and dataflow in fpga

acceleration of deep convolutional neural networks,” in FPGA, 2017.
[9] M. Lin and et al., “Network in network,” arXiv:1312.4400, 2013.

[10] CUDA, “Programming guide,” 2010.
[11] H. Dogan and et al., “Accelerating graph and machine learning work-

loads using a shared memory multicore architecture with auxiliary
support for in-hardware explicit messaging,” in IPDPS, 2017.

[12] M. Peemen and et al., “Memory-centric accelerator design for convolu-
tional neural networks,” in Proc. of ICCD, 2013.

[13] D. Bau and et al., “Network dissection: Quantifying interpretability of
deep visual representations,” 2017.

[14] A. Nguyen and et al., “Multifaceted feature visualization: Uncovering
the different types of features learned by each neuron in deep neural
networks,” arXiv:1602.03616, 2016.

[15] J. Yosinski and et al., “Understanding neural networks through deep
visualization,” arXiv:1506.06579, 2015.

[16] F. Yu, Z. Qin, and X. Chen, “Distilling critical paths in convolutional
neural networks,” arXiv:1811.02643, 2018.

[17] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

