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Nonlinear Optimal Velocity Car Following Dynamics (I): Approximation
in Presence of Deterministic and Stochastic Perturbations

Hossein Nick Zinat Matin! and Richard B. Sowers 2

Abstract—The behavior of the optimal velocity model is
investigated in this paper. Both deterministic and stochastic
perturbations are considered in the Optimal velocity model and
the behavior of the dynamical systems and their convergence
to their associated averaged problems is studied in detail.

I. INTRODUCTION AND RELATED WORKS

Microscopic dynamical models are one of the most impor-
tant traffic flow models which consider the behavior of each
individual vehicle-driver in response to its interaction with
other vehicles. These dynamical models are suitable frame-
works for Intelligent Transportation Systems (ITS) including
the Adaptive Cruise Control (ACC) and Advanced Driver
Assistance Systems (ADS) (for details about the applications,
different microscopic models and their assumptions, we
refer the interested readers to [1]). From theoretical point
of view, these problems are very complex and have many
interesting properties that make them theoretically rich and
valuable. The literature is extensive and diverse in the sense
of proposed mathematical models and the realistic traffic
factors that are included.

One main type of microscopic traffic dynamics is so called
car-following models. Different categorization, models and
analysis in this area can be found in [1]. A generic form of
the these model is in the form of

X0 () = F(AX" (1), v V() v (1), (D)

where AX() (1) = X1 (r) = X")(z), i.e. the distance be-
tween the n-th vehicle and its leading one. V(" denotes
the velocity of the n-th vehicle. Function F defines the
acceleration and in fact can be interpreted as response to
the interactions with other vehicles.

Reuschel [2] and Pipe [3] introduced the first car following
models. Many other dynamical models have been proposed
to improve realistic assumptions on these original models.
We refer the readers to some of the fundamental works in
this area [3], [4], [5], [6], [7], [8], [9].

We are mainly interested in a particular type of car-
following models in this paper. Bando et al. [10], [11]
introduce Optimal velocity (OV) model in which each vehicle
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has an optimal velocity function (see equation (2) below).
The comparison of the current and a so called optimal speed
decides the acceleration or deceleration of vehicle under
consideration. This legal or optimal speed is defined based
on the distance between a vehicle and its preceding car.

Most of the work in this area are related to study of
stability of the corresponding dynamical systems. In this
work, however, we investigate this problem from a different
point of view. We are interested in interpreting this OV
model as a basic model which governs the behavior of an
autonomous system. We believe that in order to improve
this dynamical model from this point of view, we need to
first investigate the system locally by isolating some of the
component (vehicles) and investigate the behavior of this
system under limited source of interactions. Then we can
extend the source of interactions to contain other vehicles and
drivers. To do so, We consider the optimal velocity model
proposed by Bando et al. [11] as our primary dynamical
model. Some details about this dynamical model is explained
in the next section and more details on defining the model, its
stability, nonlinearity, and its performance in the numerical
analysis can be found in [11]. We localize this model to
contain the first two vehicles only.

One important aspect in study of any dynamical model
is investigating the behavior of such system in presence
of deterministic or stochastic perturbations. In this regards,
element of stochasticity has been discussed in several pa-
pers, including the drivers uncertain behavior [1, Section
12], stochasticity which causes the traffic breakdown in
[12] and references therein, and more recently [13], [14]
which discuss the stochastic stability of OV models. In this
work we consider a particular deterministic and stochastic
perturbations in OV dynamical model and discuss the con-
vergence of these systems to an unperturbed model known
as averaged problem. This is in particular important since
any real dynamical model encounters perturbation due to
different reasons including the uncertainty in parameters
and uncertain environmental conditions among others. In
addition, the analysis and some other proven properties of
the solution are insightful on the their own right. Separately,
In [15] the order of convergence and the quality of such
approximation is discussed by authors.

The organization of the paper is as follows. We first
review the construction of the OV dynamical model and its
modifications in section II. Then in section III we discuss
the bound on the solution of the system, which is essen-
tial to prove our main results. In the next step we show
the asymptotic behavior of the system in the presence of
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deterministic perturbation. We further extend our result by
discussing the stochastic oscillations in the system and the
averaging behavior of the dynamical model in section IV.

II. OPTIMAL VELOCITY CAR FOLLOWING
DYNAMICS

In this section we first elaborate the dynamics governing

the motion of a platoon of vehicles and then we discuss some
properties of the solution.
We start by considering N number of vehicles and let X ") (r)
be the position of the n-th car at time #. Assuming that the
platoon is moving rightward and the first car is in the right
most position. In addition, for simplicity we assume that the
first car is moving at a constant speed vy and the starting
position is the origin. i.e.

XU (1) = vor.

In this paper we consider the optimal velocity dynamics
proposed by [11] and can be presented as follows. For the

n-th car we have
) —X<">(t>} , @

X0 (1) = a{V(

where o > 0 is a constant associated with the driver’s
sensitivity and d > 0 is an adjusting constant and function V
which will be defined later. If we define AX < x (=) — x(®),
in fact, function V(%) captures a so called optimal velocity
of the vehicle n which depends on the distance between the n-
th car and its preceding (n— 1)-th car. This dynamic explains
the acceleration and deceleration of the following car n. That
is, considering (2) if

X=D () = x™(r)
d

AX™) > gy (X(">) ,

where V! is the inverse function, then a positive force
(acceleration) needs be imposed. Similarly, if this identity
is negative, then a negative force (deceleration) needs to be
applied in order to keep the vehicle in a safe distance.

Based on the role that function V plays in defining
the above dynamics, we expect this function to be (a)
monotonically increasing and (b) bounded above (maximum
permitted speed). In addition, for our analytic investigation
we like function V' to satisfy Lipschitz condition and to be
sufficiently smooth. In this paper, we consider function V' to
be:

V(x) & tanh (x — 2) + tanh (2);
which satisfies the required properties (figure 1).

A. Reducing the Dynamics

To investigate the dynamics as well as the interaction
between the vehicles, we first take a closer look at the first
two cars. To do so, let us first define:

220 (1) L x (1
22 (1) © x (0

Y =X (1) = vor — X" (1)
)= X" (1) = vo— X" (1),

t

t

411
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Fig. 1. Function V (x).

for n€ {1,---,N}. This implies that z(!)(r) = z(®)(r) = 0 and

also
vp — =1

(1) =vo—2%(2)
() = —x ™.
Therefore, (2) can be written in the form of

Z-(an 1) (l) — Z(2n) (l)

2 (1) = —a{v ( ) —vo+z<2”)(t)}.

We start by considering the first and the second cars only.
In this case, the dynamics of the second car is

2(3)@) =7 (t)
) +Z(4)(I) —Vo} .

M) =—a {v (

Let us denote x(r) = z®)(¢) and y(r) = z*) () and then we
have the following optimal velocity dynamic for the first two

vehicles:
0 =-a{v (%) 1300w

(x(t0),¥(t0)) = (x0,0)-

As mentioned before, we believe that understanding the
interaction between two vehicles is crucial in theoretical
investigation of more interacting vehicles.

Z(2n71) (l‘) _ Z(2r173) (I)
d

723 (1)
d

3)

Remark 1 (Existence and Uniqueness of Solution) The
existence, uniqueness and smoothness of the solution of (3)
can be easily discussed based on properties of function V
and in particular Lipschitz continuity.

ITI. FAST PERTURBATION

In this section we introduce a fast perturbation term into
equation (3) and we discuss that asymptotically this system
will behave like the averaged dynamical problem.

Fast perturbations can happen in different situations. For
example variations in the velocity due to rotational fluctua-
tions as the result of weather and/or road condition. Consider
a car driving 60 m/h a bounded variation happens in the
velocity as a result of road conditions (e.g. bumps) every
5 feet. Then the variation in velocity happens in the order
of € =0.05 seconds. [16] includes detailed examples on
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Fig. 2. Function W (x), for d =5,v9 =0.5,a = 10.

oscillation theory of nonlinear and deterministic dynamical
systems.
We consider

Xe(t) = ye(r)
o) =—a{v (2 ) e -m b et/e) @
(x£(0),ye(0)) =

for a bounded, and smooth function g : R — R. We like to
study the behavior of system (4) over the time interval [0, 7],
for some T > 0.

(x0ay0)a

Theorem 1 Let (x¢(¢),y¢(¢)) be the solution of (4) on
interval [0,7]. Furthermore, we suppose that function g
is bounded by constant M,. Then there exists a constant
M =M(T) > 0 such that:

sup sup |ye(t)] <M.
€e>0r€[0,T]

Proof- Let us define function H : R? — R:

tlz

H(xy) € 3+ W), (5)

where,

W(x def /V (X' /d)dx' — ovox

:Oﬂl (cosh(x/“)

tanh(2) — .
3 cosh(2) >+ax anh(2) — avgx

Using the deﬁnition of function W and assuming that v €
(tanh(2) — 1, tanh(2) + §), we have:

as x oo,
1
kdifoz(2 +tanh(2) —vo) > 0,
W(x) <k'x, asx\ —oo,

1
K (3 + tanh(2) —vo) <0.

W(x) =< kx, where

where

In addition, it is simple to observe that W” (x) > 0. Hence,

w & 1an( ) > —oo

Figure III shows the behavior of function W for given values
of the parameters. Considering function H defined in (5), we

have that:

Therefore,
H (xg(1),ye(t)) — H(x0,0)

= [ ()2t xe(s).3e()
+y.e(s)awH(xs(s)’ys(s)))ds
= [ [ares) 0 e )/ ) = o) vels)
{0 {V(xe(s)/d) —vo+ye(s)} +g(s/e)}] ds

- /'{—a<ys<s>>
/ ve(s)g(s/€)d

Therefore, using Young inequality and definition of M, over
[0,T], we have that:

H (xe(t),ye(t)) — H(x0,y0)
1/t 5 |
< 5/0 ((5))2ds+ S M2T.
On the other hand, by the definition of H and W:

2 +ye(s)g(s/e) }ds

1
H(x,y) > §y2 +W.

This implies that on [0,T]:

S0e0) < Hiao o) =W+ [ (es)ds
+ 2M§T

Therefore by applying Gronwall inequality on y2(t) and
taking square root, we get:

| <{\/2H(0,y0) - 2w +M2T LT (6)

sup sup |ye(r)

£>07€[0,T]
which completes the proof. [ ]
We define
& fim — / 7
8= T oo T

and assuming that such limit exists. Next theorem shows
that the dynamical system (4) as a perturbed system behaves
in a certain way like and averaged problem. It should be
noted that while convergence to the averaged problem may
look natural for the fast oscillating dynamics but the proof
requires detailed and subtle discussions in general.

Theorem 2 Let g be bounded and smooth function. Then
the perturbed dynamic in (4) can be approximated by the
solution to the following dynamical system

() =y(1),
¥ (1) = a{v (x 5)) +3°(1) v} +g,  ®
(x°(0),¥5°(0)) =

(x07y0)a
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over time interval [0,T]. In other words,

sup |Xe(r) —X°(1)] =0,

t€[0,7]

xe(t)
Xe(t) = ,
8( ) ()’e (t))
and X°(¢) is the solution of (8).
Proof: Let us define

A [ {st5)-ghas.

The following observations will be used through the entire
discussion. First, we recall that:

as € — 0,

where,

Mg = sup|g(t)|.
1eR
Thus,
sup |A(r)| < 2M,T.
t€[0,T]

This means function A is only locally bounded.

Second, by the definition and boundedness of g, we can
observe that g(t) —g € L}, (R), and therefore by Lebesgue
differentiation theorem we have

Alt) =g(t) -3,

and boundedness of g implies that:

for t € R,

sup [A'(r)

| <2M,.
teR

That is, A is continuously differentiable with bounded deriva-
tive.

The above fact in particular implies that A : R — R is
absolutely continuous function and hence, for r € R and for
any € >0 we have

[ tstsre)~gras= [ enmae

For simplicity, we denote by

L(x, y)—fa{V (g) +y7v}.

Let us write the perturbed dynamics in the integral form as
follows.

D=0+ [ Lels)vels)ds + [ gls/e)ds

—no+ [ L(xe(s),ye(s))ds

€A(t/¢). ©))

p . (10)
+ [ (ss/2) - s+ [ gas
ot
— o+ /0 L(xe(s),ye (s))ds +€A(t/€) + at.
First let us look at the following limit:
t/e
hm eA(t/e) =lime (/ g(s)ds—gt/£>

£—0 0 (1 1)

1 t/e
=tlim — ds—at=0
sli’%z/s/ g(s)ds—gt =0,

since by our assumption the limit exists and is equal to 3.
Now, if we let € — 0 then (11) and (10) imply that:

pe(0) = (30 + [ (Le(0)e(0) +8as )| 0. (12

as € — 0. The next step is to show that x, and y, have limits
when € — 0. Let us define the collection of functions of the
form

sup
t€[0,7]

={ye : €> 0}, (13)
such that for each € > 0, y. € C([0,T],R) and function
t > ye(t) solves (4). Then F C (C([O, T],]R),L?H,Hu)
[[I[, is the uniform norm on this space and .7 | denotes the
associated topology with respect to this norm on C([0,T],R).
Equation (6) implies that .# is bounded. Using dynamical
system (4), theorem 1 and boundedness of g(z), it is straight-
forward to see that:

—Ye(s)| <[t —s|K,

where

Sup|y8(t) t,SE [OaT]a

>0

for some constant K > 0. This proves the equicontinuity of
the collection .%. Therefore by Arzela-Ascoli theorem we
conclude that .% is totally bounded (precompact). Hence, any
sequence {yg, }meny C # has a cauchy subsequence which

converges in the Banach space (C([O,T],R),ﬂ_uu). Let us
consider any sequence {yg, }nen in which g, 0 as n " oo,
In addition, let y* € C([0,T],R) be the limit point of this
sequence. Similarly, we can write

Jim | Xe, , = lim S[lépT]IXe()l
te

t
= lim sup |[xo+ [ e, (8)ds
n/% 40,7 0
t
= sup |xo+ lm [ g, (s)ds|.
1€[0,T] n/% Jo

Therefore (6) justifies the dominated convergence theorem
and hence xg, — x* € C([0,T],R) as n — oo with respect to
7)., topology where,

xX(t) =x0+ /Oty*(s)ds

Therefore, from (12) and using dominated convergence the-
orem, we have that
lim sup

n e 0.1] Ve, (t) — ()’O‘FI/ (L(xgn(s),ygn(s))+g>ds

yi(1) yo+/

This result suggest that (x*(¢),y*(¢)) is the solution of the
following dynamics over [0, 7]

X() =y (1),
y(1) = L(x*(2),y"(1)) +&,

with the initial condition (xg,yo). On the other hand, the ODE
has a unique solution; therefore, since any limit point satisfies

the same ODE, limg_,( y, exists in (C([O, T],R), ‘7\\-\\“)' This
completes the proof. [ ]

= sup (8))+g)ds| =0.

1€(0,7]
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IV. STOCHASTIC PERTURBATION

In this section we consider a small stochastic perturbation
included in our dynamical model. As mentioned before, this
kind of perturbation can be as a result of rotational noise in
the velocity with small amplitude. Stochastic perturbation for
general dynamical systems have been studied under different
assumptions in various studies, e.g. [17] and references
therein. In this paper we consider a stochastically perturbed
OV model and show that this system can be approximated
by the associated averaged dynamics. Let {W(¢) : ¢ > 0} be
a 1-dim Wiener process with Wy = 0. Consider the following
system:

dxe (1) = ye(t)dt,

dye(t) = —a{V (W)) Fye(t )—vo}dt—i—de(t) (14)

d
(x(0),y¢(0)) = (x0,¥0).
In this paper we discuss a simple case of small Brownian
perturbation. It should be noted that we could also discuss a
more general case in which the perturbation is in the form of
€0 (xe(t),ye(t))dW (¢) in which o(.) satisfies Lipschitz and
linear growth conditions and still similar result holds true.

Theorem 3 Let (xe(s),ve
(x(1),y

(s)) be the solution of (14) and
(1)) be the solution of (3). Then,

P{ sup |)’£([)

1€(0,7]

—y()| > 5} <&’ %u(T),

for a bounded function u. A similar result holds true for
solution xg (7).

Proof: By using the definition of the dynamical systems
(3) and (14), we have that

T
sl pCE) ()
t€[0,7] 0
+(X/ ‘yg ‘dy
+¢& sup |W(r )|
t€[0,7]

Therefore we can write:

P{ sup [ye(t) —

t€[0,T]

=i,
ol

+P< e sup |W(r)
IEOT

(o) >6}
() (oo}

|ds>5/4}

|>6/2}

414

Now we calculate each of these terms separately.

P{a [ bt -6)1as > 874
< 160’56 °E </0 [e(s) —y(S)IdS>2

. (15)
< 16025 °TE /0 (ve(s) = y(s))2ds

= 160577 /0 " E (3 (s) — y(s))2ds,

where the first inequality is by Chebyshev and the second
one is by aplying the Holder’s inequality and the last equality
is by Fubini theorem. To calculate (15) we apply the Ito

formula on F(ye(¢),y(t)), where F(v,w) &f (v—w)2:

(ve(r) = ¥(r))?

- _2a/(: {(ye(S) =¥(5)) {V (xgc(;)) - (xS)) } }ds

~2a [ (els) ~5(6)) s
+2£/0t (ve(s) — ¥(s)) dW (s) + €2t

Dropping the negative term, taking expectation from both
sides and the fact that expectation of the martingale term is
zero, we obtain:

E (ve(t) = ¥(1))?

<20 | E{ oets) -6 (v (252) -v () }ds

+&T.
Applying Young inequality, we have

E (ye(t) — <a/ E (ye(s y(s) ds

+a/0 E(V (xigs)> —v (;ﬁ)))zds

+€e’T

(16)
Function V satisfies Lipschitz continuity by its definition and
suppose K denotes the Lipschitz constant. Thus we can write:

v (?) y <§l>>\ < K re(s) —x(5)]

<K/ [ve(r) —y(r)|dr.

Therefore squaring both sides and applying Holder’s inequal-
ity on th right hand side, we obtain:

(o (52) () = e

Replacing in (16) then for any ¢ € [0,T] we have:

E (ye(t) — <a/EYS )d

+aK2T/ / E (ye(r

—y(r)*dr.
(17)

(r))drds+ €T
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Gronwall-Bellman type inequality (see [15, Appendix] for
details about this inequality) suggests that for any 7 € [0, T]:

o

E (ve(t) —y(t))2 <err (1 + We(a”(zﬁ’) (18)

Therefore, from (15) we may write:

P{a/OT [ve(s) —y(s)|ds > 5/4} <e*8%u(T). (19)

T
16a2T2/ {1 +
0

Now, we consider the next probability term:
T
P{a/ % (x(s)> v <X(S)> ’ds> 6/4}
0
< 16a252E{/T v (x (s)) —v (x(s
< b

d d
2
) (7]}

< 16025 2TE /OT (v < ) v <x(s)>>2ds ,

d
where, the first inequality is by Chebyshev and the second
one is by applying the Holder’s inequality. Using (17) and

(18) we may write
) -V (ins)) ‘ds > 5/4} <e*8 2uy(T

T
]P’{Oc/ \%4 <
0

where

T N o
MZ(T) déf 16a2K2T3/0 /0 {1 + (HI(ZTE(OH_KZT)r} d}"dS.

where,

o
o+ KT

def

uy (T) e('”KzT)l} dt.

xe(s)
d

xe(s)

d

Finally applying Doob’s maximal inequality, we have that

P{e sup [W(r)|>8/2p <4e26°E|W(T)
t€[0,T]

=4e287T = 26 2u3(T)
Therefore letting u(T) L, (T) +ux(T) 4+ us(T) completes
the proof. [ ]
We note that a similar proof can be used to prove the same
result for solution x¢. In fact, by considering the definition of
Xg in our dynamical system, the proof is trivial. This shows
that the solution of stochastically perturbed problem can
be uniformly approximated by the solution of unperturbed
problem in probability.

V. CONCLUSION AND FUTURE WORKS

In this paper we considered the optimal velocity model
with some perturbation included in the model. We first
studied a simple fast deterministic perturbation in the system
and showed that such model can be approximated with
its associated averaged problem. Then, we investigated a
stochastic perturbed model with simple small Brownian noise
and we showed that similar to the deterministic case, this
model also can be approximated by the averaged model.

)
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We analyzed the system locally for only the first two
vehicles. Many behaviors of the system is not still known and
hence we believe it is essential to understand the behavior
of the system when the interaction of the particles (vehicles
in this case) is limited.

Study of OV models can be extended in some important
directions. For instance, different sources of perturbation and
in particular stochastic perturbation can bring the model
closer to the real situations, e.g. the uncertainty in the
behavior of the drivers in response to different interaction
with other vehicles. Such models are already considered and
studied in the sense of stability and a similar analysis as in
this paper can be informative.

As mentioned before, we are considering the OV model in
this paper mainly as a basic model governing an autonomous
system and we considered a local system in which the
interaction of following vehicle is in response to the leading
car with constant velocity. There are several directions that
the result of this paper can be extended, for example, a
non constant leading velocity which definitely requires more
involving analysis.
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