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Abstract— Traffic flow models have been the subject of
extensive studies for decades. The interest in these models is
both as the result of their important applications as well as their
complex behavior which makes them theoretically challenging.
In this paper, an optimal velocity dynamical model is considered
and analyzed. We consider a dynamical model in the presence of
perturbation and show that not only such a perturbed system
converges to an averaged problem, but also we can show its
order of convergence. Such understanding is important from
different aspects, and in particular, it shows how well we can
approximate a perturbed system with its associated averaged
problem.

I. INTRODUCTION AND RELATED WORKS

As the result of their huge social and economic importance
as well as their applications, traffic flow models have at-
tracted researchers for many years. Various models have been
proposed to represent the nature of this complex problem. A
review of classifications of traffic flow models can be found
in [1].

In microscopic models including car-following and op-
timal velocity dynamics, the individual vehicles and their
interaction with other vehicles construct the traffic flow.
These models have different important applications, e.g.,
Advanced Driver Assistance Systems (ADS) and Adaptive
Cruise Control (ACC) can be presented by the microscopic
models [1]. In addition, these models are well descriptive
when the effect of the drivers’ response in the traffic flow
dynamics is of interest. Different works in the literature,
model and analyze the interaction between vehicles in traffic
flow, [2], [3], [4], [5], [6]. Variety of extensions have been
proposed by researchers to improve the original models in
order to make them more representative of the situations
that may arise in real world applications. For example, car-
following dynamics are extended to include the delay in the
response of each vehicle to sudden changes in other vehicles’
behavior, [7], [8], [9], [10], [11], [12] and the references
therein.

Bando et al. in [13] and [14] introduce Optimal velocity
(OV) dynamical model in which the difference between the
optimal and the current velocity determines the acceleration
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or deceleration of the vehicle. In fact, OV model aims to
capture the very complex relation between the vehicles by
defining an optimal velocity of the following cars based on
the distance from the leading cars. In [15] we considered the
OV model proposed by [14] in the form of

Ẍ (n)(t) = α

{
V

(
X (n−1)(t)−X (n)(t)

d

)
− Ẋ (n)(t)

}
, (1)

where X (n)(t) is the location of the n-th vehicle, α > 0 is a
constant predefined by manufacturer, d is a scaling parameter
and function V : R→ R was considered to be

V (x) def
= tanh(x−2)+ tanh(2), (2)

which is a monotone increasing and bounded function (see
[14] for more details on the choice of this function). In
this model in fact function V defines a kind of velocity
based on the distance between the leading and following
vehicles. Such velocity which is the optimal velocity men-
tioned before, is then compared with the current velocity
of the following vehicle and determines the response of the
following vehicle. OV models can naturally be considered
as a dynamical model governing the autonomous systems as
well.

In order to simplify the analysis of this model in [15] we
discussed how to reduce the dynamics by considering

z(2n−1)(t) def
= X (1)(t)−X (n)(t) = v0t−X (n)(t)

z(2n)(t) def
= Ẋ (1)(t)− Ẋ (n)(t) = v0− Ẋ (n)(t)

for n ∈ {1, · · · ,N}, and where v0 is the constant velocity of
the first car. This implies that equation (1) can be written in
the form of

ż(2n−1)(t) = z(2n)(t)

ż(2n)(t) =−α

{
V

(
z(2n−1)(t)− z(2n−3)(t)

d

)
− v0 + z(2n)(t)

}
(3)

Different analytical and experimental results have been
discussed in the literature for OV models. Stability analysis
of linearized model of (1) and regions of stability is discussed
in [14]. OV models are simple models which are successful
in explaining traffic congestion. Many different works extend
the OV models from this point of view. Peng et al. [16]
add the information from multiple preceding vehicles to the
original OV model. In fact, they modify the optimal velocity
term to V (∆X (1), · · · ,∆X (m)), where ∆X (k) = X (k)−X (k−1).
They perform stability analysis for this extended model and
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discuss the stability regions. Nakayama et al. [17] introduce
another type of extension for OV models by incorporating
the effect of looking back at the following car in addition to
the leading car and they study such effect on the stability of
traffic flow congestion.

While most of the studies in OV literature are related
to stability analysis, we consider a different approach to
investigate this model’s properties. In fact we are more
interested in considering the OV model as a representative
of autonomous vehicles’ dynamics and to gradually improve
this dynamics to construct a model which captures more real
assumptions from this point of view. We believe in order
to be able to extend the model properly, we need to first
consider the entire system locally by isolating some of the
components (particles) of the system. We need to ensure
that the local interaction between these components is well
understood before we study their interactions with many
other particles. To do so, in [15] we considered the first two
vehicles (particles) isolated from other platoon of vehicles
and with the representative dynamical system of the form

ẋ(t) = y(t)

ẏ(t) =−α

{
V
(

x(t)
d

)
+ y(t)− v0

}
(x(t0),y(t0)) = (x0,y0),

(4)

which is obtained from (3) by only considering the first two
vehicles. We then studied both deterministic and stochastic
perturbation in this system and showed that such perturbed
system converges uniformly to it associated averaged prob-
lem.

In this work we show that while studying of convergence
of perturbed system is essential in order to have a better
understanding of asymptotic behavior of the system, we also
need to learn how fast such convergence can be obtained. In
other words, although [15] suggests that we can approximate
the system in presence of oscillations, we still need to
understand how accurate is such approximation. From a
practical point of view even if the convergence of the system
happens but in a slow rate, the limiting system cannot be an
accurate representative of the behavior of the system. This
later inquiry is the subject of our rigorous investigations in
this paper.

The organization of the paper is as follows. We first
introduce some the commonly used notations in this text in
section II. Then in section III we recall the perturbed model
which we are interested in and conclude the section with a
basic lemma which is essential for the rest of the results.
Section IV contains the main result of this paper including a
crucial bound and the main theorem. We conclude our work
in section V with discussing some possible future directions.

II. NOTATIONS

Let us fix some notations before we proceed to the next
sections. We denote by C([0,T ],R) the space of continuous
functions from [0,T ] to R. On this function space, we define
a norm which is used frequently to prove some of the
main results. For any function f ∈C([0,T ],R) we define the

supremum norm to be ‖ f‖C0,T

def
= supt∈[0,T ] | f (t)| and T‖·‖C0,T

denotes the topology generated by this norm on this space
and it is known that they introduce a Banach space. We need
this property to complete the proof of theorem 2.

Similarly, for a bounded and continuous function f in Rn,
we define ‖ f‖C(Rn) = supx∈Rn | f (x)|. This norm will be used
in couple of places when we discuss the boundedness of a
particular function in theorem 1.

In proving theorem 1 we found it easier to employ the
multi-index notation as we need to use Taylor series to
represent a function of interest in this theorem. consider a
vector α = (α1, · · · ,αn) such that |α| = k and a function
f ∈Ck(Rn). Then

Dα f (x) def
=

∂ α f (x)
∂ α1 x1∂ α2x2 · · ·∂ αnxn

.

We refer the readers to any standard book in analysis for
more details on the multi-index notations (e.g. see [18]). The
second derivative with respect to x1-coordinate of function f
is denoted by D (2,0,··· ,0) f . If there is no chance of confusion
we equivalently use ∂x1 f ≡ D (1,0,··· ,0) f (and similarly with
respect to other coordinates) for simplicity of notations.

III. PRELIMINARIES

We consider the following dynamical system:

ẋε(t) = yε(t),

ẏε(t) =−α

{
V
(

xε(t)
d

)
+ yε(t)− v0

}
+g(t/ε)

(xε(0),yε(0)) = (x0,y0),

(5)

where function V and other parameters are defined in (2) and
(1) respectively. Properties of function g will be discussed
later in this section. In [15] authors show that such a per-
turbed system converges to the averaged dynamical system
of the form:

ẋ◦(t) = y◦(t),

ẏ◦(t) =−α

{
V
(

x◦(t)
d

)
+ y◦(t)− v

}
+ ḡ

(x◦(0),y◦(0)) = (x0,y0),

(6)

where ḡ = limT↗∞
1
T
∫ T

0 g(t)dt (we will redefine ḡ for the
purpose of this paper below). In fact, we showed that

(xε ,yε)→ (x◦,y◦), in
(

C([0,T ],R),T‖·‖C0,T

)
,

as ε → 0 (see section II for the notational conventions).
In this section we study the rate of such convergence.

We fix the interval [0,T ] for some T > 0 throughout this
section and introduce the following definitions before stating
the main results of this section.

In this paper we consider function g : R → R to be a
continuously differentiable, bounded, and 1-periodic function
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(see Remark 1 below). We define:

ḡ def
=
∫ 1

0
g(s)ds,

A(t) def
=
∫ t

0
(g(s)− ḡ)ds

Ā def
=
∫ 1

0
A(s)ds,

A†(t) def
=
∫ t

0

(
A(s)− Ā

)
ds.

(7)

Next, we prove some properties of the functions defined
above and are crucial in proving the next theorems.

Lemma 1 Suppose function g satisfies the above mentioned
conditions. Then, the following properties hold:
(a) Function A is bounded.
(b) Function A is 1-periodic.
(c) Function A† is bounded.

Proof: It is clear from the definition that function A is
a continuous function on R. Considering any integer n and
periodicity of function g, we have

A(n) =
n−1

∑
n′=0

∫ n′+1

n′
(g(s)− ḡ)ds

= n
∫ 1

0
(g(s)− ḡ) = 0.

Thus, continuity of function A implies that in fact A is
bounded. To prove the second statement, we consider that

A(t +1) =
∫ t+1

0
(g(s)− ḡ)ds

=
∫ 1

0
(g(s)− ḡ)ds+

∫ t+1

1
(g(s)− ḡ)ds

=
∫ t

0
(g(s)− ḡ)ds = A(t).

The proof of the last statement is the same as the first part
by appropriately replacing function g by A in the proof.

IV. CONVERGENCE RATE OF PERTURBED
DYNAMICS TO THE AVERAGED PROBLEM

In this section we state the main results on the order of
convergence of the dynamical system under study. The next
theorem is one of the main results of this paper and provides
a critical bound which will be necessary to prove the rate of
convergence of the solution.

Theorem 1 Let (xε(t),yε(t)) be the solution of dynamical
system (5) and (x◦(t),y◦(t)) be the solution of averaged
system (6). We define:

ζ
ε
t

def
=

yε(t)− y◦(t)
ε

−A(t/ε). (8)

Then there exists an ε0 > 0 such that

sup
0<ε<ε0

‖ζ ε‖C0,T
< ∞.

Remark 1 The result of this theorem holds true for function
g with any periodicity. Moreover, this result holds true for
more general function for which

ḡ = lim
T↗∞

1
T

∫ T

0
g(s)ds,

exists. In this paper, however, we consider a 1-periodic
function g since the analysis will be more straightforward.
�

Proof: We introduce some notations for convenience
in this section. For any x,y ∈ R:

L(x,y) def
= −α {V (x/d)+ y− v0}

zε(t)
def
= (xε(t),yε(t)), z◦(t) def

= (x◦(t),y◦(t)).

Equations (5) and (6) then imply that:

yε(t)− y◦(t) =
∫ t

0

{
L(zε(s))−L(z◦(s))+(g(s/ε)− ḡ)

}
ds

=
∫ t

0

{
L(zε(s))−L(z◦(s))

}
ds+ εA(t/ε);

(9)
where the last term is by (7).

Function L ∈C∞(R2) and for any s ∈ [0,T ] we apply the
Taylor series and denoting the partial derivatives by ∂x and
∂y, we have:

L(zε(s))−L(z◦(s)) = ∂xL(z◦(s))(xε(s)− x◦(s))

+∂yL(z◦(s))(yε(s)− y◦(s))

+ ∑
|β |=2

Eβ (zε(s);z◦(s))(zε(s)− z◦(s))β ,

(10)

where for any z,a ∈ R2 the error (the remainder) term is
defined by (see section II for the notations):

Eβ (z;a) def
=
|β |
β !

∫ 1

0
(1− γ)|β |−1Dβ L(a+ γ(z−a))dγ

=
2

β !

∫ 1

0
(1− γ)Dβ L(a+ γ(z−a))dγ.

From the the definition of function L(x,y) and boundedness
of function V (x) and its second derivatives we have that:

∣∣Eβ (zε(t);z◦(t))
∣∣≤ 1

β !
sup
|β |=2

sup
z∈R2

∣∣∣Dβ L(z)
∣∣∣< ∞.

Replacing the error term in the Taylor series and consid-
ering that some of the second order terms vanish, we can
write:

L(zε(s))−L(z◦(s)) = ∂xL(z◦(s))(xε(s)− x◦(s))

+∂yL(z◦(s))(yε(s)− y◦(s))

+(xε(s)− x◦(s))2E(2,0)(zε(s);z◦(s)).
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Therefore, (9) and the fact that ∂yL≡−α imply that

yε(t)− y◦(t) =
∫ t

0
∂xL(z◦(s))(xε(s)− x◦(s))ds

−α

∫ t

0
(yε(s)− y◦(s))ds

+
∫ t

0
E(2,0)(zε(s);z◦(s))(xε(s)− x◦(s))2ds

+ εA(t/ε).

(11)

Now, by the definition of ζ ε
t in (8) it is immediate that

yε(t)− y◦(t) = ε (ζ ε
t +A(t/ε)) .

Replacing in (11), we get that

ζ
ε
t =

1
ε

∫ t

0
∂xL(z◦(s))(xε(s)− x◦(s))ds

−α

∫ t

0
(ζ ε

s +A(s/ε))ds.

+
1
ε

∫ t

0
E(2,0)(zε(s);z◦(s))(xε(s)− x◦(s))2ds.

(12)

In addition, from the equation (5) we have that:

xε(s)− x◦(s) =
∫ s

0
(yε(r)− y◦(r))dr

=
∫ s

0
ε(ζ ε

r +A(r/ε))dr.
(13)

Therefore, from equation (12) we can write:

ζ
ε
t =

∫ t

0
∂xL(z◦(s))

∫ s

0
(ζ ε

r +A(r/ε))dr ds

−α

∫ t

0
(ζ ε

s +A(s/ε))ds

+ ε

∫ t

0
E(2,0)(zε(s);z◦(s))

(∫ s

0
(ζ ε

r +A(r/ε))dr
)2

ds.

By expanding the integral terms we have:

ζ
ε
t =

∫ t

0
∂xL(z◦(s))

∫ s

0
ζ

ε
r dr ds

+
∫ t

0
∂xL(z◦(s))

∫ s

0
A(r/ε)dr ds

−α

∫ t

0
ζ

ε
s ds−α

∫ t

0
A(s/ε)ds

+ ε

∫ t

0
E(2,0)(zε(s);z◦(s))

(∫ s

0
(ζ ε

r +A(r/ε))dr
)2

ds.

(14)
Considering the definition of A† in (7) and a simple change
of variables in the integral, we have:∫ s

0
A(r/ε)dr =

∫ s

0

(
A(r/ε)− Ā)

)
dr+

∫ s

0
Ādr

= εA†(s/ε)+ Ās,
(15)

Thus, (14) and (15) imply that:

ζ
ε
t =

∫ t

0
∂xL(z◦(s))

∫ s

0
ζ

ε
r dr ds

+ ε

∫ t

0
∂xL(z◦(s))A†(s/ε)ds+

∫ t

0
∂xL(z◦(s))Ā sds

−α

∫ t

0
ζ

ε
s ds−αεA†(t/ε)−αĀt

+ ε

∫ t

0
E(2,0)(zε(s);z◦(s))

(∫ s

0
(ζ ε

r +A(r/ε))dr
)2

ds.

(16)

Looking at the integral equation in (16), it is reasonable to
expect that limε↘0 ζ ε = ζ ◦ in C([0,T ],R) in corresponding
topology where ζ ◦ satisfies:

ζ
◦
t =−α

∫ t

0
ζ
◦
s ds+

∫ t

0
∂xL(z◦(s))

∫ s

0
ζ
◦
r dr ds

+
∫ t

0
∂xL(z◦(s))Ā sds−αĀt.

(17)

This is in fact what will be discussed rigorously in the next
theorem. Here having this convergence concept in mind, we
try to find a bound on function ζ ε . Let’s first define some
constants:

K1
def
= ‖∂xL‖C(R2) , K2

def
=
∥∥A†∥∥

C(R)

K3
def
= ‖∂xL‖C(R2) |Ā|, K4

def
= α|Ā|

R def
=

1
2

K3T 2 +K4T, M def
= α +

K1

α
,

(18)

where the norms are defined in section II. We note that by
definition of ∂xL and boundedness of A† from lemma 1 both
norms are well-defined. Using the Gronwall-Bellman type
of inequality (see Appendix VI-A for the details) we get the
following bound on ζ ◦ in (17):

κ
def
= R

(
1+

α2

α2 +K1
eMT

)
We fix κ ′ > κ and define

τ
ε def
= inf{t > 0 : |ζ ε

t | ≥ κ
′},

and for the moment assume that τε ≤ T . In other words, we
assume that ζ ε exceeds κ ′ before time T and in fact τε is
the first such time.

For any t ∈ [0,τε ] for which |ζ ε
t | ≤ κ ′ and considering

(16) and constants defined in (18):

|ζ ε
t | ≤ α

∫ t

0
|ζ ε

s |ds+K1

∫ t

0

∫ s

0
|ζ ε

r |dr ds+
1
2

K3T 2 +K4T

+ ε

{
K1K2 +αK2 +

∥∥∥D (2,0)L
∥∥∥

C(R2)

(
κ
′+‖A‖C(R)

)
T 3
}
.

By applying the Gronwall-Bellman theorem in appendix VI-
A we get:

|ζ ε
t | ≤ κ + εN

(
1+

α2

α2 +K1
eMT

)
where,

N def
=

{
K1K2 +αK2 +

∥∥∥D (2,0)L
∥∥∥

C(R2)

(
κ
′+‖A‖C(R)

)
T 3
}
.
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Therefore, there exists an ε0 < ε such that

ε0N
(

1+
α2

α2 +K1
eMT

)
< κ

′−κ. (19)

This implies that for 0 < ε < ε0:

|ζ ε

τε |< κ
′,

which is contradiction to definition of τε . Therefore, we
should have τε > T for 0 < ε < ε0, which means

sup
0<ε<ε0

‖ζ ε‖C0,T
≤ κ

′,

and this completes the proof.
In the next theorem, which is the main result of this paper,

we will use the result of theorem 1 to show the rate of
convergence of the perturbed problem to the averaged one.

Theorem 2 Let ζ ε be defined in the statement of theorem
1. Then ζ ε → ζ ◦ as ε → 0 in

(
C([0,T ],R),T‖·‖C0,T

)
where

ζ
◦
t =−α

∫ t

0
ζ
◦
s ds

+
∫ t

0
∂xL(x◦(s),y◦(s))

∫ s

0
ζ
◦
r dr ds

+
∫ t

0
∂xL(x◦(s),y◦(s))Ā sds−αĀt.

Proof: By the definition of ζ ε
t in theorem 1 and the

fact that yε(t) and y◦(t) are solutions of dynamical systems
(5) and (6) respectively, function t 7→ ζ ε

t is continuous. We
consider a collection of continuous functions of the form

F
def
= {ζ ε : ε ∈ (0,ε0)},

such that ζ ε
t satisfies (16) and ε0 is defined in (19). First, we

note that
F ⊂

(
C([0,T ],T‖.‖C0,T

)
.

Considering boundedness of ζ ε by theorem 1, using the
definition of A† from (7) and finally employing equation (16),
we notice that for any t, t ′ ∈ [0,T ]

sup
ε∈(0,ε0)

|ζ ε
t −ζ

ε
s | ≤C|t− s|,

for some constant C > 0. This result proves that F is
equicontinuous. Therefore, considering the fact that F is
bounded as well then Arzela-Ascoli theorem implies that
F is totally bounded (precompact). Hence, any sequence in
F has a Cauchy subsequence. Let {ζ εn}n∈N be a sequence
in F such that εn → 0 as n→ ∞. Therefore there exists
a subsequence of this sequence which is Cauchy in F

and hence convergent in Banach space
(

C([0,T ],T‖.‖C0,T

)
.

With slight abuse of notation we show such subsequence by
{ζ εn}n∈N as well. Suppose now that ζ ∗ is the limit point
of this subsequence in the space C([0,T ],R). Considering
dominated convergence theorem and the fact that (xε ,yε)→

(x◦,y◦) as ε → 0 in C([0,T ],R), equation (16) implies that
ζ ∗ should satisfy:

ζ
∗
t =−α

∫ t

0
ζ
∗
s ds

+
∫ t

0
∂xL(x◦(s),y◦(s))

∫ s

0
ζ
∗
r drds

+
∫ t

0
∂xL(x◦(s),y◦(s))Āsds−αĀt.

Equivalently, ζ ∗ is the solution of an ODE of the form

ζ̇ (t) = η(t)

η̇(t) =−αη(t)+∂xL(x◦(t),y◦(t))ζ (t)

+∂xL(x◦(t),y◦(t))Āt−αĀ

(ζ (0),η(0)) = (0,0).

Existence and uniqueness of solution for this ODE and
the fact that the limit point of any convergent subsequence
satisfies this ODE implies that ζ ◦ is the unique limit point
of ζ ε as ε → 0 in C([0,T ],R) and this proves the desired
result.

Remark 2 In fact, theorem 2 and the definition of ζ ε in (8)
provide useful information about rate of convergence of yε

to y◦. We notice that by the convergence proved in theorem
1, for any constant δ > 0 there exist an ε̂ such that for any
ε < ε̂ we have

|yε(t)− y◦(t)| ≤ ε

{
|A(t/ε)|+ sup

t∈[0,T ]
|ζ ◦t |+δ

}

≤ ε

{
‖A‖C(R)+ sup

t∈[0,T ]
|ζ ◦t |+δ

}
≤ εC

for some constant C > 0. This implies that the rate of
convergence is of order of ε .

Remark 3 Considering (13) we notice that the same rate of
convergence applies to xε as well.

V. CONCLUSION AND FUTURE WORKS
In this paper we extended our previous work in [15] by

studying the rate in which the convergence of a perturbed
problem happens. This is particularly important as it explains
the accuracy of approximation of the perturbed model with
non-perturbed model.

Much more work needs to be done in this area in or-
der to be able to understand the complex behavior of the
system theoretically from this point of view. In this paper
we considered a particular class of perturbations, however,
more complicated models may be required to explain the
real problems in car following models and in particular in
autonomous systems. To be able to present and analyze more
descriptive models, our assumptions and analysis should be
extended to cover more general cases. For instance, the
results should be extended to include stochastic elements.

In addition to the improvement of the model, one im-
portant consideration is to extend the results such that they
can explain the complex relation between more than two
vehicles. In fact, authors are working on such generalization
for future works.
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VI. APPENDIX

A. Gronwall- Bellman Inequality

In this section we bring a Gronwall-Bellman inequality
type without the proof which is used in the proof of theorem
1. The detailed proof and more similar inequalities can be
found in [19].

Theorem 3 Let u(t), f (t) and g(t) be real-valued non-
negative continuous functions defined on set I = [0,∞), such
that

u(t)≤ u0+
∫ t

0
f (s)u(s)ds+

∫ t

0
f (s)

∫ s

0
g(r)u(r)dr ds, t ∈ I,

holds. Then,

u(t)≤ u0

(
1+

∫ t

0
f (s)exp

{∫ s

0
( f (r)+g(r))dr

}
ds
)
.

In the case of our problem, and considering the constants
defined in (18) we have:

|ζ ◦t | ≤ α

∫ t

0
|ζ ◦s |ds+K1

∫ t

0

∫ s

0
|ζ ◦r |dr ds+R.

Therefore if we define

f (s) = α, g(s) =
K1

α
, u0 = R.

then in the view of theorem 3 we have

|ζ ◦t | ≤ R
(

1+
α2

α2 +K1
exp
{(

α +
K1

α

)
t
})

.
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