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ABSTRACT

Hypothesis tests are a crucial statistical tool for data mining and are
the workhorse of scientific research in many fields. Here we study
differentially private tests of independence between a categorical
and a continuous variable. We take as our starting point traditional
nonparametric tests, which require no distributional assumption
(e.g., normality) about the data distribution. We present private
analogues of the Kruskal-Wallis, Mann-Whitney, and Wilcoxon
signed-rank tests, as well as the parametric one-sample t-test. These
tests use novel test statistics developed specifically for the private
setting. We compare our tests to prior work, both on parametric
and nonparametric tests. We find that in all cases our new nonpara-
metric tests achieve large improvements in statistical power, even
when the assumptions of parametric tests are met.
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1 INTRODUCTION

In 2011, researchers in Switzerland began an investigation into the
link between methylation levels of a given gene and the occurance
of schizophrenia and bipolar disorder[4]. They recruited patients
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that suffered from psychosis as well as healthy controls and mea-
sured the level of methylation of the gene in each individual. They
found that levels in the groups suffering from psychosis were higher
than those in the healthy group. In order to rule out the possibility
that this difference was due to sampling variability, they relied upon
a suite of nonparameteric hypothesis tests to establish that this link
likely exists in the general population.

While the results of these tests were published in an academic
journal, the data itself is unavailable to preserve the privacy of
the patients. This is a necessary consideration when working with
sensitive data, but it hampers scientific reproducibility and the
extension of this work by other researchers.

Our goal in this paper is to provide nonparametric hypothesis
tests that satisfy differential privacy. The difficulty of developing a
private test comes not just from the need to privately approximate
a test statistic, but also from the need for an accurate reference
distribution that will produce valid p-values. It is not sufficient to
treat the approximate test statistic as equivalent to its non-private
counterpart.

In this paper, we present several new hypothesis tests. In all cases
we are considering data sets with a categorical explanatory variable
(e.g., membership in the schizophrenic, bipolar, or control group)
and a continuous dependent variable (e.g., methylation level). Our
goal when designing a hypothesis test is to maximize the statistical
power of the test, or equivalently to minimize the amount of data
needed to detect a particular effect.

In the traditional public setting, there are two families of tests for
these scenarios. The more commonly used are parametric tests that
assume that within each group, the continuous variable follows a
particular distribution (usually Gaussian). An alternative to these
tests are nonparametric tests, which make no distributional assump-
tion but, in exchange, have slightly lower power. Nonparametric
tests generally rely upon substituting in, for each data point, the
rank of the continuous variable relative to the rest of the sample.
The test statistic is then a function of these ranks rather than the
original values.

The private hypothesis tests we propose all use rank-based test
statistics. Our overarching argument in this paper, beyond the
individual value of each of the tests we introduce, is that in the
private setting these rank-based test statistics are more powerful
than the traditional parametric alternatives. This is contrary to the
public setting, where the parametric tests (when their assumptions
are met) perform better.
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Our second, broader point is that as a research community we
need to support the development of hypothesis tests specifically
tailored to the private setting. Our private test statistics are not
simply approximations of traditional test statistics from the public
setting and as a result, we find that they can require an order
of magnitude less data. Current tests used by statisticians in the
public setting have been refined through decades of incremental
improvement, and the same sort of development needs to happen
in the private setting.

1.1 Our contributions

We introduce several new private hypothesis tests that mirror the
three most commonly used rank-based tests. In one setting, this is
a private analog of the traditional public test statistic, but for the
remaining two settings it is a new statistic developed specifically for
the private setting. The privacy of these statistics generally follows
from non-trivial but reasonably straightforward applications of the
Laplace mechanism. Our main contribution is not the method of
achieving privacy but the construction of novel private hypothesis
tests with high statistical power.

There are two components to the construction of each hypothesis
test. The first is the creation of a test statistic to capture the effect of
interest while remaining provably private. The second is a method
to learn the distribution of the statistic under the null hypothesis in
order to compute p-values, which are the object of primary interest
to researchers.

In particular, we develop tests for the following cases:

Three or more groups. When the categorical variable divides the
sample into three or more groups, the traditional public test is the
one-way analysis of variance (ANOVA) in the parametric case and
Kruskal-Wallace in the nonparametric case. ANOVA has been previ-
ously studied by Campbell et al. [3] and then by Swanberg et al. [28],
who improved the power by an order of magnitude. We give the first
private nonparametric test by modifying the rank-based Kruskal-
Wallace test statistic for the private setting. We provide experimen-
tal evidence that this statistic has dramatically higher power than
a simple privatized version of the public Kruskal-Wallace statistic.
Moreover, we provide evidence that even in the parametric setting
(i.e., when the data is normally distributed) the private rank-based
statistic outperforms the private ANOVA test, in one representative
case requiring only 23% as much data to reach the same power.

Two groups. In the two group setting, the most common public
nonparametric test is the Mann-Whitney test. We provide an algo-
rithm to release an approximation of this statistic under differential
privacy and a second algorithm to conduct the test and release a
valid p-value.

In the public setting, the analogous parametric test is the two
sample t-test which is equivalent to an ANOVA test when there
are two groups. We compare therefore to the private ANOVA test
and show experimental evidence that our Mann-Whitney analog
has significantly higher power.

Paired data. We also consider the case where the two sets of
data are in correspondence with each other (e.g., before-and-after
measurements). The nonparametric test in this case is the Wilcoxon

signed-rank test, and it is the only nonparametric test that has pre-
viously been studied in the private setting[30]. We provide two
improvements to the prior work. First, we change the underlying
statistic to the less well-known Pratt variant, which we find con-
forms more easily to the addition of noise. Second, we show that
our simulation method for computing reference distributions is
more precise than the upper bounds used in the prior work (which
contained an error which we identify and correct). The result is a
significant improvement in the power of the test over the the prior
work.

In parallel with the previous two scenarios, we then compare our
private nonparametric test with a private version of the analogous
parametric test, the paired ¢-test. A direct private implementation
of this test does not exist in the literature, so we propose one
here.! In alignment with the previous results, we show experimental
evidence that the rank-based test has superior power.

For all our tests we give not just private test statistics but also precise
methods of computing a reference distribution and a p-value, the
final output practitioners actually need. We also experimentally
verify that the probability of Type 1 errors (incorrectly rejecting the
null hypothesis) is acceptably low. We give careful power analyses
and use these to compare tests to each other. All our tests and
experiments are implemented with publicly available code.?

We find that rank-based statistics are very amenable to the pri-
vate setting. We also repeatedly find that what is optimal in the
public setting is no longer optimal in the private setting. We hope
that this work contributes to the development of a standard set of
powerful hypothesis tests that can be used by scientists to enable
inferential analysis while protecting privacy.

2 BACKGROUND

In this section, we begin by discussing hypothesis testing in general
and outlining the formalities of differential privacy. We then discuss
the difficulties of hypothesis testing within the privacy framework
and the previous work done in this area. Each of our main results
requires a more detailed discussion of prior work on that particular
test or use case; we leave those discussions for Sections 3-5.

2.1 Hypothesis Testing

The key inferential leap that is made in hypothesis testing is the
claim that not only is the sample of data incompatible with a particu-
lar scientific theory, but that the incompatiblility holds in a broader
population. In the study on psychotic disease, the researchers used
this technique to generalize from their 165 subjects to the pop-
ulation of causasian-descended Swiss. The scientific theory that
they refuted, that there is no link between methylation levels and
psychosis, is called the null hypothesis (Hp).

To test whether or not the data is consistent with Hy, a researcher
computes a test statistic. The choice of a function f to compute the
test statistic largely determines the hypothesis test being used. For
arandom database X drawn according to Hy, the distribution of the
statistic T = f(X) can be determined either analytically or through
simulation. The researcher then computes a p-value, the probability

!'In simultaneous work Gaboardi et al. [13] propose such a test, but our test is still
higher power. See Section 5.5 for more details.
20ur source code is available at: github.com/simonpcouch/non-pm-dpht



that the observed test statistic or more extreme would occur under
Hp.

Definition 2.1. For a given test statistic t = f(x) and null hypoth-
esis Hy, the p-value is defined as

Pr[T >t | T = f(X) and X « Hp] = p.

If the function f is well-chosen, the underlying distribution of X
will differ more from the distribution under Hy and a low p-value
becomes more likely. Typically a threshold value « is chosen, such
that we reject Hy as a plausible explanation of the data when p < a.
The choice of @ determines the type I error rate, the probability of
incorrectly rejecting a true null hypothesis.

We define the critical value t* to be the value of the test statistic
t where p = a. We use this to define the statistical power, a measure
of how likely a hypothesis test is to pick up on a given effect (i.e. the
chance of rejecting when the null hypothesis is false). The power
is a function of how much the underlying distribution of X differs
from the distribution under Hy as well as the size of the database.

Definition 2.2. For a given alternate data distribution H4, the
statistical power of a hypothesis test is

Pr[T > t" | T = f(X) and X « Hyul.

Statistical power is the accepted metric by which the statistics
community judges the usefulness of a hypothesis test. It provides a
common scale upon which to evaluate different tests for the same
use case.

2.2 Differential Privacy

To persuade people to allow their personal data to be collected,
data owners must protect information about specific individuals.
Historically, ad-hoc database anonymization techniques have been
used (i.e. changing names to numeric IDs, rounding geospatial
coordinates to the nearest block, etc.), but these methods have
repeatedly been shown to be ineffective [14, 19, 29].

Differential privacy, proposed by Dwork et al. in 2006 [9], is a
mathematically robust definition of privacy preservation, which
guarantees that a query does not reveal anything about an indi-
vidual as a consequence of their presence in the database. When
the condition of differential privacy is satisfied, there is not much
difference between the output obtained from the original database,
and that obtained from a database that differs by only one individ-
ual’s data. Here we present (¢, §)-differential privacy [8], which
allows the closeness of output distributions to be measured with
both a multiplicative and an additive factor. However, for most of
our hypothesis tests § = 0.

Definition 2.3 (Differential Privacy). A randomized algorithm f
on databases is (¢, §)-differentially private if for all S C Range(f)
and for databases x, x’ that only differ in one row:

Pr(f(x) € S] < €€ Pr[f(x) € S] + 6.
We call databases x and x’ neighboring if they differ only in that

a single row is altered (but not added or deleted), and we will use
this notation in the following sections.

3This is one of two roughly equivalent variants of differential privacy. The key differ-
ence is that under this definition the size of the database is public knowledge.

Differential privacy, like any acceptable privacy definition, is
resistant to post processing. That is, if an algorithm is differentially
private, an adversary with no access to the database will be unable
to violate such privacy through further analysis (e.g., attempted
deanonymization) of the query output [9].

THEOREM 2.4 (POST PROCESSING). Letf be an (e, 6)-differentially
private randomized algorithm. Let g be an arbitrary randomized

algorithm. Then g o f is (e, §)- differentially private.

Theorem 2.4 has another useful consequence. It allows us to
develop private algorithms by first computing some private output,
and then carrying out further computation on that output without
accessing the database. The additional computation need not be
analyzed carefully—the final output of the additional analysis is
automatically known to retain privacy.

Differential privacy requires the introduction of some random-
ness to any query output. A frequently used method is the Laplace
mechanism, introduced by Dwork et al. [9]. When given an arbi-
trary algorithm f with real-valued output, this mechanism will add
some noise drawn from the Laplace distribution to the output of
the algorithm and release a noisy output.

Definition 2.5 (Laplace Distribution). The Laplace Distribution
centered at 0 with scale b is the distribution with probability density
function:
1 x|
Lap(xlb) = —exp( - =7 ).
ap(x|b) = —exp| -
We write Lap(b) to denote the Laplace distribution with scale b.

The scale of the Laplace Distribution used to produce the noisy
output depends on the global sensitivity of the given algorithm f,
which is the maximum change on the output of f that could result
from the alteration of a single row.

Definition 2.6 (Global sensitivity). The global sensitivity of a
function f is:

GSp = max | f(x) = f(x),
where x and x’ are neighbouring databases.

With computed sensitivity GS¢ and privacy parameter €, the
Laplace mechanism applied to f ensures (¢, 0)-differential privacy

[9].

Definition 2.7 (Laplace Mechanism). Given any function f, the
Laplace mechanism is defined as:

Fx) =f)+7,

where Y is drawn from Lap(GSy /€), and GSy is the global sensitivity
of f.

THEOREM 2.8. (Laplace Mechanism) The Laplace mechanism pre-
serves (¢, 0) differential privacy.

Global sensitivity is the maximum effect that can be caused by
changing a single row of any database. Sometimes it is helpful
to talk about local sensitivity for a given database x [21]. This is
the maximum effect that can be caused by changing a row of that
particular database.



Definition 2.9 (Local Sensitivity). The sensitivity of a function f
at a particular database x is:

LSf(x) = max |f(x) = f(x)],
where x’ is a neighboring database.

Note that GS¢ = maxx LS¢(x). Local sensitivity cannot simply be
used in the Laplace mechanism in place of global sensitivity, because
local sensitivity itself is a function of the database and therefore
cannot be released. But private upper bounds on local sensitivity
can be used to create similar mechanisms that do preserve privacy,
and one of our algorithms uses just such a technique.

Choosing € is an important consideration when using differen-
tial privacy. We consider several values of € throughout our power
analyses. The lowest, .01 is an extremely conservative privacy pa-
rameter and allows for safe composition with many other queries
of comparable € value. We also use es of .1 and 1, which, while
higher, still provide very meaningful privacy protection. Ultimately,
the choice of € is a question of policy and depends on the relative
importance with which privacy and utility are regarded. We also
measure, for comparison, the power of the public versions of each
test (equivalent to an € of o). As one might expect, the amount of
data needed to detect a given effect often scales roughly with the
inverse of €.

2.3 Differentially Private Hypothesis Testing

Performing hypothesis tests within the framework of differential
privacy introduces new complexity. A function to compute a private
test statistic (be it a private version of a standard test statistic or an
entirely new test statistic) is not useful on its own. We need a p-value
or other understandable output, and that means understanding the
reference distribution (i.e., the distribution of the statistic given
Hy).

In classical statistics, test statistics are computed with determinis-
tic functions. The randomness added to the test statistic in order to
privatize it introduces new complexity. Most importantly, it causes
the reference distribution to change. One cannot simply compare
the private test statistic to the usual reference distribution, as the
addition of noise can inflate the type I error well above acceptable
levels [3].

Because of this, a complete differentially private hypothesis test
requires not only a function for computing a private test statistic,
but also a method for determining its null distribution. Often the
exact reference distribution cannot be determined, so worst-case
reference distributions or upper bounds on the resulting critical
value must be used, and the precision of this reference distribution
can have a large effect on the resulting power.

The goal of differentially private hypothesis test design is to
develop a test with power as close as possible to the public test.

2.4 Related Work

There is a substantial and growing literature on differentially private
hypothesis testing. One area of research is the study of the rate
of convergence of private statistics to the distributions of their
public analogues [25, 26, 34]. These papers do not offer practical,
implementable tests and discussion of reference distributions when
the noise is not yet negligible is often limited or entirely absent.

Further, the results are often entirely asymptotic, without regard
for constants that may prove to be problematic.

The chi-squared test, which tests the independence of two cat-
egorical variables,* has been the subject of much study, resulting
in the development of many private variants. One of these works,
that of Vu and Slavkovic [32], provides methods for calculation
of accurate p-values adjusted for the addition of Laplace noise for
differentially private single proportion and chi-squared tests specif-
ically for clinical trial data. Several other papers, though they make
asymptotic arguments on the uniformity of their p-values, have de-
veloped frameworks for private chi-squared tests specifically for the
intent of genome-wide association study (GWAS) data [11, 15, 31].
For these same tests, Monte Carlo simulation has been shown to
offer more precise analysis in some cases [12, 33]. There has also
been work, like that of Rogers and Kifer [23], that proposes entirely
new test statistics with asymptotic distributions more similar to
their public counterparts.

While the development of private test statistics has achieved
much attention, careful evaluations of statistical power of these
new test statistics is not always demonstrated. This is unfortunate,
as the cost of privacy (utility loss) must be accurately quantified
in order for the widespread adoption or implementation of any
of these methods. Fortunately, rigorous power analysis seems to
be more common in recent work. Awan and Slavkovic recently
presented a test for simple binomial data [1]. While the setting is
the simplest possible, their paper gives what we believe is the first
private test to come with a proof of optimality, something normally
very difficult to achieve even in the public setting.

The body of work on numerical (rather than categorical) meth-
ods is less extensive but has been growing quickly in recent years.
In 2017, Nguyen and Hui proposed algorithms for survival analysis
methods [20]. There have been frameworks developed for testing
the difference in means of normal distributions [6, 7], and for test-
ing whether a sample is consistent with a normal distribution with
a particular mean [27]. Differentially private versions of linear re-
gressions, a class of inference that is extremely common in many
fields both within and outside of academia, have received a notable
level of attention, but the treatment of regression coefficients as
test statistics has come about only recently [2, 24]. Two works have
studied differentially private versions of one-way analysis of vari-
ance (ANOVA) [3, 28]. The only prior work done on nonparametric
hypothesis tests, as far as we are aware, is on the Wilcoxon signed-
rank test by Task and Clifton in 2016 [30]. Prior work specifically
relevant to the tests we are proposing will be discussed in more
detail in the relevant section.

3 MANY GROUPS

We first consider the most general case, where we wish to dis-
tinguish whether many groups share the same distribution on a
continuous variable. The standard parametric test in the public
setting is the one-way analysis of variance (ANOVA), which tests
the equality of means across many groups. Private ANOVA has
been studied previously first by Campbell et al. [3] and then by

4This is the chi-squared test of independence. There are several related tests that use
the same statistic, the chi-squared.



Swanberg et al. [28], who improved the power by an order of mag-
nitude. The standard nonparametric test in the public setting is the
Kruskal-Wallis test, which was used by the pschosis research group
to determine that subjects in the schizophrenia, bipolar, and control
groups had different methylation levels at a particular gene site[4].
As is standard for nonparametric statistics in the public setting, it
sacrifices some power compared to ANOVA but no longer assumes
normally distributed data. [10]

In this section we present two tests. The first is a straightfor-
ward privatization of the standard Kruskal-Wallis test statistic. The
second modifies the statistic, essentially by linearizing the implied
distance metric. We find first that our modified statistic has much
higher power. We then further show that our modified statistic has
much higher power than the ANOVA test of Swanberg et al. even
when the data is normally distributed.

3.1 The Kruskal-Wallis test

The Kruskal-Wallis test, proposed by William Kruskal and W. Allen
Wallis in 1952 [17], is used to determine if several groups share the
same distribution in a continuous variable. The only assumptions
are that the data are drawn randomly and independently from a
distribution with at least an ordinal scale.

Take a database x with g groups® and n rows. Let n; be the size
of each group and r;; be the rank of the j™ element of group i. (If
values are equal for several elements, all are given a rank equal to
the average rank for that set.) We define 7; to be nl Z}Zl rij, the

i

mean rank of group i, and 7 to be "TH, the average of all the ranks.

Then, the Kruskal-Wallis h-statistic is defined to be
I ni(Fi =77
Sy N (rij = )2
If there are no ties in the database, the denominator is constant and
the formula can be simplified to

h=(n-1)

h 12 i 72 —3(n+1)
= — nir; —3(n .
n(n+1) — v

For clarity and consistency with later sections, we present this
calculation as an algorithm. In general we use a subscript “stat” to
label the algorithm computing a test statistic and a subscript “p”
to denote the fully hypothesis test that outputs a p-value. We use

tildes to indicate private algorithms.

Algorithm KWg,t : Kruskal-Wallis Test Statistic
Input: x
for group i of x do
L Fi e— (Z]'-':il Vij)/ni
h «— % Z?:l nifi —3(n+1)
Output: h

SThroughout the paper we assume g is public and independent of the data, so we do
not list it as a separate input. Because g is the number of valid groups, one or more of
the g groups might not contain any observations. Allowing many valid groups that
have no actual observations artificially increases the critical value, so it can reduce the
power of our tests but does not affect the validity or privacy of the output.

3.2 Privatized Kruskal-Wallis

In this section, we bound the sensitivity of KWiqat, allowing us to
create a private version. We then present a complete algorithm for
calculating a p-value and prove that it too is differentially private.
We begin with the following sensitivity claim (see the the full
version for the proof).

THEOREM 3.1. The sensitivity of KWgtat is bounded by 87.

We are using the simplified formula that assumes there are no
ties in the data, so our algorithm begins by adding a small amount
of random noise to each data point to randomly order any ties. We
may then compute the h-statistic as in the public setting and add
noise proportional to the sensitivity.

Algorithm kwstat : Private Kruskal-Wallis Test Statistic
Input: x, €

Rank all data points, randomly breaking ties

h — KWistat(x)

he—h+ Lap(87/e)

Output: h

THEOREM 3.2. Algorithm IZWstat is e-differentially private.

See the full version for the proof.

Algorithm IZ‘\)\’/p : Complete Kruskal-Wallis Test
Input: x, ¢, z
he— IZT’)‘/stat(xv €)
fork =1tozdo
x* «— a database with independent uniform values from
[0,1], divided almost equally into g groups
hi — I’<-‘\)T/stat(xak)§
p «— fraction of hy. values greater than h
Output: h, p

Algorithm IZ‘\):/p is our complete algorithm to find a p-value given

a database x, privacy parameter €. First a private test statistic h
is computed. Then the reference distribution is approximated by
simulating z databases under Hy and computing the test statistic
for each.® (The distribution of the test statistic is independent of
the distribution of data between groups and the distribution of the
i.i.d. data points, so our choice of equal-sized groups and uniform
data from [0, 1] is arbitrary.) The p-value is the percent of hy more

extreme than h.

THEOREM 3.3. Algorithm RWP is e-differentially private.

Proor. By Theorem 3.2, the computation of his e-differentially
private. All of the following steps (generating the reference distribu-
tion and calculating p-value) do not need to access to the database
x, and therefore by Theorem 2.4 (post processing), Algorithm I?\)T/p
is e-differentially private. O

SWhen we use the traditional Kruskal-Wallis test, the distribution of h-statistics
asymptotically converges to the y? distribution. Thus, for efficiency purposes, we
sample hy from y%(g — 1) + Lap(Ah/€)



3.3 A New Test: Absolute Value Kruskal-Wallis

We now introduce our own new test, specifically designed for
the private setting. Inspired by Swanberg et al. [28], we alter the
Kruskal-Wallis statistic, measuring distance with the absolute value
instead of the square of the differences. This statistic is now

29 nilFi — 7l

habs = (n - l)—’
Z?:l 2;21 Irij — 7

As before, when there are no ties in the data, the statistic can be
simplified. (See the full version for the calculation.) In this case, the
form depends on the parity of n.

g9
4(n-1) . n+1 .
TZniri— | if n is even
i=1
habs: g
4 n+1
n; |Fi — , if n is odd
n+1; "’ 2

We call the algorithm to calculate the h,j, test statistic KWabsgat.
This statistic is preferable for two reasons. First, it has lower sensi-
tivity. The following theorem is proved in the full version.

THEOREM 3.4. The sensitivity of KWabsgtat is bounded by 8.

Second, the actual values for h,, are significantly higher than
they are for h, so any given amount of noise is less likely to over-
whelm the value.

Because of space constraints, we don’t give pseudocode for this
hypothesis test, but it follows exactly that of the previous test. The

privatized statistic is computed by KWabsgtat, which adds Laplace
noise in the same way as for IZWM, but scaled to the lower sensi-
tivity. The full hypothesis test, KWabsp, computes the p value in
the same way as was done for IZWP.7

THEOREM 3.5. Algorithm KWabsgtar and KWabsy, are e-differentially

private.

Proor. The proofisidentical to the proofs for Algorithms W/stat
and KW, (Theorems 3.2 and 3.3). O

Unequal group sizes. The traditional h statistic (and therefore
the noisy private analogue) has a reference distribution that is
independent of the allocation of observations between groups. This
is unfortunately not true for our new h¢ statistic. Fortunately,
it seems that the worst-case distribution (i.e., the one resulting in
the highest critical value) occurs when all groups are of equal size.
(We present both theoretical and experimental evidence for this in
the full version.) As a result, it is safe to always equal-sized groups
when simulating a reference distribution, though for very unequal
group sizes, there will be a significant loss in power compared to a
hypothetical where group sizes were known. (If approximate group
sizes are known publicly or released through other queries, those
could be used instead when simulating the reference distribution.)

"Unlike before, a y? approximation cannot be used.

3.4 Experimental Results

Power analysis. We now assess the power of our KWabs), test
on synthetic data (See the full version for an application to real-
world data.) We generate many databases of data distributed with
specified parameters and then run KWabs;, on each. The power
of the test for a given set of parameters is the proportion of times

KWabs), returns a significant result (i.e. a p-value less than the
significance level a, generally set at 0.05). We use three groups
of normally-distributed data, separated by steps of one standard
deviation (so the highest and lowest groups differ by two standard
deviations). In our captions we denote the mean of group i with ;.

1.00

0.75 Test Type
— KW,
- KW
e
z
£ 050
A €
- 0.1
-1
0.25 Public

0.00

10 100 1000 10000
Total Sample Size n

Figure 1: Power of KWabs;, at various values of € and total
sample size n. (Effect size: max;(u;) — min;({y;) = 2039 = 3;
a = .05; equal group sizes; normally distributed sample data)

As shown in Figure 1, our private absolute value test variant
requires significantly less data points than the original private test
to reach the same power. Thus, from here on, we only evaluate the
power of the absolute value variant. Figure 1 also shows that, at
an € of 1, our private absolute value test only requires a database
around a factor of 3 larger than the public test needs.

Uniformity of p-values. If a test is correctly designed, the prob-
ability of type 1 error (i.e., rejecting the null hypothesis when it
is correct) should be less than or equal to « for any chosen value
of a. Comparing the fit of a large number of simulated p-values
generated from null distributions to the uniform distribution on
the unit interval allows one to evaluate the uniformity of p-values
for a given hypothesis test. A common tool to carry this proce-
dure out, the quantile-quantile (or Q-Q) plot, plots the quantiles of
the uniform, theoretical distribution against the quantiles of the
p-values. The theoretical and emperical quantiles will be nearly
equal at all quantiles when the p-values follow the theoretical dis-
tribution, resulting in a linear trend on the Q-Q plot. A convex Q-Q
plot indicates an increase in the type II error rate (i.e. the test not
rejecting the null hypothesis when it is indeed not true, causing
a decrease in power) which is acceptable but undesirable, while a
concave Q-Q plot indicates an exceedingly high type I error rate
(i.e. the test rejecting the null hypothesis when it is true, causing
undue increases in power) which is not acceptable. Figure 2 demon-
strates the p-value uniformity of KWabsp,. See the full version for a
discussion of uniformity of p-values with unequal group sizes.
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Figure 2: A quantile-quantile plot of KWabs, comparing the
distribution of simulated p-values to the uniform distribu-
tion at varying n, all with equal group sizes. (g = 3; € = 1)

Comparison to previous work. The only prior work on hypothesis
testing for independence of two variables, one continuous and one
categorical, is that on ANOVA. The best private ANOVA analogue
is that of Swanberg et al. [28]. In Figure 3 we compare KWabs,,
to their test and we find its power to be much greater. To get 80%
power with this effect size, our test requires only 23% as much data
as the private ANOVA test. (The effect size used is the same as
in [28].) We stress that this means our test is significantly higher-
power, in addition to being usable for non-normal data. The test of
Swanberg et al. also requires that the analyst issuing the query can
accurately bound the range of the data—a bound that is too tight
or too loose will reduce the power of the test. Our test works for
data with unknown range.
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Figure 3: Power of KWabsp, Swanberg et. al’s test [28], and
the public tests at various n. (Effect size: max(p,) — min(u,) =
20; € = 1; g = 3; & = .05; equal group sizes; continuous sample
data)

Robustness of results. Though it is unusual, it is possible that the
relative power of different hypothesis tests could change when dif-
ferent effect sizes are considered. Therefore we repeat the analysis
shown in Figure 1 with a variety of different effect sizes, group sizes,

and number of groups. We also vary the frequency of tied values in
the data, since the random ordering of tied values adds additional
noise for our statistic. Finally, we run the comparison on real data
comparing income and age. The results of these experiments are
shown in the full version. We find that the results discussed above
are consistent across these variations.

4 TWO GROUPS

We now consider the case of data with only two groups (e.g., re-
stricting our comparison to the methylation levels of the bipolar
subjects versus the healthy controls.) In the public nonparametric
setting, one could simply use Kruskal-Wallis with g = 2, but one
can also use the Mann-Whitney U-test (also called the Wilcoxon
rank-sum test), proposed in 1945 by Frank Wilcoxon [35] and for-
malized in 1947 by Henry Mann and Donald Whitney [18]. In this
section we construct a private version of the Mann-Whitney test

and compare it to simply using KWabs), with g = 2.

The standard parametric test in the public setting is the two-
sample t-test. We know of three prior works that can, in some
sense, be seen as providing an analogue of the two-sample t-test
for the standard private setting. The only one for which this is
an explicit goal is that of D’Orazio et al. [7]. This test releases
private estimates of the difference in means and of the within-group
variance and produces a confidence interval rather than a p-value.
(The difference in means is done with simple Laplace noise, while
the variance estimate uses a subsample-and-aggregate algorithm.)
Most importantly, they assume that the size of the two groups is
public knowledge, where we treat the categorical value of a data
point (ex., schizophrenic or not) to be private data.

There are two other works we know of that provide a private
analogue of the two-sample t-test as a result of a slightly different
goal. The first is Ding et al. [6], who give a test under the more
restrictive local differential privacy definition. This test is of course
also private under the standard differential privacy definition. The
other work is that of Swanberg et al. [28], who give a private ana-
logue of the ANOVA test, as discussed previously. In the public
setting, ANOVA with g = 2 is equivalent to the two-sample t-test.
Based on (somewhat incomparable) experiments in their respec-
tive papers, it appears that the Swanberg et al. test is much higher
power, which is unsurprising given that it was developed for the
centralized database model of privacy. We therefore compare our
work to this.

To our knowledge, there is no prior work specifically on a private
version of the Mann-Whitney test. As before, we find that our
rank-based nonparametric tests outperform the private parametric
equivalent even when the data is normally distributed. We also find
that, unlike in the public setting, the more generic Kruskal-Wallace
analogue (used with g = 2) outperforms the more purpose-built
test.

4.1 The Mann-Whitney test

The function used to calculate the Mann-Whitney U statistic is
formalized in Algorithm MWjg,;. As before, x is a database of size
n, with r;; being the rank of the i data point in group i. A statistic
is first calculated for each group by summing the rankings in that
group and subtracting a term depending on the group size. We



then take the minimum of the two statistics to get U. Compared
to the other statistics we are considering, the directionality of U
is reversed — low values are inconsistent with the null hypothesis
and cause rejection, rather than high values.

Algorithm MWg,; : Mann-Whitney Test Statistic

Input: x
fori e {1,2} do
Ri < Xjrij
Ui «<— R; - M

U «— min{U;, U}
Output: U

4.2 A Differentially Private Algorithm

The global sensitivity of MW4tat is n, but the local sensitivity is
lower. We prove the following in the full version:

THEOREM 4.1 (SENSITIVITY OF MWgrar). The local sensitivity is
given by LSmw,,,,(x) = max{ny, na}, where ny and ny are the sizes
of the two groups in x.

We can now define our private test statistic, MWitat. This al-
gorithm first uses a portion of its privacy budget (e,,) to estimate
the size of the smallest group. This value is then reduced to m*,
such that with probability 1 — § we have n — m* > LSmw,,, (x).
This means that we can then release U using noise proportional to
n—m* (using the remaining privacy budget, ey. See the full version
for proof that MWitat is (em + €y, 6)-differentially private.

Algorithm /\T\X/stat : Private Mann-Whitney Test Statistic
Input: x, €, €7,
m «— min{ny, ny}

me—m+ Lap(#)
In(26)
T Tem

m* «— max([m —c],0)
U — MWgear(x) + Lap(%)
Output: m, U

As before, Wstat is not meaningful on its own; we want an
applicable reference distribution with which to calculate a corre-
sponding p-value. This is shown below in algorithm MW p- It works
similarly to the analogous algorithms IZ‘\)T/p and KWabsp. The key
difference is that the reference distribution now depends on the
group size estimate .3

8The algorithm given simulates full databases to compute the reference distribution.
This is not particularly slow, but in the full version we show that one can also sample
from a normal distribution with certain parameters to get an acceptable reference
distribution more quickly.

Algorithm W/p : Complete Mann-Whitney Test

Input: X, €;,€7,0, 2

(7. U) e— MWitar(x. ém. €U 5)

m «— [max(0, m)]

for k :=1to zdo
x* «— a database with n independent uniform values

from [0,1] divided into 2 groups of size m and n — m

U «— mstat(x*, €ms €U, 6)

p «— fraction of Uy, less than U

Output: U, p

A note on design. In the case of KWabsp, we found that the highest
possible critical value came from a reference distribution with equal-
size groups. For this test that is not the case, so we cannot use equal-
size groups when generating the reference distribution without
unacceptable type 1 error. As a result, we need an estimate of group
size. If we didn’t need this estimate for the reference distribution, it
is possible that MWt would be more accurate by simply using the
global sensitivity bound on MWjgi,t. (It would be a slightly higher
sensitivity, but no privacy budget would need to be expended on
estimating m.) This is a good example of a point made in Section
1: simply acheiving an accurate of estimate of a test statistic is not
enough. The ultimate goal of a hypothesis test is a p-value, which
also requires an accurate reference distribution and high power in
order to minimize decision error.

Type 1 error. The reference distribution in the WP algorithm
depends on m, which is only estimated by m, so we need to ex-
perimentally verify that type 1 error never exceeds a. See the full
version for evidence that our estimate appears to be sufficiently
accurate and for additional discussion.

THEOREM 4.2. Algorithm W/p is (em + €y, O)-differentially pri-
vate.

Proor. Since the computation of (m, U)is (em+ey, S )-differentially
private (see full version for the proof of this fact) and all of the steps
following this computation do not require access to the database
and are, thus, post processing, by Theorem 2.4, it follows that the
complete algorithm is also (¢, + €y, §)-differentially private. O

4.3 Experimental Results

Power analysis. We first assessed the power of our test on syn-
thetic data.” We run Wp on many simulated databases and report
the percentage of the time that a significant result was obtained.
For our first effect size, we have the two groups consist of normally
distributed data with means one standard deviation apart. In all
experiments we set § = 107°.

Our first step was to determine the optimal proportion of the
total privacy budget, €0, to allot to estimating m and the test
statistic MW. stat- We found that the optimal proportion of € to allot
to estimating m is roughly .65, experimentally confirmed at several
choices of €;o;, effect size, total sample size n, group size ratios
ni/n, and underlying distribution. (See the full version for more

9For application of our test to real-world data, see the full version



details.) We then fix the proportion of ;4 allotted to €, as .65 and
vary €;o¢ and total sample size n to measure the power of our test.

1.00

075

€
S
o - 001
£ 050 - 0.1
~ -1
Public
0.25
0.00

10 100 1000 10000
Total Sample Size n

Figure 4: Power of WP at various values of ¢;,; and total
sample size n. (Effect size: y; — pz = 10; proportion of €;o; to
€m = .65; ¢ = .05; m:(n—m) =1)

As shown in Figure 4, the power loss due to privacy is not unrea-
sonably large. At an €;0; of 1, the test only requires a database that
is approximately a factor of 3 larger than that needed for the public
test to reach a power of 1. As one might expect, the database size
needed to detect a given effect has a roughly inverse relationship
with €;0¢. In the full version we perform a similar power analysis,
varying effect size rather than sample size.

Uniformity of p-values. Algorithm MW p uses the privatized group
sample sizes m*, (n — m*) in place of the true group sizes ny, nz in
order to simulate the reference distribution. Naturally, then, one
may wonder how conservative our critical values are as a result of
ensuring that the type 1 error rate does not exceed a. As shown in
Figure 5, the type I error rate of our test does not exceed @ when
group sample sizes are equal. As total sample size n increases, the
p-value quantiles asymptotically approach that of the theoretical
distribution. In the full version, we also examine uniformity of p-
values of I\7\§\X/p with unequal group sizes and a variation of I\TWP
that assumes equal group sizes.

Comparison to previous work. The best existing test applicable in
the same use case is that of Swanberg et al. [28]. Their differentially
private ANOVA test can be used in the 2-group case to compare
to our Mann-Whitney test. The results of this comparison, using
the same paramater settings chosen for optimal power in their test,
can be seen in Figure 6, where our test offers a substantial power
increase.

Comparing MW p and KWabsp,. Both the Mann-Whitney and the
Kruskal-Wallis can be used to compare the distributions of samples
from two groups. As shown in Figure 7, we find that in the private

setting, KWabs), is more statistically powerful than I\T\X/p. This
is perhaps surprising, since one might expect the test developed
specifically for the two-group case to perform better. But this is
an example of how some tests privatize more easily than others.
Wp requires knowledge of the group sizes, using up a fraction of
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Figure 5: A quantile-quantile plot of /\T\X/p varying n. (€;or =
1; proportion of €;o; to €, = .65; m:(n — m)= 1; normally dis-
tributed sample data)
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Figure 6: Power of MW. p and Swanberg et. al’s test at various
n. (eror = 1; Effect size: y; — pp = 1o; proportion of €;o; to
€m = .65; & = .05; m:(n — m) = 1), normally distributed sample
data

the privacy budget, while the KWabsy, statistic is not dependent on
group size.

We did find one exception to this finding. If the analyst knows a
priori that the two groups are of equal size (e.g., the data collection
method guaranteed an equal number in each group) then /\T\TVP can
be run using an exact value of n/2 for the local sensitivity without
the need to dedicate any privacy budget to estimating m. This
increases the accuracy of MWitat both by reducing the sensitivity
used to add noise and by increasing the privacy budget allocated to
U. We find that in this case Wp is superior to KWabs),. See the
full version for more details.

5 PAIRED DATA

We now consider a third situation, where there are two groups and
the observations in those groups are paired. While this scenario did
not exist in the original psychotic disease study, one can imagine
recording the methylation levels of one of the groups before and
after administering medication. Each subject then contributes a pair
of data (u;, v;) that are highly correlated with one another. One
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Figure 7: Power of /\TWP and KWabsp, at various n and e. (Ef-
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sizes; normally distributed sample data)

can assess the impact of the medication by considering whether
the set of n differences, {v; — u;};, is plausibly centered at zero.
The standard nonparametric hypothesis test for this situation is the
Wilcoxon signed-rank test, proposed in 1945 by Frank Wilcoxon
[36]. The parametric alternative is a simple one-sample t-test run
on the set of differences.

This is the one setting where we are aware of prior work on
a nonparametric test. Task and Clifton [30] gave the first private
analogue of the Wilcoxon signed-rank test, referred to from here
on as the TC test, in 2016. Our test makes two key improvements to
theirs and exhibits higher power. We also correct some errors in
their work. We discuss the differences in more detail in Section 5.3.

Despite its status as one of the most commonly used hypothesis
tests, to our knowledge there is no practical, implementable private
version of a one-sample t-test in the literature. In Section 5.4 we
discuss some work that comes close, and then we give our own first
attempt at a private t-test. We again find that our nonparametric
test has significantly higher power than this parametric alternative.

5.1 The Wilcoxon signed-rank test

The function calculating the Wilcoxon test statistic is formalized in
Algorithm “‘W. Given a database x containing sets of pairs (u;, v;),
the test computes the difference d; of each pair, drops any with
d; = 0, and then ranks them by magnitude. (If magnitudes are equal
for several differences, all are given a rank equal to the average
rank for that set.)

Under the null hypothesis that u; and v; are drawn from the
same distribution, the distribution of the test statistic W can be
calculated exactly using combinatorial techniques. This becomes
computationally infeasible for large databases, but an approxima-
tion exists in the form of the normal distribution with mean 0 and
M, where n, is the number of rows that were
not dropped. Knowing this, one can calculate the p-value for any
particular value of w.

variance

Algorithm Wiyt : Wilcoxon Test Statistic
Input: x

for rowi of x do

L di «— |vi —uj|

si «— Sign(v; — u;)

Order the terms from lowest to highest d;
Drop any d; = 0
for rowi of x do
| ri «— rank of row i
we— 3 siri
Output: w

5.2 Our Differentially Private Algorithm

At a high level, our algorithm is quite straightforward and similar
to prior work: we compute a test statistic as one might in the public
case and add Laplacian noise to make it private. However, there
are several important innovations relative to Task and Clifton that
greatly increase the power of our test.

Our first innovation is to use a different variant of the Wilcoxon
test statistic. While the version introduced in Section 5.1 is the
one most commonly used, other versions have long existed in the
statistics literature. In particular, we look at a variant introduced by
Pratt in 1959 [22]. In this variant, rather than dropping rows with
di = 0, those rows are included. When d; = 0 we sets; = Sign(d;) =
0, so those rows contribute nothing to the resultant statistic, but
they do push up the rank of other rows.

Algorithm WPg,: Wilcoxon Test Statistic - Pratt Variant
Input: x

for rowi of x do

L di « |vi - uil

s; «— Sign(v; — u;)

Order the terms from lowest to highest d;

for rowi of x do
| ri «— rank of row i

W X sifi
Output: w

In the public setting, the Pratt variant is not very different from
the standard Wilcoxon, being slightly more or less powerful de-
pending on the exact effect one is trying to detect [5]. In the private
setting, however, the difference is substantial.

The benefit to the Pratt variant comes from how the test statistics
are interpreted. In the standard Wilcoxon, it is known that the
test statistic follows an approximately normal distribution, but
the variance of that distribution is a function of n,, the number
of non-zero d; values. In the private setting, this number is not
known, and this has caused substantial difficulty in prior work. (See
Section 5.3 for more discussion.) On the other hand, the Pratt variant
produces a test statistic that is always compared to the same normal
distribution, which depends only on n. The algorithm \)\7l35tat that
outputs a differentially private analogue is shown below.

THEOREM 5.1. Algorithm WPt is e-differentially private.



Algorithm \%stat : Private Wilcoxon Test Statistic
Input: x, €
w — WPga1(x)

We— w+ Lap(z?")
Output: w

See the full version for proof of Theorem 5.1.

To complete the design of our test, we compute a reference
distribution through simulation as was done in KWabs;, and I\T\X/p.
Here we use the standard normal approximation for the distribution
of the w test statistic, though one could simulate full databases as
well. We call this algorithm \Wp,

Algorithm \T/T’p : Complete Wilcoxon Test
Input: x, ¢, z
W — WPgar(x. €)
fork =1tozdo
| wi «— Normal(0, n(n + 1)(2n + 1)/6) + Lap(2n/e);
p «— fraction of wy more extreme than w
Output: w, p

THEOREM 5.2. Algorithm \7\7l5p is e-differentially private.

ProoF. The computation of w was already shown to be private.
The remaining computation needed to find the p-value does not
need access to the database—it is simply post-processing. By Theo-
rem 2.4, it follows that the \)7l3p algorithm is also private. O

5.3 Experimental Results

Power analysis. We assess the power of our differentially-private
Wilcoxon signed-rank test first on synthetic data. (For tests with real
data, see the full version.) In order to measure power, we must first
fix an effect size. We chose to have the u; and v; values both gener-
ated according to normal distributions with means one standard
deviation apart. We then measure the statistical power of Algo-
rithm \)W’p (for a given choice of n and €) by repeatedly randomly
sampling a database x from that distribution and then running
\7\713}) on that database.!” The power is the percentage of the time

WPy, returns a p-value less than a. See the full version for a similar
analysis of power, varying effect size rather than sample size.

Uniformity of p-values. In algorithm \T/f’p we draw our reference
distribution samples (the wy values) assuming there are no d; = 0
rows. The distribution will technically differ slightly when there
are many rows with d; = 0, so we need to confirm experimentally
that the difference is inconsequential or otherwise acceptable.

Figure 9 shows a Q-Q plot of \Wp on three sets of p-values,
all generated under Hy, with ¢ = 1, n = 500. When there are
no ties in the original data (0% of d; = 0), the Q-Q plot line is
indistinguishable from the identity line, indicating that the test
10ur actual implementation differs slightly from this. To save time when running a

huge number of tests with identical n and €, we first generate the reference distribution
W values, which can be reused across runs.
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Figure 8: Power of WTJP at various € and n. (Effect size: py, —
Hy = 1o; @ = .05; normally distributed sample data)

is properly calibrated. Encouragingly, introducing a substantial
number of ties into the data (30% of d; = 0) has little noticeable
effect. In order to induce non-uniformity in the p-values, one needs
an extremely high proportion of rows with d; = 0. The curve with
90% zero values is shown as an illustration. When the proportion of
zeros is very high, the variance of the p-values will be narrower than
the reference distribution, resulting in a lower critical value. Since
the value we are using is higher, our test is overly conservative,!!
but this is acceptable as type I error is still below a.
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Figure 9: A quantile-quantile plot of \’A‘/f’p comparing the dis-
tribution of simulated p-values to the uniform distribution
(e = 1, n = 500; normally distributed sample data).

Comparison to previous work. In 2016, Task and Clifton [30] in-
troduced the first differentially private version of the Wilcoxon
signed-rank test, from here on referred to as the TC test. Our work
improves upon their test in two ways. We describe the two key
differences below, and then compare the power of our test to theirs.
We also found a significant error in their work.!? All comparisons

10One could try to estimate the number of zeros to be less conservative, but that would
require allocating some of the privacy budget towards that estimate, which is not
worth it in most circumstances.

12This error has been confirmed by Task and Clifton in personal correspondence.



are made to our implementation of the TC test with the relevant
error corrected.

Task and Clifton compute an analytic upper bound on the critical
value t*. For a given n and e, the private test statistic w under Hy is
sampled according to a sum W + A, where W is a random draw from
a normal distribution (scaled according to n) and A is a Laplace
random variable (scaled according to n and €). In particular, say
that b is a value such that Pr[W > b] < f and g is a value such that
Pr[A > g] < y. Then we can compute the following bound. (The
last line follows from the fact that the two events are independent.)

Pr[W > b+g] <Pr[W >borA>g]
= Pr[W > b] + Pr[A > g]
—Pr[W >band A > g]
=p+y-Fr

Task and Clifton always set y = .01 and then vary the choice of
P such that they have a = f + y — By for whatever « is intended as
the significance threshold.!

The bound described above is correct but very loose, and our
simulation method gives drastically lower critical values. Table 1
contains examples of the critical values achieved by each method
for several parameter choices. More values can be found in the full

version, where we also experimentally confirm that these values
result in acceptable type 1 error.

Table 1: Critical Value Comparison for n = 100

€ a Public New TC
1 0.1 1.282 1.417 2.680
0.05 1.645 1.826 3.091
0.025 1.960 2.186 3.511
0.1 0.1 1.282 5.684 14.786
0.05 1.645 8.063 15.197
0.025 1.960 10.438 15.617
0.01 0.1 1.282 55.350 135.843
0.05 1.645 79.233 136.254
0.025 1.960 103.116 136.674

Critical values for n = 100 and several values of ¢ and «a. To
allow easy comparison, these values are for a normalized W
statistic, i.e., W has been divided by the relevant constant so
that it is (before the addition of Laplacian noise) distributed
according to a standard normal. See the full version for the
equivalent table at n = 1000.

Our second key change from the TC test, mentioned earlier, is
that we handle rows with d; = 0 according to the Pratt variant of
the Wilcoxon, rather than dropping them completely as is more
traditional. The reason the traditional method is so difficult in the
private setting is that the reference distribution one must compare
to depends on the number of rows that were dropped. If n, is the
number of non-zero rows (i.e., rows that weren’t dropped), one is
3This is where Task and Clifton make an error. This formula is correct, but they used

an incorrect density function for the Laplace distribution and as a result calculated
incorrect values of g.

supposed to look up the critical value associated with n,, rather
than the original size n of the database.

Unfortunately, n, is a sensitive value and cannot be released
privately.!* Task and Clifton show that it is acceptable (in that it
does not result in type I error greater than «) to compare to a
critical value for a value of n, that is lower than the actual value.
This allows them to give two options for how one might deal with
the lack of knowledge about n,-.

High Utility This version of the TC test simply assumes n, >
.3n and uses the critical value that would be correct for n, =
.3n. We stress that this algorithm is not actually differentially
private, though it could easily be captured by a sufficiently
weakened definition that limited the universe of allowable
databases. Another problem is that for most realistic data, n,
is much greater than .3n and using this loose lower bound
still results in a large loss of power.

High Privacy This version adds k dummy values to the data-
base with d; = oo and k with d; = —c0.1> Then one can be
certain of the bound n, > 2k. This is a guaranteed bound so
this variant truly satisfies differential privacy. On the other
hand it is a very loose lower bound in most cases, leading to
a large loss of power.

Experimental comparison. We compare the statistical power of
our test to that of the TC test. We begin by again measuring the
power when detecting the difference between two normal distribu-
tions with means one standard deviation apart. The results can be
seen in Figure 10. If we look at the database size needed to achieve
80% power, we find that the 32 data points we need, while more
than the public test (14), are many fewer than the TC High Utility
variant (80) or the TC High Privacy variant (122). The full version
includes a figure for € = .1 as well. What we see is that, while all
private tests require more data, our test (requiring n =~ 236) still
requires about 40% as much data as the TC High Utility variant
(588). The TC High Privacy variant, however, scales much less well
to low € and requires roughly 2974 data points.

The results in Figure 10 use a continuous distribution for the
real data, so there are no data points with d; = 0. Because one of
the crucial differences between our algorithms is the method for
handling these zero values, we also consider the effect when there
are a large number of zeros in the full version. Overall, we see that
both in situations with no zero values and situations with many,
our test achieves the rigorous privacy guarantees of the TC High
Privacy test while achieving greater utility than the TC High Utility
test.

Relative contribution of improvements. Given that we make two
meaningful changes to the TC test, one might naturally wonder
whether both are truly useful or whether the vast majority of the
improvement comes from one of the two changes. To test this, we
compare to an updated variant of the TC test where we calculate
critical values exactly through simulation, as we do in our algorithm,
but otherwise run the TC test unchanged (referred to as "High

14 A private estimate could be released, but one would have to devote a significant
portion of the privacy budget for the hypothesis test to this estimate, greatly decreasing
the accuracy/power of \X/sm.

5Task and Clifton do not discuss how to choose k, and in our experimental compar-
isons we set k = 15, the same value they use.
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Figure 10: Power of the TC test, \Wp, and the public test at
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distributed sample data)

Privacy +" and "High Utility +"). The result is presented in Figure 11,
where we find the resulting algorithm to rest comfortably between
the original TC test and our proposed test. This means that both
the change to the critical value calculation and the switch to the
Pratt method of handling d; = 0 rows are important contributions
to achieving the power of our test.
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Figure 11: Power comparison of the TC algorithms, the TC
algorithms with our critical values (denoted with a +), our
new algorithm, and the public algorithm at various sample
sizes n. (Effect size: yu, — pi, = 10 € = 1; & = .05)

5.4 Parametric Alternative: A New T-test

The parametric analog to the Wilcoxon test is to run a one sample
t-test on the set of differences {v; — u;}; to see if their mean is sig-
nificantly different from zero (also called a paired t-test). There has
been surprisingly little work on the creation of a private version of a
one sample t-test. Karwa and Vadhan [16] study private confidence
intervals, which are in a sense equivalent to a t-test. However, their
analysis is asymptotic and they say that the algorithm does not give
practical results with database size in the thousands. Sheffet [24]
provides a method for calculating private coefficient estimates for
linear regression and also transforms the t-distribution to provide

an appropriate reference distribution for inference. In the public
setting, one can convert a test on regression coefficients to a one
sample t-test but choosing a constant independent variable and
making the sample data the dependent variable. However, Sheffet’s
method only works when all variables are significantly spread out,
so this method fails.

Here we propose what we believe is the first private version
of a one sample t-test, with two arguable exceptions. The first is
simultaneous work by Gaboardi et al. [13] in the local privacy
model. We compare our results to theirs in more detail in Section
5.5. The other work is that of Solea [27], but according to Solea’s
own experiments that test often gives type 1 error rates well above
the chosen « for many parameter choices, so we don’t consider it a
usable test.

The database for a one sample t-test has observations x1, . . ., xp
assumed to come from a normal distribution with mean y and
standard deviation o. (For paired data, each observation is the
differences between the observation in the two groups). The test
statistic is given by Tgtat(x) = ﬁ where x is the mean of the data
and s is the standard deviation of the data.

A private t-test. As before, we achieve privacy through the addi-
tion of Laplacian noise, but the sensitivity of Ttat is unbounded, so
we instead release separate private estimates of the numerator and
denominator. For this analysis, similar to the private ANOVA tests
[28], we assume that the data is scaled such that all observations are
on the interval [—1, 1]. We first find the sensitivities of % and s? and
then use post-processing, composition, and the Laplace Mechanism
to combine these to obtain the private t-statistic. In the case where
s? is estimated to be negative, the test statistic cannot be computed
as normal, and we return 0, indicating an unwillingness to reject
the null hypothesis.

e _ .. 2
THEOREM 5.3. The sensitivity of X is 4 .

e 2. 5
THEOREM 5.4. The sensitivity of s° is ;25

See the full version for proof of Theorem 5.3 and 5.4.

Algorithm :Fstat: Private t-Test Statistic
Input: x, €z, €2
=x+ Lap(le/—:)

_ 2 5/(n-1)
=s“+ Lap(T)

x
&2

if s2 < 0 then

T=0
else
T‘ _ %/n
Vst v
Output: T

THEOREM 5.5. Algorithm Tetat is (ex + €42)-differentially private.

PrOOF. By the Laplace mechanism, the computation of X is €z~
differentially private and the computation of s2is €,2-differentially
private. Since the computation of T does not require access to the
database, it is only post-processing and its release is (ex + €52)-
differentially private. O



To carry out the full paired t-test, we estimate the reference
distribution through simulation and release a private p-value.

Algorithm ?p : Complete t-Test
Input: x, €z, €52, 2z
Ti= :Fstat(X, x> €52)
fork =1tozdo
x* «— a database with n independent draws from
N(u = 0,0 = 0.3), each truncated to [-1,1]
tp «— fstat(x*)

p «— fraction of t; more extreme than
Output: 7,p

THEOREM 5.6. Algorithm Ffp is €x + €42 -differentially private.

PrOOF. The computation of t was already shown to be private.
The remaining computation needed to find the p-value does not
need access to the database—it is simply post-processing. By Theo-
rem 2.4, it follows that the Tp algorithm is also private. O

5.5 Experimental t-Test evaluation

We first must set a parameter in our Tp algorithm. In particular, for
a given total €, we must decide how to allocate the budget between
€x and €,2. We choose this allocation experimentally, deciding to
allocate 50% of the budget towards each value. This is nontrivial, and
the full version contains experimental results and further discussion.
Luckily, the exact choice of this allocation does not seem to have a
large effect on the power of the test.
We then evaluate the power and validity of the final Tp test.

Comparison to other work. Simultaneous to our work, Gaboardi
et al. [13] developed a private one sample t-test under the more
restrictive local differential privacy model. As one might expect,
our test in the more standard setting is much higher power. They
develop both a t-test and a z-test, which is equivalent to the t-test
except that the variance of the data is assumed to be already known.
Only the z-test is given experimental evaluation, but with an effect
size three times the size we use in our experiments, their test (at
€ = 1) requires roughly 4000 data points to reach 80% power, while
our test requires roughly 100. Their t-test would presumably require
even more data.

Comparison to nonparametric test. Since we have already devel-
oped a test for the paired-data use case, we assessed the power of
Tp in comparison to \)7l3p by simulating synthetic data as described
in Section 5.3. Just as in the many groups and two groups scenarios,
the nonparametric test substantially outperforms its parametric
counterpart, as shown in Figure 12. In this case, \Wp needs 8% of
the data required by ?p to reach the same power.

Uniformity of p-values. As with all of our tests, we experimentally
ensure that type I error rate is bounded by « in Figure 13. This figure
confirms the fact that our type I error rate is bounded above by a.
For small sample sizes, the line on the quantile-quantile plot goes
above the diagonal. This is the acceptable direction, the sign of a
conservative test. In this case it occurs because some test statistics
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Figure 12: Power of ?p and \’)\7131, at various ¢ and n. (Effect
size: iy, — liy, = 1o; a = .05; normally distributed sample data)

in the reference distribution are set to zero (as a result of noise
added for privacy overwhelming s2). If, for example, 10% of the
reference distribution samples are at zero, then p values below 10%
are impossible. As shown by the n = 1000 line, at sufficiently large
sample sizes this effect essentially vanishes.
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Figure 13: A quantile-quantile plot of Tp at various n. (e = 1;
equal ¢ allotment to each statistic)

6 CONCLUSION

We have introduced several new tests, of which three (KWabsp,

/\T\X/p, and \Wp) are improvements on the state of the art. These
allow researchers to address inferential questions using nonpara-
metric methods while preserving the privacy of the data. More
broadly, we found that the basic idea of using ranks in the private
setting is potent. Not only do they remove the need to assume
a bound on the data, they also directly increase statistical power.
When working with many groups, two group, or with paired data,
rank-based tests are more powerful than their parametric analogues
and can be made yet more powerful through sensible adaptations.



We hope others will push this technique forward — we have no
reason to believe that our tests are optimal.
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