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ABSTRACT
Hypothesis tests are a crucial statistical tool for data mining and are

the workhorse of scientific research in many fields. Here we study

differentially private tests of independence between a categorical

and a continuous variable. We take as our starting point traditional

nonparametric tests, which require no distributional assumption

(e.g., normality) about the data distribution. We present private

analogues of the Kruskal-Wallis, Mann-Whitney, and Wilcoxon

signed-rank tests, as well as the parametric one-sample t-test. These

tests use novel test statistics developed specifically for the private

setting. We compare our tests to prior work, both on parametric

and nonparametric tests. We find that in all cases our new nonpara-

metric tests achieve large improvements in statistical power, even

when the assumptions of parametric tests are met.
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1 INTRODUCTION
In 2011, researchers in Switzerland began an investigation into the

link between methylation levels of a given gene and the occurance

of schizophrenia and bipolar disorder[4]. They recruited patients
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that suffered from psychosis as well as healthy controls and mea-

sured the level of methylation of the gene in each individual. They

found that levels in the groups suffering from psychosis were higher

than those in the healthy group. In order to rule out the possibility

that this difference was due to sampling variability, they relied upon

a suite of nonparameteric hypothesis tests to establish that this link

likely exists in the general population.

While the results of these tests were published in an academic

journal, the data itself is unavailable to preserve the privacy of

the patients. This is a necessary consideration when working with

sensitive data, but it hampers scientific reproducibility and the

extension of this work by other researchers.

Our goal in this paper is to provide nonparametric hypothesis

tests that satisfy differential privacy. The difficulty of developing a

private test comes not just from the need to privately approximate

a test statistic, but also from the need for an accurate reference

distribution that will produce valid p-values. It is not sufficient to

treat the approximate test statistic as equivalent to its non-private

counterpart.

In this paper, we present several new hypothesis tests. In all cases

we are considering data sets with a categorical explanatory variable

(e.g., membership in the schizophrenic, bipolar, or control group)

and a continuous dependent variable (e.g., methylation level). Our

goal when designing a hypothesis test is to maximize the statistical
power of the test, or equivalently to minimize the amount of data

needed to detect a particular effect.

In the traditional public setting, there are two families of tests for

these scenarios. The more commonly used are parametric tests that
assume that within each group, the continuous variable follows a

particular distribution (usually Gaussian). An alternative to these

tests are nonparametric tests, which make no distributional assump-

tion but, in exchange, have slightly lower power. Nonparametric

tests generally rely upon substituting in, for each data point, the

rank of the continuous variable relative to the rest of the sample.

The test statistic is then a function of these ranks rather than the

original values.

The private hypothesis tests we propose all use rank-based test

statistics. Our overarching argument in this paper, beyond the

individual value of each of the tests we introduce, is that in the

private setting these rank-based test statistics are more powerful
than the traditional parametric alternatives. This is contrary to the

public setting, where the parametric tests (when their assumptions

are met) perform better.

https://doi.org/10.1145/3319535.3339821
https://doi.org/10.1145/3319535.3339821


Our second, broader point is that as a research community we

need to support the development of hypothesis tests specifically

tailored to the private setting. Our private test statistics are not

simply approximations of traditional test statistics from the public

setting and as a result, we find that they can require an order

of magnitude less data. Current tests used by statisticians in the

public setting have been refined through decades of incremental

improvement, and the same sort of development needs to happen

in the private setting.

1.1 Our contributions
We introduce several new private hypothesis tests that mirror the

three most commonly used rank-based tests. In one setting, this is

a private analog of the traditional public test statistic, but for the

remaining two settings it is a new statistic developed specifically for

the private setting. The privacy of these statistics generally follows

from non-trivial but reasonably straightforward applications of the

Laplace mechanism. Our main contribution is not the method of

achieving privacy but the construction of novel private hypothesis

tests with high statistical power.

There are two components to the construction of each hypothesis

test. The first is the creation of a test statistic to capture the effect of

interest while remaining provably private. The second is a method

to learn the distribution of the statistic under the null hypothesis in

order to compute p-values, which are the object of primary interest

to researchers.

In particular, we develop tests for the following cases:

Three or more groups. When the categorical variable divides the

sample into three or more groups, the traditional public test is the

one-way analysis of variance (ANOVA) in the parametric case and

Kruskal-Wallace in the nonparametric case. ANOVA has been previ-

ously studied by Campbell et al. [3] and then by Swanberg et al. [28],

who improved the power by an order of magnitude.We give the first

private nonparametric test by modifying the rank-based Kruskal-

Wallace test statistic for the private setting. We provide experimen-

tal evidence that this statistic has dramatically higher power than

a simple privatized version of the public Kruskal-Wallace statistic.

Moreover, we provide evidence that even in the parametric setting

(i.e., when the data is normally distributed) the private rank-based

statistic outperforms the private ANOVA test, in one representative

case requiring only 23% as much data to reach the same power.

Two groups. In the two group setting, the most common public

nonparametric test is the Mann-Whitney test. We provide an algo-

rithm to release an approximation of this statistic under differential

privacy and a second algorithm to conduct the test and release a

valid p-value.

In the public setting, the analogous parametric test is the two

sample t-test which is equivalent to an ANOVA test when there

are two groups. We compare therefore to the private ANOVA test

and show experimental evidence that our Mann-Whitney analog

has significantly higher power.

Paired data. We also consider the case where the two sets of

data are in correspondence with each other (e.g., before-and-after

measurements). The nonparametric test in this case is theWilcoxon

signed-rank test, and it is the only nonparametric test that has pre-

viously been studied in the private setting[30]. We provide two

improvements to the prior work. First, we change the underlying

statistic to the less well-known Pratt variant, which we find con-

forms more easily to the addition of noise. Second, we show that

our simulation method for computing reference distributions is

more precise than the upper bounds used in the prior work (which

contained an error which we identify and correct). The result is a

significant improvement in the power of the test over the the prior

work.

In parallel with the previous two scenarios, we then compare our

private nonparametric test with a private version of the analogous

parametric test, the paired t-test. A direct private implementation

of this test does not exist in the literature, so we propose one

here.
1
In alignment with the previous results, we show experimental

evidence that the rank-based test has superior power.

For all our tests we give not just private test statistics but also precise

methods of computing a reference distribution and a p-value, the

final output practitioners actually need. We also experimentally

verify that the probability of Type 1 errors (incorrectly rejecting the

null hypothesis) is acceptably low. We give careful power analyses

and use these to compare tests to each other. All our tests and

experiments are implemented with publicly available code.
2

We find that rank-based statistics are very amenable to the pri-

vate setting. We also repeatedly find that what is optimal in the

public setting is no longer optimal in the private setting. We hope

that this work contributes to the development of a standard set of

powerful hypothesis tests that can be used by scientists to enable

inferential analysis while protecting privacy.

2 BACKGROUND
In this section, we begin by discussing hypothesis testing in general

and outlining the formalities of differential privacy. We then discuss

the difficulties of hypothesis testing within the privacy framework

and the previous work done in this area. Each of our main results

requires a more detailed discussion of prior work on that particular

test or use case; we leave those discussions for Sections 3-5.

2.1 Hypothesis Testing
The key inferential leap that is made in hypothesis testing is the

claim that not only is the sample of data incompatible with a particu-

lar scientific theory, but that the incompatiblility holds in a broader

population. In the study on psychotic disease, the researchers used

this technique to generalize from their 165 subjects to the pop-

ulation of causasian-descended Swiss. The scientific theory that

they refuted, that there is no link between methylation levels and

psychosis, is called the null hypothesis (H0).

To test whether or not the data is consistent withH0, a researcher

computes a test statistic. The choice of a function f to compute the

test statistic largely determines the hypothesis test being used. For

a random database X drawn according toH0, the distribution of the

statisticT = f (X) can be determined either analytically or through

simulation. The researcher then computes a p-value, the probability

1
In simultaneous work Gaboardi et al. [13] propose such a test, but our test is still

higher power. See Section 5.5 for more details.

2
Our source code is available at: github.com/simonpcouch/non-pm-dpht



that the observed test statistic or more extreme would occur under

H0.

Definition 2.1. For a given test statistic t = f (x) and null hypoth-
esis H0, the p-value is defined as

Pr[T ≥ t | T = f (X) and X← H0] = p.

If the function f is well-chosen, the underlying distribution of X
will differ more from the distribution under H0 and a low p-value

becomes more likely. Typically a threshold value α is chosen, such

that we reject H0 as a plausible explanation of the data when p < α .
The choice of α determines the type I error rate, the probability of

incorrectly rejecting a true null hypothesis.

We define the critical value t∗ to be the value of the test statistic

t where p = α . We use this to define the statistical power, a measure

of how likely a hypothesis test is to pick up on a given effect (i.e. the

chance of rejecting when the null hypothesis is false). The power

is a function of how much the underlying distribution of X differs

from the distribution under H0 as well as the size of the database.

Definition 2.2. For a given alternate data distribution HA, the

statistical power of a hypothesis test is

Pr[T ≥ t∗ | T = f (X) and X← HA].

Statistical power is the accepted metric by which the statistics

community judges the usefulness of a hypothesis test. It provides a

common scale upon which to evaluate different tests for the same

use case.

2.2 Differential Privacy
To persuade people to allow their personal data to be collected,

data owners must protect information about specific individuals.

Historically, ad-hoc database anonymization techniques have been

used (i.e. changing names to numeric IDs, rounding geospatial

coordinates to the nearest block, etc.), but these methods have

repeatedly been shown to be ineffective [14, 19, 29].

Differential privacy, proposed by Dwork et al. in 2006 [9], is a

mathematically robust definition of privacy preservation, which

guarantees that a query does not reveal anything about an indi-

vidual as a consequence of their presence in the database. When

the condition of differential privacy is satisfied, there is not much
difference between the output obtained from the original database,

and that obtained from a database that differs by only one individ-

ual’s data. Here we present (ϵ,δ )-differential privacy [8], which

allows the closeness of output distributions to be measured with

both a multiplicative and an additive factor. However, for most of

our hypothesis tests δ = 0.

Definition 2.3 (Differential Privacy). A randomized algorithm
˜f

on databases is (ϵ,δ )-differentially private if for all S ⊆ Range( ˜f )
and for databases x,x′ that only differ in one row:

Pr[ ˜f (x) ∈ S] ≤ eϵ Pr[ ˜f (x′) ∈ S] + δ .

We call databases x and x′ neighboring if they differ only in that

a single row is altered (but not added or deleted), and we will use

this notation in the following sections.
3
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This is one of two roughly equivalent variants of differential privacy. The key differ-

ence is that under this definition the size of the database is public knowledge.

Differential privacy, like any acceptable privacy definition, is

resistant to post processing. That is, if an algorithm is differentially

private, an adversary with no access to the database will be unable

to violate such privacy through further analysis (e.g., attempted

deanonymization) of the query output [9].

Theorem 2.4 (Post Processing). Let ˜f be an (ϵ,δ )-differentially
private randomized algorithm. Let д be an arbitrary randomized
algorithm. Then д ◦ ˜f is (ϵ,δ )- differentially private.

Theorem 2.4 has another useful consequence. It allows us to

develop private algorithms by first computing some private output,

and then carrying out further computation on that output without

accessing the database. The additional computation need not be

analyzed carefully—the final output of the additional analysis is

automatically known to retain privacy.

Differential privacy requires the introduction of some random-

ness to any query output. A frequently used method is the Laplace
mechanism, introduced by Dwork et al. [9]. When given an arbi-

trary algorithm f with real-valued output, this mechanism will add

some noise drawn from the Laplace distribution to the output of

the algorithm and release a noisy output.

Definition 2.5 (Laplace Distribution). The Laplace Distribution

centered at 0 with scale b is the distribution with probability density
function:

Lap(x |b) = 1

2b
exp

(
− |x |

b

)
.

We write Lap(b) to denote the Laplace distribution with scale b.

The scale of the Laplace Distribution used to produce the noisy

output depends on the global sensitivity of the given algorithm f ,
which is the maximum change on the output of f that could result

from the alteration of a single row.

Definition 2.6 (Global sensitivity). The global sensitivity of a

function f is:

GSf = max

x,x′
| f (x) − f (x′)|,

where x and x′ are neighbouring databases.

With computed sensitivity GSf and privacy parameter ϵ , the
Laplace mechanism applied to f ensures (ϵ, 0)-differential privacy
[9].

Definition 2.7 (Laplace Mechanism). Given any function f , the
Laplace mechanism is defined as:

˜f (x) = f (x) + Y ,

whereY is drawn from Lap(GSf /ϵ), andGSf is the global sensitivity
of f .

Theorem 2.8. (Laplace Mechanism) The Laplace mechanism pre-
serves (ϵ, 0) differential privacy.

Global sensitivity is the maximum effect that can be caused by

changing a single row of any database. Sometimes it is helpful

to talk about local sensitivity for a given database x [21]. This is

the maximum effect that can be caused by changing a row of that

particular database.



Definition 2.9 (Local Sensitivity). The sensitivity of a function f
at a particular database x is:

LSf (x) = max

x′
| f (x) − f (x′)|,

where x′ is a neighboring database.

Note thatGSf = maxx LSf (x). Local sensitivity cannot simply be

used in the Laplacemechanism in place of global sensitivity, because

local sensitivity itself is a function of the database and therefore

cannot be released. But private upper bounds on local sensitivity

can be used to create similar mechanisms that do preserve privacy,

and one of our algorithms uses just such a technique.

Choosing ϵ is an important consideration when using differen-

tial privacy. We consider several values of ϵ throughout our power

analyses. The lowest, .01 is an extremely conservative privacy pa-

rameter and allows for safe composition with many other queries

of comparable ϵ value. We also use ϵs of .1 and 1, which, while

higher, still provide very meaningful privacy protection. Ultimately,

the choice of ϵ is a question of policy and depends on the relative

importance with which privacy and utility are regarded. We also

measure, for comparison, the power of the public versions of each

test (equivalent to an ϵ of∞). As one might expect, the amount of

data needed to detect a given effect often scales roughly with the

inverse of ϵ .

2.3 Differentially Private Hypothesis Testing
Performing hypothesis tests within the framework of differential

privacy introduces new complexity. A function to compute a private

test statistic (be it a private version of a standard test statistic or an

entirely new test statistic) is not useful on its own.We need a p-value

or other understandable output, and that means understanding the

reference distribution (i.e., the distribution of the statistic given

H0).

In classical statistics, test statistics are computed with determinis-

tic functions. The randomness added to the test statistic in order to

privatize it introduces new complexity. Most importantly, it causes

the reference distribution to change. One cannot simply compare

the private test statistic to the usual reference distribution, as the

addition of noise can inflate the type I error well above acceptable

levels [3].

Because of this, a complete differentially private hypothesis test

requires not only a function for computing a private test statistic,

but also a method for determining its null distribution. Often the

exact reference distribution cannot be determined, so worst-case

reference distributions or upper bounds on the resulting critical

value must be used, and the precision of this reference distribution

can have a large effect on the resulting power.

The goal of differentially private hypothesis test design is to

develop a test with power as close as possible to the public test.

2.4 Related Work
There is a substantial and growing literature on differentially private

hypothesis testing. One area of research is the study of the rate

of convergence of private statistics to the distributions of their

public analogues [25, 26, 34]. These papers do not offer practical,

implementable tests and discussion of reference distributions when

the noise is not yet negligible is often limited or entirely absent.

Further, the results are often entirely asymptotic, without regard

for constants that may prove to be problematic.

The chi-squared test, which tests the independence of two cat-

egorical variables,
4
has been the subject of much study, resulting

in the development of many private variants. One of these works,

that of Vu and Slavkovic [32], provides methods for calculation

of accurate p-values adjusted for the addition of Laplace noise for

differentially private single proportion and chi-squared tests specif-

ically for clinical trial data. Several other papers, though they make

asymptotic arguments on the uniformity of their p-values, have de-

veloped frameworks for private chi-squared tests specifically for the

intent of genome-wide association study (GWAS) data [11, 15, 31].

For these same tests, Monte Carlo simulation has been shown to

offer more precise analysis in some cases [12, 33]. There has also

been work, like that of Rogers and Kifer [23], that proposes entirely

new test statistics with asymptotic distributions more similar to

their public counterparts.

While the development of private test statistics has achieved

much attention, careful evaluations of statistical power of these

new test statistics is not always demonstrated. This is unfortunate,

as the cost of privacy (utility loss) must be accurately quantified

in order for the widespread adoption or implementation of any

of these methods. Fortunately, rigorous power analysis seems to

be more common in recent work. Awan and Slavkovic recently

presented a test for simple binomial data [1]. While the setting is

the simplest possible, their paper gives what we believe is the first

private test to come with a proof of optimality, something normally

very difficult to achieve even in the public setting.

The body of work on numerical (rather than categorical) meth-

ods is less extensive but has been growing quickly in recent years.

In 2017, Nguyen and Hui proposed algorithms for survival analysis

methods [20]. There have been frameworks developed for testing

the difference in means of normal distributions [6, 7], and for test-

ing whether a sample is consistent with a normal distribution with

a particular mean [27]. Differentially private versions of linear re-

gressions, a class of inference that is extremely common in many

fields both within and outside of academia, have received a notable

level of attention, but the treatment of regression coefficients as

test statistics has come about only recently [2, 24]. Two works have

studied differentially private versions of one-way analysis of vari-

ance (ANOVA) [3, 28]. The only prior work done on nonparametric

hypothesis tests, as far as we are aware, is on the Wilcoxon signed-

rank test by Task and Clifton in 2016 [30]. Prior work specifically

relevant to the tests we are proposing will be discussed in more

detail in the relevant section.

3 MANY GROUPS
We first consider the most general case, where we wish to dis-

tinguish whether many groups share the same distribution on a

continuous variable. The standard parametric test in the public

setting is the one-way analysis of variance (ANOVA), which tests

the equality of means across many groups. Private ANOVA has

been studied previously first by Campbell et al. [3] and then by

4
This is the chi-squared test of independence. There are several related tests that use

the same statistic, the chi-squared.



Swanberg et al. [28], who improved the power by an order of mag-

nitude. The standard nonparametric test in the public setting is the

Kruskal-Wallis test, which was used by the pschosis research group

to determine that subjects in the schizophrenia, bipolar, and control

groups had different methylation levels at a particular gene site[4].

As is standard for nonparametric statistics in the public setting, it

sacrifices some power compared to ANOVA but no longer assumes

normally distributed data. [10]

In this section we present two tests. The first is a straightfor-

ward privatization of the standard Kruskal-Wallis test statistic. The

second modifies the statistic, essentially by linearizing the implied

distance metric. We find first that our modified statistic has much

higher power. We then further show that our modified statistic has

much higher power than the ANOVA test of Swanberg et al. even
when the data is normally distributed.

3.1 The Kruskal-Wallis test
The Kruskal-Wallis test, proposed by William Kruskal and W. Allen

Wallis in 1952 [17], is used to determine if several groups share the

same distribution in a continuous variable. The only assumptions

are that the data are drawn randomly and independently from a

distribution with at least an ordinal scale.

Take a database x with д groups
5
and n rows. Let ni be the size

of each group and ri j be the rank of the jth element of group i . (If
values are equal for several elements, all are given a rank equal to

the average rank for that set.) We define r̄i to be
1

ni
∑ni
j=1

ri j , the

mean rank of group i , and r̄ to be
n+1

2
, the average of all the ranks.

Then, the Kruskal-Wallis h-statistic is defined to be

h = (n − 1)
∑д
i=1

ni (r̄i − r̄ )2∑д
i=1

∑ni
j=1
(ri j − r̄ )2

.

If there are no ties in the database, the denominator is constant and

the formula can be simplified to

h =
12

n(n + 1)

д∑
i=1

ni r̄
2

i − 3(n + 1).

For clarity and consistency with later sections, we present this

calculation as an algorithm. In general we use a subscript “stat” to

label the algorithm computing a test statistic and a subscript “p”

to denote the fully hypothesis test that outputs a p-value. We use

tildes to indicate private algorithms.

Algorithm KWstat : Kruskal-Wallis Test Statistic

Input: x
for group i of x do

r̄i ←−
( ∑ni

j=1
ri j

)
/ni

h ←− 12

n(n+1)
∑д
i=1

ni r̄i − 3(n + 1)
Output: h

5
Throughout the paper we assume д is public and independent of the data, so we do

not list it as a separate input. Because д is the number of valid groups, one or more of

the д groups might not contain any observations. Allowing many valid groups that

have no actual observations artificially increases the critical value, so it can reduce the

power of our tests but does not affect the validity or privacy of the output.

3.2 Privatized Kruskal-Wallis
In this section, we bound the sensitivity of KWstat, allowing us to

create a private version. We then present a complete algorithm for

calculating a p-value and prove that it too is differentially private.

We begin with the following sensitivity claim (see the the full

version for the proof).

Theorem 3.1. The sensitivity of KWstat is bounded by 87.

We are using the simplified formula that assumes there are no

ties in the data, so our algorithm begins by adding a small amount

of random noise to each data point to randomly order any ties. We

may then compute the h-statistic as in the public setting and add

noise proportional to the sensitivity.

Algorithm K̃Wstat : Private Kruskal-Wallis Test Statistic

Input: x, ϵ
Rank all data points, randomly breaking ties

h ←− KWstat(x)
h̃ ←− h + Lap

(
87/ϵ

)
Output: h̃

Theorem 3.2. Algorithm K̃Wstat is ϵ-differentially private.

See the full version for the proof.

Algorithm K̃Wp : Complete Kruskal-Wallis Test

Input: x, ϵ , z
h̃ ←− K̃Wstat(x, ϵ)
for k = 1 to z do

x∗ ←− a database with independent uniform values from

[0,1], divided almost equally into д groups

hk ←− K̃Wstat(x∗);
p ←− fraction of hk values greater than h̃

Output: h̃,p

Algorithm K̃Wp is our complete algorithm to find a p-value given

a database x, privacy parameter ϵ . First a private test statistic h̃
is computed. Then the reference distribution is approximated by

simulating z databases under H0 and computing the test statistic

for each.
6
(The distribution of the test statistic is independent of

the distribution of data between groups and the distribution of the

i.i.d. data points, so our choice of equal-sized groups and uniform

data from [0, 1] is arbitrary.) The p-value is the percent of hk more

extreme than h̃.

Theorem 3.3. Algorithm K̃Wp is ϵ-differentially private.

Proof. By Theorem 3.2, the computation of h̃ is ϵ-differentially
private. All of the following steps (generating the reference distribu-

tion and calculating p-value) do not need to access to the database

x, and therefore by Theorem 2.4 (post processing), Algorithm K̃Wp

is ϵ-differentially private. □
6
When we use the traditional Kruskal-Wallis test, the distribution of h-statistics
asymptotically converges to the χ 2

distribution. Thus, for efficiency purposes, we

sample hk from χ 2(д − 1) + Lap(∆h/ϵ )



3.3 A New Test: Absolute Value Kruskal-Wallis
We now introduce our own new test, specifically designed for

the private setting. Inspired by Swanberg et al. [28], we alter the

Kruskal-Wallis statistic, measuring distance with the absolute value

instead of the square of the differences. This statistic is now

habs = (n − 1)
∑д
i=1

ni |r̄i − r̄ |∑д
i=1

∑ni
j=1
|ri j − r̄ |

.

As before, when there are no ties in the data, the statistic can be

simplified. (See the full version for the calculation.) In this case, the

form depends on the parity of n.

habs =


4(n − 1)

n2

д∑
i=1

ni

����r̄i − n + 1

2

���� , if n is even

4

n + 1

д∑
i=1

ni

����r̄i − n + 1

2

���� , if n is odd

We call the algorithm to calculate thehabs test statisticKWabsstat.
This statistic is preferable for two reasons. First, it has lower sensi-

tivity. The following theorem is proved in the full version.

Theorem 3.4. The sensitivity of KWabsstat is bounded by 8.

Second, the actual values for habs are significantly higher than

they are for h, so any given amount of noise is less likely to over-

whelm the value.

Because of space constraints, we don’t give pseudocode for this

hypothesis test, but it follows exactly that of the previous test. The

privatized statistic is computed by
�KWabsstat, which adds Laplace

noise in the same way as for K̃Wstat, but scaled to the lower sensi-

tivity. The full hypothesis test,
�KWabsp, computes the p value in

the same way as was done for K̃Wp.
7

Theorem 3.5. Algorithm�KWabsstat and�KWabsp are ϵ-differentially
private.

Proof. The proof is identical to the proofs for Algorithms K̃Wstat

and K̃Wp (Theorems 3.2 and 3.3). □

Unequal group sizes. The traditional h statistic (and therefore

the noisy private analogue) has a reference distribution that is

independent of the allocation of observations between groups. This

is unfortunately not true for our new habs statistic. Fortunately,

it seems that the worst-case distribution (i.e., the one resulting in

the highest critical value) occurs when all groups are of equal size.

(We present both theoretical and experimental evidence for this in

the full version.) As a result, it is safe to always equal-sized groups

when simulating a reference distribution, though for very unequal

group sizes, there will be a significant loss in power compared to a

hypothetical where group sizes were known. (If approximate group

sizes are known publicly or released through other queries, those

could be used instead when simulating the reference distribution.)

7
Unlike before, a χ 2

approximation cannot be used.

3.4 Experimental Results
Power analysis. We now assess the power of our

�KWabsp test

on synthetic data (See the full version for an application to real-

world data.) We generate many databases of data distributed with

specified parameters and then run
�KWabsp on each. The power

of the test for a given set of parameters is the proportion of times�KWabsp returns a significant result (i.e. a p-value less than the

significance level α , generally set at 0.05). We use three groups

of normally-distributed data, separated by steps of one standard

deviation (so the highest and lowest groups differ by two standard

deviations). In our captions we denote the mean of group i with µi .

Figure 1: Power of �KWabsp at various values of ϵ and total
sample size n. (Effect size: maxi (µi ) −mini ({µi ) = 2σ ; д = 3;
α = .05; equal group sizes; normally distributed sample data)

As shown in Figure 1, our private absolute value test variant

requires significantly less data points than the original private test

to reach the same power. Thus, from here on, we only evaluate the

power of the absolute value variant. Figure 1 also shows that, at

an ϵ of 1, our private absolute value test only requires a database

around a factor of 3 larger than the public test needs.

Uniformity of p-values. If a test is correctly designed, the prob-

ability of type 1 error (i.e., rejecting the null hypothesis when it

is correct) should be less than or equal to α for any chosen value

of α . Comparing the fit of a large number of simulated p-values

generated from null distributions to the uniform distribution on

the unit interval allows one to evaluate the uniformity of p-values

for a given hypothesis test. A common tool to carry this proce-

dure out, the quantile-quantile (or Q-Q) plot, plots the quantiles of

the uniform, theoretical distribution against the quantiles of the

p-values. The theoretical and emperical quantiles will be nearly

equal at all quantiles when the p-values follow the theoretical dis-

tribution, resulting in a linear trend on the Q-Q plot. A convex Q-Q

plot indicates an increase in the type II error rate (i.e. the test not

rejecting the null hypothesis when it is indeed not true, causing

a decrease in power) which is acceptable but undesirable, while a

concave Q-Q plot indicates an exceedingly high type I error rate

(i.e. the test rejecting the null hypothesis when it is true, causing

undue increases in power) which is not acceptable. Figure 2 demon-

strates the p-value uniformity of
�KWabsp. See the full version for a

discussion of uniformity of p-values with unequal group sizes.



Figure 2: A quantile-quantile plot of�KWabsp comparing the
distribution of simulated p-values to the uniform distribu-
tion at varying n, all with equal group sizes. (д = 3; ϵ = 1)

Comparison to previous work. The only prior work on hypothesis

testing for independence of two variables, one continuous and one

categorical, is that on ANOVA. The best private ANOVA analogue

is that of Swanberg et al. [28]. In Figure 3 we compare
�KWabsp

to their test and we find its power to be much greater. To get 80%

power with this effect size, our test requires only 23% as much data

as the private ANOVA test. (The effect size used is the same as

in [28].) We stress that this means our test is significantly higher-

power, in addition to being usable for non-normal data. The test of

Swanberg et al. also requires that the analyst issuing the query can

accurately bound the range of the data—a bound that is too tight

or too loose will reduce the power of the test. Our test works for

data with unknown range.

Figure 3: Power of �KWabsp, Swanberg et. al.’s test [28], and
the public tests at various n. (Effect size:max(µn ) −min(µn ) =
2σ ; ϵ = 1; д = 3; α = .05; equal group sizes; continuous sample
data)

Robustness of results. Though it is unusual, it is possible that the

relative power of different hypothesis tests could change when dif-

ferent effect sizes are considered. Therefore we repeat the analysis

shown in Figure 1 with a variety of different effect sizes, group sizes,

and number of groups. We also vary the frequency of tied values in

the data, since the random ordering of tied values adds additional

noise for our statistic. Finally, we run the comparison on real data

comparing income and age. The results of these experiments are

shown in the full version. We find that the results discussed above

are consistent across these variations.

4 TWO GROUPS
We now consider the case of data with only two groups (e.g., re-

stricting our comparison to the methylation levels of the bipolar

subjects versus the healthy controls.) In the public nonparametric

setting, one could simply use Kruskal-Wallis with д = 2, but one

can also use the Mann-Whitney U -test (also called the Wilcoxon

rank-sum test), proposed in 1945 by Frank Wilcoxon [35] and for-

malized in 1947 by Henry Mann and Donald Whitney [18]. In this

section we construct a private version of the Mann-Whitney test

and compare it to simply using
�KWabsp with д = 2.

The standard parametric test in the public setting is the two-

sample t-test. We know of three prior works that can, in some

sense, be seen as providing an analogue of the two-sample t-test

for the standard private setting. The only one for which this is

an explicit goal is that of D’Orazio et al. [7]. This test releases

private estimates of the difference in means and of the within-group

variance and produces a confidence interval rather than a p-value.

(The difference in means is done with simple Laplace noise, while

the variance estimate uses a subsample-and-aggregate algorithm.)

Most importantly, they assume that the size of the two groups is

public knowledge, where we treat the categorical value of a data

point (ex., schizophrenic or not) to be private data.

There are two other works we know of that provide a private

analogue of the two-sample t-test as a result of a slightly different

goal. The first is Ding et al. [6], who give a test under the more

restrictive local differential privacy definition. This test is of course

also private under the standard differential privacy definition. The

other work is that of Swanberg et al. [28], who give a private ana-

logue of the ANOVA test, as discussed previously. In the public

setting, ANOVA with д = 2 is equivalent to the two-sample t-test.

Based on (somewhat incomparable) experiments in their respec-

tive papers, it appears that the Swanberg et al. test is much higher

power, which is unsurprising given that it was developed for the

centralized database model of privacy. We therefore compare our

work to this.

To our knowledge, there is no prior work specifically on a private

version of the Mann-Whitney test. As before, we find that our

rank-based nonparametric tests outperform the private parametric

equivalent even when the data is normally distributed. We also find

that, unlike in the public setting, the more generic Kruskal-Wallace

analogue (used with д = 2) outperforms the more purpose-built

test.

4.1 The Mann-Whitney test
The function used to calculate the Mann-Whitney U statistic is

formalized in AlgorithmMWstat. As before, x is a database of size

n, with ri j being the rank of the j
th
data point in group i . A statistic

is first calculated for each group by summing the rankings in that

group and subtracting a term depending on the group size. We



then take the minimum of the two statistics to get U . Compared

to the other statistics we are considering, the directionality of U
is reversed — low values are inconsistent with the null hypothesis

and cause rejection, rather than high values.

AlgorithmMWstat :Mann-Whitney Test Statistic

Input: x
for i ∈ {1, 2} do

Ri ←−
∑
j ri j

Ui ←− Ri − ni (ni+1)
2

U ←− min{U1,U2}
Output:U

4.2 A Differentially Private Algorithm
The global sensitivity of MWstat is n, but the local sensitivity is

lower. We prove the following in the full version:

Theorem 4.1 (Sensitivity of MWstat). The local sensitivity is
given by LSMWstat

(x) = max{n1,n2}, where n1 and n2 are the sizes
of the two groups in x.

We can now define our private test statistic, M̃Wstat. This al-

gorithm first uses a portion of its privacy budget (ϵm ) to estimate

the size of the smallest group. This value is then reduced to m∗,
such that with probability 1 − δ we have n −m∗ > LSMWstat

(x).
This means that we can then releaseU using noise proportional to

n−m∗ (using the remaining privacy budget, ϵU . See the full version

for proof that M̃Wstat is (ϵm + ϵU ,δ )-differentially private.

Algorithm M̃Wstat : Private Mann-Whitney Test Statistic

Input: x, ϵm , ϵU , δ
m ←− min{n1,n2}
m̃ ←−m + Lap

(
1

ϵm

)
c ←− − ln(2δ )

ϵm
m∗ ←− max(⌈m̃ − c⌉ , 0)
Ũ ←− MWstat(x) + Lap

(
n−m∗
ϵU

)
Output: m̃, Ũ

As before, M̃Wstat is not meaningful on its own; we want an

applicable reference distribution with which to calculate a corre-

sponding p-value. This is shown below in algorithm M̃Wp. It works

similarly to the analogous algorithms K̃Wp and
�KWabsp. The key

difference is that the reference distribution now depends on the

group size estimate m̃.
8

8
The algorithm given simulates full databases to compute the reference distribution.

This is not particularly slow, but in the full version we show that one can also sample

from a normal distribution with certain parameters to get an acceptable reference

distribution more quickly.

Algorithm M̃Wp : Complete Mann-Whitney Test

Input: x, ϵm ,ϵU ,δ , z

(m̃, Ũ ) ←− M̃Wstat(x, ϵm, ϵU,δ )
m̃ ←− ⌈max(0,m̃)⌉
for k := 1 to z do

x∗ ←− a database with n independent uniform values

from [0,1] divided into 2 groups of size m̃ and n − m̃
Uk ←− M̃Wstat(x∗, ϵm, ϵU,δ )

p ←− fraction ofUk less than Ũ

Output: Ũ ,p

Anote on design. In the case of�KWabsp we found that the highest
possible critical value came from a reference distribution with equal-

size groups. For this test that is not the case, so we cannot use equal-

size groups when generating the reference distribution without

unacceptable type 1 error. As a result, we need an estimate of group

size. If we didn’t need this estimate for the reference distribution, it

is possible that M̃Wstat would be more accurate by simply using the

global sensitivity bound onMWstat. (It would be a slightly higher

sensitivity, but no privacy budget would need to be expended on

estimatingm.) This is a good example of a point made in Section

1: simply acheiving an accurate of estimate of a test statistic is not

enough. The ultimate goal of a hypothesis test is a p-value, which

also requires an accurate reference distribution and high power in

order to minimize decision error.

Type 1 error. The reference distribution in the M̃Wp algorithm

depends on m, which is only estimated by m̃, so we need to ex-

perimentally verify that type 1 error never exceeds α . See the full
version for evidence that our estimate appears to be sufficiently

accurate and for additional discussion.

Theorem 4.2. Algorithm M̃Wp is (ϵm + ϵU ,δ )-differentially pri-
vate.

Proof. Since the computation of (m̃, Ũ ) is (ϵm+ϵU ,δ )-differentially
private (see full version for the proof of this fact) and all of the steps

following this computation do not require access to the database

and are, thus, post processing, by Theorem 2.4, it follows that the

complete algorithm is also (ϵm + ϵU ,δ )-differentially private. □

4.3 Experimental Results
Power analysis. We first assessed the power of our test on syn-

thetic data.
9
We run M̃Wp on many simulated databases and report

the percentage of the time that a significant result was obtained.

For our first effect size, we have the two groups consist of normally

distributed data with means one standard deviation apart. In all

experiments we set δ = 10
−6
.

Our first step was to determine the optimal proportion of the

total privacy budget, ϵtot , to allot to estimating m and the test

statistic M̃Wstat. We found that the optimal proportion of ϵ to allot

to estimatingm is roughly .65, experimentally confirmed at several

choices of ϵtot , effect size, total sample size n, group size ratios

n1/n, and underlying distribution. (See the full version for more

9
For application of our test to real-world data, see the full version



details.) We then fix the proportion of ϵtot allotted to ϵm as .65 and

vary ϵtot and total sample size n to measure the power of our test.

Figure 4: Power of M̃Wp at various values of ϵtot and total
sample size n. (Effect size: µ1 − µ2 = 1σ ; proportion of ϵtot to
ϵm = .65; α = .05;m:(n −m) = 1)

As shown in Figure 4, the power loss due to privacy is not unrea-

sonably large. At an ϵtot of 1, the test only requires a database that

is approximately a factor of 3 larger than that needed for the public

test to reach a power of 1. As one might expect, the database size

needed to detect a given effect has a roughly inverse relationship

with ϵtot . In the full version we perform a similar power analysis,

varying effect size rather than sample size.

Uniformity of p-values. Algorithm M̃Wp uses the privatized group

sample sizesm∗, (n −m∗) in place of the true group sizes n1, n2 in

order to simulate the reference distribution. Naturally, then, one

may wonder how conservative our critical values are as a result of

ensuring that the type 1 error rate does not exceed α . As shown in

Figure 5, the type I error rate of our test does not exceed α when

group sample sizes are equal. As total sample size n increases, the

p-value quantiles asymptotically approach that of the theoretical

distribution. In the full version, we also examine uniformity of p-

values of M̃Wp with unequal group sizes and a variation of M̃Wp

that assumes equal group sizes.

Comparison to previous work. The best existing test applicable in
the same use case is that of Swanberg et al. [28]. Their differentially

private ANOVA test can be used in the 2-group case to compare

to our Mann-Whitney test. The results of this comparison, using

the same paramater settings chosen for optimal power in their test,

can be seen in Figure 6, where our test offers a substantial power

increase.

Comparing M̃Wp and�KWabsp. Both the Mann-Whitney and the

Kruskal-Wallis can be used to compare the distributions of samples

from two groups. As shown in Figure 7, we find that in the private

setting,
�KWabsp is more statistically powerful than M̃Wp. This

is perhaps surprising, since one might expect the test developed

specifically for the two-group case to perform better. But this is

an example of how some tests privatize more easily than others.

M̃Wp requires knowledge of the group sizes, using up a fraction of

Figure 5: A quantile-quantile plot of M̃Wp varying n. (ϵtot =
1; proportion of ϵtot to ϵm = .65;m:(n −m)= 1; normally dis-
tributed sample data)

Figure 6: Power of M̃Wp and Swanberg et. al.’s test at various
n. (ϵtot = 1; Effect size: µ1 − µ2 = 1σ ; proportion of ϵtot to
ϵm = .65; α = .05;m:(n −m) = 1), normally distributed sample
data

the privacy budget, while the
�KWabsp statistic is not dependent on

group size.

We did find one exception to this finding. If the analyst knows a
priori that the two groups are of equal size (e.g., the data collection

method guaranteed an equal number in each group) then M̃Wp can

be run using an exact value of n/2 for the local sensitivity without

the need to dedicate any privacy budget to estimating m. This

increases the accuracy of M̃Wstat both by reducing the sensitivity

used to add noise and by increasing the privacy budget allocated to

U . We find that in this case M̃Wp is superior to �KWabsp. See the
full version for more details.

5 PAIRED DATA
We now consider a third situation, where there are two groups and

the observations in those groups are paired. While this scenario did

not exist in the original psychotic disease study, one can imagine

recording the methylation levels of one of the groups before and

after administering medication. Each subject then contributes a pair

of data (ui ,vi ) that are highly correlated with one another. One



Figure 7: Power of M̃Wp and �KWabsp at various n and ϵ . (Ef-
fect size:max(µn ) −min(µn ) = 1σ ; д = 2; α = .05; equal group
sizes; normally distributed sample data)

can assess the impact of the medication by considering whether

the set of n differences, {vi − ui }i , is plausibly centered at zero.

The standard nonparametric hypothesis test for this situation is the

Wilcoxon signed-rank test, proposed in 1945 by Frank Wilcoxon

[36]. The parametric alternative is a simple one-sample t-test run

on the set of differences.

This is the one setting where we are aware of prior work on

a nonparametric test. Task and Clifton [30] gave the first private

analogue of the Wilcoxon signed-rank test, referred to from here

on as the TC test, in 2016. Our test makes two key improvements to

theirs and exhibits higher power. We also correct some errors in

their work. We discuss the differences in more detail in Section 5.3.

Despite its status as one of the most commonly used hypothesis

tests, to our knowledge there is no practical, implementable private

version of a one-sample t-test in the literature. In Section 5.4 we

discuss some work that comes close, and then we give our own first

attempt at a private t-test. We again find that our nonparametric

test has significantly higher power than this parametric alternative.

5.1 The Wilcoxon signed-rank test
The function calculating the Wilcoxon test statistic is formalized in

AlgorithmW. Given a database x containing sets of pairs (ui ,vi ),
the test computes the difference di of each pair, drops any with

di = 0, and then ranks them by magnitude. (If magnitudes are equal

for several differences, all are given a rank equal to the average

rank for that set.)

Under the null hypothesis that ui and vi are drawn from the

same distribution, the distribution of the test statisticW can be

calculated exactly using combinatorial techniques. This becomes

computationally infeasible for large databases, but an approxima-

tion exists in the form of the normal distribution with mean 0 and

variance
nr (nr+1)(2nr+1)

6
, where nr is the number of rows that were

not dropped. Knowing this, one can calculate the p-value for any

particular value ofw .

Algorithm Wstat :Wilcoxon Test Statistic

Input: x
for row i of x do

di ←− |vi − ui |
si ←− Sign(vi − ui )

Order the terms from lowest to highest di
Drop any di = 0

for row i of x do
ri ←− rank of row i

w ←− ∑
i siri

Output:w

5.2 Our Differentially Private Algorithm
At a high level, our algorithm is quite straightforward and similar

to prior work: we compute a test statistic as one might in the public

case and add Laplacian noise to make it private. However, there

are several important innovations relative to Task and Clifton that

greatly increase the power of our test.

Our first innovation is to use a different variant of the Wilcoxon

test statistic. While the version introduced in Section 5.1 is the

one most commonly used, other versions have long existed in the

statistics literature. In particular, we look at a variant introduced by

Pratt in 1959 [22]. In this variant, rather than dropping rows with

di = 0, those rows are included. Whendi = 0 we set si = Sign(di ) =
0, so those rows contribute nothing to the resultant statistic, but

they do push up the rank of other rows.

AlgorithmWPstat:Wilcoxon Test Statistic - Pratt Variant

Input: x
for row i of x do

di ←− |vi − ui |
si ←− Sign(vi − ui )

Order the terms from lowest to highest di
for row i of x do

ri ←− rank of row i

w ←− ∑
i siri

Output:w

In the public setting, the Pratt variant is not very different from

the standard Wilcoxon, being slightly more or less powerful de-

pending on the exact effect one is trying to detect [5]. In the private

setting, however, the difference is substantial.

The benefit to the Pratt variant comes from how the test statistics

are interpreted. In the standard Wilcoxon, it is known that the

test statistic follows an approximately normal distribution, but

the variance of that distribution is a function of nr , the number

of non-zero di values. In the private setting, this number is not

known, and this has caused substantial difficulty in prior work. (See

Section 5.3 formore discussion.) On the other hand, the Pratt variant

produces a test statistic that is always compared to the same normal

distribution, which depends only on n. The algorithm W̃Pstat that

outputs a differentially private analogue is shown below.

Theorem 5.1. Algorithm W̃Pstat is ϵ-differentially private.



Algorithm W̃Pstat : Private Wilcoxon Test Statistic

Input: x, ϵ
w ←−WPstat(x)
w̃ ←− w + Lap

(
2n
ϵ

)
Output: w̃

See the full version for proof of Theorem 5.1.

To complete the design of our test, we compute a reference

distribution through simulation as was done in
�KWabsp and M̃Wp.

Here we use the standard normal approximation for the distribution

of thew test statistic, though one could simulate full databases as

well. We call this algorithm W̃Pp.

Algorithm W̃Pp : Complete Wilcoxon Test

Input: x, ϵ , z
w̃ ←− W̃Pstat(x, ϵ)
for k = 1 to z do

wk ←− Normal(0,n(n + 1)(2n + 1)/6) + Lap(2n/ϵ);
p ←− fraction ofwk more extreme than w̃
Output: w̃,p

Theorem 5.2. Algorithm W̃Pp is ϵ-differentially private.

Proof. The computation of w̃ was already shown to be private.

The remaining computation needed to find the p-value does not

need access to the database—it is simply post-processing. By Theo-

rem 2.4, it follows that the W̃Pp algorithm is also private. □

5.3 Experimental Results
Power analysis. We assess the power of our differentially-private

Wilcoxon signed-rank test first on synthetic data. (For tests with real

data, see the full version.) In order to measure power, we must first

fix an effect size. We chose to have the ui and vi values both gener-

ated according to normal distributions with means one standard

deviation apart. We then measure the statistical power of Algo-

rithm W̃Pp (for a given choice of n and ϵ) by repeatedly randomly

sampling a database x from that distribution and then running

W̃Pp on that database.
10

The power is the percentage of the time

W̃Pp returns a p-value less than α . See the full version for a similar

analysis of power, varying effect size rather than sample size.

Uniformity of p-values. In algorithm W̃Pp we draw our reference

distribution samples (thewk values) assuming there are no di = 0

rows. The distribution will technically differ slightly when there

are many rows with di = 0, so we need to confirm experimentally

that the difference is inconsequential or otherwise acceptable.

Figure 9 shows a Q-Q plot of W̃Pp on three sets of p-values,

all generated under H0, with ϵ = 1, n = 500. When there are

no ties in the original data (0% of di = 0), the Q-Q plot line is

indistinguishable from the identity line, indicating that the test

10
Our actual implementation differs slightly from this. To save time when running a

huge number of tests with identicaln and ϵ , we first generate the reference distribution
Wk values, which can be reused across runs.

Figure 8: Power of W̃Pp at various ϵ and n. (Effect size: µu −
µv = 1σ ; α = .05; normally distributed sample data)

is properly calibrated. Encouragingly, introducing a substantial

number of ties into the data (30% of di = 0) has little noticeable

effect. In order to induce non-uniformity in the p-values, one needs

an extremely high proportion of rows with di = 0. The curve with

90% zero values is shown as an illustration. When the proportion of

zeros is very high, the variance of the p-values will be narrower than

the reference distribution, resulting in a lower critical value. Since

the value we are using is higher, our test is overly conservative,
11

but this is acceptable as type I error is still below α .

Figure 9: A quantile-quantile plot of W̃Pp comparing the dis-
tribution of simulated p-values to the uniform distribution
(ϵ = 1, n = 500; normally distributed sample data).

Comparison to previous work. In 2016, Task and Clifton [30] in-

troduced the first differentially private version of the Wilcoxon

signed-rank test, from here on referred to as the TC test. Our work

improves upon their test in two ways. We describe the two key

differences below, and then compare the power of our test to theirs.

We also found a significant error in their work.
12

All comparisons

11
One could try to estimate the number of zeros to be less conservative, but that would

require allocating some of the privacy budget towards that estimate, which is not

worth it in most circumstances.

12
This error has been confirmed by Task and Clifton in personal correspondence.



are made to our implementation of the TC test with the relevant

error corrected.

Task and Clifton compute an analytic upper bound on the critical

value t∗. For a given n and ϵ , the private test statistic w̃ under H0 is

sampled according to a sumW +Λ, whereW is a random draw from

a normal distribution (scaled according to n) and Λ is a Laplace

random variable (scaled according to n and ϵ). In particular, say

that b is a value such that Pr[W > b] < β and д is a value such that

Pr[Λ > д] < γ . Then we can compute the following bound. (The

last line follows from the fact that the two events are independent.)

Pr[W̃ > b + д] < Pr[W > b or Λ > д]
= Pr[W > b] + Pr[Λ > д]
− Pr[W > b and Λ > д]
= β + γ − βγ

Task and Clifton always set γ = .01 and then vary the choice of

β such that they have α = β +γ − βγ for whatever α is intended as

the significance threshold.
13

The bound described above is correct but very loose, and our

simulation method gives drastically lower critical values. Table 1

contains examples of the critical values achieved by each method

for several parameter choices. More values can be found in the full

version, where we also experimentally confirm that these values

result in acceptable type 1 error.

Table 1: Critical Value Comparison for n = 100

ϵ α Public New TC

1 0.1 1.282 1.417 2.680

0.05 1.645 1.826 3.091

0.025 1.960 2.186 3.511

0.1 0.1 1.282 5.684 14.786

0.05 1.645 8.063 15.197

0.025 1.960 10.438 15.617

0.01 0.1 1.282 55.350 135.843

0.05 1.645 79.233 136.254

0.025 1.960 103.116 136.674

Critical values for n = 100 and several values of ϵ and α . To
allow easy comparison, these values are for a normalizedW
statistic, i.e.,W has been divided by the relevant constant so
that it is (before the addition of Laplacian noise) distributed
according to a standard normal. See the full version for the
equivalent table at n = 1000.

Our second key change from the TC test, mentioned earlier, is

that we handle rows with di = 0 according to the Pratt variant of

the Wilcoxon, rather than dropping them completely as is more

traditional. The reason the traditional method is so difficult in the

private setting is that the reference distribution one must compare

to depends on the number of rows that were dropped. If nr is the
number of non-zero rows (i.e., rows that weren’t dropped), one is

13
This is where Task and Clifton make an error. This formula is correct, but they used

an incorrect density function for the Laplace distribution and as a result calculated

incorrect values of д.

supposed to look up the critical value associated with nr , rather
than the original size n of the database.

Unfortunately, nr is a sensitive value and cannot be released

privately.
14

Task and Clifton show that it is acceptable (in that it

does not result in type I error greater than α ) to compare to a

critical value for a value of nr that is lower than the actual value.

This allows them to give two options for how one might deal with

the lack of knowledge about nr .

High Utility This version of the TC test simply assumes nr ≥
.3n and uses the critical value that would be correct for nr =
.3n. We stress that this algorithm is not actually differentially
private, though it could easily be captured by a sufficiently

weakened definition that limited the universe of allowable

databases. Another problem is that for most realistic data, nr
is much greater than .3n and using this loose lower bound

still results in a large loss of power.

High Privacy This version adds k dummy values to the data-

base with di = ∞ and k with di = −∞.15 Then one can be

certain of the bound nr ≥ 2k . This is a guaranteed bound so

this variant truly satisfies differential privacy. On the other

hand it is a very loose lower bound in most cases, leading to

a large loss of power.

Experimental comparison. We compare the statistical power of

our test to that of the TC test. We begin by again measuring the

power when detecting the difference between two normal distribu-

tions with means one standard deviation apart. The results can be

seen in Figure 10. If we look at the database size needed to achieve

80% power, we find that the 32 data points we need, while more

than the public test (14), are many fewer than the TC High Utility

variant (80) or the TC High Privacy variant (122). The full version

includes a figure for ϵ = .1 as well. What we see is that, while all

private tests require more data, our test (requiring n ≈ 236) still

requires about 40% as much data as the TC High Utility variant

(588). The TC High Privacy variant, however, scales much less well

to low ϵ and requires roughly 2974 data points.

The results in Figure 10 use a continuous distribution for the

real data, so there are no data points with di = 0. Because one of

the crucial differences between our algorithms is the method for

handling these zero values, we also consider the effect when there

are a large number of zeros in the full version. Overall, we see that

both in situations with no zero values and situations with many,

our test achieves the rigorous privacy guarantees of the TC High

Privacy test while achieving greater utility than the TC High Utility

test.

Relative contribution of improvements. Given that we make two

meaningful changes to the TC test, one might naturally wonder

whether both are truly useful or whether the vast majority of the

improvement comes from one of the two changes. To test this, we

compare to an updated variant of the TC test where we calculate

critical values exactly through simulation, as we do in our algorithm,

but otherwise run the TC test unchanged (referred to as "High

14
A private estimate could be released, but one would have to devote a significant

portion of the privacy budget for the hypothesis test to this estimate, greatly decreasing

the accuracy/power of W̃stat .

15
Task and Clifton do not discuss how to choose k , and in our experimental compar-

isons we set k = 15, the same value they use.



Figure 10: Power of the TC test, W̃Pp, and the public test at
various n. (Effect size: µu − µv = 1σ , ϵ = 1; α = .05; normally
distributed sample data)

Privacy +" and "High Utility +"). The result is presented in Figure 11,

where we find the resulting algorithm to rest comfortably between

the original TC test and our proposed test. This means that both

the change to the critical value calculation and the switch to the

Pratt method of handling di = 0 rows are important contributions

to achieving the power of our test.

Figure 11: Power comparison of the TC algorithms, the TC
algorithms with our critical values (denoted with a +), our
new algorithm, and the public algorithm at various sample
sizes n. (Effect size: µu − µv = 1σ ; ϵ = 1; α = .05)

5.4 Parametric Alternative: A New T-test
The parametric analog to the Wilcoxon test is to run a one sample

t-test on the set of differences {vi − ui }i to see if their mean is sig-

nificantly different from zero (also called a paired t-test). There has

been surprisingly little work on the creation of a private version of a

one sample t-test. Karwa and Vadhan [16] study private confidence

intervals, which are in a sense equivalent to a t-test. However, their

analysis is asymptotic and they say that the algorithm does not give

practical results with database size in the thousands. Sheffet [24]

provides a method for calculating private coefficient estimates for

linear regression and also transforms the t-distribution to provide

an appropriate reference distribution for inference. In the public

setting, one can convert a test on regression coefficients to a one

sample t-test but choosing a constant independent variable and

making the sample data the dependent variable. However, Sheffet’s

method only works when all variables are significantly spread out,

so this method fails.

Here we propose what we believe is the first private version

of a one sample t-test, with two arguable exceptions. The first is

simultaneous work by Gaboardi et al. [13] in the local privacy

model. We compare our results to theirs in more detail in Section

5.5. The other work is that of Solea [27], but according to Solea’s

own experiments that test often gives type 1 error rates well above

the chosen α for many parameter choices, so we don’t consider it a

usable test.

The database for a one sample t-test has observations x1, . . . ,xn
assumed to come from a normal distribution with mean µ and

standard deviation σ . (For paired data, each observation is the

differences between the observation in the two groups). The test

statistic is given by Tstat(x) = —x
s/
√
n
, where x̄ is the mean of the data

and s is the standard deviation of the data.

A private t-test. As before, we achieve privacy through the addi-

tion of Laplacian noise, but the sensitivity of Tstat is unbounded, so
we instead release separate private estimates of the numerator and

denominator. For this analysis, similar to the private ANOVA tests

[28], we assume that the data is scaled such that all observations are

on the interval [−1, 1]. We first find the sensitivities of x̄ and s2
and

then use post-processing, composition, and the Laplace Mechanism

to combine these to obtain the private t-statistic. In the case where

s2
is estimated to be negative, the test statistic cannot be computed

as normal, and we return 0, indicating an unwillingness to reject

the null hypothesis.

Theorem 5.3. The sensitivity of x̄ is 2

n .

Theorem 5.4. The sensitivity of s2 is 5

n−1
.

See the full version for proof of Theorem 5.3 and 5.4.

Algorithm T̃stat: Private t-Test Statistic
Input: x, ϵx̄ , ϵs2˜̄x = x̄ + Lap( 1/nϵx̄ )
s̃2 = s2 + Lap( 5/(n−1)

ϵs2

)

if s̃2 < 0 then
T̃ = 0

else

T̃ =
̂̄x/n√
ŝ2/
√
n

Output: T̃

Theorem 5.5. Algorithm T̃stat is (ϵx̄ + ϵs2 )-differentially private.

Proof. By the Laplace mechanism, the computation of ˜̄x is ϵx̄ -

differentially private and the computation of s̃2
is ϵs2 -differentially

private. Since the computation of T̃ does not require access to the

database, it is only post-processing and its release is (ϵx̄ + ϵs2 )-
differentially private. □



To carry out the full paired t-test, we estimate the reference

distribution through simulation and release a private p-value.

Algorithm T̃p : Complete t-Test

Input: x, ϵx̄ , ϵs2 , z

t̃ := T̃stat(x, ϵ—x, ϵs2 )
for k = 1 to z do

x∗ ←− a database with n independent draws from

N (µ = 0,σ ≈ 0.3), each truncated to [−1, 1]
tk ←− T̃stat(x∗)

p ←− fraction of tk more extreme than t̃

Output: t̃ ,p

Theorem 5.6. Algorithm T̃p is ϵx̄ + ϵs2 -differentially private.

Proof. The computation of t̃ was already shown to be private.

The remaining computation needed to find the p-value does not

need access to the database—it is simply post-processing. By Theo-

rem 2.4, it follows that the T̃p algorithm is also private. □

5.5 Experimental t-Test evaluation
We first must set a parameter in our T̃p algorithm. In particular, for

a given total ϵ , we must decide how to allocate the budget between

ϵx̄ and ϵs2 . We choose this allocation experimentally, deciding to

allocate 50% of the budget towards each value. This is nontrivial, and

the full version contains experimental results and further discussion.

Luckily, the exact choice of this allocation does not seem to have a

large effect on the power of the test.

We then evaluate the power and validity of the final T̃p test.

Comparison to other work. Simultaneous to our work, Gaboardi

et al. [13] developed a private one sample t-test under the more

restrictive local differential privacy model. As one might expect,

our test in the more standard setting is much higher power. They

develop both a t-test and a z-test, which is equivalent to the t-test

except that the variance of the data is assumed to be already known.

Only the z-test is given experimental evaluation, but with an effect

size three times the size we use in our experiments, their test (at

ϵ = 1) requires roughly 4000 data points to reach 80% power, while

our test requires roughly 100. Their t-test would presumably require

even more data.

Comparison to nonparametric test. Since we have already devel-

oped a test for the paired-data use case, we assessed the power of

T̃p in comparison to W̃Pp by simulating synthetic data as described

in Section 5.3. Just as in the many groups and two groups scenarios,

the nonparametric test substantially outperforms its parametric

counterpart, as shown in Figure 12. In this case, W̃Pp needs 8% of

the data required by T̃p to reach the same power.

Uniformity of p-values. Aswith all of our tests, we experimentally

ensure that type I error rate is bounded by α in Figure 13. This figure

confirms the fact that our type I error rate is bounded above by α .
For small sample sizes, the line on the quantile-quantile plot goes

above the diagonal. This is the acceptable direction, the sign of a

conservative test. In this case it occurs because some test statistics

Figure 12: Power of T̃p and W̃Pp at various ϵ and n. (Effect
size: µu − µv = 1σ ; α = .05; normally distributed sample data)

in the reference distribution are set to zero (as a result of noise

added for privacy overwhelming s̃2
). If, for example, 10% of the

reference distribution samples are at zero, then p values below 10%

are impossible. As shown by the n = 1000 line, at sufficiently large

sample sizes this effect essentially vanishes.

Figure 13: A quantile-quantile plot of T̃p at various n. (ϵ = 1;
equal ϵ allotment to each statistic)

6 CONCLUSION
We have introduced several new tests, of which three (

�KWabsp,
M̃Wp, and W̃Pp) are improvements on the state of the art. These

allow researchers to address inferential questions using nonpara-

metric methods while preserving the privacy of the data. More

broadly, we found that the basic idea of using ranks in the private

setting is potent. Not only do they remove the need to assume

a bound on the data, they also directly increase statistical power.

When working with many groups, two group, or with paired data,

rank-based tests are more powerful than their parametric analogues

and can be made yet more powerful through sensible adaptations.



We hope others will push this technique forward — we have no

reason to believe that our tests are optimal.

ACKNOWLEDGMENTS
We would like to thank Christine Task and Chris Clifton for gen-

erous and enlightening discussions regarding their previous work.

This material is based upon work supported by the National Science

Foundation under Grant No. SaTC-1817245 and the Richter Funds.

REFERENCES
[1] Jordan Awan and Aleksandra Slavković. 2018. Differentially private uniformly

most powerful tests for binomial data. In Advances in Neural Information Process-
ing Systems. 4208–4218.

[2] Andrés F Barrientos, Jerome P Reiter, Ashwin Machanavajjhala, and Yan Chen.

2019. Differentially private significance tests for regression coefficients. Journal
of Computational and Graphical Statistics (2019), 1–24.

[3] Zachary Campbell, Andrew Bray, Anna Ritz, and Adam Groce. 2018. Differen-

tially Private ANOVA Testing. In Data Intelligence and Security (ICDIS), 2018 1st
International Conference on. IEEE, 281–285.

[4] Anthony Carrard, Annick Salzmann, Alain Malafosse, and Felicien Karege. 2011.

Increased DNA methylation status of the serotonin receptor 5HTR1A gene pro-

moter in schizophrenia and bipolar disorder. Journal of Affective Disorders 132(3)
(2011), 450–453.

[5] William Jay Conover. 1973. On Methods of Handling Ties in the Wilcoxon

Signed-Rank Test. J. Amer. Statist. Assoc. 68, 344 (1973), 985–988.
[6] Bolin Ding, Harsha Nori, Paul Li, and Joshua Allen. 2018. Comparing population

means under local differential privacy: with significance and power. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[7] Vito D’Orazio, James Honaker, and Gary King. 2015. Differential Privacy for

Social Science Inference. (2015).

[8] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise

Generation, In Advances in Cryptology (EUROCRYPT 2006). 4004, 486–

503. https://www.microsoft.com/en-us/research/publication/our-data-ourselves-

privacy-via-distributed-noise-generation/

[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of Cryptography
Conference. Springer, 265–284.

[10] Morten Fagerland, Leiv Sandvik, and PetterMowinckel. 2011. ParametricMethods

Outperformed Non-Parametric Methods in Comparisons of Discrete Numerical

Variables. BMC Medical Research Methodology 11 (04 2011), 44.

[11] Stephen E Fienberg, Aleksandra Slavkovic, and Caroline Uhler. 2011. Privacy

preserving GWAS data sharing. In Data Mining Workshops (ICDMW), 2011 IEEE
11th International Conference on. IEEE, 628–635.

[12] Marco Gaboardi, Hyun-Woo Lim, Ryan M Rogers, and Salil P Vadhan. 2016.

Differentially private chi-squared hypothesis testing: Goodness of fit and inde-

pendence testing. In ICML’16 Proceedings of the 33rd International Conference on
International Conference on Machine Learning-Volume 48. JMLR.

[13] Marco Gaboardi, Ryan Rogers, and Or Sheffet. 2018. Locally private mean esti-

mation: Z-test and tight confidence intervals. arXiv preprint arXiv:1810.08054
(2018).

[14] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe,

Jill Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nelson, and DavidW

Craig. 2008. Resolving individuals contributing trace amounts of DNA to highly

complex mixtures using high-density SNP genotyping microarrays. PLoS genetics
4, 8 (2008), e1000167.

[15] Aaron Johnson and Vitaly Shmatikov. 2013. Privacy-preserving data exploration

in genome-wide association studies. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 1079–

1087.

[16] Vishesh Karwa and Salil Vadhan. 2017. Finite sample differentially private confi-

dence intervals. arXiv preprint arXiv:1711.03908 (2017).
[17] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion

Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (1952), 583–621.
[18] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of

two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[19] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-anonymization of

large sparse datasets. In Security and Privacy, 2008. SP 2008. IEEE Symposium on.
IEEE, 111–125.

[20] Thông T Nguyên and Siu Cheung Hui. 2017. Differentially Private Regression for

Discrete-Time Survival Analysis. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management. ACM, 1199–1208.

[21] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth sensitivity

and sampling in private data analysis. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing. ACM, 75–84.

[22] John W Pratt. 1959. Remarks on Zeros and Ties in the Wilcoxon Signed Rank

Procedures. J. Amer. Statist. Assoc. 54, 287 (1959), 655–667.
[23] Ryan Rogers and Daniel Kifer. 2017. A new class of private Chi-square hypothesis

tests. In Artificial Intelligence and Statistics. 991–1000.
[24] Or Sheffet. 2017. Differentially private ordinary least squares. In Proceedings

of the 34th International Conference on Machine Learning-Volume 70. JMLR. org,

3105–3114.

[25] Adam Smith. 2008. Efficient, differentially private point estimators. arXiv preprint
arXiv:0809.4794 (2008).

[26] Adam Smith. 2011. Privacy-preserving statistical estimation with optimal conver-

gence rates. In Proceedings of the forty-third annual ACM symposium on Theory
of computing. ACM, 813–822.

[27] Eftychia Solea. 2014. Differentially Private Hypothesis Testing For Normal

Random Variables. (2014).

[28] Marika Swanberg, Ira Globus-Harris, Iris Griffith, Anna Ritz, Adam Groce, and

Andrew Bray. 2019. Improved Differentially Private Analysis of Variance. Pro-
ceedings on Privacy Enhancing Technologies (2019).

[29] Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05
(2002), 557–570.

[30] Christine Task and Chris Clifton. 2016. Differentially Private Significance Testing

on Paired-Sample Data. In Proceedings of the 2016 SIAM International Conference
on Data Mining. SIAM, 153–161.

[31] Caroline Uhlerop, Aleksandra Slavković, and Stephen E Fienberg. 2013. Privacy-

preserving data sharing for genome-wide association studies. The Journal of
privacy and confidentiality 5, 1 (2013), 137.

[32] Duy Vu and Aleksandra Slavkovic. 2009. Differential privacy for clinical trial

data: Preliminary evaluations. In Data Mining Workshops, 2009. ICDMW’09. IEEE
International Conference on. IEEE, 138–143.

[33] Yue Wang, Jaewoo Lee, and Daniel Kifer. 2015. Revisiting Differentially Private

Hypothesis Tests for Categorical Data. arXiv preprint arXiv:1511.03376 (2015).
[34] Larry Wasserman and Shuheng Zhou. 2010. A statistical framework for differen-

tial privacy. J. Amer. Statist. Assoc. 105, 489 (2010), 375–389.
[35] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics

bulletin 1, 6 (1945), 80–83.

[36] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83.

https://www.microsoft.com/en-us/research/publication/our-data-ourselves-privacy-via-distributed-noise-generation/
https://www.microsoft.com/en-us/research/publication/our-data-ourselves-privacy-via-distributed-noise-generation/

	Abstract
	1 Introduction
	1.1 Our contributions

	2 Background
	2.1 Hypothesis Testing
	2.2 Differential Privacy
	2.3 Differentially Private Hypothesis Testing
	2.4 Related Work

	3 Many groups
	3.1 The Kruskal-Wallis test
	3.2 Privatized Kruskal-Wallis
	3.3 A New Test: Absolute Value Kruskal-Wallis
	3.4 Experimental Results

	4 Two Groups
	4.1 The Mann-Whitney test
	4.2 A Differentially Private Algorithm
	4.3 Experimental Results

	5 Paired Data
	5.1 The Wilcoxon signed-rank test
	5.2 Our Differentially Private Algorithm
	5.3 Experimental Results
	5.4 Parametric Alternative: A New T-test
	5.5 Experimental t-Test evaluation

	6 Conclusion
	Acknowledgments
	References

