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Abstract

Adaptive regularization with cubics (ARC) is an algorithm for unconstrained, non-
convex optimization. Akin to the trust-region method, its iterations can be thought of as
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Hessian, ARC has optimal iteration complexity, in the sense that it produces an iterate
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guarantee a Hessian with smallest eigenvalue larger than —./¢. In this paper, we study
a generalization of ARC to optimization on Riemannian manifolds. In particular,
we generalize the iteration complexity results to this richer framework. Our central
contribution lies in the identification of appropriate manifold-specific assumptions
that allow us to secure these complexity guarantees both when using the exponential
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1 Introduction

Adaptive regularization with cubics (ARC) is an iterative algorithm used to solve
unconstrained optimization problems of the form

min X),
min Jx)

where f: R" — R is twice continuously differentiable [36]. Given any initial iter-
ate xo € R”, assuming f is lower-bounded and has a Lipschitz continuous Hessian,
ARC produces an iterate x; with small gradient, namely, ||V f(xx)|| < &, in at most
O (1/&') iterations [9,22,45]. This improves upon the worst-case iteration complexity
of steepest descent and classical trust-region methods. In fact, this iteration complex-
ity is optimal under those assumptions [21], contributing to renewed interest in this
method.

In this paper, we study a generalization of ARC to optimization on manifolds, that
is,

xnél}\r}l fx), P

where M is a given Riemannian manifold and f: M — R s a (sufficiently smooth)
cost function. The practical interest in optimization on manifolds stems from its
ubiquity: it comes up naturally in numerical linear algebra (spectral decompositions,
low-rank Lyapunov equations), signal and image processing (shape analysis, diffu-
sion tensor imaging, community detection on graphs, rotational video stabilization),
statistics and machine learning (matrix/tensor completion, metric learning, Gaussian
mixtures, activity recognition, independent component analysis), robotics and com-
puter vision (simultaneous localization and mapping, structure from motion, pose
estimation) and various other fields. The theoretical interest comes from the fact that
Riemannian geometry is arguably the “right” setting for unconstrained optimization—
indeed, itis the minimal mathematical structure required to have comfortable notions of
gradients and Hessians, which are the basic building blocks of smooth, unconstrained
optimization algorithms. See for example [3,12] for book-length introductions to this
topic. See related work below for further references.

Building upon the existing literature for the Euclidean case, we generalize the
worst-case iteration complexity analysis of ARC to manifolds, obtaining essentially
the same guarantees but with a wider application range: see numerical experiments in
Sect. 9 for some examples.

In particular, with the appropriate assumptions discussed in Sects. 3 and 4, we
find that e-critical points of f on M can be computed in O(1/¢'?) iterations. We
also show an iteration complexity bound for the computation of approximate second-
order critical points in Sect. 5. Key differences with the Euclidean setting lie in the
particular assumptions we make. We further study these assumptions in Sects. 6 and 7.
A subproblem solver—necessary to run ARC—is detailed in Sect. 8. Our algorithm
is implemented in the Manopt framework [15] and distributed as part of that toolbox.
In Sect. 9, we close with numerical comparisons to existing solvers, in particular the
related Riemannian trust-region method (RTR) [2].
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Adaptive regularization with cubics on manifolds

Main results

An important ingredient of ARC on manifolds (Algorithm 1) is the retraction R, which
allows one to move around the manifold by following tangent vectors. This notion is
defined in Sect. 2. Our results depend on the choice of retraction.

For a twice continuously differentiable cost function f: M — R, the first- and
second-order necessary optimality conditions at x read [58]:

l[grad f (x)]lx =0, Amin(Hess f (x)) = 0,

where grad f and Hess f are the Riemannian gradient and Hessian of f—see Sect. 3
for definitions; || - || is the Riemannian norm at x and Apj, extracts the smallest
eigenvalue of a symmetric operator.

Our first main result applies to complete Riemannian manifolds, for which we can
use the so-called exponential map as retraction R. The statement below summarizes
more explicit results of Sects. 3 and 5, stating iterates of ARC eventually satisfy the
necessary optimality conditions up to some tolerance, with a bound on the number of
iterations this may require.

Theorem 1 Consider a cost function f on a complete Riemannian manifold M. If

(a) f is lower bounded (A1), and
(b) the Riemannian Hessian of f is Lipschitz continuous (A2, A3),

then, for any xo € M and e > 0, Algorithm 1 with the exponential retraction produces
an iterate x, € M such that f(x;) < f(xo), llgrad f (xi)|lx, < € and (if condition (3)
is enforced) Amin(Hess f (x¢)) = —/€, withk = O(1/&').

The bound is dimension- and curvature-free.

Our second main result is an extension of the above which allows us to use other
retractions, the main motivation being that the exponential map may be unavailable
or expensive to compute. We state it as a summary of results in Sects. 4 and 5.

Theorem 2 Consider a cost function f on a Riemannian manifold M equipped with
a retraction R. If

(a) f is lower bounded (A1),

(b) the pullbacks f o R, satisfy a type of second-order Lipschitz condition (A2, A4),
and

(c) the differential of the retraction is well behaved (AS),

then, for any xo € M and sufficiently small ¢ > 0, Algorithm 1 with retraction R
produces an iterate x; € M such that f(xi) < f(xo), llgradf(xi)llx, < € and

(if condition (3) is enforced and R is second order) Amin(Hess f (xr)) = —\/&, with
k= 0/

We further provide sufficient conditions for the assumptions on the pullbacks and
the retraction to be satisfied, in Sects. 6 and 7 respectively. For example, A5 is satisfied
if the sublevel set of xq is compact.
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Related work

Numerous algorithms for unconstrained optimization have been generalized to
Riemannian manifolds [3,30,32,43,51], among them gradient descent, nonlinear con-
jugate gradients, stochastic gradients [11,60], BFGS [48], Newton’s method [4] and
trust-regions [2]. See these references and also our numerical experiments in Sect. 9
for a discussion of several applications.

ARC in particular was extended to manifolds in the PhD thesis of Qi [47]. There,
under a different set of regularity assumptions, asymptotic convergence analyses are
proposed, in the same spirit as the analyses presented in the aforementioned references
for other methods. Qi also presents local convergence analyses, showing superlinear
local convergence under some assumptions.

In contrast, we here favor a global convergence analysis with explicit bounds on
iteration complexity to reach approximate criticality. Such bounds are standard in
optimization on Euclidean spaces. Around the same time, they have been generalized
to Riemannian gradient descent and other algorithms by Zhang and Sra [59] (focusing
on geodesic convexity), by Bento et al. [6] (looking also at proximal point methods),
and by Boumal et al. [16] (also analyzing RTR). In the first two works, the regularity
assumptions on the cost function are close in spirit to those we lay out in Sect. 3,
whereas in the third work the assumptions are closer to our Sect. 4.

Closest to our work, Zhang and Zhang [61] recently proposed a convergence anal-
ysis of a cubically regularized method on manifolds, also establishing an O(1/&!*)
iteration complexity. Their analysis (independent from ours: early versions of our
results appeared on public repositories around the same time, theirs two weeks before
ours) focuses on compact submanifolds of a Euclidean space and uses a fixed regular-
ization parameter (which must be set properly by the user). Subproblems are assumed
to be solved to global optimality, though it appears this could be relaxed within their
framework. We improve on these points as follows: our analysis is intrinsic (no embed-
ding space is ever referenced), we do not need M to be compact, our regularization
parameter ¢ is dynamically adapted (which is both easier for the user and more
efficient), and the subproblem solver only needs to meet weak requirements to reach
approximate criticality. These improvements lead to implementable, competitive algo-
rithms. Zhang and Zhang [61] also study superlinear local convergence rates, in line
with Qi [47] but with different assumptions.

The work by Zhang and Zhang [61] is also related to adaptive quadratic regulariza-
tion on embedded submanifolds of Euclidean space recently studied by Hu et al. [38],
where the quadratic model is written in terms of the Euclidean gradient and Hessian.

More recently, two independent papers generalize work by Jin et al. [39] to provide
iteration complexity bounds for a Riemannian version of perturbed gradient descent,
allowing to reach approximate second-order criticality without looking at the Hessian,
and with logarithmic dependence in the dimension of the manifold. Sun et al. [52] pro-
vide an analysis based on regularity assumptions akin to the ones we lay out in Sect. 3,
while Criscitiello and Boumal [27] base their analysis on regularity assumptions closer
to the ones we lay out in Sect. 4.
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Adaptive regularization with cubics on manifolds

Our complexity analysis builds on prior work for the Euclidean case by Cartis et
al. [22] and Birgin et al. [9]. Complexity lower bounds given by Cartis et al. [26] and
Carmon et al. [21] show that the bounds in [9,22,45] are optimal in e-dependency
for the appropriate class of functions. A variant of ARC that is closely related to
trust-region methods was presented in [29].

Recently, various works have focused on efficiently solving the ARC subprob-
lem (that is, minimizing my as defined in (1)) in the Euclidean setting. Agarwal et
al. [5] propose an efficient method to solve the subproblem leading to fast algorithms
for converging to second-order local minima in the Euclidean setting. Carmon and
Duchi [19] and Tripuraneni et al. [55] propose gradient descent-based methods to
solve the subproblem. Several recent papers consider the effect of subsampling on the
subproblem [41,55,57,62,63].

In the Riemannian case, the subproblem is posed on a tangent space, which is a
linear subspace. Hence, all of the above methods are applicable in the Riemannian
setting as well. In particular, we use the Krylov subspace method originally proposed
in [22]. Recently, Carmon and Duchi [20] and Gould and Simoncini [33] provided a
bound on the amount of work this method may require to provide sufficient progress
(see also Remark 1).

On a technical note, in Definition 4 we formulate second-order assumptions on the
retraction to disentangle the requirements on f from those on the retraction. These
are related to (but differ from) the assumptions and discussions in [48], specifically
Lemma 6, Propositions 5 and 7, and Remarks 2 and 3 in that reference.

2 ARC on manifolds

ARC on manifolds is listed as Algorithm 1. It is a direct adaptation from [9,22]. Like
many other optimization algorithms, its generalization to manifolds relies on a chosen
retraction [3,50]. For some x € M, let T, M denote the tangent space at x: this is
a linear space. Intuitively, a retraction R on a manifold provides a means to move
away from x along a tangent direction s € T, M while remaining on the manifold,
producing R, (s) € M. For a formal definition, we use the tangent bundle,

TM={(x,s):x € Mands € T, M},

which is itself a smooth manifold.

Definition 1 (Retraction [3, Def. 4.1.1]) A retraction on a manifold M is a smooth
mapping R from the tangent bundle TM to M with the following properties. Let
R, : Ty M — M denote the restriction of R to T, M through R, (s) = R(x, s). Then,

(i) R,(0) = x, where 0 is the zero vector in T, M; and
(ii) The differential of Ry at 0, DR, (0), is the identity map on T, M.

In other words: retraction curves c(t) = R, (ts) are smooth and pass through
¢(0) = x with velocity ¢’(0) = DR, (0)[s] = s. For the special case where M is a
linear space, the canonical retraction is Ry (s) = x 4+ s. For the unit sphere, a typical

retraction is Ry (s) = Hiii\l'
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Algorithm 1 Riemannian adaptive regularization with cubics (ARC)

1: Parameters: 6 > 0, ¢pin > 0,0 < <m < 1L,0<y<l<ym<py;

2: Input: xg € M, 50 > Smin

3:fork=0,1,2...do

4:  Consider the pullback fk = f oRy, : Ty, M — R. Define the model m on Ty, M:

mi(s) = fi(0) + (s, V fi (0)) + %<s, V2 O)s) + s, ¢y
5: Compute a step s € Ty, M satisfying first-order progress conditions (see Sect. 8):
mi(sg) < mi(0), and IV (sl < Ollsi I (2
Optionally, if second-order criticality is targeted, s; must also satisfy this condition:
Jmin (Vg (1)) = —61sg |l (©)
where Anin extracts the smallest eigenvalue of a symmetric operator.

6:  If sz = 0, terminate (see Lemma 1).
7:  Compute the regularized ratio of actual improvement over model improvement:

S o) = f Ry (s1))

P = ~ 4
my (0) — my(s) + 5 s )3
8. If pr > ny, accept the step: xg41 = Ry (sg). Otherwise, reject it: x4 = xg.
9:  Update the regularization parameter:
[max(Smin, V1K) skl if px = m2 (very successful),
Sk+1 € 4 [k v26k] if px € [n1.m2)  (successful), 5)
[v25ks v35k] if pp < (unsuccessful).

10: end for

Importantly, the retraction R chosen to optimize over a particular manifold M is
part of the algorithm specification. For a given cost function f and a specified retraction
R, atiterate x;, we define the pullback of the cost function to the tangent space T, M:

fi = foRy: Ty M — R. (6)

This operation lifts f to a linear space. We then define a model my: T, M — R,
obtained as a truncated second-order Taylor expansion of the pullback with cubic
regularization: see (1). We use the notation (-, -), to denote the Riemannian metric
on T, M, and we usually simplify this notation to (-, -) when the base point is clear
from context. Likewise, |ls|lx = +/(s,s), is the norm of s € Ty M induced by the
Riemannian metric, and we usually omit the subscript, writing ||s||. Furthermore, for
real functions on linear spaces (such as fk and my), we let V and V2 denote the (usual)
gradient and Hessian operators.

At iteration k, a subproblem solver is used to approximately minimize the model
my, producing a trial step si: specific requirements are listed as (2) and (3); for the
first-order condition, we follow the lead of Birgin et al. [9]. Section 8 discusses a
practical algorithm.
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The quality of the trial step s; is evaluated by computing pi (4): the regularized
ratio of actual to anticipated cost improvement, also following Birgin et al. [9]. Note
that the denominator of py is equal to the difference between fk(O) and the second-
order Taylor expansion of fk around O evaluated at s;. If px > 71, we accept the
trial step and set x;11 = Ry, (sx): such steps are called successful. Among them, we
further identify very successful steps, for which p; > n37; for those, not only is the
step accepted, but the regularization parameter ¢ is (usually) decreased. Otherwise,
we reject the step and set x;+1 = xi: these steps are unsuccessful, and we necessarily
increase ck.

We expect Algorithm 1 to produce an infinite sequence of iterates. In practice
of course, one would terminate the algorithm as soon as approximate criticality is
achieved within some prescribed tolerance. This paper bounds the number of iterations
this may require. In the unlikely event that the subproblem solver produces the trivial
step s = 0, the algorithm cannot proceed. Fortunately, this only happens if we reached
exact criticality of appropriate order. Proofs are in Appendix A.

Lemma 1 Ifsecond-orderprogress (3) is not enforced, then the first-order condition (2)
allows the subproblem solver to return sy = 0 if and only if grad f (xx) = 0. If both (2)
and (3) are enforced, the subproblem solver is allowed to return sy = 0 if and only if
grad f (xx) = 0 and Hess f (xi) is positive semidefinite.

We now introduce two basic assumptions about the cost function f, affording us
two supporting lemmas. The first common assumption is that the cost function f is
lower bounded.

A1 There exists a finite fiow such that f(x) > fiow for all x € M.

The second assumption is that f is sufficiently differentiable so that the models
my, are well defined, and that second-order Taylor expansions of fk in the tangent
space at xi are sufficiently accurate. In the Euclidean case, the latter follows from a
Lipschitz condition on the Hessian of f. In the next two sections, we discuss how this
generalizes to manifolds.

A2 The cost function f is twice continuously differentiable.
Furthermore, there exists a constant L such that, at each iteration k, for the trial
step sy selected by the subproblem solver, the pullback fi = f o Ry, satisfies

~ ~ ~ 1 ~ L
Fls) — [fk<0> + {6, Vi (0) + sk, szkm)[sk])} < g||sk||3. (7)

The two supporting lemmas below follow the standard Euclidean analysis. The first
lemma establishes that the regularization parameter ¢; does not grow unbounded.

Lemma 2 (Birginetal.[9, Lem. 2.2]) Under A2, the regularization parameter remains
bounded: for all k, it holds that ¢ < Gmax, With

— max L 8)
Smax = S0, 20— m) .
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Condi_tioned on the conclusions of this lemma, the next lemma states that among
the first k iterations of ARC, a certain number are sure to be successful.

Lemma 3 (Cartisetal. [22, Thm.2.1]) If cx < ¢max forall k_(as provided by Lemma 2),
then the number K of successful iterations among 0, . .., k — 1 satisfies

- 1 1 )
k< <1+ | Og(71)|>K+ 1Og<§max).
log(y2) log(y2) S0
In other words, in order to bound the fotal number of iterations ARC may require
to attain a certain goal, it is sufficient to bound the number of successful iterations that

goal may require. The following proposition (extracted from the main proof in [9])
further states that this can be done by showing successful steps are not too short.

Proposition 1 Let{(xg, so), (x1, S1), . . .} be the set of iterates and trial steps generated
by Algorithm 1. If A1 holds, we have

3(f (x0) — fiow)
D sl = =
keS 71 Smin
where S is the set of successful iterations.

Proof By definition, if iteration & is successful, then p; > n; (4). Combining with the
first part of the first-order progress condition (2) yields

FO0) = £ o) = m (me 0 = mi(s) + S Isel?) = T2 g

111 Smin
3
On the other hand, for unsuccessful iterations, xx4+1 = x; and the cost does not change.

Using Al, a telescoping sum yields:

FO0) = fiow = ;}ﬂxk) = fGoe) = Y FOw) = o) = T2 Y s,

keS keS

as announced. |

3 First-order analysis with the exponential map

In this section, we provide a first-order analysis of Algorithm 1 for the case where M is
a complete manifold and we use the exponential retraction R = Exp—we define these
terms momentarily. This notably encompasses the Euclidean case where M = R”,
with Exp, (s) = x + s, as well as all compact or Hadamard manifolds. As such, the
results in this section offer a strict generalization of the Euclidean analysis proposed
in [9] under the assumption of Lipschitz continuous Hessian. An in-depth reference
for the Riemannian geometry tools we use is the monograph by Lee [42], while Absil
et al. [3] offer an optimization-focused treatment.
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On a complete Riemannian manifold M, for any point x and tangent vector v €
T, M, there exists a unique smooth curve y,, : R — M suchthat y,(0) = x,y,(0) = v
and, for r < ¢’ close enough, y, [,/ is the shortest path connecting y, (1) to y,(t').
This curve is called a geodesic. The exponential map is built from these geodesics as
the map

Exp: TM — M: (x,v) = Exp,(v) = yp(1).

This is a smooth map. Because Exp,(tv) = y; (1) = pu(t), we also find that
Exp, (0) = x and DExp, (0)[v] = v, so that the exponential map is indeed a retraction
(Definition 1). If the manifold is not complete, then Exp is only defined on an open
subset of TM: when we need M to be complete, we say so explicitly.

The Riemannian gradient of f: M — R, denoted by grad f, is the vector field on
M such that D f (x)[s] = (grad f (x), s), where D f (x)[s] is the directional derivative
of f at x along the tangent direction s. One can show that

grad f (x) = V(f 0 Exp,)(0) = V f;(0), 9)

so that the Riemannian gradient of f at x is nothing but the Euclidean gradient of the
pullback fx = f o Exp, at the origin of the tangent space T, M (see also Lemma 5
for a similar statement with retractions).

The Riemannian Hessian of f is the covariant derivative of the gradient vector field,
with respect to the Riemannian connection. Denoted by Hess f, it defines a tensor field
as follows: Hess f (x) is alinear operator from T, M into itself, self-adjoint with respect
to the Riemannian metric on that tangent space. Analogously to (9), one can show that

Hess f (x) = V2 £, (0), (10)
which expresses the Riemannian Hessian of f at x as the Euclidean Hessian of the

pullback fx at the origin of T, M. (Here too, see Lemma 5 below.)
These two statements show that the model m; (1) can be written equivalently as

1
mi(s) = f(xx) + (grad f (xg), s) + 3 (Hess f (x)[s], s) + %IISII3 (1)

and that A2 requires

L 3
— |5
¢ skl

(12)

1
J(Exp,, (sx)) — [f(xk) + (sx, grad f (xx)) + E(Sk, HeSSf(Xk)[Sk])] <

for each (x, sx) produced by Algorithm 1.

In particular, if M is a Euclidean space with the exponential map Exp,. (s) = x+s, it
is well known that we can secure (12) if we assume that the Hessian of f is L-Lipschitz
continuous. This can be written as
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”sz(x) - sz(y)”()p < Lllx — ylI,

where the norm on the left-hand side is the operator norm. Generalizing this to the
Riemannian setting, we face the issue that Hess f'(x) and Hess f () are linear operators
defined on distinct tangent spaces (if x 7~ y): in order to compare them, we need one
more tool to compare tangent vectors in distinct tangent spaces.

Given a smooth curve c: [0, 1] — M connecting ¢(0) = x to ¢(1) = y, consider a
tangent vector v € T, M and a smooth vector field Z: [0, 1] — TM along c—that is,
Z(t) € T¢yM—such that Z(0) = v. If the covariant derivative of Z with respect to
the Riemannian connection vanishes identically, then we say that Z is a parallel vector
field along c. (For example, the velocity vector field ¢’ of a geodesic y is parallel.)
This vector field exists and is unique. We call Z (1) the parallel transport of v from x
to y along c. Parallel transports are linear isometries with respect to the Riemannian
metric, and they depend on the chosen path.

Using parallel transports, we can formulate a standard notion of Lipschitz continuity
for Riemannian Hessians. We use the following notation often: given a tangent vector
s eT M,

PS: T_xM — TExpx(s)M (13)

denotes parallel transport along the geodesic y (t) = Exp, (ts) from¢t =0tot = 1.

Definition 2 A function f: M — R onaRiemannian manifold M has an L-Lipschitz
continuous Hessian if it is twice differentiable and if, for all (x, s) in the domain of
Exp,

For f three times continuously differentiable, this property holds if and only if the
covariant derivative of the Riemannian Hessian is uniformly bounded by L (we omit
a proof). In particular, this holds with some L for any smooth function on a compact
manifold. In the Euclidean case, parallel transports are identity maps (independent of
the transport curve), so that this is equivalent to the usual definition.

Crucially, for cost functions with Lipschitz Hessian, we recover familiar-looking
bounds on Taylor expansions of both f itself and, as will be instrumental momentarily,
of grad f. Results of this nature are standard: they appear frequently in complex-
ity analyses for Riemannian optimization, see for example [6,31,52]. Proofs are in
Appendix B.

P! o Hess f (Bxp, () o Py — Hessf(x)H < Lisll.
op

Proposition2 Let f: M — R be twice differentiable on a Riemannian manifold
M. Given (x, s) in the domain of Exp, assume there exists L > 0 such that, for all
t €[0,1],

P! o Hess f (Exp, (t5)) o Py — Hess f(x) H < Lis].
op
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Then, the two following inequalities hold:

g | ||3 d
s|I”, an
6

1
‘f(Epr(S)) — f(x) = (s, grad f (x)) — 3 (s, Hess f(x)[s])

L
| P erad £ (Bxp, (5)) — grad £ () — Hess (0] < s

This justifies the introduction of the following assumption, still with notation (13)
for Py, .

A3 There exists a constant L' such that, at each successful iteration k, for the step sy
selected by the subproblem solver, we have

Corollary 1 If f: M — Rhas L-Lipschitz continuous Hessian, then, for any sequence
{(xk, Sk)}k=0,1,2,... inthe domain of EXp, f satisfies A2 with the same L (andR = Exp),
and it satisfies A3 with L' = L. In particular, if f is smooth and M is compact,
Assumptions Al, A2 and A3 hold.

L/
Py erad f (Exp (50)) — grad f (v) — Hess f (el | = = llsel®. (14)

We can now state our main result regarding the complexity of running Algorithm 1
on a complete manifold with the exponential retraction, for the purpose of computing
approximate first-order critical points. We require M to be complete so that Exp
is indeed a retraction, defined on the whole tangent bundle. The proof follows [9,
Thm. 2.5] up to the fact that we bound the total number of successful iterations that
map to points with large gradient (as opposed to bounding the number of such iterations
among the first k), more in the spirit of [24]: this enables us to make a statement about
the limit of ||grad f (x¢)||. Recall that ¢nax is provided by Lemma 2.

Theorem 3 Let M be a complete Riemannian manifold and let R = Exp. Under Al,
A2 and A3, for an arbitrary xo € M, let xq, x1, x2 ... be the iterates produced by
Algorithm 1. For any ¢ > 0, the total number of successful iterations k such that
llgrad f (xx+1)|| > € is bounded above by

N 3 _ ow L/ 1.5 1
Ki(e) 2 (f (x0) — fi )( ) .

— + 6 + Smax
171 Smin 2

Furthermore, limy_,  ||grad f (xi) || = O (that is, limit points are critical).

Proof If iteration k is successful, we have xp4; = Expxk (sx). The gradient of the
model my (11) at s¢ (in the tangent space at xi) is given by

Vmy(si) = grad f (x) + Hess f (o) [se] + cillse s
= Py 'grad f (xeq1)
+ (erad £ (o) + Hess £ (v lise] — Py, 'grad f (eeen)) + else sk,
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with Py, as defined by (13). Owing to the first-order progress condition (2), by the
triangle inequality and also using A3, we find

2 -1 L 2 2
Ollsill” = IV (sll = 1Py, grad f )l = - lsell™ = sllsell™
Rearranging and using that Py, is an isometry, we get for all successful k that

/

_ L
lgrad f (x| = [Py grad f (e ) || < (7 +6+ gmax) Isell®, (15)

where we also called upon Lemma 2 to claim ¢ < g¢max. Define a subset of the
successful steps based on the tolerance ¢:

Se = {k : pr = m1 and ||grad f (x4 1) || > &}

For k € S,, we can lower-bound |5 |> using (15) since |\grad f (x¢,1)|| > &. Then,
calling upon Proposition 1, we find

1.5

3(f (x0) = fiow) > Z ||Sk||3 >
11 Smin L’
keS: (7 + 6 4 Smax

|Sel.
)1.5

This proves the main claim. The claim regarding limit points is proved in Appendix B.
]

(Above, it is natural to consider the sequence {xj41} for successful iterations k, as
this enumerates each distinct point in the whole sequence once.) A key consequence
of Theorem 3 is that, if the number of successful iterations among 0, . . ., k — 1 strictly
exceeds K (¢g), then it must be that ||grad f (xz)]| < ¢ for some k in O, ..., k. Com-
bining this with Lemma 3 yields the first main result: a bound on the total number of
iterations it may take ARC to produce an approximate critical point on a complete man-
ifold, using the exponential map, and (essentially) assuming a Lipschitz continuous
Hessian.

Corollary 2 Under the assumptions of Theorem 3, Algorithm 1 produces a point xi €
M such that f(xy) < f(xo) and ||grad f (xz)|| < € in at most

|10g(V1)|> 1 (gmax>
1+ —="2)K 1 1
( - log(y2) l(8)+10g(1/z) o8 S0 *

iterations.
In the Euclidean case, this recovers the result of [9] exactly. Note also that this

complexity result is unaffected by the curvature of the manifold. Moreover, if L is
known and L’ = L (which holds under the Lipschitz Hessian assumption), then we
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can set 6o = Gmin = %L (so that ¢iax = ﬁL) and § = %L. With those choices,
we find that

V3

1.5 |
201 - n2>> (f ko) = fiow)VL 5. (16)

6
K1(8)=—<1+
m

This exhibits a complexity scaling with /L when L is known, as in [45] and in the
lower bound discussed in [21].

4 First-order analysis with a general retraction

The results of the previous section provide a strict, lossless generalization of a known
result in the Euclidean case. However, we note two practical shortcomings:

— For the analysis to apply, the algorithm must compute the exponential map.
— The Lipschitz condition (Definition 2) may be difficult to assess as it involves
parallel transports or bounding the covariant derivative of the Riemannian Hessian.

Regarding the first point, we organized proofs in Appendix B to highlight why it is not
clear how to generalize Proposition 2 to general retractions. In a nutshell, it is because
parallel transports and geodesics interact particularly nicely through the fact that the
velocity vector field of a geodesic is a parallel vector field.

To address both points, we propose alternate regularity conditions which (a) allow
for any retraction, and (b) involve conceptually simpler objects. We do this by focusing
on the pullbacks fx = f o Ry, which have the merit of being scalar functions on
linear spaces—this is in the spirit of prior work [16]. We offer justification for these
assumptions below, and in Sect. 6.

The first regularity assumption, A2, is readily phrased in terms of the pullback. We
focus on providing a replacement for the second condition: A3. Translating this condi-
tion to pullbacks by analogy, we aim to bound the difference between V fx (s)—which,
conveniently, is a vector tangent at x—and a classical truncated Taylor expansion for
it: fo(O) + szx(O) [s]. In so doing, it is useful to note that fo(s) is related to
grad f (Ry (s)) by a linear operator, as follows:

Vii(s) = T)grad fRe(s),  with Ty = DRy(s): Ty M — Tr ()M, (17)
where the star indicates the adjoint with respect to the Riemannian metric. Indeed,

Vs.§ € TeM,  (Vfi(9),5)x = Dfa(9)[5]
= D f (R(s))[DR (5)[$]]
= (grad f (R, (5)), DR ($)[§ g (5)
= (DR, (s)* [grad f Ry (s)1,5), . (18)

(This also plays a role in [48, p 599].)
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Considering for a moment how an estimate for V fx (s) might look like if we use
the exponential retraction and under the Lipschitz continuous Hessian assumption A3
as above, we find by triangular inequality that

IV fe(s) — V 2 (0) — V2 £ (O)[s]]|
< |V fe(s) — P, grad f (Exp, (5)) |
+ || P, grad f (Exp, (5)) — grad f (x) — Hess f (x)[s]]|

S ‘

* —1 L 2
Iy — P op llgrad f (Exp (s)Il + =S|,

using (18) with 7y = DExp, (s). Since parallel transport P (13) is an isometry, P;l =
P} and || T) — Ps_l ||Op = [Ty — Psllop- For small s, we expect T (the differential
of the exponential map) and Py (parallel transport) to be nearly the same. Indeed,
175 — Psllop is a continuous function of s and Ty = Py = Id. How much they differ
for nonzero s is related to the curvature of the manifold. As a result, we conclude that

A A A L
[ V7:6) = V10 = 2 £ 0181 = S 1IP + aCUsI) - lgrad f Expy () (19)

for some continuous function g : R™ — R™ such that g(0) = 0.

As an illustration, consider the special case where M has constant sectional cur-
vature C. In this case, it can be shown using Jacobi fields (see the proof of Lemma 10
in the Appendix E) that

S, 8
Tys = DExp, (s)[s] = Pgs + h(||s|]) Ps (s — <”S”2)s> s (20)
where
0 if C =0,
sin([Isll/R) ; — 1
h(lsly =y~ Tsr- — L iTC=1%>0
sinh(|[s|l/R) : _ 1

Thus, for manifolds with constant sectional curvature, inequality (19) holds with

q(Is) = |k(|Is|D|, independent of x. This function behaves as %(%)2 = &Is||? for
small ||s||. This derivation generalizes to manifolds with sectional curvature bounded
both from above and from below—see [54] and [56, Thm. A.2.9].

Returning to retractions in general, the above motivates us to introduce the following

assumption on the pullbacks, meant to replace A3.
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A4 There exists a constant L' such that, at each successful iteration k, for the step s
selected by the subproblem solver, the pullback fiy = f o Ry, obeys

A A A L
| i) = V) = V2 Au)lsel| = S st + sl llgrad f R (s
e

where q: Rt — R is some continuous function satisfying q(0) = 0.

Notice how this assumption involves simple tools compared to A3, which relies
on the exponential map and parallel transports. Furthermore, if we strengthen the
condition by forcing ¢ = 0, we get a Lipschitz-type condition on the pullback: see
Sect. 6.

Looking at the proof of Theorem 3, specifically Eq. (15), we anticipate the need to
lower-bound the norm of V fk(sk). Owing to (17), it holds that

IV /&)1l = omin(DRy, (5)) llgrad £ Ry, (), (22)

where omin extracts the smallest singular value of an operator. For our purpose, it is
important that this least singular value remains bounded away from zero. This is only
a concern for small steps (as large successful steps provide sufficient improvement for
other reasons.) Providentially, for s = 0, Definition 1 ensures omin (DRy, (0)) =1, so
that by continuity we expect that it should be possible to meet this requirement. We
summarize this discussion in the following assumption.

A5 There exist constants a > 0 and b > 0 such that, at each successful iteration k,
if skl < a, then omin(DRy, (sx)) > b. (23)

(The constant a is allowed to be 400, while b is necessarily at most 1.)

In the Euclidean case with Ry (s) = x + s, DR, (s) is an isometry and one can set
a = +oo and b = 1. We secure AS in Sect. 7 for a large family of manifolds and
retractions.

With these new assumptions, we can adapt Theorem 3 to general retractions. The
main change in the proof consists in treating short and long steps separately. This
induces a condition that € must be small enough for the rate O (1/ !9 to materialize.
We stress that it is not necessary to know L, L', ¢, a and b as they appear in A2, A4
and A5 to run Algorithm 1 in practice: they are only used for the analysis. Recall that
Gmax 18 provided by Lemma 2.

Theorem 4 Let M be a Riemannian manifold equipped with a retraction R. Under A1,
A2, A4 and A5, for an arbitrary xo € M, let xq, x1, X2 . . . be the iterates produced
by Algorithm 1. For any ¢ > 0, the total number of successful iterations k such that
llgrad f (xx+1)|| > ¢ is bounded above by

o 1.5
_ Ly
Ki(e) 2 3 0x0) = fiow) max <—2 o gmax> 115’ l3
els’ r

171 Smin b—q(r)
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for any r € (0, a] such that q(r) < b. Furthermore, limy_,  ||grad f (xz)|| = 0.
Proof 1f iteration k is successful, we have xz; = Ry, (sx). The gradient of the model
my (1) at sg is given by
Vi (se) = V /i (0) + V2 fr(O)[sk] + slsklse
=V fets0) + (Ve + V2 Olse] = V fi50)) + cilsilse.

Owing to the first-order progress condition (2), using A4 and (22) with 7, =
DRy, (sx),

OllsilI® = 1 Vmi(so)|l = omin(Ts)llgrad f (xx41) |

/

L 2 2
=7 sl = g Cllsell) - llgrad f Gar- DI = Sillswll™

Rearranging and calling upon Lemma 2, we get for all successful iterations & that

L/
(omin(T) — q(liselD) - lgrad f Coes DIl < (? +0+ gmax> sk I (24)

Additionally, since ¢ is continuous and satisfies ¢g(0) = 0 there necessarily exists
r € (0, a] such that ¢(r) < b. This motivates the following. Recall this subset of the
successful steps:

If k is a successful step and |[s¢|| < a, then A5 guarantees oyin(Zy,) > b > 0.

Se=1{k:pr=m and |gradf (41| > ).

Further partition this subset in two, based on step length: short steps in Sgport and long
steps in Sjong. The partition is based on r as constructed above:

Sshort = {k € Se ¢ sl <7}, and Slong = Se\Sshort -

For k € Sghort, we can lower-bound ||sk||3 using (24) since omin(Ts,) — g (lIskll) >
b —q(r) > 0.For k € Siong, we have ||sk||3 > 73 by definition. Then, calling upon
Proposition 1, we find

3 — Jlow
WD = fiow o $™ g4 3 sl

116min keSshort kes]ong
(b—q(r)'e'?

=70 15
(7 +6+ §max)

1.5
S min [ (274D ) 5 s,
B %+9+§max ’

3
|Sshort| + 7 |Slong|
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This proves the main claim. For limit points, see the matching argument in Theorem 3.
(]

A corollary identical to Corollary 2 holds for Theorem 4 as well. In the Euclidean
case with R, (s) = x + s and a Lipschitz continuous Hessian, we can set a = +o00,
b =1,q =0 and r = 400, thus also recovering the result of [9] exactly.

5 Second-order analysis

The two previous sections show how to meet first-order necessary optimality condi-
tions approximately. To further satisfy second-order necessary optimality conditions
approximately, we also require second-order progress in the subproblem solver,
through condition (3).

This condition is similar to one proposed by Cartis et al. [25] for the same purpose
in the Euclidean case. A direct extension of the proof in that reference would involve
the Hessian of the pullback at the trial step s; rather than at the origin. As we have
seen for gradients, this leads to technical difficulties. We provide a proof that achieves
the same complexity bound while avoiding such issues. As a result, there is no need to
distinguish between the exponential and the general retraction cases for second-order
analysis.

We have the following bound on the total number of successful iterations which can
produce points where the Hessian is far from positive semidefinite, akin to Theorems 3
and 4.

Theorem 5 Under Al and A2, for an arbitrary xo € M, let xg, x1,x3 ... be the
iterates produced by Algorithm 1 with second-order progress (3) enforced. For any
& > 0, the total number of successful iterations k such that Amin (V2 fk 0) < —¢is
bounded above by

3(f(x0) — fiow)
111 Smin

A 31
KZ(S) = (9 + 2§max) 8_3

Furthermore, lim infi_, oo Amin (V2 f£(0)) > 0.

Proof The second-order condition (3) implies a lower-bound on step-sizes related to
the minimal eigenvalue of the Hessian of fiy = f o R,,. Indeed, by definition of the
model my (1),

Vs, § € Ty M, Vimp(9)[5] = V2 f(O)[5] + o (Ilslls’ + <ﬁ;i>s> .

It follows that

min(V2fu(0)) = min (5. V2 (0151

\2
= min (5, Vi (5)151) - s <||s||||s'||2+ o) )

=1 lIs|
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= dmin(V2mi(s)) — 26k ls .
In particular, with s = s, the second-order progress condition (3) and Lemma 2 yield
—hmin(VZ f(0)) < (0 + 26max)lIsel. (25)
Consider this particular subset of the successful iterations:
Se = {k: ok = m and Anin(V? f(0)) < —e).

Using Proposition 1 with (25) on this set leads to:

3<f<xo>—flow)>|8|< £ >3
171 Smin -+ 26max /)

which is the desired bound on the number of steps in S;. The limit inferior result
follows from an argument similar to that at the end of the proof of Theorem 3. O

Here too, if L is known we can set ¢p = Cmin = %L (so that ¢cpax = 2(1”f3,72)L) and

0= %L. With those choices, we find that for a target depending on L we have:

6 (1 3 1
Ka(VLe) = — (— + L) (f @0) — fiow VL - (26)
m\2" d—n) :

This exhibits a complexity scaling with +/L when L is known.

Theorem 5 is a statement about the Hessian of the pullbacks, V2 fk(O), whereas we
would more naturally desire a statement about the Hessian of the cost function itself,
Hess f (xx). For the exponential retraction, these two objects are the same (10). More
generally, they are the same for any second-order retraction (of which the exponential
map is one example) [3, §5]: we defer their (standard) definition to Sect. 6. For now,
accepting the claim that for second-order retractions we have Hess f (x;) = V2 fk 0),
we get a more directly useful corollary: a complexity result for the computation of
approximate second-order critical points on manifolds. The proof is in Appendix C.

Corollary 3 Under Al and A2, for an arbitrary xo € M and for any €5, ey > 0, if
either

(a) we use the exponential retraction and A3 holds, or
(b) we use a second-order retraction and both A4 and AS hold,

then Algorithm 1 with second-order progress (3) enforced produces a point x; € M
such that f(x;) < f(xo), llgrad f (xp) || < &g and Amin(Hess f (xx)) > —ey in at most

<1 n | log(y1)

1 Smax
log(2) > (Kieg) + Kalem) +1) + 5 1°g< > !

<o

iterations, with K1 as provided by Theorem 3 or 4, depending on assumptions.
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If the retraction is not second order, we still get a bound on the eigenvalues of the
Riemannian Hessian if the retraction has bounded acceleration at the origin at xi:
see [16, §3.5] and also Lemma 5 below.

6 Regularity assumptions

The regularity assumptions A2 and A4 pertain to the pullbacks f o Ry, . As such,
they mix the roles of f and R. The purpose of this section is to shed some light on
these assumptions, specifically in a way that disentangles the roles of f and R. In that
respect, the main result is Theorem 6 below. Proofs are in Appendix D.

Each pullback is a function from a Euclidean space Ty, M to R, so that standard
calculus applies. Since the retraction is smooth by definition, pullbacks are as many
times differentiable as f. This leads to the following simple fact.

Lemma4 Assume f: M — R is twice continuously differentiable. If there
exists L such that, for all (x,s) among the sequence of iterates and trial steps
{(x0, s0), (x1, 51), ...} produced by Algorithm 1, with f = f o Ry, it holds that

|[v2fas = v2 o) <L) @7

forallt € [0, 1], then A2 holds with this L and A4 holds with L' = L and ¢ = 0.

We call this a Lipschitz-type assumption on V2 f because it compares the Hessians
at ts and 0, rather than comparing them at two arbitrary points on the tangent space.
On the other hand, we require this to hold on several tangent spaces with the same
constant L.

In light of Lemma 4, one way to understand our regularity assumptions is to
understand the Hessian of the pullback at points which are not the origin. The follow-
ing lemma provides the necessary identities. The Hessian formula we have not seen
elsewhere. Notation-wise, recall that 7* denotes the adjoint of a linear operator 7';
furthermore, the intrinsic acceleration ¢’ (t) of a smooth curve c(t) is the covariant
derivative of its velocity vector field ¢’(¢) on the Riemannian manifold M.

Lemma5 Given f: M — R twice continuously differentiable and x € M, the
gradient and Hessian of the pullback f = f o R ats € Ty M are given by

V f(s) = T, grad f (Re (5)), (28)
V2f(s) = T} o Hess f (R, (s)) o Ty + Wi, (29)

where
Ty =DR,(s): TM — TR (oM (30
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is linear, and Wy is a symmetric linear operator on T M defined through polarization
by

(Wi[51. §) = (grad f (R (s)), ¢”(0)), (31)

with ¢"(0) € Tr, ()M the intrinsic acceleration on M of c¢(t) = Ry(s +t5) att = 0.

The particular case s = 0 connects to the comments around Corollary 3: since Ty
is identity by definition of retractions, we find that

V2 £(0) = Hess f (x) + W, (32)

where W) is zero in particular if the initial acceleration of retraction curves is zero (or if
grad f(x) = 0). Asin [3, §5], this motivates the definition of second-order retractions,
for which V2 f(0) = Hess f (x).

Definition 3 (Second-order retraction) A retraction R on M is second order if, for
any x € M and § € T, M, the curve c(t) = R,(z$) has zero initial acceleration:
¢"(0) =0.

Practical second-order retractions are often available [1, Ex. 23]. To prove our main
result, we further restrict retractions.

Definition 4 (Second-order nice retraction) Let S be a subset of the tangent bundle
TM. A retraction R on M is second-order nice on S if there exist constants ¢y, ¢2, ¢3
such that, for all (x, s) € S and for all s € T, M, all of the following hold:

1. ¥Vt € [0, 1], | Tysllop < c1 where Tis = DR (25);

2. Vt € [0, 1], the covariant derivative of U(t) = T;,§ satisfies ||(%U(t) H <
c2llsllis]l; and

3. IO < c3lls | 1$[1* where c(f) = Ry (s + £3).

If this holds for S = TM, we say R is second-order nice.

Second-order nice retractions are, in particular, second-order retractions (consider
s = 0 in the last condition). For M a Euclidean space, the canonical retraction
R, (s) = x + s is second-order nice with ¢; = 1 and ¢ = ¢3 = 0. The classical
retraction on the sphere is also second-order nice, with small constants ¢y, ¢, c3. We
expect this to be the case for many usual retractions on compact or flat manifolds.
For manifolds with negative curvature, the exponential retraction would lead || 7§ ||Op
to grow arbitrarily large with s going to infinity, hence it is important to consider
restrictions to appropriate subsets, or to use another retraction.

Proposition 3 For the unit sphere M = {x € R" : ||x|| = 1} as a Riemannian
submanifold of R", the retraction Ry(s) = is second-order nice with c; =

#,6‘3 =2

X+s
llx+sl

1, =
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Theorem 6 Let f: M — R be three times continuously differentiable. Assume the
retraction is second-order nice on the set {(xo, So), (X1, $1), ...} of points and steps
generated by Algorithm 1 (see Definition 4). If the sequence xg, x1, X2, . . . remains in
a compact subset of M, then A2 and A4 are satisfied with a same L (related to the
Lipschitz properties of f, grad f and Hess f: see the proof for an explicit expression)
and g = 0.

Algorithm 1 is a descent method, so that the last condition holds in particular if the
sublevel set {x € M : f(x) < f(x0)} is compact, and a fortiori if M is compact.

This general result shows existence of (loose) bounds for the Lipschitz constants.
For specific optimization problems, it is sometimes easy to derive more accurate
constants by direct computation: see for example [27, App. D] for PCA.

7 Controlling the differentiated retraction

In Theorem 4, we control the worst-case running time of ARC via the differential of the
retraction R, through AS. This assumption, which does not come up in the Euclidean
case, involves constants a, b to control omin (DR, (sx)). Our first result shows AS is
satisfied for some a and b for any retraction on any manifold, provided the sublevel
set of f'(xp) is compact (see also Theorem 6). This is mostly a topological argument.
Proofs are in Appendix E.

Theorem7 Let R be a retraction on a Riemannian manifold M, and let U be a
nonempty compact subset of M. For any b € (0, 1) there exists a > 0 such that, for
all x € U and s € T, M with ||s||x < a, we have onin(DR,(s)) > b. In particular,
AS is satisfied with such (a, b) provided the iterates xqo, X1, X2, . . . remain in U.

We further quantify the constants @ and b in two cases of interest:

1. For the Stiefel manifold St(n, p) = {X € R™*P : XX = I,} as a Rieman-
nian submanifold of R"*? with the usual inner product (A, B) = Tr(ATB), we
explicitly control (a, b) for the popular Q-factor retraction (Rx (S) is obtained
by Gram-Schmidt orthonormalization of the columns of X 4 §). Special cases
include the sphere (p = 1) and the orthogonal group (p = n).

2. For complete manifolds with bounded sectional curvature, we control (a, b) for
the case of the exponential retraction. Important special cases include Euclidean
spaces (flat manifolds), manifolds with nonpositive curvature (Hadamard mani-
folds, including the manifold of positive definite matrices [8,44]), and compact
manifolds [10, §9.3, p 166].

The first result follows from a direct calculation.

Proposition 4 For the Stiefel manifold with the Q-factor retraction, for any a > 0,

defineb =1—3a — %az. If b is positive, then AS holds with these a and b. Moreover,
1

for the sphere, we have that AS is satisfied for any a > 0 and b = e

The second result follows from the connection between the differential of the
exponential map and certain Jacobi fields on M, together with standard comparison
theorems from Riemannian geometry [42, Ch. 10, 11].
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Proposition 5 Let M, complete, have sectional curvature upper bounded by C, and
let the retraction R be the exponential retraction Exp:

If C <0, then AS is satisfied for anya > 0 and b = 1;

. . . _ sin(a«/f)
If C > 0, then AS is satisfied for any 0 < a < NG and b = RPN

8 Solving the subproblem

At each iteration, Algorithm 1 requires the approximate minimization of the model
my (1) in the tangent space Ty, M. Since the latter is a linear space, this is the same
subproblem as in the Euclidean case. In contrast to working simply over R"” however,
one practical difference is that we do not usually have access to a preferred basis for
Ty, M, so that it is preferable to resort to basis-free solvers. To this end, we describe
a Lanczos method as Algorithm 2.

Let us phrase the subproblem in a general context. Given a vector space X of
dimension n with an inner product (-, -) (and associated norm || - ||), an element
g € X, a self-adjoint linear operator H: X — X and a real ¢ > 0, define the
functionm: X — R as

_ 1 S a3
m(s) = (8,5>+§(S,H(S))+§||S|| . (33)

We wish to compute an element s € X" such that
m(s) < m(0) and IVm(s)Il < 0lls|1>. (34)

This corresponds to satisfying condition (2) at iteration k, where X = T, M is
endowed with the Riemannian inner product at x;, g = V fk 0), H = V2 fk(O) and
¢ = ck. If g = 0, then s = 0 satisfies the condition: henceforth, we assume g # 0.

Certainly, a global minimizer of (33) meets our requirements (it would also satisfy
the equivalent of the second-order condition (3)). Such a minimizer can be computed,
but known procedures for this task involve a diagonalization of H, which may be
expensive. Instead, we use the Lanczos-based method proposed in [23, §6]: the latter
iteratively produces a sequence of orthonormal vectors {¢1, ..., g,} and a symmetric
tridiagonal matrix T of size n such that [53, Lec. 36].!

8

= el and Tij = (¢i, H(g))) foralli, jin1...n. (35)
g

q1

Let Ty denote the k x k principal submatrix of 7': producing qi, ..., gx and T
requires exactly k calls to H. Consider m(s) (33) restricted to the subspace spanned

by qi. ..., gk

! In case of so-called breakdown in the Lanczos iteration at step k, we follow the standard procedure which
is to generate gy as a random unit vector orthogonal to g1, ..., gx—1, then to proceed as normal. This does
not jeopardize the desired properties (35).
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k k
1 S
k . 3
Vy € R*, withs = 21:)’[%, m(s) = (g, yiq1) + 7 _Zl yiyjlai. H(gj))+ gllyll
1= 1,j=

1 S
=yillgl+ EYTTky - §||y||3, (36)

where | - || is also the 2-norm over R¥. Since T} is tridiagonal, it can be diagonal-
ized efficiently. As a result, it is inexpensive to compute a global minimizer of m(s)
restricted to the subspace spanned by ¢y, ..., gx [23, §6.1]. Furthermore, since the
Lanczos basis is constructed incrementally, we can minimize the restricted cubic at
k = 1, check the stopping criterion (34), and proceed to k = 2 only if necessary, etc.
The hope (borne out in experiments) is that the algorithm stops well before k reaches
n (at which point it necessarily succeeds.) In this way, we limit the number of calls
to H, which is typically the most expensive part of the process. This general strategy
was first proposed in the context of trust-region subproblems by Gould et al. [34].
Algorithm 2 is set up to target first order progress only. In order to ensure satisfaction
of second-order progress, one may have to force the execution of » iterations (which
is rarely done in practice).

We draw attention to a technical point. Upon minimizing (36), we obtain a vector
y € R¥. To check the stopping criterion (34), we must compute ||Vm(s)||, where

s = Zf-;l viqi. Since
Vm(s) = g+ H(s) +slslls, (37)

one approach involves computing s (that is, form the linear combination of ¢;’s) and
applying H to s: both operations may be expensive in high dimension. An alternative
(shown in Algorithm 2) is to recognize that, due to the inner workings of Lanczos

iterations, Vm(s) lies in the subspace spanned by {q1, ..., gi+1} (if k < n). Explic-
itly,
k+1 k
Vm(s) = lgllgr + ) Tyt 1m Midi + S Iy vidi, (38)

i=1 i=l1

where Tj.x41,1: is the submatrix of T containing the first kK + 1 rows and first k
columns. This expression gives a direct way to compute ||[Vm(s)| without form-
ing s and without calling H, simply by running the Lanczos iteration one step
ahead.

Remark 1 Carmon and Duchi [20] analyze the number of Lanczos iterations that may
be required to reach approximate solutions to the subproblem. For the Euclidean case,
they conclude that the overall complexity of ARC to compute an e-critical point in
terms of Hessian-vector products (which dominate the number of cost and gradient
computations) is O (¢~ /). Furthermore, the dependence on the dimension of the
search space is only logarithmic. (The logarithmic terms are caused by the need to
randomize for the so-called hard case—see the reference for important details in that
regard.) Their conclusions should extend to the Riemannian setting as well. Gould and
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Algorithm 2 Lanczos-based cubic model subsolver

1: Parameters: 6, ¢ > 0, vector space X with inner product (-, -) and norm || - ||
2: Input: g € X nonzero, a self-adjoint linear operator H: X — X

3.k« 1

: Obtain g1, T7 via a Lanczos iteration (35)

5: Solve y(1) = argmin ||g|ly + %T1y2 + %glyl3
yeR

6: Obtain g3, T» via a Lanczos iteration (35)

7: Compute || Vm(s)| via (38), where s; = y g

A~

8: while |V (sp)|| > 0]ls¢ ]| do

9 k<k+1

10:  Solve y® = argmin |Igllyr + ¥ Txy + Scllyll® following [23, §6.1]
yeRK

11:  Obtain gg41, Tx4+1 via a Lanczos iteration (35)

12:  Compute [[Vm(sp)l| via (38), where s = >, y¥g.

13: end while

14: Output: s € X

Simoncini [33] extend these results to study the decrease of the norm of the gradient
specifically, as required here.

9 Numerical experiments

We implement Algorithm 1 within the Manopt framework [15] (our code is part of that
toolbox) and compare the performance of our implementation against some existing
solvers in that toolbox, namely, the Riemannian trust-region method (RTR) [2] and
the Riemannian conjugate gradients method with Hestenes—Stiefel update formula
(CG-HS) [3, §8.3]. All algorithms terminate when ||grad f (xz)|| < 10~°. CG-HS
also terminates if it is unable to produce a step of size more than 10710 Code to
reproduce the experiments is available at https://github.com/NicolasBoumal/arc. We
report results with randomness fixed by rng (2019) within Matlab R2019b.
We consider a suite of six Riemannian optimization problems:

1. Dominant invariant subspace: maxxeGr(n, p) %Tr(X TAX), where A € R™" is
symmetric (randomly generated from i.i.d. Gaussian entries) and Gr(n, p) is the
Grassmann manifold of subspaces of dimension p in R”, represented by orthonor-
mal matrices in R"*?. Optima correspond to dominant invariant subspaces of
A [30].

2. Truncated SVD: maxyesim, p),veSt(n, p) Tr(U TAV N), where St(n, p) is the set
of matrices in R"*” with orthonormal columns, A € R™*" has i.i.d. random
Gaussian entries and N = diag(p, p — 1, ..., 1). Global optima correspond to
the p dominant left and right singular vectors of A [49]. For this and the previous
problem, the random matrices have small eigen or singular value gap, which makes
them challenging.
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3. Low-rank matrix completion via optimization on one Grassmann manifold, as
in [13]. The target matrix A € R™*" has rank r: it is fully specified by r (m+n —r)
parameters. We observe this many entries of A picked uniformly at random, times
an oversampling factor (osf). The task is to recover A from those samples. A is
generated from two random Gaussian factors as A = LR to have rank r exactly.
The variable is U € Gr(m, r), and the cost function minimizes the sum of squared
errors between U Wy and the observed entries of A, where Wy € R™*" is the
optimal matrix for that purpose (which has an explicit expression once U is fixed,
efficiently computable).

4. Max-cut: given the adjacency matrix A € R™" of a graph with n nodes,
we solve the semidefinite relaxation of the Max-Cut graph partitioning prob-
lem via the Burer—Monteiro formulation [18] on the oblique manifold [40]:
minycoB, p) 3Tr(X TAX), where OB(n, p) is the set of matrices in R"*” with
unit-norm rows. Here, we pick graph #22 from a collection of graphs called Gset
(see any of the references): it has n = 2000 nodes and 19990 edges, and p is set
close to +/2n as justified in [17].

5. Synchronization of rotations: m rotation matrices Qi, ..., O, in the special
orthogonal group SO(d) are estimated from noisy relative measurements H;; ~
0, Q]T for an Erd6s—Rényi random set of pairs (i, j) following a maximum like-
lihood formulation, as in [14]. The specific distribution of the measurements and
the corresponding cost function are described in the reference. All algorithms are
initialized with the technique proposed in the reference, to avoid convergence to a
poor local optimum.

6. ShapeFit: least-squares formulation of the problem of recovering a rigid structure
of n points xq, ..., x, in R4 from noisy measurements of some of the pairwise
directions % picked uniformly at random, following [37]. The set of points
is centered and obeys one extra linear constraint to fix scaling ambiguity, so that
the search space is effectively a linear subspace of R”*<: this is the manifold M.
The cost function as spelled out in the reference makes this a structured linear
least-squares problem.

For each problem, we generate one instance and one random initial guess (except
for problem 5 which is initialized deterministically). Then, we run each algorithm
from that same initial guess on that same instance. Figure 1 displays the progress of
each algorithm on each problem as the gradient norm of iterates (on a log scale) as
a function of elapsed computation time to reach each iterate (in seconds) on a laptop
from 2016. For the same run, Fig. 2 reports the number of gradient calls and Hessian-
vector products (summed) issued by all algorithms along the way. Figure 3 reports
the number of outer iterations for ARC and RTR, that is, excluding work done by
subsolvers.

For ARC, we report results with & = 0.25 and 6 = 2; this is used in the stopping
criterion for subproblem solves following (2) (we do not check (3)). To initialize g,
we use 100 divided by the initial trust-region radius of RTR (Ag) chosen by Manopt.
Other parameters of ARC are set as follows: ¢min = 10710, n =0.1,72=0.9,y =
0.1, y» = y3 = 2, with update rule:
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Dominant invariant subspace, Gr(512, 12) - Truncated SVD, St(168, 20) x St(240, 20)

—e—RTR
—e— ARC (Lanczos, 0 = .25)
ARC (Lanczos, § = 2)
—e— ARC (NLCG, = 25)
—— ARC (NLCG, 0 = 2)
CG-HS

Gradient norm
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LRMC on Grassmann, 2000x5000, rank 10, osf 4

Gradient norm
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Synchronization of 50 rotations in SO(3)

S
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Gradient norm

012 014 016 018 02

Fig. 1 Gradient norm at each iterate for the three competing solvers on the six benchmark problems, as a
function of computation time needed by those solvers to reach those iterates (in seconds). Our algorithm is
ARC (tested with two different subproblem solvers, each with two parameter settings); RTR is Riemannian
trust-regions; CG-HS is Riemannian conjugate gradients with Hestenes—Stiefel step selection

max(Smin, Y16k)  if o = 1m2 (very successful),
Sk+1 =\ Sk if o € [n1,m2)  (successful), (39)
Y25k if pp <m (unsuccessful).

Standard safeguards to account for numerical round-off errors are included in the code
(not described here). Parameters for the other methods have the default values given
by Manopt.

We experiment with two subproblem solvers for ARC. The first one is the Lanczos-
based method as described in Sect. 8 (ARC Lanczos). The second one is a (Euclidean)
nonlinear, nonnegative-Polak—Ribieére conjugate gradients method run on the model
my (1) in the tangent space Ty, M (ARC NLCG), implemented by Bryan Zhu [64].
This solver uses the initialization recommended by Carmon and Duchi [19] for gradient
descent (and from which they proved convergence to a global optimizer, despite non-
convexity of the model), and exact line-search. We find that this subproblem solver
performs well in practice. It is simpler to implement, and uses less memory than the
Lanczos method.

We find that ARC’s performance is in the same ballpark as RTR’s, with the caveat
that ARC’s best performance requires tuning (choosing the right subproblem solver
and 0 for the problem class), whereas RTR is more robust. Since RTR’s code has
been refined over many years, we expect that further work can help reduce the gap.
For example, we expect that the performance of ARC could be improved with further
tuning of the regularization parameter update rule. In particular, we find that it is
important to reduce regularization fast when close to convergence (but not earlier),
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Dominant invariant subspace, Gr(512, 12) Truncated SVD, St(168, 20) x St(240, 20)
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8 —+—CG-HS
o
10°10.
0 50 100 150 200 250 300 350 400 0 500 1000 1500 2000 2500 3000 3500 4000 4500
10° LRMC on Grassmann, 2000x5000, rank 10, osf 4 Max-cut with Gset graph #22
E
g y5
£ 10
5}
=l
o
© 1010
. . , . . . . . . . . . _
0 50 100 150 0 100 200 300 400 500 600 700 800 900 1000
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Fig.2 Gradient norm at each iterate, as a function of the number of gradient calls and Hessian-vector calls
(the sum of both) issued by those solvers to reach those iterates

Dominant invariant subspace, Gr(512, 12) Truncated SVD, St(168, 20) x St(240, 20)
100-

£l

2 [[—e—RTR
;:‘) 10°5| —*— ARC (Lanczos, 0 = .25)
° [ ARC (Lanczos, 6 = 2)
g || —e— ARC (NLCG, 0 = .25)

1010l = ARC(NLCG, 0 =2)
L L |
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Fig.3 Gradient norm at each iterate, as a function of the number of outer iterations for ARC and RTR: both
of these solvers rely on a subproblem solver. This plot compares the behavior of the algorithms separately
from their subproblem solvers” work. As a result, this hides effects related to how stringent the stopping
criterion of the subproblem solver is, hence of how costly the subproblem solves are. For example, one can
(usually) reduce the number of outer iterations of ARC by reducing 6. As the subproblems of RTR and
ARC are similar, we expect that (in principle) it should be possible to solve them equally well in about the
same time
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to allow ARC to make steps similar to Newton’s method. Work by Gould et al. [35]
could be a good starting point for such exploration.

Acknowledgements We thank Pierre-Antoine Absil for numerous insightful and technical discussions,
Stephen McKeown for directing us to, and guiding us through the relevance of Jacobi fields for our
study of A5, Chris Criscitiello and Eitan Levin for many discussions regarding regularity assumptions
on manifolds, and Bryan Zhu for contributing his nonlinear CG subproblem solver to Manopt, and related
discussions.

A Proofs from Section 2: mechanical lemmas

Lemma 1 characterizes the conditions under which the subproblem solver is allowed
to return s = O at iteration k.

Proofof Lemma 1 By definition of the model my (1) and by properties of retrac-
tions (17),

Vmi(0) = V f,(0) = grad f (xz),

where fk = f oRy,. Thus, if grad f (x;) = 0, the first-order condition (2) allows
sk = 0. The other way around, if s; = O is allowed, then ||Vm(0)| = 0, so that
grad f(xx) = 0.

Now assume the second-order condition (3) is enforced. If s, = 0 is allowed, then
we already know that grad f (x;) = 0. Combined with (32), we deduce that

V2mp(0) = V2 f(0) = Hess f (xz),

for any retraction. Then, condition (3) at sy = O indicates VZmi(0) is positive
semidefinite, hence Hess f (x) is positive semidefinite. The other way around, if
grad f (xx) = 0 and Hess f (x;) is positive semidefinite, then Vm(0) = grad f (xx)
and V2my (0) = Hess f (xx), so that indeed s, = 0 is allowed O

The two supporting lemmas presented in Sect. 2 follow from the regularization
parameter update mechanism of Algorithm 1. The standard proofs are not affected by
the fact we here work on a manifold. We provide them for the sake of completeness.

Proof of Lemma 2 Using the definition of pg (4), mi(0) = f(xx) (1) and my(0) —
my (sx) > 0 by condition (2):

S xer) — f Ry (sx)) - TRy (51) — my(se) + L llsell®
mi(0) — my(sp) + < |lsll* ~ = lskll? .

l—pr=1-

Owing to A2, the numerator is upper bounded by (L /6)||sx I3. Hence, 1 — p < % If
Sk = ﬁ, then 1 — px < 1 —n3 so that p; > 1, meaning step k is very successful.

The regularization mechanism (5) then ensures ¢x4+1 < ¢k. Thus, ¢x41 may exceed
gronly if ¢ < 2(l+nz)’ in which case it can grow at most to 2(%’?72), but cannot grow
beyond that level in later iterations. O
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Proof of Lemma 3 Partition iterations 0, . .., k — 1 into successful or very successful
(Sz) and unsuccessful (Ug) ones. Following the update mechanism (5), for k € S,
ISgl U

Sk+1 = Y16k, while for k € U, ck+1 > y26x. Thus, by induction, ¢ > coy; ¥,
By assumption, ¢; < G¢max SO that

log <§zgx) > |Sgllog(y) + Uzl log(y2) = ISz [log(y1) — log(y2)] + k log(y2),

where we also used |Sg |+ [Uz| = k.Tsolating k using » > 1 > y; allows to conclude.
O

B Proofs from Section 3: first-order analysis, exponentials

Certain tools from Riemannian geometry are useful throughout the appendices—see
for example [46, pp 59-67]. To fix notation, let V denote the Riemannian connection on
M (not to be confused with V and V> which denote gradient and Hessian of functions
on linear spaces, such as pullbacks). With this notation, the Riemannian Hessian [3,
Def. 5.5.1] is defined by Hessf = Vgrad f. Furthermore, % denotes the covariant
derivative of vector fields along curves on M, induced by V. With this notation, given
a smooth curve ¢: R — M, the intrinsic acceleration is defined as ¢’ (t) = %c(t).
For example, for a Riemannian submanifold of a Euclidean space, ¢” () is obtained
by orthogonal projection of the classical acceleration of ¢ in the embedding space
to the tangent space at c(¢). Geodesics are those curves which have zero intrinsic
acceleration.

We first state and prove a partial version of Proposition 2 which applies for general
retractions. Right after this, we prove Proposition 2. The purpose of this detour is
to highlight how crucial properties of geodesics and of their interaction with parallel
transports allow for the more direct guarantees of Sect. 3. In turn, this serves as
motivation for the developments in Sect. 4.

Proposition 6 Let f: M — R be twice differentiable on a Riemannian manifold M
equipped with a retraction R. Given (x,s) € TM, assume there exists L > 0 such
that, for all t € [0, 1],

|

where Py is parallel transport along c(t) = Ry (ts) from c(0) to c(t) (note the
retraction instead of the exponential) and £(cl|jo,;) = fot /(o) ||dt is the length
of c restricted to the interval [0, t]. Then,

P! (Hess £ )le'(1)]) — Hess £ (0)ls1 | < Lilsl - €Celpo.),

1
P 'grad f Ry (s)) — grad f (x) —Hessf(x)[s]H < Lls| /0 0(cliou) dt.

@ Springer



N. Agarwal et al.

Proof Pick a basis vy, ..., vg for Ty M, and define the parallel vector fields V;(t) =
Py (v;) along c(t). Since parallel transport is an isometry, Vi(z), ..., V4(¢) form a
basis for T¢)M for each ¢ € [0, 1]. As a result, we can express the gradient of f
along c(¢) in these bases,

d
grad f (c(t) = Y a; (Vi (1), (40)
i=1

with oy (¢), ..., og(¢) differentiable. Using properties of the Riemannian connection
V and its associated covariant derivative % [46, pp 59-67], we find on one hand that

D

g radf(e(®) = Vegrad f = Hess f (c(1))[c' ()],

and on the other hand that

d d d
D
3 2OV =Y aj (Vi) = Py Y0,
i=1 i=1 i=1
where we used that dgt Vi(t) = 0, by definition of parallel transport. Furthermore,

c/(t) = DRy (ts5)[s] = Tis(s),

where T;; = DR, (¢s) is a linear operator from the tangent space at x to the tangent
space at c¢(t)—just like P;;. Combining, we deduce that

d
PICACLE (P,;l o Hess f(c(1)) o T,S>[s].
i=1

Going back to (40), we also see that
d
G(t) £ Pl grad f(c(t) = ) ei(t)v;
i=1

is amap from (a subset of) R to T, M—two linear spaces—so that we can differentiate
it in the usual way:

d
G'(t)=) o).

i=1

We conclude that
G@) = —[P 1gradf(c(t))] = (P ! oHessf(c(t)) o Ty )[s]. 41
dt ts ts s
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Since G’ is continuous,
t
P lerad fe0) = G0 = GO + [ G'(ae
0
t
— grad f(x) + / (p;sl o Hess f(c(1)) o T”)[s]dr.
0

Moving grad f (x) to the left-hand side and subtracting Hess f (x)[#s] on both sides,
we find

P lgrad f(c(r)) — grad f (x) — Hess f (x)[1s]

t
= / (Pr_sl o Hess f(c(t)) o Trs — HeSSf(x))[s]dr.
0

Using the main assumption on Hess f along c, it easily follows that

For t = 1, this is the announced inequality. O

t
P grad f(e(0) — grad f () — Hess f(0)les]| < llsIL fo telodr.  @2)

Proof of Proposition 2 In this proposition we work with the exponential retraction,
so that instead of a general retraction curve c(#) we work along a geodesic y (¢) =
Exp, (ts). By definition, the velocity vector field y'(¢) of a geodesic y (¢) is parallel,
meaning

V' (@) = Prs(y'(0)) = Pis(s). (43)
This elegant interplay of geodesics and parallel transport is crucial. In particular,

t
£(yl0.n) =/ ly'(©llde = tlis],
0

and the condition in Proposition 6 becomes

|

which is indeed guaranteed by our own assumptions. We deduce that (42) holds:

|

P (Hess f (v (1)) [ Prs (5)]) — Hess f (0)[s]|| < ¢L||s|,

! L
P erad (7 1) = grad £3) = Hess fls1] < WL [ evlo e = S1sIPe2
(44)
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The relation (43) also yields the scalar inequality. Indeed, since f o y: [0, 1] — Ris
continuously differentiable,

1
F(Exp,(s) = f(y(1) = f(y(0) + /O (foy)(t)dt
1
= f(x)+ /0 (grad f(y (1)), y' (1)) dt
1
=f+ fo (P erad p(y ). 5) dr,

where on the last line we used (43) and the fact that Py, is an isometry. For a general
retraction curve c(t), instead of s as the right-most term we would find P,;l(c’ (1))
which may vary with #: this would make the next step significantly more difficult.
Move f(x) to the left-hand side and subtract terms on both sides to get

1
SEXp(5)) = f(x) — (grad f(x), s) — 5 (s, Hess f(x)[s])
1
= f (P erad (1) — grad £ () — Hess f (0)les], s dr.
0
Using (44) and Cauchy—Schwarz, it follows immediately that

1 Ir L
‘f(Expx(s» = () = (s, grad £ (x)) = 5 (5, Hess f (0)[s)| < /0 Eusn%zdr = g||s||3,

as announced. O
Next, we provide an argument for the last claim in Theorem 3.

Proof of Theorem 3 We argue that limg_, o ||grad f (xx)|| = 0. The first claim of the
theorem states that, for every ¢ > 0, there is a finite number of successful steps k
such that x;41 has gradient larger than ¢. Thus, for any ¢ > 0, there exists K: the
last successful step such that xx | has gradient larger than ¢. Furthermore, there is a
finite number of unsuccessful steps directly after K + 1. Indeed, ¢x+1 > &min, and
failures increase ¢ exponentially; additionally, ¢ cannot outgrow ¢max by Lemma 2.
Thus, after a finite number of failures, a new success arises, necessarily producing an
iterate with gradient norm at most ¢ since K was the last successful step to produce a
larger gradient. By the same argument, all subsequent iterates have gradient norm at
most ¢. In other words: for any ¢ > 0, there exists K’ finite such that for all k > K’,
llgrad f (x) || < &, that is: limg—, oo [|grad f (xz) || = 0. o

C Proofs from Section 5: second-order analysis

Proof of Corollary 3 Consider these subsets of the set of successful iterations S:

S' 2 (keS:|lgradf (1)l > &g}, and S* 2 {k €S : Amin(Hessf(xx)) < —en).
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These sets are finite: for K1 = K(gg) as provided by either Theorem 3 or Theorem 4,
and for K» = K»(ep) as provided by Theorem 5, we know that

IS < K1, and IS?| < K».

Note that successful steps are in one-to-one correspondence with the distinct points
in the sequence of iterates x1, x2, x3, . . ..2 The first inequality states at most K of the
distinct points in that list have large gradient. The second inequality states at most K»
of the distinct points in that same list have significantly negative Hessian eigenvalues.
Thus, if more than K1 + K> + 1 distinct points appear among xo, X1, . .., X; (note
the +1 as we added xq to the list), then at least one of these points has both a small
gradient and an almost positive semidefinite Hessian.

In particular, as long as the number of successful iterations among O, ..., k—1
exceeds K| + K> + 1 (strictly), there must exist k € {0, . .., k} such that

llgrad f (xi) || < &g and Amin(Hess f (x)) > —en.

Lemma 3 allows to conclude. O

D Proofs from Section 6: regularity assumptions

Proof of Lemma 4 Since f isareal function on alinear space, standard calculus applies:

~

A A 1 A
f& - [f(O) + (5. VFO0) + 5. V2f(0)[s]>}
1 rl
= [ [ 0{[7F s = 2 F)]ist s anes,
0 Jo
1
Vi) = [vi0+ v o) = [ [V Fa - Vo s

Taking norms on both sides, by a triangular inequality to pass the norm through the
integral and integrating respectively t12t2 and ¢, we find using our main assumption (27)
that

< —L|s|, and

A A A 1 A
'f(s) - |:f(0) + (s, Vf(0)) + §<S’ sz(O)[s]):|

1
~6
[V ~[vF+ v forst]| = seisi>

O

2 This is true because the cost function is strictly decreasing when successful, so that any x; can only be
repeated in one contiguous subset of iterates. Hence, if k is a successful iteration, match it to x (this is
why we omitted x( from the list).
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Proof of Lemma 5 For an arbitrary § € T, M, consider the curve c(t) = Ry (s + 15),
andletg = f oc: R — R. We compute the derivatives of g in two different ways.
On the one hand, g(¢) = f(s + ¢s) so that

g' (1) =Df(s +1)[5] = (V.f (s +15), 5),
gt = <%Vf(s +15), s> = (V2 f(s 4 15)[5], 5).
On the other hand, g(#) = f(c(¢)) so that, using properties of g [46, pp 59-67]:
g'(®) =D f(c)[c'(1)] = (grad f (c(1)), ¢'(1)),
d
g"(1) = ¢ ((gradf o (1)), ¢' (1))
D
= (VC/(,)gradf, c’(t)) + <(gradf oc)(1)), EC/U)>
= (Hess f (c(t)[c' ()], ¢ (1)) + (grad f (c(1)), " (1)).

Equating the different identities for g’(¢) and g”(r) at t = 0 while using ¢’(0) = Tys,
we find for all s € T, M:

(VF(s),5) = (grad f Ry (5)), Ts$) ,
(V2 (5)[5], ) = (Hess f (R (9))[T551, Ty$) + (grad f Ry (5)), ¢”(0)) .

The last term, <grad FR(s)), " (O)), is seen to be the difference of two quadratic
forms in $, so that it is itself a quadratic form in s. This justifies the definition of W;

through polarization. The announced identities follow by identification. O
Proof of Proposition 3 With R, (s) = —2E5— it is easy to derive
p x(s) R y

Ty§ 2 DR, (s)[5] = [ (x +s>sT}s'

1 1
5 In = 3
V14l V14 lis|?

- I — R ()R (s) | §, (45)
[ ]

VI+sI2

where we used x 's = 0 in between the two steps to replace s | with (x 4 s) . The
matrix between brackets is the orthogonal projector from R” to Tg_(5)/M. Thus, its
singular values are upper bounded by 1. Since 7y is an operator on T, M C R”,

1
1Ty llop < ———— < 1.
BV e

This secures the first property with ¢; = 1.
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For the second property, consider U (t) = T;ss and

rna D . d
U't) = EU(I) = PrOJc(z)aU(t),

where Projy(v) =v—y(yv)is the orthogonal projector to Ty M and c(¢) = Ry (ts).

Define g(¢) = W Then, from (45), we have
Ut) = [g(t)[n — e (x + ts)sT] ;. (46)

This is easily differentiated in the embedding space R":

d
aﬁun=[ymu—wwafﬂx+mnT—wanﬂ&

The projection at c(t) zeros out the middle term, as it is parallel to x + ¢s. This offers
a simple expression for U’ (r), where in the last equality we use g’(¢) = —tg(t)3 IIs ||2:

U'(t) = Proj,q, ([g/(r)l,, —_ tg(t)3ssT] s) = —1g(1)? - Proj,,) ([||s||21n + ssT] s) .
The norm can only decrease after projection, so that, for ¢ € [0, 1],

1T’ @O < 2@ Is 11151

2
Let h(r) = 2tg(t)3|s|? = (Hf;'ﬁ% For s = 0, h is identically zero. Otherwise, &
attains its maximum /4 (f = «/EIIISII) = %gns”. It follows that ||U'(t)|| < calls|llIS]]
43

forallz € [0, 1] with ¢, = =5
Finally, we establish the last property. Given s, § € T, M, consider c¢(t) = Ry (s +
ts). Simple calculations yield:

1

m [§ — (5, c(®))c®)] =

d S
(1) = EC(I) = |2Pr0Jc(t)s.

1
V1 +|Is +15]

(47)

This is indeed in the tangent space at c¢(¢). The classical derivative of ¢(¢) is given by

d, 1
—C(l):—

d VI lIs + 152
(s +158,5)

|:<_€, () c@) + (5, c(t)) (1) + mPrOjc(,)S}

S [(s' )y + 2215 b sj|
VI+Is + 52 L L+ lls 5] <07 ]
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here we used (47) and orthogonality of x and § in 1),s) = NN S—
w we u “n g ity X s in (c(1), s) o
(x 4+ 5 + 15, §). The acceleration of ¢ is ¢’ (1) = 2c/(t) = Proj., (%c’(t)). The
first term vanishes after projection, while the second term is unchanged. Overall,

2 1§, § . 2{c(t),s .
) = 2SS g s 2808 g 4s)
—=3 c(t) 1+||s+ts||2 c(t)
V14 ls + 152
In particular, ¢”(0) = —2—5L__Proj 5, so that ||¢” (0)]| < 2min(||s][, 0.4)]|5]>
Jirwe @
and the property holds with ¢3 = 2. (Peculiarly, if s and § are orthogonal, ¢’ (0) = 0.)

m}

In order to prove Theorem 6, we introduce two supporting lemmas (needed only
for the case where M is not compact) and one key lemma. The first lemma below is
similar in spirit to [23, Lem. 2.2].

Lemma6 Let f: M — R be twice -continuously differentiable. Let
{(x0, 50), (x1, 51), - ..} be the points and steps generated by Algorithm 1. Each step
has norm bounded as:

3V (0 3 A
el =  LON L 2 (0, a2 Re0D) . @9)
Smin 2 Gmin

where fk = f o Ry, is the pullback, as in (6).

Proof Owing to the first-order progress condition (2), using Cauchy—Schwarz and the
fact that ¢ > ¢min for all k by design of the algorithm, we find

~ 1 ~
Sminllsell® < grllsill® < —3<sk, V fi(0) + Evsz(0>[sk]>
. 1 5 2
= 3lisell (19 @1+ 5 max (0. —hmin (V22 (0)) lsell )
This defines a quadratic inequality in ||sg||:

2
Sminllskll” — illskll — gk < 0,

where to simplify notation we let hy = %max(O, —Amin (V2 ﬂ(O))) and gy =
3|V fk(O) |I. Since ||si|| must lie between the two roots of this quadratic, we know

in particular that
2 .
hy + hk + 4GSmin 8k - hi 4 \/Smin&k 7

skl <

2S‘min Smin
where in the last step we used /u + v < /u + /v for any u, v > 0. m|
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Lemma7 Let f: M — Rbetwice continuously differentiable. Let {(xg, so), (x1, S1), . .

be the points and steps generated by Algorithm 1. Consider the following subset of
M, obtained by collecting all curves generated by retracted steps (both accepted and
rejected):

N = J{Ry@s) s 1 €0, 17} (50)
k

If the sequence {xg, x1, X2, . . .} remains in a compact subset of M, then N is included
in a compact subset of M.

Proof 1f M is compact, the claim is clear since N € M. Otherwise, we use Lemma 6.
Specifically, considering the upper bound in that lemma, define

a) = | IVEON L3 s (0, ~in(V2 00
Smin 2Gmin

where fx = f o Ry. This is a continuous function of x, and ||s¢|| < «(xx). Since by
assumption {xg, x1, ...} € K with K compact, we find that

VK, llsell < supaCee) < maxa(x) 2 7,
k' xelkl

where r is a finite number. Consider the following subset of the tangent bundle TM:
K ={(x,s) e TM:x ek, |s|, <r}
Since K is compact, X' is compact. Furthermore, since the retraction is a continuous

map, R(K) is compact, and it contains \. O

Lemma8 Let f: M — R be three times continuously differentiable, and consider
the points and steps {(xo, so), (X1, 1), ...} generated by Algorithm 1. Assume the
retraction is second-order nice on this set (see Definition 4). If the set N as defined
by (50) is contained in a compact set IC, then A2 and A4 are satisfied.

Proof For some k and 7 € [0, 1], let (x, s) = (xk, Isx) and define the pullback f =
f o R,. Notice in particular that R, (s) € N C K. Combine the expression for the
Hessian of the pullback (29) with (27) to get:

V2 /)= V20 Hp
< |77 0 Hess f(Ry(s)) o Ty — Hess £ ()| + IWs — Wollop

By definition of Wy (31), using the third condition on the retraction, we find that
Wo =0 and

[Wsllop = max [(Wils1, $)] < llgrad f (R ()] C max ") < e3Glisll,

NS S
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where G = max ¢ |lgrad f (y)| is finite by compactness of K and continuity of the
gradient norm. Thus, it remains to show that

| T o Hess f (Ry(s)) o Ty — Hess f (x) ||0p < Is||

for some constant ¢’. For an arbitrary § € T, M, owing to differentiability properties

of f,
([T; o Hess f (Ry(s)) o Ty — Hess f (x)][51, §)

1
=/0 %(T;; o Hess f (Ry(15)) o Tjs[$], §)dt. (51)

We aim to upper bound the above by ¢’||s||[|§]|>. Consider the curve c(f) = R, (s)
and a tangent vector field U(¢) = T;4s along c. Then, define

h(t) = (T}5 o Hess f (c(1)) o T;[5], §)
= (Hess f (c())[T1s51, Tys$)
= (Hess f(c()U D], U(®)) .

The integrand in (51) is the derivative of the real function h:

d
n(t) = g7 (Hessf(cOUM], U®)

= <2 [HesSf(C(t))[U(t)]] U(t)> + <Hessf(c(t))[U(t)] 2U(t)>
dr ’ " dr

= ((VewHess f) [U®], U@)) + 2 (Hess f (c()[U D], U' (1)),

where U'(¢) £ %U (t) and we used that the Hessian is symmetric. Here, V., Hess f
is the Levi-Civita derivative of the Hessian tensor field at c(r) along ¢’(r)—see [28,
Def. 4.5.7, p 102] for the notion of derivative of a tensor field. For every ¢, the latter
is a symmetric linear operator on the tangent space at c(¢). By Cauchy—Schwarz,

B (1)] < [|VeriyHess fllop | U ()17 + 2| Hess f (c) loplU O 1T ()]
By compactness of /C and continuity of the Hessian, we can define

H = max |[Hess f () llop-
yekl

By linearity of the connection V, if ¢/(¢) # 0,

VeHessf = ||lc'()]| - V v Hessf.
I
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Furthermore, ¢’ (1) = Tyys has norm bounded by the first assumption on the retraction:
I’ @) |l < cylls||. Thus, in all cases, by compactness of K and continuity of the function
v — VyHess f on the tangent bundle TM, there is a finite J as follows:

J

IVenyHess fllop < c1lls]| - max IVyHess flop -
c(t) f op yek,veT, M v f op
o<1

Of course, |U(t)|| < c1||s||. Finally, we bound ||U’(¢)|| using the second property
of the retraction: ||U’(#)|| < c2|ls||||s]|. Collecting what we learned about |A'(¢)| and
injecting in (51),

[{[7;" o Hess f (Ry(s)) o Ty — Hess f (x)][5], $)|

1
< [ Wl < [+ 2010 IsHis P
0

Finally, it follows from Lemma 4 that A2 and A4 hold with L = L' = ¢3G+2cjco H +
c%] and g = 0. We note in closing that the constants G, H, J can be related to the
Lipschitz properties of f, grad f and Hess f, respectively. O

The theorem we wanted to prove now follows as a direct corollary.
Proof of Theorem 6 For the main result, simply combine Lemmas 7 and 8. To support
the closing statement, it is sufficient to verify that Algorithm 1 is a descent method
owing to the step acceptance mechanism and the first part of condition (2). O
E Proofs from Section 7: differential of retraction
Stiefel manifold
Proposition 4 regarding the Stiefel manifold is a corollary of the following statement.

Lemma 9 For the Stiefel manifold M = St(n, p) with the Q-factor retraction R, for
allX e Mand S € Ty M,

1
Omin(DRx (S)) > 1 — 3||S||p — Ensnﬁ,

where || - ||p denotes the Frobenius norm. Moreover, for the special case p = 1 (the
unit sphere in R"), the retraction reduces to Ry(s) = Hi_ijl\ and we have for all
xeM,s e T, M:
Omin(DR, (8)) = ———.
min(DRy(5)) = 1=
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Proof Let X € St(n, p) and § € TxSt(n, p) = {X € R"P : XX + XX = 0} be
fixed. Define Q, R as the thin Q R-decomposition of X + S, thatis, Q isann X p
matrix with orthonormal columns and R is a p x p upper triangular matrix with
positive diagonal entries such that X + S = QR: this decomposition exists and is
unique since X + S has full column rank, as shown below (53). By definition, we have
that Rx (S) = Q.

For a matrix M, define tril(M) as the lower triangular portion of the matrix M, that
is, tril(M);; = M;; if i > j and O otherwise. Further define pskew (M) as

Pskew (M) £ tril(M) — tril(M) .

As derived in [3, Ex. 8.1.5] (see also the erratum for the reference) we have a formula
for the directional derivative of the retraction along any Z € TxSt(n, p):

DRx(5)[Z] = Qpskew(QZR™Y + (I — Q0" ZR™". (52)

We first confirm that R is always invertible. To see this, note that S being tangent at
X means STX 4+ X 'S = 0 and therefore

RR=X+)'X+S)=X"X+X"S+SX+S5'S=1,+S'S, (53)
N— —

start reading here

which shows R is invertible. Moreover the above expression also implies that:

ok(R) = ok (X + 8) = V(X + )TX + 8) = V1 + 1(STS) = v/1 + 0x(5)2,

where oy (M) represents the kth singular value of M and X likewise extracts the kth
eigenvalue (in decreasing order for symmetric matrices). In particular we have that

1
V14 Omax (5)?

—1 1 2
omin(R™) = > >1- EHS”F,

1
JUHISI2
Omar(R7) = e < 1

vV 1 +(7min(S)2 B

Further note that since QR = X + S, we have that Q = (X + S)R~! and therefore

(54)

QZR '=R HT(X+5)ZrR™!
=R HXTZRT"+ R HTsTZR.
The first term above is always skew-symmetric since Z is tangent at X, so that
X"Z + Z"X = 0. Furthermore, for any skew-symmetric matrix M, pskew(M) = M.
Therefore, using (52),
DRy ($)[Z] = Qpskew(Q 'ZR™) + (I — QQHZR™!
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= 0 (pwen(@ZR™) = QTZR") + ZR™!

= 0 (e (RTHTSTZR™Y = (RTHTSTZR™) + 2R, (59)

where in the last step we used X R~! — Q = —SR~!. Further note that for any matrix
M of size p x p,

|0 (pskew (M) — M)|lp = |tril (M) — tril(M) " — M| < 3| M. (56)
Hence, we have that,

IDRx () Z1llF = 1ZR ™ lr = 3I(R™)TSTZR ™Ik
= 1Z 1l (omin(R™) = 30max (R omax()) . (57)

where we have used [|A||[Fomin(B) < ||AB|F < ||A||[Fomax (B) multiple times. Using
the bounds on the singular values of R~! (derived in (54)) we get that

1
IDRx () Z1llF = I Zr (1 — S ISIE - 3||S||F) :
Since this holds for all tangent vectors Z, we get that
Lo
omin(DRx (8)) = 1 —=3|S|lr — S IS

To prove a better bound for the case of p = 1 (the sphere), we improve the analysis
of the expression derived in (55). Note that for p = 1, the matrix inside the pgew

operator is a scalar, whose skew-symmetric part is necessarily zero. Also note that Q

is a single column matrix with value 2+ and R = ||x + 5. Also, X 'SX'Z =0

. llx+sll
since S, Z are tangent. Therefore,

DRx($)[Z]=ZR™'— QRN TsTZR™!

1 ( s'z Gt )>
= z— X+
llx + sl 1+ |Is?

1 ( sz sz )
= 7— s — x).
llx + sl 1+ s 1+ s

Since X IS Orthog()nal tos and Z,
‘ ( : >

2

_ 2, (5722 ( 5Tz ) )
- 2" =2 + 14 |Is
1+ |Is]1? (” | 14 |s? 1+ )12 ( lIs11%)
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_ - <||Z||2 _ ﬂ)
1+ Is)? 1+ [Is]1?

1 lIs]1? )

2
>zl —— |l — —
Izl 1+||s||2< 1+ |s]|?

=zl ——.
(1 + [I5]%)2

The worst-case scenario is achieved when z and s are aligned. Overall, we get

DR, )]l = lzl| ——=,
IDRx ()[z]ll = I ”1+||s||2

which establishes the bound for the sphere. O

Differential of exponential map for manifolds with bounded curvature

Proposition 5 regarding the differential of the exponential map on complete manifolds
with bounded sectional curvature follows as a corollary of the following statement.

Lemma 10 Assume all sectional curvatures of M, complete, are bounded above by
C:

If C <0, then omin(DExp, (s)) = 1;

IfC =% >0and||s|| < 7R, then 1 > opin(DExp, (s)) > W

As usual, we use the convention sin(t)/t = 1 att = 0.

Proof This results from a combination of few standard facts in Riemannian geometry:

1. [42, Prop. 10.10] Given any two tangent vectors s,§ € T, M, J(t) =
DExp, (ts)[ts] is the unique Jacobi field along the geodesic y (1) = Exp,(zs)
satisfying J(0) = 0 and 2 7 (0) = 5.

2. In particular, if s = as for some o € R so that § and s are parallel, then

d d
J(t) = DExp, (ts)]1[t5] = aEpr (ts + qts) = —y(+qoat)

qg=0 dq g=0

= aty'(t) = t Py (5),

using ¥'(t) = Pys(s). It remains to understand the case where § is orthogonal to s.
3. [42, Prop. 10.12] If M has constant sectional curvature C, ||s|| = 1 and (s, s) = 0,
the Jacobi field above is given by:

J(t) = sc(t) Pis($),
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where P;; denotes parallel transport along y as in (13) and

t if C =0,
sc(t) = { Rsin(t/R) if C =1 >0, and
Rsinh(t/R) if C = —45.

This can be reparameterized to allow for ||s|| # 1. Evaluating at r = 1 and using
linearity in §, we find for any s, § € T, M that

DExp, (5)[5] = P, (s‘“ + Scﬂi”)ﬁ) : (58)

where s is the part of § which is orthogonal to s and s is the part of s which is
parallel to s—this corresponds to expression (20). By isometry of parallel transport,
it is a simple exercise in linear algebra to deduce that

Sc(||S||)>
Isit /)

omin(DExp, (s)) = min (l ,

4. [42, Thm. 11.9(a)] Consider the case where s is orthogonal to s of unit norm once
again: the Jacobi field comparison theorem states that if the sectional curvatures of
M are upper-bounded by C, then || J ()| is at least as large as what it would be if M
had constant sectional curvature C—with the additional condition that ||s|| < 7 R
if C = 1/R* > 0. This leads to the conclusion through similar developments
as above, using also [42, Prop. 10.7] to separate the components of J(¢) that are
parallel or orthogonal to y'(t). O

Extending to general retractions

In order to prove Theorem 7, we first introduce a result from topology. We follow [7],
including the blanket assumption that all encountered topological spaces are Hausdorff
(page 65 in that reference)—this is the case for us so long as the topology of M itself is
Hausdorff, which most authors require as part of the definition of a smooth manifold.
Products of topological spaces are equipped with the product topology. Neighborhoods
are open. A correspondence I : Y — Z maps points in Y to subsets of Z.

Definition 5 (Upper semicontinuous (u.s.c.) mapping) A correspondence I': Y — Z
between two topological spaces Y, Z is a u.s.c. mapping if, for all yin Y, I'(y) is a
compact subset of Z and, for any neighborhood V of I"(y), there exists a neighborhood
U of y such that, forallu e U, I'(u) C V.

Theorem 8 (Bergé [7, Thm. VL.2, p 116]) If ¢ is an upper semicontinuous, real-valued
SJunctioninY x Z and I is a u.s.c. mapping of Y into Z (two topological spaces) such
that I"(y) is nonempty for each y, then the real-valued function M defined by

M(y) = Zrerlra(>;)¢(y, 2)

@ Springer



N. Agarwal et al.

is upper semicontinuous. (Under the assumptions, the maximum is indeed attained.)

We use the above theorem to establish our result. Manifolds (including tangent
bundles) are equipped with the natural topology inherited from their smooth structure.

Proof of Theorem 7 1t is sufficient to show that the function

t(r) = inf Omin (DR (5)) (59
(x,8)€ETM:xeld,||s | <r

is lower semicontinuous from R™ = {r € R : r > 0} to IR, with respect to their usual
topologies. Indeed, (0) = 1 owing to the fact that DR, (0) is the identity map for all
x, and ¢ being lower semicontinuous means that it cannot “jump down”. Explicitly,
lower semicontinuity at » = 0 implies that, for all § > 0, there exists a > 0 such that
forallr <awehaver(r) >1(0)—8=1—82b.

To this end, consider the correspondence I": Rt — TM defined by

I'r)y={(x,s) eTM:x eld and ||s|x <r}. (60)

Further consider the function ¢: R* x TM — R defined by ¢(r, (x,s)) =
—0omin(DR, (s)). Then, t(r) = —M (r), where

M(@r)= sup @(r,(x,s)). (61)
(x,s)el(r)

Thus, we must show M is upper semicontinuous. By Theorem 8, this is the case if

1. ¢ is upper semicontinuous,

2. I'(r) is nonempty and compact for all » > 0, and

3. Foranyr > 0and any neighborhood V of I" (r) in TM, there exists a neighborhood
I of r in R such that, for all ' € I, we have I'(+') C V.

The first condition holds a fortiori since ¢ is continuous, owing to smoothness of
R: TM — M. The second condition holds since ¢/ is nonempty and compact.
For the third condition, we show in Lemma 11 below that there exists a continuous
function A: &/ — R (continuous with respect to the subspace topology) such that
{(x,5) € TM:x € Uand ||s]ly < A(x)} € Vand A(x) > r forall x € U (if
M is not connected, apply the lemma to each connected component which intersects
with U). As a result, min,¢s A(x) = r 4 ¢ for some ¢ > 0 (using U compact), and
I’ (r 4+ ¢) is included in V. We conclude that I = [0, r + ¢) is a suitable neighborhood
of r to verify the condition. O

We now state and prove the last piece of the puzzle, which applies above with r (x)
constant (L = 0). Although the context is quite different, the first part of the proof is
inspired by that of the tubular neighborhood theorem in [42, Thm. 5.25].

Lemma 11 Let U be any subset of a connected Riemannian manifold M and let
r: U — RY be L-Lipschitz continuous with respect to the Riemannian distance dist
on M, that is,

Vx,x' el, |r(x)—r")| < Ldist(x, x").
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Consider this subset of the tangent bundle:

{(x,5) e TM:x eld and ||s|x <r(x)}.

For any neighborhoodV of this set in TM, there exists an (L + 1)-Lipschitz continuous
function A: U — RT such that A(x) > r(x) for all x € U and

{(x,8) e TM:x el and ||s||x < A(x)} C V.

Proof Consider the following open subsets of the tangent bundle, defined for each
xeMands e R:

Vs(x) = {(x',s") € TM :dist(x,x") <8 —r(x)and ||s'|» < 8}.
Referring to these sets, define the function A: U/ — R as:
A(x)=sup{d e R: Vs(x) € V}.

This is well defined since V;.(x)(x) = ¥, so that A(x) > r(x) forall x. If A(x) = oo for

some x, then )V = TM and the claim is clear (for example, redefine A(x) = r(x) + 1

for all x). Thus, we assume A(x) finite for all x. The rest of the proof is in two parts.
Step 1. A is Lipschitz continuous. Pick x, x' € U, arbitrary. We must show

A(x) — A(x)) < (L + Ddist(x, x7).

Then, by reversing the roles of x and x’, we get |[A(x) — A(x")| < (L + 1)dist(x, x'),
as desired. If A(x) < (L 4+ 1)dist(x, x"), the claim is clear since A(x") > 0. Thus, we
now assume A(x) > (L + 1)dist(x, x”). Define § = A(x) — (L + D)dist(x, x") > 0.
It is sufficient to show that Vs(x") € V), as this implies A(x") > § = A(x) — (L +
1)dist(x, x”), allowing us to conclude. To this end, we show the first inclusion in:

Vs(x") € Vau)(x) S V.

Consider an arbitrary (x”, s”) € Vs(x'). This implies two things: first, ||s”[|,» < § <
A(x), and second:

dist(x”, x) < dist(x”, x") + dist(x’, x)
< 8 —r(x)) + dist(x/, x)
= A(x) —r(x) +r(x) — r(x") — Ldist(x, x)
< A(x) —r(x),

where in the last step we used r(x) — r(x’) < Ldist(x, x’) since r is L-Lipschitz
continuous on /. As aresult, (x”, s”) is in Va(y) (x), which concludes this part of the
proof.
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Step 2: A(x) > r(x) forall x € U. Pick x € U, arbitrary: V) is a neighborhood of
{(x,8) e TM :[Isllx = r(0)}. (62)

The claim is that there exists ¢ > 0 such that
{(x',s") € TM : dist(x,x") < eand [Is']¢ <r(x)+ ¢} (63)

is included in V. Indeed, that would show that A(x) > r(x) 4+ & > r(x). To show this,
we construct special coordinates on T.M around x.

The (inverse of the) exponential map at x restricted to tangent vectors of norm
strictly less than inj(x) (the injectivity radius at x) provides a diffeomorphism ¢ from
W <€ M (the open geodesic ball of radius inj(x) around x) to B(0,inj(x)): the
open ball centered around the origin in the Euclidean space R?, where d = dim M.
Additionally, from the chart (W, ¢), we extract coordinate vector fields on WV: a set of
smooth vector fields Wy, ..., Wz on W such that, ateach pointin W, the corresponding
tangent vectors form a basis for the tangent space. We further orthonormalize this local
frame (see [42, Prop. 2.8]) into a new local frame, E1, ..., Eg4, so thatforeachx’ € W
we have that E1(x), ..., E4(x") form an orthonormal basis for T,/ M (with respect
to the Riemannian metric at x"). Then, the map

v s) = (). c(x'.s))  with (s = ((Ex(x).s") ... (Ea(x).s"),)

establishes a diffeomorphism between TV and B(0, inj(x)) x R?, with the following
properties:

1. dist(x, x") = |l¢(x")|| (in particular, ¢(x) = 0), and
2. Forany s’, v’ € Ty M, it holds (s’, v/)x, = (¢, s, t(x', V).

(Here, (-, -) and || - || denote the Euclidean inner product and norm in RY)
Expressed in these coordinates (that is, mapped through /), the set in (62) becomes:

Do = {0} x B(0, r(x)),
where B(0, r(x)) denotes the closed Euclidean ball of radius r(x) around the origin
in RZ. Of course, V N TW maps to a neighborhood of Dy in R? x R?: call it O.
Similarly, the set in (63) maps to:
D, = B(0, ¢) x B(0, r(x) +¢€).
It remains to show that there exists € > 0 such that D, is included in O.
Use this distance on R? x R: dist((y, 2), (', 2))) = max(|ly — ¥'l, llz — ZI}).

This distance is compatible with the usual topology. For each (0, z) in Dy, there exists
&; > 0 such that

C e ={0/.2) eRI xR Ly < e and |z — 2] < .}
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is included in O (this is where we use the fact that V—hence O—is open). The
collection of open sets C(z, €;/2) forms an open cover of Dy. Since Dy is compact, we
may extract a finite subcover, thatis, we select z1, . . ., z, such that the sets C(z;, &, /2)
cover Dy. Now, define & = min;—;, ., &;, /2 (necessarily positive), and consider any
point (y, z) € D,. We must show that (y, z) is in O. To this end, let 7 denote the point
in B(0, r(x)) which is closest to z. Since (0, Z) is in Dy, there exists i such that (0, Z)
isin C(z;, &, /2). As aresult,

Iz —zill = llz =zl + Iz = zill <& +&/2 < &.

Likewise, ||y|| < € < &;/2 < &;. Thus, we conclude that (y, z) is in C(z;, &),
which is included in O. This confirms D, is in O, so that the set in (63) is in V for
some ¢ > 0. O
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