

Durability of Commercially Available GFRP Reinforcement in Seawater-Mixed Concrete under Accelerated Aging Conditions

Morteza Khatibmasjedi¹, Sivakumar Ramanathan², Prannoy Suraneni³, Antonio Nanni⁴

⁴ ¹ Assistant Scientist, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of
⁵ Miami, McArthur Engineering Bldg., 1251 Memorial Dr., Room 325, Coral Gables, FL 33146
⁶ (corresponding author). E-mail: morteza.khatib@umiami.edu

⁷ ² Ph.D. Candidate, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of
⁸ Miami, McArthur Engineering Bldg., 1251 Memorial Dr., Room 325, Coral Gables, FL 33146

⁹ ³ Assistant Professor, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of
10 Miami, McArthur Engineering Bldg., 1251 Memorial Dr., Room 325, Coral Gables, FL 33146

⁴Professor and Chair, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Miami, McArthur Engineering Bldg., 1251 Memorial Dr., Room 325, Coral Gables, FL 33146

13 Abstract

14 The effect of seawater used as mixing water in concrete on the long-term properties of GFRP bars
15 is the focus of this work. The durability of GFRP bars embedded in seawater-mixed concrete was
16 studied in terms of residual mechanical properties (i.e. tensile strength, horizontal and transverse
17 shear strength, and GFRP-concrete bond strength) after immersion in seawater at 60 °C for a period
18 of 24 months. Benchmark specimens were also cast using conventional concrete. Results showed
19 comparable performance in tensile and shear properties between the two sets of bars with some
20 degradation of the mechanical properties in both cases. However, bond strength showed
21 differences and the seawater-mixed concrete showed slightly lower bond performance over time.

22 SEM was used to identify degradation mechanisms. Areas with large concentrations of voids near
23 the bar edge, formed during manufacturing, may provide a pathway for moisture and alkalis which
24 could lead to the fiber disintegration and debonding between fibers and the resin. Over time, a
25 greater number of fibers are affected, which leads to the formation of significant cracking near the
26 edge. Results were qualitatively similar for embedded bars in seawater-mixed and conventional
27 concrete, explaining the similar reduction in tensile properties, horizontal shear, and transverse
28 shear strength seen in both sets of bars. However, the bond strength does not significantly decrease
29 in these specimens over time for unclear reasons.

30

31 **Key words:** GFRP, durability, seawater, concrete, bond strength

32

33 **Introduction**

34 As fresh water is a finite resource, replacing fresh water with seawater for mixing concrete may
35 be potentially advantageous, especially in regions such as the Middle East where fresh water may
36 be scarce. Seawater-mixed concrete could also be a valuable repair material in reconstruction after
37 natural disasters. Other similar solutions which lead to the conservation of resources are the use of
38 beach sand to replace conventional concrete sand. However, mixing concrete using seawater (or
39 beach sand) is prohibited in most building codes due to potential corrosion of the steel
40 reinforcement (Ghorab et al. 1989). One solution is the use of non-ferrous, non-corrosive
41 reinforcement such as Glass Fiber Reinforced Polymer (GFRP). GFRP has shown promise as a
42 replacement for steel in chloride-rich environments, such as marine structures, due to its non-
43 corrosive nature (Nanni et al. 2014). The current study aims to assess the long-term durability of
44 GFRP bars in seawater-mixed concrete using accelerated aging as there are no existing seawater-

45 mixed concrete structures reinforced with GFRP bars. Longer-term testing on field structures and
46 using conventional aging methods is ongoing, but this is out of the scope of this work.

47 Long-term performance of GFRP reinforcement in conventional concrete has been studied
48 using field and accelerated aging data (Micelli and Nanni 2004; Nanni et al. 2014). Concrete cores
49 with GFRP bars from a bridge in service for 15 years have been extracted and no significant
50 changes in GFRP microstructural properties, chemical composition, glass transition temperature
51 (T_g), and fiber content were observed (Gooranorimi and Nanni 2017). A study on GFRP bars in
52 five to eight year old concrete structures exposed to natural environments did not show any
53 changes in the resin matrix and T_g of extracted GFRP bars compared to GFRP bars preserved under
54 controlled laboratory conditions (Mufti et al. 2007). Based on these results, it was concluded that
55 GFRP bars were “intact” after being in service for that specific period of time.

56 Several studies have employed elevated temperature as the acceleration factor in order to
57 examine durability of GFRP reinforcement in concrete structures (Chen et al. 2007; El-Maaddawy
58 et al. 2016; Katsuki 1995; Micelli and Nanni 2004; Murphy et al. 1999; Porter 1997; Robert and
59 Benmokrane 2013). Degradation of GFRP bars mainly depends on the alkali diffusion and silica
60 dissolution rates in alkaline environment, both of which are accelerated by elevated temperatures
61 (Byars et al. 2003; Robert et al. 2009). The Arrhenius model has been used to correlate data from
62 accelerated aging to long-term durability of GFRP bars (Bank et al. 2003). Most studies addressed
63 aged bars in simulated concrete pore solutions (Katsuki 1995; Micelli and Nanni 2004; Murphy et
64 al. 1999; Porter 1997), but only few studies were performed on GFRP bars embedded in concrete,
65 which better represents field conditions (Chen et al. 2007; El-Maaddawy et al. 2016; Robert and
66 Benmokrane 2013). Even fewer studies have been performed on GFRP bars embedded in concrete
67 and exposed to saline solutions, which represents marine conditions (El-Maaddawy et al. 2016;

68 Robert and Benmokrane 2013). While the exposure conditions chosen here are reasonably close
69 to marine conditions, they do not exactly represent marine conditions due to use of higher
70 temperatures and uncracked sections which are not loaded or fatigued. Recent efforts to predict
71 the service life of GFRP bars using Arrhenius model, applied to the data collected by accelerated
72 ageing in seawater at temperatures up to 60 °C, have been inconclusive (Kampmann et al. 2018).
73 It has been suggested that an Arrhenius approach may not be applicable due to the complicated
74 physicochemical degradation mechanism of GFRP bars immersed in seawater at high
75 temperatures. This is in contrast with the underlying assumption of a single component chemical
76 reaction of the Arrhenius model.

77 A study of mortar-wrapped GFRP bars immersed in 3% NaCl solutions at 23, 40, 50, and
78 70 °C for 365 days did not show significant degradation in tensile properties and microstructure,
79 even at high temperatures (Robert and Benmokrane 2013). The residual strength of two types of
80 GFRP bars embedded in seawater-mixed concrete immersed in tap water at 20, 40, and 60 °C for
81 450 days has been studied (El-Maaddawy et al. 2016). The authors found different performance
82 for two types of GFRP bars – tensile strength reduction was 2 – 15% for the GFRP bar Type I and
83 19 – 50% for GFRP bar Type II (El-Maaddawy et al. 2016). In agreement with other literature
84 (Nanni et al. 2014; Ruiz Emparanza et al. 2017), the authors concluded that durability of GFRP
85 reinforcement is highly dependent on the bar void content and moisture absorption, which are
86 affected by chemical composition of the resin, characteristics of the fiber-resin interface, and
87 interfacial imperfections that may develop during the manufacturing process.

88 Despite the vast amount of research on GFRP bar durability (Abbasi and Hogg 2005; Bank
89 et al. 1998; Bank et al. 1998; Chen et al. 2007; Hao et al. 2009; Robert and Benmokrane 2010;
90 Zhou et al. 2012), the long-term properties of the bond between GFRP bar and concrete have not

91 been studied in detail (Chen et al. 2007; Robert and Benmokrane 2010). To the authors' best
92 knowledge, this has never been studied with seawater-mixed concrete. It is unclear whether the
93 high concentrations of certain ions (i.e., chloride, sodium, potassium, etc.) in the seawater might
94 result in a reduced durability of the GFRP reinforcement.

95 The current study evaluates the durability of GFRP bars embedded in seawater-mixed
96 concrete and conventional concrete and immersed in seawater at 60 °C for 24 months. Residual
97 mechanical properties (i.e., tensile properties, horizontal and transverse shear strengths, and bond
98 strength) of the GFRP bars, and the reasons behind their degradation are discussed.

99

100 **Experimental Materials and Methods**

101 ***Characterization of Raw Materials***

102 **Concrete** – A type II cement meeting the requirements of ASTM C150/C150M-19a (ASTM 2019)
103 and a type F fly ash conforming to ASTM C618-19 (ASTM 2019) were used in this study. Tap
104 water and seawater from Key Biscayne Bay (FL) were used as mixing water, respectively, with
105 chemical composition (determined by inductively coupled plasma) as shown in Table 1. Further
106 details are presented elsewhere (Khatibmasjedi et al. 2016). Miami oolite with a nominal
107 maximum aggregate size of 25 mm was used as the coarse aggregate and silica sand as the fine
108 aggregate.

109 **GFRP** – The bars were made of boron-free E-CR glass fibers embedded in a vinyl ester
110 resin. The bar manufacturer did not disclose the presence and amounts of fillers and additives to
111 the resin system other than stating that the GFRP bars are in compliance with AC 454 (ICC-ES
112 2015). The bars had a double helically twisted wrapped fiber as a surface enhancement. The
113 mechanical and physical properties of 15.8 mm diameter unaged GFRP bars, serving as the

114 benchmark, were examined per ASTM standards and summarized in Table 2. It should be noted
115 that these bars are compliant with ASTM D7957/D7957M—17 (ASTM 2017) as shown in Table
116 2. Further details on the testing of GFRP bars are presented elsewhere (Nanni et al. 2014). Five
117 repetitions were performed for each test and the coefficient of variation (CoV, %) for the collected
118 data is also provided in Table 2. A close-up picture of the GFRP bar used in this study is shown in
119 Figure 1.

120

121 ***Concrete Mixtures***

122 Reinforced concrete specimens from two different mixtures with the water to cementitious
123 materials ratio of 0.40 were cast: Mix A is the reference conventional concrete, and Mix B is the
124 seawater-mixed concrete. The mixture proportions of Mix B are identical to those of Mix A, but
125 fresh water is substituted with seawater from Key Biscayne Bay (Florida). Table 3 shows the
126 mixture proportions. The 28-day compressive strength values of Mix A and Mix B were 52.5 and
127 53.1 MPa, respectively. Further details about the concrete are presented elsewhere (Khatibmasjedi
128 and Nanni 2017).

129

130 ***Durability of GFRP Bars in Seawater Concrete***

131 Accelerated Aging – For all tests except the bond strength test, GFRP bars were embedded in
132 concrete elements (beams) made from the two mixtures with dimensions of 152 x 190 x 1,422 mm
133 with a minimum 30 mm concrete cover. Each specimen was reinforced with four GFRP bars, 1,360
134 mm long, and cured in the lab environment for 28 days. The configuration of the reinforced
135 specimens is shown in Figure 2. Three concrete specimens were tested immediately after 28 days
136 of lab curing to measure the benchmark properties. The rest of the concrete specimens were

137 immersed in seawater at 60 °C as accelerated conditioning. This environment increases the
138 diffusion rate of the concrete pore solution into the GFRP bars and accelerates chemical
139 degradation processes for the same time of immersion (Robert et al. 2009). Aside from self-weight,
140 no load was applied to the beams, therefore, beams were uncracked during conditioning. Every six
141 months, elements were removed from the hot seawater chamber and the bars were extracted from
142 the concrete by splitting the concrete beams using a hammer drill. Extreme caution was exercised
143 in the extraction so as not to damage the bars. Extracted bars were tested in terms of residual tensile
144 properties and horizontal and transverse shear strength as indicators of degradation due to
145 exposure. ASTM test methods were used with at least three repetitions per test. Tests were
146 performed at room temperature 48 hours after the extraction. This time period is needed to install
147 the steel-pipe anchors for tensile tests; all specimens were dried at room temperature for 48 hours
148 before mechanical tests.

149 Tensile Properties – The ultimate tensile strength and tensile chord modulus of elasticity
150 of extracted GFRP bars after 6, 12, 18, and 24 months exposure to the combination of concrete
151 environment and accelerated conditioning were examined per ASTM D7205/D7205M-06(2016)
152 (ASTM 2016). Steel-pipe anchors were installed using rapid set cement paste and each specimen
153 was instrumented with a linear variable differential transformer (LVDT) to capture elongation
154 during testing. The test setup to measure the tensile properties is shown in Figure 3(a).

155 Horizontal Shear Strength – The horizontal shear strength of the extracted GFRP bars was
156 determined per ASTM D4475-02(2016) (ASTM 2016). GFRP segments, 82 mm long (span-to-
157 diameter ratio of five) were center-loaded. The ends of the specimen rested on two supports that
158 allowed the specimen to bend. Figure 3(b) shows the test setup to measure the horizontal shear

159 strength. The load was applied at a rate (of crosshead motion) of 1.3 mm/min. The specimen was
160 deflected until shear failure occurred at the mid-plane of the horizontally-supported bar.

161 Transverse Shear Strength – Extracted GFRP bars were cut into 228-mm long segments
162 and fitted into a double-shear fixture with appropriate cutting blades and clamped into place as per
163 ASTM D7617/D7617M-11(2017) (ASTM 2017). The shear fixture was then mounted into a
164 universal mechanical testing machine and loaded to failure while recording force and crosshead
165 displacement. The test setup to measure the transverse shear strength is shown in Figure 3(c).

166 Bond Strength of GFRP Bars – The specimens used for the bond strength were as per
167 ASTM D7913/D7913M-14 (ASTM 2014). For this test, 200-mm seawater-mixed and
168 conventional concrete cubes with the mixture design as in Table 3 and embedded 10-mm diameter
169 GFRP bar (of the same type of bars as the ones detailed in Table 2 and Fig. 1) were cast and cured
170 in the lab environment for 28 days. Bond testing was done at this time, and then again after
171 exposure to seawater at 60 °C at an interval of six months. The reason for using GFRP bars with
172 smaller diameter for this test is to avoid the splitting of concrete specimens which is not the
173 desirable failure. The total bond length was 5d, where d is the bar diameter. The steel-pipe anchor
174 was used at the loading-end and an LVDT was used at the free-end of GFRP bars to measure slip.
175 The bearing surface of the concrete cube was placed in contact with the loading plate. Figure 3(d)
176 shows the test setup to measure the bond strength. Tensile loading at the rate of 20 kN /min was
177 applied and continued until the force decreased and the free-end slip was at least 2.5 mm.

178 Microstructural Studies – Extracted GFRP specimens were polished using different grit
179 levels (i.e., 180, 300, 600 and 1200) of sandpaper using grinding and polishing equipment. The
180 specimens were then fine polished using a wet-polishing agent and 3 and 1 μm polycrystalline

181 diamond paste. Prior to imaging, specimens were placed in an oven at 50 °C for 24 h to remove
182 any moisture introduced during polishing. Samples were then cleaned using an ultrasonic cleaner
183 and gold-coated prior to imaging. Scanning Electron Microscopy (SEM) imaging and Energy-
184 Dispersive X-ray (EDX) spectroscopy were utilized to inspect the microstructure and chemical
185 composition of the extracted bars in order to better explain degradation mechanisms, both physical
186 and chemical. Both backscatter and secondary imaging were used. While the exact setting
187 parameters varied, typical settings are: Voltage = 15 kV, Working Distance = 12 mm, Spot Size =
188 60, Magnification = 500x, and Dead Time = 19 – 23%.

189

190 **Results and Discussion**

191 ***Tensile Properties***

192 All specimens failed by rupture as shown in Figure 4(a). The results for the tensile strength and
193 tensile chord modulus of elasticity of the extracted GFRP bars after 6, 12, 18, and 24 months
194 exposure to the combination of concrete environment and accelerated conditioning are presented
195 in Figure 5 and Figure 6, respectively.

196 Figure 5 shows the change in the tensile strength and reduction percentage (which is the
197 reduction in the value of the property at a certain time with respect to the original value) as a
198 function of immersion time. The chord modulus and reduction percentage as a function of time are
199 shown in Figure 6. From these figures, it is apparent that extracted bars from seawater-mixed
200 concrete show comparable performance with the ones from conventional concrete. The tensile
201 strength and chord modulus of both sets of bars slightly increased over the first six months, which
202 may be due to resin crosslinking due to the elevated temperature of the conditioning (Fergani et
203 al. 2018). Both properties then reduce over time, with reductions of 26 and 21% for extracted bars

204 from conventional and seawater-mixed concrete, respectively, after 24 months exposure.
205 Corresponding reductions in chord modulus are 11 and 12% for extracted bars from conventional
206 concrete and seawater-mixed concrete, respectively. The reduction in the tensile strengths is
207 comparable to the reduction in other properties (discussed later). The general reason for the
208 decrease in tensile strength (and other properties) is likely due to the dissolution of silica in the
209 rebar at high temperature in the alkaline environment of concrete (Mukherjee and Arwika 2005).
210 More detail is provided in the section on microstructural studies. Our results are in general
211 agreement with literature, though results from the literature show significant variations in the
212 reduction values, depending on bar type, exposure temperature, and exposure solution
213 (Almusallam et al. 2013; El-Maaddawy et al. 2016; Park 2012; Robert and Benmokrane 2013;
214 Robert et al. 2009). El-Maaddawy and co-workers (2016) examined seawater-mixed concrete
215 beams reinforced with GFRP and immersed in tap water at 60 °C for 15 months and found that
216 Type I GFRP bars showed better performance than Type II GFRP bars (2 – 15% reduction
217 compared to 19 – 50% reduction). Mortar-wrapped GFRP bars showed 10% reduction in saline
218 solution for 365 days at 50 °C and 16% reduction in tap water at 50 °C for 240 days, indicating
219 that immersion in the saline solution had no more impact on the durability of GFRP bars than
220 immersion in tap water (Robert and Benmokrane 2013; Robert et al. 2009). Others have shown
221 tensile strength reductions of less than 20% (Almusallam et al. 2013; Park 2012). The tensile
222 modulus of the GFRP bars was not affected by aging in a concrete environment in saline solution
223 or tap water (Robert and Benmokrane 2013; Robert et al. 2009), whereas Almusallam and co-
224 workers (2013) showed 9% or lesser reduction in tensile modulus for GFRP reinforced specimens
225 immersed in tap water, seawater, and alkaline baths at 50 °C for 18 months.

226 Apart from the differences in conditioning regimes, the scatter in results obtained by
227 various authors can clearly be attributed to GFRP bar constituents and manufacturing. Bars tested
228 were made of E or E-CR glass and more importantly with different resin systems (never disclosed
229 aside from the generic name of vinyl ester) including undisclosed additives and fillers.
230 Furthermore, manufacturing procedures such as speed of pultrusion and degree of curing affect
231 the quality of the final product. Thus, when referring to a GFRP bar, one is only considering a
232 “class” of products rather than a well-defined system and all comparisons to literature suffer from
233 some limitations in studies using GFRP.

234

235 ***Horizontal Shear Strength***

236 GFRP specimens in short beam tests failed in shear as shown in Figure 4(b) (horizontal cracks
237 along the mid-plane of the specimens). Figure 7 shows the changes in horizontal shear strength
238 and reduction percentage as a function of time. One standard deviation on each side of the average
239 is shown by error bars. Comparable performance between extracted bars from seawater-mixed
240 concrete and conventional concrete can be observed. The horizontal shear strength decreases as
241 exposure time increases for similar reasons as the tensile strength decrease. At the end of 24
242 months exposure, the reductions in the horizontal shear strength are 21 and 26% for GFRP
243 extracted bars from conventional concrete and seawater-mixed concrete, respectively. These
244 numbers are in general agreement with the literature. Fergani and co-workers (2018) examined the
245 effect of sustained load and aggressive environments on the horizontal shear strength and
246 concluded that exposure solution had no significant effect on the strength reduction. Stressed
247 GFRP bars showed better performance with 15% reduction compared to unstressed bars, which
248 showed 25% reduction after 270 days. A reduction of 12% in the horizontal shear strength was

249 reported by Chen and co-workers (2007) for GFRP bars embedded in normal concrete and exposed
250 to simulated high performance concrete pore solution at 60 °C. Bakis and co-workers (2005)
251 examined the effect of $\text{Ca}(\text{OH})_2$ environment on the horizontal shear strength of the GFRP bars
252 and steady loss of strength until one year was observed, at which time the strength loss was 25%.

253

254 ***Transverse Shear Strength***

255 Typical failure mode of the GFRP bars subjected to transverse shear strength test is shown in
256 Figure 4(c). Figure 8 shows the changes in the transverse shear strength and reduction percentage
257 as a function of time. Error bars show one standard deviation on each side of the average. A similar
258 trend to the horizontal shear strength is observed here. Performance is comparable between GFRP
259 bars extracted from seawater-mixed and conventional concrete. Transverse shear strength
260 decreases over time due to glass dissolution (Mukherjee and Arwikar 2005), and at 24-month
261 exposure, reduction values are 28 and 25% for bars extracted from conventional concrete and
262 seawater-mixed concrete, respectively. It is not possible to compare these results with those from
263 literature, as to the authors' best knowledge, there is no study that has examined the effect of
264 concrete environment and saline solution on the transverse shear strength of GFRP bars.

265

266 ***Bond Strength of GFRP Bars***

267 Pull out test specimens failed by slippage. Specimens were split in half to check the failure mode.
268 As shown in Figure 4(d), the failure occurs at the interface of the double helically twisted wrapped
269 fibers and the bar core. This is due to the lower shear strength at this interface compared to the
270 concrete shear strength. This is consistent with some of technical literature (Davalos et al. 2008;

271 Robert and Benmokrane 2010). Specimens tested immediately after curing in the lab environment
272 and the conditioned specimens (immersed in seawater at 60 °C) exhibited the same failure modes.
273 Changes in bond strength and reduction percentage as a function of time is shown in Figure 9.
274 Each error bar shows one standard deviation on each side of the average. The bond strength data
275 at 6 months is not shown as there were issues with the experiments at this age. Subsequent
276 immersion in seawater at 60 °C resulted in 6% increase in the bond strength for conventional
277 concrete and 11% reduction for seawater-mixed concrete after 24 months. The reduction in values
278 for seawater-mixed concrete are in general agreement with the literature. Bazli and co-workers
279 (2017) embedded GFRP bars in four different concrete mixtures and exposed the specimens to
280 seawater at 60 °C for 150 days and observed a reduction in bond strength less than 7%. Park (2012)
281 also reported 2.5 – 6% reduction in the bond strength after 300 days immersion in 3% saline
282 solution at 46 °C. Davalos et al. (2008) reported 3 – 8% reduction in bond strength of three types
283 of GFRP bars embedded in concrete and immersed in tap water at 60 °C for 90 days. Others have
284 observed a reduction between 8 – 10 % (Chen et al. 2007; Robert and Benmokrane 2010). This
285 variability between the results here and in the literature could be related to the type of surface
286 enhancement of the GFRP bar as selected by the manufacturer.

287

288 ***Comparison of GFRP Bar Mechanical Properties***

289 In general, a comparable performance was observed between GFRP bars extracted from seawater-
290 mixed and conventional concrete except for the bond strength. The average values of the two sets
291 of bars for each mechanical property were graphed and are shown in Figure 10. Tensile modulus
292 and bond strength show the least reduction of the tested properties (< 10% at 24 months).
293 Reductions in horizontal and transverse shear are comparable and are around 25% at 24 months.

294 While the reduction in tensile strength is initially lower than the reductions in the horizontal and
295 transverse shear strength, the values at 24 months are comparable. Bond strength showed a
296 contradictory performance with 6% increase for conventional concrete and 11% reduction for
297 seawater-mixed concrete after 24 months. In order to find an explanation for observed
298 performances the degradation mechanism was studied as detailed in the next section.

299

300 ***Microstructural Studies***

301 SEM was used to explain degradation mechanisms due to accelerated aging. Micrographs from
302 the pristine bars as shown in Figure 11 show areas with large concentrations of defects or voids
303 near the edge (surface) of the bar which are formed during manufacturing. These defects (voids)
304 could provide a pathway for moisture and alkalis which can cause local damage in the form of
305 fiber rupture, resin degradation, and debonding of fiber-resin interface during exposure to saline
306 solutions at high temperatures. An example of such damage close to the edge of the bar is shown
307 in Figure 12(a), which is taken after 12 months of exposure. In such areas, fiber damage and
308 rupture, fiber-resin debonding, and cracks are clearly observed. The interior regions of the GFRP
309 bars stayed intact over time as shown in Figure 12(b), taken after 12 months of exposure. Damage
310 in areas close to the edge of the bar and intact interior areas were observed in GFRP bars embedded
311 in conventional and seawater-mixed concretes at all ages of exposure. While qualitatively the
312 extent of damage in areas close to the edge of the bar increases with time, it was not possible to
313 quantify damage change over time using microscopy, due to spatial and temporal variations. It is
314 noted here that other bars extracted from concrete studied in ongoing work in our lab have also
315 shown such damage, while some bars have not, suggesting that this effect is bar-specific, rather
316 than caused by specimen preparation. Results were qualitatively similar for embedded bars in

317 seawater-mixed and conventional concrete, explaining the similar reduction in tensile properties,
318 horizontal shear, and transverse shear strength seen in both sets of bars. As more areas near the
319 edge are affected, long circumferential cracks form. Figure 13 shows three examples of these
320 circumferential cracks at different enlargements. From the evidence above, it appears that the
321 damage is mostly chemical in nature. The type of damage mechanism is consistent with some
322 technical literature (Bank et al. 1998; Fergani et al. 2018; Mukherjee and Arwikar 2005; Wang et
323 al. 2017). It is however not clear if the degradation is mainly caused by the concrete environment,
324 the seawater curing environment, the high temperature, the rebars themselves, or a combination of
325 these factors. Further research on this topic is ongoing.

326 EDX was used to find possible patterns in the chemical compositions of the damaged areas.
327 Similar silicon and aluminum contents were observed for GFRP bars extracted from conventional
328 and seawater-mixed concrete. The mass percentages of silicon and aluminum in areas at the bar
329 center on average did not reduce (an increase of 3 % was observed for both elements at 24 months
330 when averaging out bars extracted from conventional and seawater-mixed concrete). On the other
331 hand, for areas close to the edge, silicon and aluminum mass percentages reduced 13% and 20%,
332 respectively (average of bars extracted from conventional and seawater-mixed concrete after 24
333 months of immersion in seawater at 60 °C). These results were obtained from EDX performed on
334 “bulk” areas chosen randomly at 500x magnification, they suggest that the glass content (fiber
335 content) is reducing near the bar edge, but not at the bar center. This is likely due to glass
336 dissolution or deterioration, which leads to the loss of silicon and aluminum, due to the presence
337 of moisture, alkalis and high temperature. This is consistent with literature showing that damaged
338 fibers show about 20% lower silicon and calcium contents compared with undamaged fibers
339 (Mukherjee and Arwikar 2005). Such glass deterioration is due to breaking of the molecular

340 structure of the fiber due to contact with a degenerating agent. While the use of SEM and EDX
341 has provided some insights into the damage mechanism, full clarity is not available, in part because
342 of experimental variability in these techniques. Combining SEM EDX with Fourier-transform
343 infrared spectroscopy and inductively coupled plasma may be further beneficial in fully explaining
344 damage mechanisms in such situations.

345 Generally, the reductions of tensile strength, horizontal and transverse shear are around
346 25% for both sets of concrete at 24 months and the reductions in tensile modulus and bond strength
347 are lower at around 10%. A general comparison with literature has been shown in the previous
348 section and these results appear to be consistent with literature – tensile and shear properties reduce
349 more than the bond and tensile modulus. The explanation for this is unclear and quantitative
350 analysis of microstructural damage in terms of damage extents in the bar surface, fiber, resin, and
351 the interface, could be the key in explaining this phenomenon. Alternatively, one could construct
352 a composite model which simulates the rebar based on increasing damages to each individual
353 element (bar surface, fiber, resin, and the interface) to generate and explain the damage in bulk
354 properties.

355

356 **Conclusions**

357 The durability of seawater-mixed concrete exposed to seawater at high temperatures was studied
358 and contrasted to the behavior of conventional concrete exposed to the same conditions. The
359 following conclusions can be drawn from this study:

360 a) Extracted GFRP bars from the conventional and seawater-mixed concrete showed
361 comparable performance indicating that using seawater to replace freshwater in mixing
362 concrete has no negative impact on the durability of GFRP bars.

363 b) After 24-month immersion in seawater at 60 °C, tensile strength decreased by 21 – 26%,
364 tensile modulus by 6 – 12%, horizontal shear strength by 21 – 26%, and transverse shear
365 strength by 25 – 28%.

366 c) The bond strength showed some differences in performance based on concrete mixture,
367 with 6% increase for conventional concrete and 11% reduction for seawater-mixed
368 concrete at 24 months.

369 d) Micrographs showed a large number of defects (voids) near the edge of the bars which may
370 have been formed during manufacturing. These defects (voids) provide a pathway for
371 alkalis which can cause local damage in the forms of fiber disintegration and de-bonding
372 between fibers and resin matrix. More fibers are affected over time, leading to
373 circumferential cracks near the edge and subsequently degradation of the edge (surface).

374 e) SEM results were qualitatively similar for embedded bars in seawater-mixed and
375 conventional concrete, explaining the similar reduction in tensile properties, horizontal
376 shear, and transverse shear strength seen in both sets of bars. However, the contradictory
377 performance of the bond strength cannot be explained without quantitative microstructural
378 analysis.

379 The GFRP bars tested in this study were ASTM D7957/D7957M-17 (ASTM 2017)
380 compliant and are available in the market and are being used in real-life projects. While this is
381 accelerated testing and the results need to be compared with field data, this suggests that a careful
382 analysis and study of bars under several testing conditions is required before deployment. In
383 addition, the data scatter that we have shown when comparing to literature suggests that generic
384 statements about “all” bars are not possible. Unless industry develops consensus standards on
385 composition, manufacturing and type of surface enhancement for bond with concrete, each

386 commercially available GFRP bar system will have to be thoroughly tested in order to assess its
387 performance and long-term durability.

388

389 **Acknowledgements**

390 The authors would like to express their gratitude to Infravation for funding under project
391 31109806.005-SEACON. Funding from ACI Foundation's Concrete Research Council is also
392 acknowledged. The statements made herein are solely the responsibility of the authors.

393

394 **References**

395 Abbasi, A., and Hogg, P. J. (2005). "Temperature and environmental effects on glass fibre rebar:
396 modulus, strength and interfacial bond strength with concrete." *Composites Part B: Engineering*, 36(5), 394-404.
397
398 Almusallam, T. H., Al-Salloum, Y. A., Alsayed, S. H., El-Gamal, S., and Aqel, M. (2013). "Tensile
399 properties degradation of glass fiber-reinforced polymer bars embedded in concrete under
400 severe laboratory and field environmental conditions." *Journal of Composite Materials*,
401 47(4), 393-407.
402 ASTM (2018). "ASTM D570-98(2018) standard test method for water absorption of plastics."
403 ASTM International, West Conshohocken, PA.
404 ASTM (2018). "ASTM E1356-08(2014) standard test method for assignment of the glass
405 transition temperatures by differential scanning calorimetry." ASTM International, West
406 Conshohocken, PA.
407 ASTM (2018). "ASTM E2160-04(2018) standard test method for heat of reaction of thermally
408 reactive materials by differential scanning calorimetry." ASTM International, West
409 Conshohocken, PA.
410 ASTM (2018). "ASTM D2584-18 standard test method for ignition loss of cured reinforced
411 resins." ASTM International, West Conshohocken, PA.
412 ASTM (2013). "ASTM D792-13 standard test methods for density and specific gravity (relative
413 density) of plastics by displacement." ASTM International, West Conshohocken, PA.
414 ASTM (2014). "ASTM D7913/D7913M-14 standard test method for bond strength of fiber-
415 reinforced polymer matrix composite bars to concrete by pullout testing." ASTM
416 International, West Conshohocken, PA.
417 ASTM (2016). "ASTM D4475-02(2016) standard test method for apparent horizontal shear
418 strength of pultruded reinforced plastic rods by the short-beam method." ASTM
419 International, West Conshohocken, PA.

420 ASTM (2016). "ASTM D7205/D7205M-06(2016) standard test method for tensile properties of
421 fiber reinforced polymer matrix composite bars." ASTM International, West
422 Conshohocken, PA.

423 ASTM (2019). "ASTM C618-19 standard specification for coal fly ash and raw or calcined natural
424 pozzolan for use in concrete." ASTM International, West Conshohocken, PA.

425 ASTM (2017). "ASTM D7617/D7617M-11(2017) standard test method for transverse shear
426 strength of fiber-reinforced polymer matrix composite bars." ASTM International, West
427 Conshohocken, PA.

428 ASTM (2017). "ASTM D7957/D7957M—17 Standard Specification for Solid Round Glass Fiber
429 Reinforced Polymer Bars for Concrete Reinforcement." ASTM International, West
430 Conshohocken, PA.

431 ASTM (2019). "ASTM C150/C150M-19 standard specification for portland cement ", ASTM
432 International, West Conshohocken, PA.

433 Bakis, C. E., Boothby, T. E., Schaut, R. A., and Pantano, C. G. (2005). "Tensile strength of GFRP
434 bars under sustained loading in concrete beams." *ACI Special Publication*, 230, 1429-1446.

435 Bank, L., Puterman, M., and Katz, A. (1998). "The effect of material degradation on bond
436 properties of FRP reinforcing bars in concrete." *ACI Materials Journal*, 95, 232-243.

437 Bank, L. C., Gentry, T. R., Thompson, B. P., and Russell, J. S. (2003). "A model specification for
438 FRP composites for civil engineering structures." *Construction and Building Materials*,
439 17(6–7), 405-437.

440 Bank, L. C., Puterman, M., and Katz, A. (1998). "The effect of material degradation on bond
441 properties of fiber reinforced plastic reinforcing bars in concrete." *ACI Materials Journal*,
442 95(3), 232-243.

443 Bazli, M., Ashrafi, H., and Oskouei, A. V. (2017). "Experiments and probabilistic models of bond
444 strength between GFRP bar and different types of concrete under aggressive
445 environments." *Construction and Building Materials*, 148, 429-443.

446 Byars, E. A., Waldron, P., Dejke, V., Demis, S., and Heddadin, S. (2003). "Durability of FRP in
447 concrete - Deterioration mechanisms." *International Journal of Materials and Product
448 Technology*, 19, 28-39.

449 Chen, Y., Davalos, J. F., Ray, I., and Kim, H.-Y. (2007). "Accelerated aging tests for evaluations
450 of durability performance of FRP reinforcing bars for concrete structures." *Composite
451 Structures*, 78(1), 101-111.

452 Davalos, J. F., Chen, Y., and Ray, I. (2008). "Effect of FRP bar degradation on interface bond with
453 high strength concrete." *Cement and Concrete Composites*, 30(8), 722-730.

454 El-Maaddawy, T., Al-Saidy, A., and Al-Sallamin, A. (2016). "Residual strength of glass fiber
455 reinforced polymer bars in seawater-contaminated concrete." *International workshop on
456 seawater sea-sand concrete (SSC) structures reinforced with FRP composites* Hong Kong,
457 China.

458 Fergani, H., Di Benedetti, M., Miàs Oller, C., Lynsdale, C., and Guadagnini, M. (2018).
459 "Durability and degradation mechanisms of GFRP reinforcement subjected to severe
460 environments and sustained stress." *Construction and Building Materials*, 170, 637-648.

461 Ghorab, H., Hilal, M., and Kishar, E. (1989). "Effect of mixing and curing waters on the behaviour
462 of cement pastes and concrete part 1: Microstructure of cement pastes." *Cement and
463 Concrete Research*, 19(6), 868-878.

464 Gooranorimi, O., and Nanni, A. (2017). "GFRP reinforcement in concrete after 15 years of
465 service." *Journal of Composites for Construction*, 21(5), 04017024.

466 Hao, Q., Wang, Y., He, Z., and Ou, J. (2009). "Bond strength of glass fiber reinforced polymer
467 ribbed rebars in normal strength concrete." *Construction and Building Materials*, 23(2),
468 865-871.

469 ICC-ES (2015). "AC-454: Acceptance criteria for fiber-reinforced polymers (FRP) bars for
470 internal reinforcement of concrete members." International Code Council-Evaluation
471 Services, Whittier, CA.

472 Kampmann, R., De Caso, F., Roddenberry, M., Emperanza, A. R. (2018). " Performance
473 Evaluation of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bars Embedded in
474 Concrete Under Aggressive Environments" *Final Report, Florida Department of
475 Transportation, Research Center*, 244.

476 Katsuki, F. (1995). "Prediction of deterioration of FRP rods due to alkali attack." *Second
477 International RILEM Symposium: Non-Metallic (FRP) Reinforcement for Concrete
478 Structures*, CRC Press, 82.

479 Khatibmasjedi, M., and Nanni, A. (2017). "Durability of GFRP reinforcement in SEACON." *The
480 Fifth International Conference on Durability of Fiber Reinforced Polymer (FRP)
481 Composites for Construction and Rehabilitation of Structures (CDCC 2017)* Sherbrooke,
482 Quebec, CANADA.

483 Khatibmasjedi, S., De Caso y Basalo, F. J., and Nanni, A. (2016). "SEACON: Redefining
484 sustainable concrete." *Fourth International Conference on Sustainable Construction
485 Materials and Technologies* Las Vegas, NV.

486 Micelli, F., and Nanni, A. (2004). "Durability of FRP rods for concrete structures." *Construction
487 and Building Materials*, 18(7), 491-503.

488 Mufti, A. A., Banthia, N., Benmokrane, B., Boulfiza, M., and Newhook, J., P. (2007). "Durability
489 of GFRP composite rods." *Concrete International*, 29(02).

490 Mukherjee, A., and Arwikar, S. J. (2005). "Performance of glass fiber-reinforced polymer
491 reinforcing bars in tropical environments- part II: Microstructural tests." *ACI Structural
492 Journal*, 102(6), 816-822.

493 Murphy, K., Zhang, S., and Karbhari, V. (1999). "Effect of concrete based alkaline solutions on
494 short term response of composites." *Society for the Advancement of Material and Process
495 Engineering, Evolving and Revolutionary Technologies for the New Millennium*, 44, 2222-
496 2230.

497 Nanni, A., De Luca, A., and Zadeh, H. J. (2014). *FRP reinforced concrete structures-theory,
498 design and practice*, CRC Press, Boca Raton, FL.

499 Park, Y. (2012). "Long-term performance of GFRP reinforced concrete beams and bars subjected
500 to aggressive environments." Doctor of Philosophy Dissertation, University of Texas at
501 Arlington.

502 Porter, M. L., Mehus, J., Young, K. A., O'Neil, E. F., and Barnes, B. A. (1997). "Aging for fiber
503 reinforcement in concrete." *3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for
504 Concrete Structures* Sapporo, Japan, 59-66.

505 Robert, M., and Benmokrane, B. (2010). "Effect of aging on bond of GFRP bars embedded in
506 concrete." *Cement and Concrete Composites*, 32(6), 461-467.

507 Robert, M., and Benmokrane, B. (2013). "Combined effects of saline solution and moist concrete
508 on long-term durability of GFRP reinforcing bars." *Construction and Building Materials*,
509 38, 274-284.

510 Robert, M., Cousin, P., and Benmokrane, B. (2009). "Durability of GFRP reinforcing bars
511 embedded in moist concrete." *Journal of Composites for Construction*, 13(2), 66-73.

512 Ruiz Emparanza, A., Kampmann, R., and De Caso y Basalo, F. J. (2017). "State-of-the-practice of
513 FRP rebar global manufacturing." *The Composites and Advanced Materials Expo (CAMX*
514 *2017)* Orlando, Florida.

515 Wang, Z., Zhao, X.-L., Xian, G., Wu, G., Singh Raman, R. K., Al-Saadi, S., and Haque, A. (2017).
516 "Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in
517 seawater and sea sand concrete environment." *Construction and Building Materials*, 139,
518 467-489.

519 Zhou, J., Chen, X., and Chen, S. (2012). "Effect of different environments on bond strength of
520 glass fiber-reinforced polymer and steel reinforcing bars." *KSCE Journal of Civil*
521 *Engineering*, 16(6), 994-1002.

522

523

524 **Figure Captions List**

525 • **Fig. 1.** Close-up picture of the GFRP bar

526 • **Fig. 2.** Configuration of the reinforced specimens

527 • **Fig. 3.** Test setups to measure (a) tensile properties, (b) horizontal shear strength, (c)

528 transverse shear strength, (d) bond strength

529 • **Fig. 4.** Typical failure mode of the GFRP bars subjected to (a) tensile strength test, (b)

530 horizontal shear strength test, (c) transverse shear strength test, (d) pull out test

531 • **Fig. 5.** Tensile strength and reduction percentage (error bars for all the figures are equal to

532 one standard deviation of the average value)

533 • **Fig. 6.** Tensile chord modulus and reduction percentage

534 • **Fig. 7.** Horizontal shear strength and reduction percentage

535 • **Fig. 8.** Transverse shear strength and reduction percentage

536 • **Fig. 9.** Bond strength and reduction percentage

537 • **Fig. 10.** Average reduction percentage of mechanical properties

538 • **Fig. 11.** Representative micrograph of the pristine bar

539 • **Fig. 12.** (a) Representative damaged area near the edge (b) representative intact interior

540 area

541 • **Fig. 13.** Representative circumferential cracks near the edge (a) x30 (b) x150 (c) x220

542 magnification

543

544

545

546

Table 1. Chemical composition of tap water and seawater used in concrete mixtures

Ions	Concentration (ppm)	
	Tap Water	Seawater
Calcium	90	389
Chloride	44	18759
Iron	-	0.512
Potassium	6	329
Magnesium	6	1323
Sodium	26	9585
Sulfate	8	2489
Nitrate	1	0.134

547

548

549

550

551

552

553

554

555

556

557

Table 2. Physical and mechanical properties of the pristine bars

Material Property	ASTM			ASTM D7957	
	Standar	Unit	Value	CoV%	Limit
Physical		d			
Cross-sectional area	D792	mm ²	220.9	0.66	186 ≤ A ≤ 251
Fiber content	D2584	% vol.	76.2	0.82	≥ 70
Moisture absorption in 24 hours	D570	%	0.23	5.90	≤ 0.25
Glass transition temperature	E1356	°C	149.7	1.23	≥ 100 °C
Degree of cure	E2160	%	97.8	0.50	≥ 95
Mechanical	Ultimate tensile force	kN	250.0	2.20	≥ 130
	Tensile modulus of elasticity	GPa	52.7	3.50	≥ 44.8
	Horizontal shear strength	MPa	35.5	3.00	N/A
	Transverse shear strength	MPa	181.0	5.20	≥ 131

Table 3. Mixture proportions

Material	Units	Mix A	Mix B
Portland cement I-II (MH)	kg/m ³	332	
Fly ash	kg/m ³	83	
Tap water	kg/m ³	168	-
Seawater	kg/m ³	-	168
Coarse aggregate	kg/m ³	1038	
Fine aggregate	kg/m ³	612	
Set retarding admixture	ml/m ³	-	830
Air-entraining admixture	ml/m ³	310	