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Abstract

Combining seawater, recycled coarse aggregate (RCA), and glass fiber reinforced polymer
(GFRP) reinforcement in structural concrete is potentially advantageous from a sustainability
perspective. This paper reports the results of an experimental study on the flexural performance of
seawater-mixed recycled-aggregate concrete beams reinforced with GFRP bars. Twelve medium-
scale reinforced concrete (RC) beams (150 X 260 X 2200 mm) were tested under four-point
loading. The test variables included the mixing water (seawater/freshwater), aggregate type
(conventional/recycled), and reinforcement material (black steel/GFRP). A wide range of flexural
properties, including failure mode, cracking behavior, load-carrying capacity, deformation, energy
absorption, and ductility were characterized and compared among the beam specimens. The results
suggest that the use of seawater and RCA in concrete has insignificant effects on the flexural
capacity of RC beams, especially if concrete strength is preserved by adjusting the mixture design.
Altering reinforcement material had a strong influence on the flexural capacity and performance
of the tested specimens: the GFRP-RC beams exhibited higher load-carrying capacities (on
average 25%) but inferior deformational characteristics as compared to their steel-reinforced
counterparts. Theoretical predictions were obtained for the flexural capacity, crack width, and
deflection of steel- and GFRP-RC beams based on their corresponding design guides, and

compared with the experimental results.

Keywords: Sustainable concrete; GFRP-reinforced concrete; Recycled-aggregate concrete;

Seawater-mixed concrete; Flexural performance; Reinforced concrete beams.
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1. Introduction

The increasingly global concerns of freshwater scarcity [1], desalination impacts [2], accumulation
of construction and demolition wastes [3], possible depletion of natural aggregates [3], and
deterioration of reinforced concrete (RC) structures due to steel corrosion [4] impose the need to
use alternative “greener” materials [5-9] to achieve more efficient and sustainable RC structures.
In an attempt to address these issues, the current paper investigates a seawater-mixed concrete
incorporating recycled coarse aggregates (RCA) and corrosion-resistant reinforcement (glass fiber
reinforced polymer (GFRP)). Possible corrosion concerns associated with chloride ions in
seawater and/or possibly contaminated RCA are avoided through the use of GFRP.

Existing literature postulates direct environmental benefits associated with the use of seawater or
RCA in structural concrete. For instance, Arosio et al. [10] reported that mixing concrete with
seawater would lead to a reduction up to 12% in its water footprint. Hossain et al. [11] reported
that using RCA in concrete mixtures can result in approximately 65% savings in greenhouse gas
emissions and up to 58% reductions in the non-renewable energy consumption. These findings
have been corroborated by other studies on RCA environmental benefits [12—14]. Studies have
shown that GFRP also provides clear environmental benefits in concrete structures due to the
increased service life [15-18]. For instance, Cadenazzi et al. [16] reported cradle-to-grave
reductions in global warming (by 25%), photochemical oxidant creation (by 15%), acidification
(by 5%), and eutrophication (by 50%) when using GFRP rather than black steel to reinforce
concrete bridges. Considering these materials together may result in significant economic benefits
apart from the environmental benefits. Younis et al. [19] performed a life-cycle cost analysis on
seawater-mixed recycled-aggregate GFRP-reinforced concrete for high-rise buildings considering

a 100-year service period, and reported approximately 50% long-term cost savings associated with
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the proposed concrete compared to the traditional counterpart (i.e., concrete with freshwater,
conventional aggregate, and steel reinforcement).

Studies on seawater concrete [6,20,21] have generally reported slight reductions in later-age
concrete strength (up to 10%) likely due to the presence of certain ions in seawater (although these
reductions depend on the curing regime used). However, such reductions can be alleviated by
mixture design modifications, including the use of selected chemical admixtures in concrete
[22,23]. Durability studies have also verified the long-term strength performance of GFRP bars in
seawater concrete [24—26]. Studies on the flexural performance of RC beams with seawater-mixed
concrete are limited [27] and rather of durability concern. In this context, Dong et al. [27] reported
a change in the failure mode of seawater concrete beams reinforced with steel/FRP composite bars
and subject to aggressive exposure (over 6-month immersion in 50 °C seawater) from concrete
crushing to rebar tensile rupture, associated with up to 11% reduction in the flexural capacity.
The effects of using RCA on the performance of plain concrete [28-35] as well as flexural
performance of RC beams [36—44] are well studied. A complete replacement of natural coarse
aggregates (NCA) by RCA in plain concrete results in reductions up to 30% in compressive
strength, 24% in tensile strength, and 45% in elastic modulus [29,31,32,34]. Also, using seawater
and RCA together at 100% replacement level results in 30—40% reduction in compressive concrete
strength [45,46]. However, Alnahhal and Aljidda [36], Sunayana and Barai [37], and other
researchers [38—44] reported no significant difference in flexural capacity and service-load
deflections between NCA and RCA reinforced concrete beams having the same reinforcement
ratio and concrete strength.

GFRP has shown high potential as an alternative non-corrosive reinforcement given its high

strength-to-weight ratio [47], excellent durability performance [48], and relatively lower cost
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compared to carbon FRPs [49]. Design guidelines have also been developed for using GFRP bars
in RC elements [50,51], and successful implementation in several types of structures such as
bridges [52—54], parking garages [55], tunnels and marine assemblies [56] has been achieved.
Research on the flexural performance of GFRP-RC beams [57-66] has demonstrated higher
flexural strength but lower stiffness and ductility of GFRP-RC beams compared to their steel-
reinforced counterparts, attributable to the linear elastic behavior and the relatively lower elastic
modulus of GFRP bars [47].

The main research gap identified from the above literature survey is the lack of understanding of
the flexural behavior of seawater-mixed recycled-aggregate GFRP-reinforced concrete beams —
which is the aim of the current paper. To achieve this, twelve RC beams with varying concrete

mixture design and reinforcement material were constructed and tested under four-point loading.

2. Experimental Program

2.1 Concrete mixtures

Ready-mix concrete, with a 28-day design compressive strength of 60 MPa, was used to cast the
RC beam specimens. Three concrete mixtures were considered, as shown in Table 1. Mix A
(reference) is the conventional mix with freshwater and NCA. In Mix B, seawater replaced
freshwater as mixing water. Mix C represents concrete mixed with seawater and RCA at 100%
replacement level. Blast furnace slag was used in all mixtures as supplementary cementitious
material (at 65% Portland cement replacement level) as it is known to improve the durability of
seawater and/or RCA concrete [20,46]. Chemical and mechanical characterization details for the

mix constituents can be found in [22,45].

Table 1 presents the mix proportions (per cubic meter) as per BS EN 206 [67] for each mixture.
Direct volume replacement was used to determine the amount of RCA replacing NCA in Mix C

5
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[45]. Additional mixing water was used in Mix C to compensate the higher water absorption of
RCA (compared to NCA) [45]. Remedial measures were adopted in Mix B and Mix C to address
the performance reductions expected due to the use of seawater and RCA, using chemical
admixtures and/or reducing the water-to-cementitious material (w/cm) ratio as detailed in [22,45].
Consequently, Mix B and Mix C concretes showed performance comparable to the conventional

Mix A for both workability and strength (Table 1).
2.2 RC beam specimens

Table 2 presents the test matrix for the RC beam specimens used in the current study. Twelve RC
beam specimens were tested under four-point loading to assess their flexural performance. Two
test variables were considered, namely, the concrete mixture (Mix A, B, or C) and the
reinforcement material (steel/ GFRP). Two identical samples were tested for each beam specimen.
As shown in Figure 1, the beam specimens were 2.2 m in length (L), 150 mm in width (b), and
260 mm in height (h). GFRP/steel bars of 8 mm in diameter were used as transverse and top
reinforcement, while 12 mm diameter bars were used as main flexural reinforcement. A 25 mm
clear cover to reinforcement was maintained from all sides of the beam specimen, resulting in an
effective depth (d) of 221 mm. Steel bars of grade 500B (BS 4449:2005 [70]) were used as
reinforcement in steel-RC beam specimens. The yield stress, yield strain, and modulus of elasticity
were measured as 594 MPa, 0.27%, and 220 GPa, respectively [71]. The GFRP bars had a tensile
modulus of 45 GPa, a guaranteed tensile strength (f7,,) of 760 MPa, and a maximum strain of 1.7%
as provided by the manufacturer [72]. It is emphasized that the reinforcement ratio was kept the
same among beam specimens with different concrete mixtures, with an intent to investigate the

effects of mixing with seawater and RCA.
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2.3 Test setup

Figure 2 illustrates the test setup and instrumentation for a typical specimen. After two months
following casting, each specimen was tested under four-point bending with monotonic loading
using the Instron 1500 HDX Static Hydraulic Universal Testing Machine. Displacement-
controlled loading was applied at a rate of 1 mm/min until failure. The vertical deflection at mid-
span was monitored using a Linear Variable Displacement Transducer (LVDT). The beam
specimen midspan was instrumented with a 60-mm strain gauge bonded at the top concrete surface
and with two 5-mm strain gauges bonded to the rebars in tension. Additionally, a clip-type
displacement transducer was placed at the side of the beam to measure the crack width as shown

in Figure 2. Data acquisition was performed at a frequency of 1 Hz.

3. Experimental Results

Table 3 presents a summary of the experimental results. In general, using seawater and/or RCA in
the concrete mix had ultimately little-to-no effect on the flexural performance of RC beams,
consistent with previous studies on recycled-aggregate RC beams [36,37]. This is perhaps
unsurprising as the workability and strength were comparable among the concrete mixtures (Table
1). Reinforcement material, however, showed a notable effect on the flexural capacity as well as
the deformational characteristics of the RC beams tested, conforming with previous studies on
FRP-RC beams [57—66]. The following sub-sections (3.1-3.6) provide a detailed discussion on

the experimental results.
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3.1 Modes of failure

Column 11 of Table 3 presents the failure modes of the tested beams. The concrete mixture had
no effect on the flexural failure behavior of RC beams, and the failure was a function of the
reinforcement material. Two distinct failure modes were observed, namely, (a) concrete crushing
in steel-RC beams (Figure 3) and (b) rebar tensile rupture in GFRP-RC beams (Figure 4). The
compression failure mode in steel-RC beams was verified via the concrete compressive strain
values at the top surface, which were generally close to or often exceeded the 0.003 maximum
strain specified by ACI-318 [73] (Column 5 of Table 3). The tensile failure mode of GFRP-RC
beams was confirmed by the rebar tensile strains reaching the ultimate value provided by the

supplier (&7, = 1.7%) (Column 4 of Table 3), in addition to the relatively small concrete

compressive strains at failure (Column 5 of Table 3).

3.2 Load-carrying capacity

Column 2 of Table 3 lists the values of the load-carrying capacity (P,) of all beams. The difference
in P, was insignificant (< 5%) among the companion specimens with different concrete mixtures.
Taking the six steel-RC beams as an example, the two-beam average P, values were calculated as
84.5, 82.3, and 86.7 kN for Mixes A, B, and C, respectively. As expected, the effect of the
reinforcement material was substantial on the flexural capacity of the tested RC beams. The
average load-carrying capacity of GFRP- and steel-reinforced concrete beams was 103 and 85 kN,
respectively — i.e., the GFRP-RC beams outperformed their steel-reinforced counterparts by
approximately 25%. This is attributed to the fact that the reinforcement in GFRP-RC beams had

fully attained its tensile strength (fz,, = 760 MPa) at failure, as opposed to their steel-reinforced

counterparts whose reinforcement only yielded at f,, = 594 MPa.
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3.3 Deformational characteristics

Figures 5-a and 5-b present the load-deflection responses for steel- and GFRP-RC beams,
respectively. As shown in Figure 5-a, the load-deflection diagram of steel-RC beams typically
consisted of three phases: (a) the uncracked phase, (b) the post-cracking/reduced-stiffness phase,
and (c) the yield plateau that had a very small stiffness. On the other hand, the GFRP-RC beams
showed a typical bilinear load-deflection response that represented two distinct phases, namely,
the uncracked phase and the reduced-slope/post-cracking phase. These observed load-deflection
behaviors were the same among beams with different concrete mixtures. Figures 6-a and 6-b show

an idealization of the load-deflection response for steel- and GFRP-RC beams, respectively.

The uncracked stiffness (S;) widely varied among the tested beams without showing a specific
pattern with different reinforcements or concrete mixtures, with an overall average of 48.0 kKN/mm
(compared to an average expected value 56.9 kN/mm). The post-cracking stiffness (S, ) values are
listed in Column 9 of Table 3. The post-cracking stiffness of steel-RC beams (6.78 + 0.64
kN/mm) was higher than that of the GFRP-reinforced counterparts (2.45 + 0.21 kN/mm),
implying that the GFRP-RC beams exhibited higher amounts of deflection at service-load
conditions due to the lower tensile modulus of GFRP. No effect of using seawater and/or RCA

was observed on the stiffness values of the tested beams.

The deflection values measured at failure (6,,) for the tested beams are listed in Column 3 of Table
3. GFRP-RC beams had generally lower §,, values compared to their steel-reinforced counterparts.
On average, the maximum deflection measured for GFRP- and steel-reinforced concrete beams
was approximately 40 and 50 mm, respectively. This is indeed attributed to the more ductile

behavior of steel-RC beams. As shown in Figure 5-a, most of the steel-RC beam’s deflection
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occurred after the steel yielded. The deflection at the yield plateau for steel-RC beams (6, — 6y)

was approximately 86% from the total deflection (§,,).

3.4 Strain characteristics

The tensile strain of the flexural reinforcement (&;), as well as the concrete compressive strain at
the top soffit (&.), were continuously (and simultaneously) measured at the mid-span of the tested
beams, until failure. The maximum tensile (&;_;,4,) and compressive (E._max) Strains measured
at failure are listed in Columns 4 and 5 of Table 3, respectively. In general, the effect of concrete
mix on strain characteristics was negligible when compared to that of the reinforcement material.
As expected, steel-RC beams had &;_p,q, values higher than the yield strain (g, = 0.27%) at
failure (€;_max = 1.586% on average), associated with high compressive strains at the top soffit
(€c—max = 0.273% on average). The &;_,,q, values of GFRP-RC beams (1.8% on average)

approached or exceeded the ultimate strain value provided by the supplier (&7, = 1.7%), and were

associated with relatively lower &,_,,4, values (averagely 0.162%) compared to the steel-RC
beams. These results taken together confirm the compression failure mode in steel-RC beams as

well as the tensile failure mode exhibited by GFRP-RC beam specimens.

Figures 7-a and 7-b depict the increase in the rebar tensile strain with the applied load for steel-
and GFRP-RC beams, respectively. In general, the tensile strain of the flexural reinforcement
started to significantly develop just after the crack initiation (at P = P.,.). After that, the tensile
strain increased with the applied load, taking a shape matching the constitutive law for the
reinforcement material — i.e., linear elastic to failure for GFRP (Figure 7-b) and bi-linear for steel
(Figure 7-a). Likewise, Figures 8-a and 8-b present the load versus concrete-compressive-strain

diagrams for steel- and GFRP-RC specimens, respectively. In general, the P — ¢, curves of the
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tested beams had profiles similar to their load-deflection diagrams (i.e., tri-linear for steel-RC
beams and bi-linear for GFRP-RC beam specimens), with approximately the same load values at

pivot points.

3.5 Energy absorption

Energy absorption (y) is defined as the total area under the load-deflection curve up until the
failure point (8, P,) [74]. Column 10 of Table 3 lists the energy absorption values determined for
the beam specimens. The concrete mixture type showed no clear effect on the energy absorption
of the tested beams when compared to that of the reinforcement material. The 1 values calculated
for steel- and GFRP-RC beam specimens (expressed as average + standard deviation) were 3611
+ 698 and 2468 + 588 kN.mm, respectively, indicating the superior flexural performance of the
steel-RC beams due to their ductile behavior as demonstrated in load-deflection diagrams (Figure
5). The steel-RC beams exhibited a ductility index (defined here as the ratio of the deflection at

ultimate to that at steel yielding) of 6.1 on average.

3.6 Cracking behavior

All beams exhibited a steep load-deflection response until the applied load reached the cracking
load (P.,), at which crack initiated at the constant-moment zone of the beam span. Column 6 of
Table 3 lists the P.,. values for the tested beams. The P.,. values ranged from 14.8 kN (Specimen
A-F-1) to 22.2 kN (Specimen B-S-1), with an average value of 19.0 kN and a standard deviation
of 2.3 kN. No clear or patterned effect of the concrete mix was observed on P, (given that f .- was
comparable among concrete mixtures), and the cracking pattern was almost the same among

specimens with different concrete mixtures.
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The reinforcement material exhibited a clear effect on the cracking behavior of the tested
specimen. Figures 9-a and 9-b present the cracking pattern for steel- and GFRP-RC beams,
respectively. While, both steel- and GFRP-RC beams showed a flexural-shear crack pattern that is
naturally expected for an RC beam subject to 4-point loading, the former had generally a greater
number of cracks at failure (see Figure 9-a and Column 7 of Table 3). Furthermore, the crack-
width values at failure (w,,) corresponding to steel-RC beams were higher than those of GFRP-
reinforced counterparts (Column 8 of Table 3): the average w,, obtained for steel- and GFRP-RC
beams was 4.04 and 1.72 mm, respectively. This can be attributed to the fact that the steel yields
at the crack location allowing the cracks to widen (bearing in mind the expected better bond
between steel bars and concrete). The effect of the beam ductility on the crack width can be
demonstrated comparing the P — w diagrams between steel- and GFRP-RC beam specimens
(Figure 10-a and 10-b, respectively). Most of the increase in the crack width (approximately 90%)
in the steel-RC beams had occurred after the steel yielded (Figure 10-a). Against this, the crack

width (following P.,.) of GFRP-RC beams had a linear profile (Figure 10-b).
4. Theoretical formulations

4.1 Cracking and ultimate loads

Theoretical values of cracking load (P,-_7,) were obtained considering a concrete modulus of

rupture (f,) determined as per ACI-318 [73] (f, = 0.62./f."), and accounting for the
reinforcement stiffnesses in the gross moments of inertia. As shown in Column 4 of Table 4, the

experimental P, values were lower (by 20% on average) than those predicted using ACI-318 [73].

12
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Theoretical values of load-carrying capacity (P, _rp) were obtained according to ACI 318 [73] for
steel-RC beams and ACI 440.1 [50] for GFRP-RC beams. Based on the equilibrium illustrated in

Figure 11, the moment capacity (M,,) of a typical steel-RC beam is obtained using Eq. (1):

ﬁlc) vvv(1)

My =7 (a =55

where [;, a4, and &, (see Figure 11) were taken as 0.65, 0.85, and 0.003, respectively, in
accordance with ACI 318 provisions [73]. The same formula was used to calculate P,_r;, for
GFRP-RC beams considering the GFRP tensile parameters (Ef = 45 GPa and fp, = f7, =
760 MPa). The concrete compressive strain (&.), the depth of compression zone (c), and the
rectangular stress block parameters (f; and a;) were obtained by means of “equilibrium and

compatibility” as per ACI 440.1 [50] provisions (for tension-controlled failure).

Columns 6 and 7 of Table 4 list P,_gj values and PB,/P,_gy ratios for the tested RC beams,
respectively. The experimental values of load-carrying capacity were generally higher (except for
C-F-1) than those predicted by the ACI design guides [50,73]. A reasonable agreement was
obtained between the experimental and theoretical P, values, with an approximate average

difference of 7.5%.
4.2 Crack width

The ACI-318 design code [50] accounts for the crack-width control of steel RC beams by setting
maximum limits for the reinforcement spacing, rather than using a specific formula to calculate
the crack width. ACI 440.1 [75], however, recommends using Eq. (2) to calculate the maximum

crack width for FRP-RC beams under flexure.
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w = ZJEC—fﬁkb\/dg + (s/2)? (2)
f

where w is the maximum crack width (in mm); ff is the reinforcement stress (in MPa); Ef is the
reinforcement modulus of elasticity (in MPa); £ is the ratio of the distance between neutral axis
and extreme tension face to the distance between neutral axis and centroid of reinforcement; d. is
the thickness of cover from the extreme tension face to the center of closest bar (in mm); s is the
bar spacing (in mm); and k;, is a coefficient that indicates the degree of bond between FRP bar and
concrete. In accordance with ACI 440.1 [75], k;, was conservatively taken here as 1.4 given the

lack of experimental evidence on the bond between concrete and the GFRP bars used here.

Columns 11-13 of Table 4 compare the predicted and experimental values of crack width at service
load. The service load (P, ) for GFRP-RC beams refers to the load at which the rebar tensile stress
reaches the creep-rupture limit (fy = 0.3ff, [76]), and was determined to be 30.2 kN. The small
difference in f, among the concrete mixtures had ultimately no effect on crack-width calculations.
The predicted crack width at service load (Wg,,-_7p) Was calculated as 0.90 mm, and was generally
higher than that experimentally measured (0.60 mm on average). This discrepancy is probably
attributed to the conservative use of k;, = 1.4. Considering a k;, of 1.2 (as recommended by ISIS

[77]) reduced the gap between the predicted and experimental wg,, values by 40%.

Likewise, the crack width was predicted for steel-RC beams using Eq. (2) considering the tensile

parameters of steel bars and taking kj, as 1.0 [75]. The stress level at steel bars was taken as 0.4f,

(adopted in the allowable stress method [78]) and corresponded to P, = 30.0 kN. The wy,, for

steel-RC was predicted as 0.14 mm (compared to an average experimental value of 0.17). The

14
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discrepancy observed among steel-RC beams in the experimental wg,, are likely attributed to

deviations in their uncracked stiffness.

4.3 Deflection

The immediate mid-span deflection (67y) of a simply supported RC beam subject to four-point

loading is calculated as follows:

Pa

5=
48E,I,

(3L% — 4a?) 3)

Where L is the total span length; a is the shear span; P is the total applied load; E, is the concrete
modulus of elasticity determined as E, = 4700 /£, [50]; and I, is the effective moment of inertia.
Prior to concrete crack, I, is taken as the gross moment of inertia (I;) that accounts also for

reinforcement stiffness. The moment of inertia corresponding to a fully-cracked section (/) is
calculated using an elastic analysis for the beam section in which the concrete in tension is
neglected [73]. During the service-load stage, I, is calculated to represent the transition between

Iy and I.. The ACI 318 [73] adopts Branson’s model [79] to calculate I, as follows:

I, = (T/I—jf I, + (1 - (%:)3 I, (4)

Where M, is the applied moment and M_,. is the cracking moment.

An alternative formula was suggested by Bischoff [80] to calculate I, as follows:

ICT‘

I, = ()
1-(1- %) (’1'/’\/1—'2)2
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Figure 12-a presents the predicted load-deflection response for steel-reinforced specimens (up until
P, = 30.0 kN), obtained using both Branson and Bischoff formulas. The latter appears to have
a better match with the experimental P — § diagrams, for which an acceptable agreement was
obtained, particularly in Specimens C-S-1 and B-S-1 (Column 10 of Table 4). A high discrepancy
was observed, though, between the predicted and experimental deflections for the other steel-RC

beams, likely attributed to deviations in the uncracked stiffness.

For FRP-RC beams, ACI-440.1R-06 [75] had recommended the use of an adjusted form of

Branson’s formula to calculate I, as follows:

I = (%,—)3 Baly + (1 - (3 )3> Iy (6)

Where 8, = 0.2p¢/pyp is a reduction coefficient related to the reduced tension stiffening of FRP-

RC beams. Lately, the ACI-440.1R-15 [50] design guide replaced Eq. (6) with an updated form of

Bischoft’s formula to calculate I, as follows:

ICT

I, = 2 (7)
-y = (5)

Where y (function of a/L and M_,./M, [50]) is a factor that accounts for the variation in stiffness

Mcr

along the beam span, calculated here as y = 1.85 — 0.85 R

The design manual ISIS-2007 [77] recommends using Eq. (8) to calculate I, as follows:
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I, = C;/[g . (8)
I, + <1 - 0.5(3%) )(Ig —1Ioy)

a

The CSA S806-12 [51] design code recommends using Eq. (9) to calculate the deflection of a

simply supported beam subject to 4-point loading, as follows:

PL? 3 I\ (Lo\>
=m0 (7)) Q

Where L, = aM,, /M, is the length of the uncracked section.

Figure 12-b compares the predicted load-deflection responses among the aforementioned design
codes for GFRP-reinforced specimens (up until P, = 30.2 kN). Compared to the experimental
P — § diagrams, the ACI-440.1R-06 formula [75] appeared to be the most representative to the

tested specimens, while the CSA S806-12 [51] formula was the most conservative.

Columns 8-10 of Table 4 compare the predicted service deflections (8gpr—7p) With those
experimentally measured at P,,.. The stipulated Js,,_7,, values are those corresponding to Eq. (5)
(Bischoff formula [80]) for steel-RC beams and to Eq. (6) (ACI-440.1R-06 [75]) for GFRP-RC
beams. A reasonable agreement was obtained between the experimental and predicted &, values

for GFRP-RC beams, with an approximate average difference of 13%.
5. Summary and conclusions

This paper investigated the flexural performance of seawater-mixed recycled-aggregate GFRP-
reinforced concrete beams. Twelve medium-scale RC beams were tested under four-point loading

considering three test variables, namely, mixing water (seawater/freshwater), aggregates type
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351

352

353

354

355
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357

358

359

360

361

362

363

364

365

366

367

(virgin/recycled), and reinforcement material (black steel/GFRP). Based on the study results, the

following conclusions have been drawn:

e Ifreductions in concrete performance are averted (using admixtures and/or changes in concrete
mix design), using seawater and recycled coarse aggregate in concrete mixtures has little-to-
no effect on the short-term flexural capacity of RC beams. The reinforcement material controls
the flexural performance of RC beams.

e Steel-RC beams generally failed due to concrete crushing (i.e., compression failure). The
GFRP-RC beams showed a more brittle failure due to rebar tensile rupture. On average, GFRP-
RC beams showed approximately 25% increase in the load-carrying capacity as compared to
their steel-reinforced counterparts, but they also showed notable reductions in deformational
and cracking performance.

e Theoretical values of flexural capacity, deflection, and crack width were predicted for the
tested specimens and compared with the experimental results. A reasonable agreement was
obtained between the predicted and experimental values of flexural capacity (7.5% difference
on average). The predicted deflections of GFRP-RC beams somewhat conformed with the
experimental values (averagely 13% difference). Some deviations were observed, though, in
crack-width and deflection predictions for certain specimens, mostly attributed to

discrepancies in the uncracked stiffness.
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592 Table 1: Concrete mixtures.

Property ‘ Mix A ‘ Mix B ‘ Mix C
1. Concrete mixture proportions

Water 165 kg/m? 165 kg/m? 200 kg/m?
(Freshwater) (Seawater) (Seawater)

Conventional — 700 kg/m* | Conventional — 700 kg/m? Recveled concrete — 990

Coarse aggregates (Gabbro 20 mm) + 490 (Gabbro 20 mm) + 490 kg/m? K 7m3 (5-20 mm RCA)
kg/m? (Gabbro 10 mm) (Gabbro 10 mm) &
Fine asoresates 750 kg/m? 750 kg/m?3 750 kg/m?
ggreg (Washed sand) (Washed sand) (Washed sand)

Cementitious material 450 kg/m’ 450 kg/m? 490 kg/m?®

OPC (35%) + Slag (65%) OPC (35%) + Slag (65%) OPC (35%) + Slag (65%)
Retarder 5 5
(CHRYSOPIlast CQ240) - 0.25 L/m 0.75 L/m
Super plasticizer 4.05 L/m? 446 Lim® 5.57 Lim®

(Glenium 110 M)

2. Concrete fresh properties and compressive strength

Fresh concrete temperature 28.7°C 30.0 °C 30.0 °C
Initial slump (as per ASTM

C143 [68]) 250 mm 260 mm 270 mm

Initial slump flow (as per 610 mm 650 mm 660 mm

ASTM C143 [68])

28-day compressive strength,
£.' (as per ASTM C39 [69]) 64.1 + 0.4 MPa 68.5 + 1.0 MPa 59.7+ 0.4 MPa
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599

Table 2: Test matrix for the RC beams.

Specimen ID Concrete Mixture Reinforcement
A-S-1 & A-S-2 Mix A Steel
B-S-1 & B-S-2 Mix B Steel
C-S-1 & C-S-2 Mix C Steel
A-F-1 & A-F-2 Mix A GFRP
B-F-1 & B-F-2 Mix B GFRP
C-F-1 & C-F-2 Mix C GFRP

30



Table 3: Summary of the test results.

1 2 3 4 5 6 7 8 9 10 11
No. of
Specimen (11:131) (Ig“m) 8‘(;}(’)‘;”‘ SC(;}S‘" (ﬁf\g) cra?ks (I‘I’IVI]:I) (kl\?;cr:nm) (th.Ir)nm) Failure Mode
(major)
A-S-1 79.3 50.6 1.49 0.279 19.0 12 3.60 6.5 3497 Concrete crushing
A-S-2 89.6 56.2 - 0.334 20.4 11 4.40 7.1 4314 Concrete crushing
B-S-1 83.5 47.8 1.95 0.243 222 12 4.87 6.7 3372 Concrete crushing
B-S-2 81.1 39.0 1.21 0.246 20.6 10 - 6.2 2680 Concrete crushing
C-S-1 87.3 59.1 0.98 0.245 22.1 10 - 7.9 4548 Concrete crushing
C-S-2 86.1 44.6 2.30 0.293 16.7 12 3.30 6.25 3255 Concrete crushing
A-F-1 103.2 | 36.9 1.79 0.158 14.8 9 1.53 2.3 2181 GFRP rupture
A-F-2 103.2 | 374 1.94 0.151 17.1 8 - 2.4 22717 GFRP rupture
B-F-1 99.7 40.5 1.71 0.156 19.1 9 1.55 2.2 2382 GFRP rupture
B-F-2 1162 | 47.5 1.88 0.185 16.7 10 1.93 2.7 3309 GFRP rupture
C-F-1 92.5 30.5 1.82 0.168 20.4 8 1.88 2.4 1674 GFRP rupture
C-F-2 1024 | 443 1.67 0.153 19.2 9 - 2.7 2986 GFRP rupture




Table 4: Comparison of experimental and theoretical predictions.

1 2 | 3 | 4 5 | 6 | 7 8 | 9 | 10 u | 12 | 13
Cracking load Load-carrying capacity Deflection (Service) Crack width (Service)
Specimen P, Pt Per Py, Py_n Py Oser | Oser—th Oser Wser | Wser-Th Wser
kN) | (KkN) |(Py_qn| (KN) | (KN) | Py gy |(mm) | (mm) | §,, py| (mm) | (mm) | Weer_rq
A-S-1 19.0 24.5 0.78 79.3 78.8 1.006 1.72 1.23 1.40 0.217 | 0.141 1.539
A-S-2 20.4 24.5 0.83 89.6 78.8 1.137 1.92 1.23 1.56 0.205 | 0.141 1.454
B-S-1 22.2 25.3 0.88 83.5 79.0 1.057 1.27 1.13 1.13 0.152 | 0.140 1.078
B-S-2 20.6 25.3 0.81 81.1 79.0 1.027 2.10 1.13 1.88 - - -
C-S-1 22.1 23.7 0.93 87.3 78.6 1.111 1.26 1.33 0.95 - - -
C-S-2 16.7 23.7 0.70 86.1 78.6 1.095 2.49 1.33 1.87 0.097 | 0.141 0.688
A-F-1 14.8 23.2 0.64 103.2 | 974 1.060 | 4.85 6.06 0.80 0.505 0.905 0.558
A-F-2 17.1 23.2 0.74 103.2 | 974 1.060 5.52 6.06 0.91 - - -
B-F-1 19.1 24.0 0.80 99.7 96.4 1.034 5.02 5.69 0.88 0.499 | 0.904 0.551
B-F-2 16.7 24.0 0.70 1162 | 96.4 1.205 5.87 5.69 1.03 0.571 0.904 0.631
C-F-1 20.4 22.4 0.91 92.5 98.5 0.939 5.57 6.45 0.86 0.719 | 0.905 0.794
C-F-2 19.2 22.4 0.86 1024 | 98.5 1.040 5.08 6.45 0.79 - - -
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Figure 1. Schematic drawing for a typical RC beam used in this study.

550
2¢8 Strain gauge $8 @ 100 mm
_ A “GFRP/Steel | GFRP/Steel
y_3
|{ G
L3
—=A \2¢,12 Strain gauge 150
GFRP/Steel 2000 Section A-A
2200

33



Strain gauge

Crack-width transducer

LVDT

Figure 2. Test setup and instrumentation.
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Figure 3. Concrete crushing in Specimen B-S-2.
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Figure 4. GFRP tensile rupture in Specimen B-F-2.
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Figure 5. Load vs. deflection diagrams for (a) steel and (b) GFRP reinforced concrete beams.
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Figure 6. Idealization of load-deflection diagrams for (a) steel and (b) GFRP reinforced concrete beams.
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Figure 7. Load vs. rebar strain diagrams for (a) steel and (b) GFRP reinforced concrete beams.
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Figure 9. Cracking pattern for (a) Specimen C-S-2 and (b) Specimen C-F-2.
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Figure 10. Load vs. crack-width diagrams for samples of (a) steel and (b) GFRP reinforced concrete beams.
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Figure 11. Equilibrium forces for a typical RC beam under flexure.
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Figure 12. Predicted vs. experimental load-deflection diagrams (taking fc’=60 MPa) for (a) steel-RC and (b)

GFRP-RC beams.
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