Cloud-scale VM Deflation for Running Interactive Applications
On Transient Servers

Alexander Fuerst
Indiana University
alfuerst@iu.edu

Prashant Shenoy
University of Massachusetts Amherst
shenoy@cs.umass.edu

ABSTRACT

Transient computing has become popular in public cloud environ-
ments for running delay-insensitive batch and data processing ap-
plications at low cost. Since transient cloud servers can be revoked
at any time by the cloud provider, they are considered unsuitable
for running interactive application such as web services. In this
paper, we present VM deflation as an alternative mechanism to
server preemption for reclaiming resources from transient cloud
servers under resource pressure. Using real traces from top-tier
cloud providers, we show the feasibility of using VM deflation as
a resource reclamation mechanism for interactive applications in
public clouds. We show how current hypervisor mechanisms can be
used to implement VM deflation and present cluster deflation poli-
cies for resource management of transient and on-demand cloud
VMs. Experimental evaluation of our deflation system on a Linux
cluster shows that microservice-based applications can be deflated
by up to 50% with negligible performance overhead. Our cluster-
level deflation policies allow overcommitment levels as high as 50%,
with less than a 1% decrease in application throughput, and can
enable cloud platforms to increase revenue by 30%.

ACM Reference Format:

Alexander Fuerst, Ahmed Ali-Eldin, Prashant Shenoy, and Prateek Sharma.
2020. Cloud-scale VM Deflation for Running Interactive Applications On
Transient Servers. In Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC °20), June 23—
26, 2020, Stockholm, Sweden. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3369583.3392675

1 INTRODUCTION

Transient computing is becoming commonplace in cloud environ-
ments. Today, all major cloud providers such as Amazon, Azure,
and Google offer transient cloud servers in the form of preemptible
instances that can be unilaterally revoked during periods of high
server demand. Transient computing resources enable cloud providers
to increase revenue by offering idle servers at significant discounts

*Also with Chalmers University of Technology

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC °20, June 23-26, 2020, Stockholm, Sweden

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7052-3/20/06...$15.00
https://doi.org/10.1145/3369583.3392675

Ahmed Ali-Eldin*
University of Massachusetts Amherst
ahmeda@cs.umass.edu

Prateek Sharma
Indiana University
prateeks@iu.edu

(often 7-10X cheaper) while retaining the ability to reclaim them
during periods of higher demand.

While transient cloud servers have become popular due to their
discounted prices, their revocable nature has meant that users typ-
ically limit their use for running disruption-tolerant jobs such as
batch or data processing tasks. They have traditionally not been
used for online web services due to potential downtimes that occur
when the underlying servers are revoked.

In this paper, we present virtual machine (VM) deflation as an al-
ternative mechanism for reclaiming resources from transient cloud
servers. We argue that VM deflation is more attractive than out-
right preemption for applications, since they continue to run, albeit
more slowly, under resource pressure rather than being terminated.
Deflation simplifies application design since they no longer need
to implement fault tolerance approaches such as checkpointing to
handle server preemptions. Deflation also expands the classes of
applications that are suitable to run on transient cloud servers—
even web services can utilize such servers since downtimes from
preemptions are no longer a risk; with the exception of mission
critical web workloads, less critical web applications that are will-
ing to tolerate occasional slowdowns can run on such servers at a
much lower cost than on traditional cloud servers.

The notion of resource deflation was first proposed as a cascade
deflation approach [38] that collaboratively reclaimed resources
from the application, the OS, and the hypervisor. Cascade deflation
requires cooperation from the OS and the application and is im-
practical in public clouds that treat VMs as “black boxes.” Instead,
a hypervisor-only approach to deflation that requires no support
from the application or OS is better suited to Infrastructure as a
Service (IaaS) public clouds—the key focus of our work.

By fractionally reclaiming resources from applications instead of
outright preemption, VM deflation reduces the risk of downtimes
for interactive applications, with a modest decrease in application
performance. In designing and implementing our hypervisor-only
deflation approach, our paper makes the following contributions.

We demonstrate the feasibility of using VM deflation as a re-
source reclamation mechanism in public clouds using real CPU,
memory, disk, and network traces from two top-tier cloud providers
(Azure and Alibaba). Our analysis shows that cloud VMs running
interactive applications have substantial slack and can withstand
deflation of 30-50% of their allocated resources with less than a 1%
performance impact.

We then show how current hypervisor mechanisms such as hot-
plug and throttling can be used to implement VM deflation. We

https://doi.org/10.1145/3369583.3392675
https://doi.org/10.1145/3369583.3392675
https://doi.org/10.1145/3369583.3392675

also present several cluster-wide policies for VM deflation-based
resource reclamation. Our policies present different tradeoffs and
capabilities while attempting to minimize the performance impact
of VM deflation.

We implement a prototype of our VM deflation mechanisms
and policies on a virtualized Linux cluster and evaluate its efficacy
using realistic web applications as well as other workloads. We also
conduct a trace-driven evaluation of our policies using VM-level
workloads from a cloud provider. Our results show that:

(1) The resource utilization of cloud VMs is low, which makes de-
flation a viable technique for transient resources.

(2) Deflation can be implemented with hypervisor and guest-OS
level overcommitment. These deflation mechanisms can reclaim
large amounts of resources in a black-box manner, with minimal
performance degradation. For interactive microservice based
applications, even 50% deflation results in negligible reduction
in performance.

(3) Our cluster-level deflation policies make deflation an effective
technique for increasing cluster overcommitment (the ratio of
committed VM allocations to cluster hardware availability) by
up to 50%; nearly eliminates the risk of preemptions; and results
in less than 1% drop in application throughput.

The rest of this paper is structured as follows. Section 2 presents
background on transient computing and deflation. Section 3 presents
our feasibility analysis of VM deflation in public clouds. Section 4
and 5 present VM deflation mechanisms and cluster-wide deflation
policies, respectively. Section 6 and 7 present our implementation
and experimental results. Finally, Section 8 and 9 present related
work and our conclusions.

2 BACKGROUND

In this section, we provide background on transient cloud comput-
ing, and VM deflation.
Transient computing. Our work assumes a cloud data center
where applications run on traditional (“on-demand”) servers or
transient servers. Both types of servers are provisioned using vir-
tual machines, and cloud applications run inside such VMs. Cloud
offerings such as Amazon spot Instances [10], Google Preemptible
VMs [3], and Azure batch VMs [5] are examples of transient servers.
Transient cloud servers represent surplus capacity that is offered
at discounted rates but these resources can be reclaimed under
resource pressure (e.g., higher demand for on-demand servers).
Batch-oriented applications are particularly well suited for tran-
sient computing. Such applications tend to be both delay and disrup-
tion tolerant and can handle longer completion times. In the event
of a preemption, they can simply be restarted from the beginning
or restarted from a checkpoint if the application is amenable to
periodic checkpointing. Consequently, transient cloud servers have
become popular for running large batch workloads at a substantial
discount over using on-demand servers [39].
Deflation. While current transient servers implement resource
reclamation in the form of preemptions—where the VM is unilat-
erally revoked by the cloud provider—our work explores the use
of VM deflation as an alternative approach for resource reclama-
tion under pressure. Although deflation frees up fewer resources
than preemption (which frees up all of the VM resources), it en-
ables applications to continue execution and eliminates application

[Applicalion Manager (Mesos etc)/Load balancer}
4

Application
Notification W
Deflate VM
Hypervisor VM Deflation Module
Deflation Policy "Resource Allocations
Server ‘N\lew VM Request

Deflation Aware Bin-Packing ‘

Cluster Management Software

Figure 1: Overview of our deflation system.

downtimes due to preempted servers [38]. Our hypothesis is that
occasional performance degradation, rather than termination and
downtime, is more acceptable to many interactive and web applica-
tions, except the most critical ones, making transient computing
feasible for a broader class of applications.

Since modern hypervisors allow resource allocation of resident
VMs to be increased or decreased dynamically, VM deflation can be
realized using current hypervisor mechanisms, such as ballooning
[47], hotplugging, changing CPU shares, etc. While any of the exist-
ing techniques can be used to implement VM deflation mechanisms,
the challenge lies in the design of judicious policies on when and
what to deflate and by how much, while minimizing the impact
of deflation on application performance. We note that while VM
deflation mechanisms are similar to elasticity (e.g., vertical scaling)
mechanisms, our goal is to focus on cluster-wide deflation policies
for resource reclamation, a different problem than elastic scaling as
discussed in Section 8.

Figure 1 gives an overview of our deflation system—the cluster
manager implements the global VM deflation and placement poli-
cies (Section 5) and places new VMs onto servers. The hypervisor
implements local deflation policies (also in Section 5), and uses
VM deflation mechanisms (Section 4). The hypervisor also sends
notifications to the application manager (such as a load balancer),
which can help applications respond to deflation.

3 FEASIBILITY OF DEFLATION IN PUBLIC
CLOUDS

Before presenting our deflation techniques, we examine the effi-
cacy and feasibility of deflating public cloud applications. We use
publicly-available resource usage traces from two top-tier cloud
providers, Azure [14] and Alibaba [15]. The goal of our analysis is
to understand the feasibility of deflating CPU, memory, disk, and
network allocations of real cloud applications, and specifically in-
teractive web applications, under time-varying workloads that they
exhibit. We seek to answer two key research questions through our
feasibility analysis: (1) How much slack is present in cloud VMs
and by how much can these VMs be safely deflated without any
performance impact? (2) How does workload class and VM size
impact the deflatability of VMs?

3.1 Application Behavior under Deflation

We first present an abstract model to capture the performance
behavior of an application under different amounts of resource

Linear
Slack

Performance

Deflation %

Figure 2: Application behavior under different levels of de-
flation.

4+—¢ Spec/BB E
= @ Kcompile

W +— Memcached
N

=
o
T

e o ©
A o o
T T T

Normalized Performance
o
N
T

©
o

0 20 20 60 80 100
Deflation %

Figure 3: Application performance when all resources (CPU,

memory, I/O) are deflated in the same proportion.

deflation. Figure 2 illustrates this behavior. We assume that an ap-
plication running inside a cloud VM will have a certain amount
of slack—unused CPU and memory resources. Reclaiming these
unused resources represented by the slack will typically have negli-
gible performance impact on the application since they are surplus
resources; the behavior in this operating region is depicted by the
horizontal portion of the performance curve labelled slack in Figure
2. Once all of the slack has been reclaimed by deflating the VM, any
further deflation will actually impact performance. We assume that
initially this performance impact is linear with increasing amounts
of VM deflation. For some applications, this behavior can even
be sub-linear, which means that a certain reduction in allocated
resources yields proportionately less performance slowdown. For
less elastic applications, however, the impact can be super-linear.
In either case, beyond a certain point—represented by the knee
of the curve—the performance drops precipitously, implying that
allocated resources are insufficient for satisfactory performance.

This abstract model captures the three regions with varying per-
formance impacts on applications due to deflation. Clearly, deflating
slack is the simplest approach since it usually has little or no perfor-
mance impact. When additional resources need to be reclaimed, the
deflation policy should ensure that such deflation minimizes the
performance impact and does not push application performance
beyond the knee of the curve.

Figure 3 depicts this behavior for three different applications. As
can be seen, different applications have different amounts of slack
(with SpecJBB not exhibiting any slack at all in this example), and
the size of the linear performance degradation region also varies
from application to application. The figure illustrates the need to
take application’s characteristics into account when reclaiming its
allocated resources using deflation.

3.2 Usage-based Feasibility Analysis

3.2.1 CPU Deflation. We analyze VM traces of CPU utilization in
the Azure dataset to quantify their deflation capability. The dataset,
which includes data from 2 million VMs, provides CPU utilization

\ Total underallocation

/>< Deflated Allocation
Resource Use

Time underallocated
Figure 4: Deflation can result in underallocated resources.

Resource Use and Allocation

Time

time series for each VM at 5-minute granularity. Importantly for us,
each VM trace is partitioned into one of three classes—interactive,
delay-insensitive, and unknown—depending on the type of applica-
tion resident in the VM. We analyze all three classes of VM traces
but pay particular attention to interactive applications, which tend
to be dominated by web-based services. To analyze the impact of de-
flation, we assume that the CPU allocation of the VM is reduced by
a certain percentage and calculate the percentage of time for which
the maximum CPU usage over each interval in the original trace
exceeds this value. We observe that as long as the CPU utilization is
below this deflated allocation, there will be no performance impact
on the application. However, during periods where the utilization
exceeds the allocation under deflation (i.e., underallocation), the
application will experience a slowdown.

As shown in Figure 4, the resource utilization and deflation
determine how much time a VM is underallocated. The total amount
of under-allocation (area of the utilization curve above the deflated
allocation) is the decrease in application throughput. We want to
quantify the slack in the VMs under different levels of deflation
such that there is no performance impact on the application.

Figure 5 shows a box plot of the fraction of time spent by VMs
above the deflated resource allocation (i.e., underallocated) for all 2
million VMs. Even at high deflation levels (50%), the median VM
spends 80% of the time below the deflated allocation. This result
indicates that even high deflation levels of as much as 50% do not
lead to significant resource bottlenecks for applications.

Since the Azure dataset labels each VM trace with the class of
application hosted by the VM, we break down the overall result
in Figure 6 by application type. Figure 6 depicts a box plot of the
fraction of time that VMs of different application classes exceed
their deflated allocations under different levels of deflation. The
figure shows that interactive applications, which include web work-
loads, tend to have lower overall utilization and hence more slack
than delay insensitive batch workloads (presumably since they are
over provisioned to handle unexpected peak loads). Consequently,
interactive application VMs are more amenable to deflation of their
surplus (slack) capacity. Thus, for any given deflation level, inter-
active VMs see significantly less impact in terms the CPU usage
exceeding the deflated allocation. The percentage of time when the
interactive VMs get impacted ranges from 1% to 15%, as deflation
percentage is varied from 10% to 50%. In contrast, batch jobs see 1%
to 30% impact. This result shows that interactive applications and
web workloads can be subjected to deflation just like, and perhaps
more so, than delay-insensitive batch applications.

Figure 7 examines whether the VM size has an impact on its
ability to be deflated. Based on the trace we partition VMs into 3
groups — small VMs with 2 GB RAM or lower, medium VMs with
up to 8 GB RAM, and large VMs with more than 8GB RAM, and
examine the percentage of time the VM CPU usage exceeds the

© o o &
» o o o

Fraction of VM Time

o
N

%_uuu

10% 20% 30% 40% 50%
Deflation

°
o

Figure 5: Fraction of time (i.e. probability) of CPU usage of
VMs being higher than different deflation targets.

deflated allocation within each group. The figure shows that VM
size has no direct correlation to the deflatability of a VM, and all
VMs see a similar performance impact under different deflation
levels regardless of VM size. The result implies that VMs of all sizes
are more or less equally amenable to deflation.

Finally, Figure 8 examines the deflatability of VMs for VMs with

different peak loads. We compute the 95° h percentile of CPU usage
for all VMs and partition VMs into four classes; those with low peak
utilization of less than 33%, those with moderate peak load between
33% and 66% peak utilization, those with higher load between 66%
and 80% utilization and finally, the rest with high peak loads above
80%. As shown in the figure, higher peak loads implies that VMs see
greater impact when deflated since the peak will exceed the deflated
allocation for longer durations. Interestingly, for deflation levels
of up to 20%, all VMs, except the ones with peak load exceeding
80%, have enough slack to see minimal impact. The figure generally
indicates that the peak load, represented by a high percentile of the
utilization distribution is a coarse indicator of the “deflatability” of
the VM; VMs with lower peak loads are more amenable to deflation.
3.2.2 Memory and I/0 Deflation. We also analyze the memory,
disk, and network deflation feasibility based on Alibaba’s resource
traces [21] [15], that provide a time series of resource utilization
for their internal container-based interactive services. Note that
VM-based applications have a higher deflation potential because
they are overprovisioned and must include additional resources for
the guest OS; thus this container-level analysis of Alibaba’s cloud
applications provides a very conservative (lower-bound) estimate
of the actual deflation potential.
Memory. We analyze the memory usage of the applications under
different deflation levels in Figure 9. Interestingly, as shown, the
fraction of time that the application spends above different deflation
thresholds is generally high. At first glance, this might suggest that
the high memory utilization leaves little slack to deflate memory
(e.g., even at 10% memory deflation, the applications would spend
more than 70% time underallocated).

However, further analysis of the memory usage traces indicates
that this is not really the case. First, the Alibaba memory traces
provide the total memory usage and do not provide a fine-grain
breakdown of memory usage, such as such as working set size,
page-cache and disk-buffer pages. Over 90% of the applications in
Alibaba trace are JVM-based services that overallocate memory
(for the heap) to reduce the garbage collection overhead. As is well
known, modern applications and operating systems aggressively
used unallocated RAM for purposes of caching and buffering. Hence,
the total memory usage shown in Figure 9 is not a true measure of
deflation potential of applications.

Conventional wisdom holds that application performance will
be affected when the memory is deflated below its working set

size, and deflation of other memory used for caching or garbage
collection should have a lesser impact on performance. In fact,
our experiments have shown that, even when memory is deflated
below the working set size, the performance degradation, while
noticeable, is not serve. For instance, Figure 3 shows the resilience
of Memcached, a highly memory-dependent application. Figure 14
shows that even SpecJBB (which is representative of the JVM-based
applications that comprise the trace) can have its memory deflated
by up to 30% without significant drop in performance.

To further analyze the true memory deflation potential, we we

use the memory-bus bandwidth used by the different applications
as a proxy metric for memory usage. As shown in Figure 10, we
see that the memory bandwidth usage is very low, with the mean
memory bandwidth utilization across all containers being less than
one-tenth of one percent, while the maximum is only 1%. This
indicates that the applications are not reading/writing to the RAM
in proportion to their memory allocations, and that the memory
deflatability should be significantly higher than what is indicated
by Figure 9 alone.
Disk and Network. Finally, we examine the deflatability of disk
and network bandwidth in Figures 11 and 12 using the Alibaba trace.
We see that the usage of both I/O resources is very low. The boxplot
of application’s disk bandwidth that rises above various deflation
thresholds is given in Figure 11. The percentage of time the actual
disk bandwidth usage rises above various deflated allocations is
low, indicating there is ample room to deflate the allocated I/O
bandwidth. Even at a high deflation level of 50%, containers are
underallocated less than 1% of the time.

Network usage (sum of normalized incoming and outgoing traf-
fic) is also low: in Figure 12 we can see that even this combined
network bandwidth is not impacted by even at high (70%) deflation
levels, only suffering underallocation 1% of their lifetime. Below
50% deflation, the impact is near-zero and cannot be plotted.

Our analysis shows that low-priority VMs can be shrunk to fit
incoming VMs without preemption. Deflation allows providers to
continue offering high-priority traditional VMs, and sell unused
server space for low-priority VMs that can be deflated. This allows
consumers to still have fully-resourced VMs available for a variety
of applications. Because the average resource utilization is low, it
makes sense for cloud providers to offer low-priority VMs.

4 DEFLATABLE VIRTUAL MACHINES

In this section we describe how VM deflation mechanisms can be
implemented using existing hypervisor mechanisms.

4.1 VM Deflation Mechanisms

VM deflation requires the ability to dynamically shrink the re-
sources allocated to the VM. Modern hypervisors expose interfaces
to determine the current resource allocation of a VM and to dy-
namically modify this allocation. A cluster or cloud management
framework can use these hypervisor APIs to implement VM defla-
tion mechanisms.

Our system implements two classes of deflation mechanisms—
transparent mechanisms, which transparently shrink the VM’s re-
source allocation, and explicit mechanisms, where the deflation
is performed in a manner that is visible to the guest OS, (and by
extension, to the applications and the application cluster manager).
In the former case, the guest OS and applications are unaware of the

VM Type

1.0 Memory Size CPU P95
: M Delay-insensitive 1.0 1.0
= Interactive V71 3 MEM <=2.0GB] = P95 <=33.33%
2087 wmm Unknown o g | MM 2.0GB < MEM <=8.0GB o g | E 33:33% < P95 <= 66.66%
z £€°°] 3 MEM > 8.0GB E7°] mE 66.66% < P95 <= 80%
206 z s 3 P95 > 80%
< 206 206 g
< 0.4 k3 6
504
kS §04 §04
£ 0.2 o 8
. © ©
0.2 0.2
0.0 = _-— | u
=l —mm _;T _‘15 =
10% 20% 30% 40% 50% 0.0 00
Deflation 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Deflation Deflation

Figure 6: Fraction of time that the CPU
usage of VMs is higher than different

deflation targets.
< 1.0

VM memory size.

=
@

B Mean

1004 EEE Max
107*
1072

Figure 10: Memory band-
width usage.

2
o

e
IS

e
N

Fraction of Time > Deflation

0.0

Normalized % Bandwidth Usage

o
ot
Q

10% 20% 30% 40% 50%
Deflation

Figure 9: Memory usage of
applications.

deflation and the VM simply runs “slower” than prior to deflation.
In the latter case, since deflation is visible to the guest OS and/or
applications, they can take explicit measures, if wanted, to deal
with deflation. We describe each mechanism and a hybrid approach
that exploits the key benefits of both approaches.

4.2 Transparent VM Deflation

Since hypervisors offer virtualized resources to virtual machines,
they can also overcommit these resources by multiplexing virtual
resources onto physical ones. Transparent VM deflation is imple-
mented using these hypervisor overcommitment mechanisms. For
example, the hypervisor allows virtual CPUs (vCPUs) of the VM to
be mapped onto dedicated physical CPU cores. Such an allocation
can be deflated by remapping the vCPUs onto a smaller number
of physical cores using the hypervisor’s CPU scheduler. Thus the
guest OS and applications inside the VM still see the same number
of vCPUs, but these vCPUs run slower.

In the case of memory, hypervisors allocate an amount of physi-
cal memory to a VM and multiplexes the VM’s virtualized memory
address-space onto physical memory, via two-dimensional paging.
Memory deflation thus involves dynamically reducing the physical
memory allocated to a VM.

In the case of network, one or more logical network interfaces
of a VM are mapped onto one or more physical NICs and a certain
bandwidth of the physical NICs is allocated to each vNIC by the
hypervisor. Network deflation involves reducing the physical NIC
bandwidth allocated to the VM. Finally, in the case of local disks,
the I/O bandwidth allocated to each VM can be throttled.

With the above hypervisor level transparent techniques, the VM
and applications are oblivious of the deflation, which is done at the
hypervisor level outside of the VM. The VM may get scheduled at
a lower frequency or have less physical memory, etc. Our deflation
framework has been implemented in KVM and Linux using Linux’s
cgroups facility. By running KVM VMs inside of cgroups, we can
control the physical resources available for the VM to use. For

Figure 7: Breakdown of deflatability by

Figure 8: Breakdown of deflatability by
their 95-th percentile CPU usage.

Ll

10% 20% 30% 40% 50%
Deflation

Figure 11: Disk bandwidth
deflation feasibility.

-
Q
2

=
15}

Fraction of Time > Deflation %

Fraction of Time > Deflation %

10% 20% 30% 40% 50% 60% 70%
Deflation

Figure 12: Network band-
width deflation feasibility.

deflating CPUs, we use CPU bandwidth control by setting the CPU
shares of the deflatable VM. The memory footprint of a deflatable
VM s controlled by restricting the VM’s physical memory allocation
by setting the memory limit in the memory cgroup. Similarly for
disk and network I/O, we use the respective I/O cgroups to set
bandwidth limits.

4.3 Explicit Deflation via Hotplug

Modern virtualization environments now support the ability to
explicitly hot plug (and unplug) resources from running guest oper-
ating systems. Explicit deflation mechanisms use these hot unplug
techniques to reduce the VM’s allocation in a manner that is vis-
ible to the guest OS and the applications. In the case of CPU, if a
VM has n vCPUs allocated to it, its CPU resources are reclaimed
by unplugging k out of n vCPUs. Hot plugging and unplugging
requires guest OS support, since it must reschedule/rebalance pro-
cesses and threads to a smaller or larger number of cores. Thus, the
deflation is visible to the guest OS and applications. In the case of
memory, we use memory unplugging to inform the OS and applica-
tions of the resource pressure, which allows them to return unused
pages, shrink caches, etc. Explicit unplugging of NICs and disks is
generally unsafe, and we rely on the transparent hypervisor-level
mechanisms for these.

Hot unplugging has a safety threshold—unplugging too many
resources (e.g., too much memory) beyond this safety threshold can
cause OS or application failures. Furthermore, hot unplug can only
be done in coarse-grained units. For example, it is not possible to
unplug 1.5 vCPUs.

4.4 Hybrid Deflation Mechanisms

Both transparent and explicit deflation have advantages and dis-
advantages. Explicit deflation—by virtue of being visible, allows
the OS and applications to gracefully handle resource deflation.
However, deflation can only be done in coarse-grained units and
has a safety threshold. Transparent deflation can be done in more
fine-grained slices and has a much broader deflation range than

NI

explicit deflation. It does not require any guest OS support but can
impose a higher performance penalty since the OS and applications
do not know that they are deflated.

Our hybrid deflation technique combines both mechanisms to
exploit the advantages of each. Initially, a VM is deflated using ex-
plicit deflation until its safety threshold is reached for each resource.
From this point, transparent deflation is used for further resource
reclamation to extract the maximum possible resources from the
VM under high resource pressure. Figure 13 presents the high-level
pseudo-code of our hybrid deflation approach. The key challenge is
to determine the hot unplug safety threshold so as to switch over
from explicit to transparent deflation.

def deflate_hybrid(target):
hotplug_val = max(get_hp_threshold (), round_up(target))
deflate_hotplug (hotplug_val)
deflate_multiplexing (target)

Figure 13: Pseudo-code for hybrid resource deflation.

For deflating CPUs, we first set the hotplug target by rounding up
the target number of vCPUs (line 2 in Figure 13). Then the cgroups
based CPU multiplexing deflation can deflate the VM the rest of the
way. The hotplug operation may not always succeed in removing all
the CPUs requested—the guest OS unplugs the CPU only if it is safe
to do so. If the number of reclaimed CPUs via hotplug is less than
the number requested, then the multiplexing-based CPU deflation
takes up the slack. When deflating memory, we set the hotplug
threshold by using the guest OS’s resident set size (RSS)—since
unplugging memory beyond the RSS results in guest swapping, and
we presume that it is safe to unplug as long as the VM has more
memory than the current RSS value.

Our hybrid deflation mechanisms can be used to reclaim signifi-
cant amounts of CPU, memory, and I/O resources from applications.
When deflating memory, hybrid deflation allows the guest OS to
hot-unplug unused memory, which can improve performance, as
shown in Figure 14. The figure shows the mean response time with
the SpecJBB 2015 benchmark, and we see that the performance
with both transparent and hybrid deflation is largely unaffected
up to 40% deflation, and hybrid deflation improves performance by
about 10%. Additional results with CPU deflation and with other
applications are presented later in Section 7.

5 CLUSTER DEFLATION POLICIES

In this section, we describe how the mechanisms discussed in the
previous section can be used to implement cluster-level deflation
policies. We assume a cloud resource management framework that
multiplexes physical servers in the cluster across two pools of VMs:
non-deflatable higher-priority VMs and deflatable lower-priority
VMs. When there is surplus capacity in the cluster, the cloud man-
ager allocates these resources to lower priority VMs (without deflat-
ing them). When demand from higher-priority VM causes resource
pressure, resources from lower priority VMs are reclaimed using de-
flation and re-assigned to higher priority VMs. Below, we describe
policies for doing so that determine how much each VM is actually
deflated by, and under what conditions. Our policies assume the
worst-case linear correlation between deflation and performance,
as shown by Figures 3 and 4. Which policy to apply we leave up
to cloud providers as they have different trade-offs and capabil-
ities that we discuss in Section 7.4. The policies we propose are

=
~

T T
| *— Hybrid
®—@ Transparent

1.6
1.5
1.4
1.3
1.2
1.1
1.0

(Normalized to no deflation)

Spec)BB Mean Response Time

L L L L L L L L
0 5 10 15 20 25 30 35 40 45
Memory Deflation %

o
©

Figure 14: Performance of SpecJBB 2015 with transparent
and hybrid memory deflation.

implemented at the level of a physical server. That is, the deflation
of a VM is determined by the “local” conditions and the resource
profiles of co-located VMs.

5.1 Server-level Deflation Policies

Our system uses three policies for deflation—proportional, priority-
based and deterministic—that we describe below.

5.1.1 Proportional Deflation. In the simplest case, we assume that
all VMs that fall into two broad classes: high-priority non-deflatable
VMs (aka on-demand), and low-priority deflatable VMs. A server
may host VMs of both classes.

Proportional deflation involves deflating each low priority VM
in proportion to its original maximum size. More formally, sup-
pose we need to reclaim R amount of a particular resource (CPU,
memory, etc.) from n deflatable VMs, and suppose M; is the orig-
inal undeflated allocation of that resource allocated to VM i. The
proportional deflation policy reclaims x; amount from each VM i:

xij =M —oa1 - M;, 1)
where @1 is determined by the constraint that)} x; = R, and is
given by a1 = 1~ (R/XY M;). Intuitively, we want VMs to deflate
in proportion to their size, to avoid excessively deflating small VMs.
Note that a new incoming VM may be deflatable, and is included in
the pool of n deflatable VMs, and can thus start its execution in a
deflated mode under high resource pressure conditions.

This simple proportional deflation policy forms the basis of more
sophisticated policies for addressing various cluster management
requirements. For instance, some VMs may have a “limit” to their
deflatability or QoS minimum requirements if deflated by more
than, say, 80%. Applications can provide these requirements to the
cluster on provisioning. The cluster manager enforces the minimum
resource allocation (m;) with proportional deflation policy, and
reclaim resources from each VM using the following relation:

xi = (Mj —m;) — az - (M; — m;))

The proportional deflation is performed for each resource (CPU,
memory, disk bandwidth, network bandwidth) individually. Enforc-
ing the minimum resource allocation limits can minimize applica-
tion performance degradation, but can reduce the overcommitment
(and possibly revenue) of cloud platforms.

5.1.2 Priority-based Deflation. Since the impact of deflation is ap-
plication dependent, a cloud platform can offer multiple classes of
deflatable VMs. These priority levels influence how much each VM
is deflated by, and can be offered by cloud providers at different

prices. These priority classes can be chosen by the user based on
their price sensitivity and application characteristics.

The proportional deflation policy (Equation 1) can be extended
to incorporate priorities through a weighted proportional deflation
framework. Let 7; € (0, 1) be the priority level of VM-i. Then,

xi = Mi — a3 7 - M, ®)
where low 7; values indicate lower priority and higher deflatability.

VM priorities can also be applied to determine the minimum
resource allocation levels (m;) of the VMs. Intuitively, VMs with
a higher priority (r;) have a lower deflation tolerance, and thus
larger m; values. For instance, cloud platforms can determine the
VM’s minimum resource allocation level as: m; = 7n; - M;, and we
can then extend the minimum-level-aware deflation (Equation 2)
with weighted proportional deflation:

xi = (M — miM;) — ag - mi(Mi — miM;) 4)
5.1.3 Deterministic Deflation. With the above proportional defla-
tion policies, a VM’s deflation level is determined dynamically based
on the local resource pressure on the server. In some cases, cloud
platforms and applications may require a more deterministic de-
flation policy, that only deflates VMs to a pre-specified level. VM
priorities can be used for determining the deflation levels of VMs—
with higher priorities (17;) indicating lower deflation. In this case,
deflation is binary: either the deflatable VMs are allocated 100%
of their resource allocation (M;), or 7; - M;. In case of multiple
deflatable VMs on a server, VMs are deflated in decreasing order of
7;’s until sufficient resources are reclaimed to run the new VM.
Reinflation: Both our proportional and priority-based policies can
also reinflate previously deflated VMs when additional resources
become available. When Ry, additional resources have become
available, we reinflate VMs proportionally by setting R = —Rfee in
equations 1, 2, 3, 4, and effectively run the proportional deflation
backwards in all the cases. For deterministic deflation, the highest
priority VMs are reinflated first.

5.2 Deflation-aware VM Placement

The initial placement of VMs onto physical servers also affects
their deflation. Conventionally, for non-deflatable VMs, bin-packing
based techniques are used by cluster managers to place VMs onto
the “right” server in order to minimize fragmentation and total
number of servers required. This is often solved through multi-
dimensional bin-packing lens. The VM’s CPU, memory, disk and
network resource needs as well as the resources available on each
server are multi-dimensional vectors. Policies such as best-fit or
first-fit can be used to choose a specific server. We use the notion of
“fitness” for placing VMs onto a server. Similar to [19], we use the
cosine similarity between the demand vector and the availability

. A;-D .
vector to determine fitness: fitness(D, A;j) = m Here, D is the
j

demand vector of the new VM, and Aj is the resource availability
vector of server j. If Aj = 0, i.e. there are no available resources,
a small value € can be added to it, or the server can be removed
from consideration, to prevent division by 0. The availability vector
is given by A; = Total; — Used; + (deflatable;/overcommitted;),
where deflatable; is the maximum amount of resources that can
be reclaimed by deflation and overcommitted; is the extent of the
deflation already done. By evaluating all severs and considering
their level of overcommitment, this approach prefers servers with
lower overcommitment, and thus achieves better load balancing.

5.2.1 Placement With Cluster Partitions. The above VM placement
approach results in VMs of different priority levels sharing physical
servers. This “mixing” can be beneficial and improve overall cluster
utilization, since lower priority VMs can be deflated to make room
for higher priority VMs. However, increasing the number of co-
located deflated VMs can potentially result in higher performance
interference (aka noisy neighbor effect).

While performance interference can be mitigated through stronger
hypervisor and hardware-level isolation techniques, it can also be
addressed by VM placement. The key idea is to partition the cluster
into multiple priority pools, and only place VMs in their respective
priority pools. Within a pool, we use the bin-packing approach for
deflatable VMs and continue to use either proportional or deter-
ministic deflation policies on the individual servers. The size of the
different pools can be based on the typical workload mix.

Thus, higher priority VMs will generally run on servers with
lower overcommitment and lower risk of performance interference,
and lower priority VMs face higher risk of overcommitment. This
approach also allows cloud operators to limit and control the distri-
bution of overcommittment of different servers, which reduces the
risk of severe performance degradation due to overcommitment.

A possible downside of cluster partitions is that if a partition
becomes “full” even after deflating all its VMs to their maximum
limits, new VMs may have to be rejected using the admission control
mechanism. This can reduce cluster overcommitment and revenue.

5.2.2 Pricing Considerations. Our work assumes that deflatable
VMs are priced differently from traditional on-demand VMs. Similar
to preemptible VMs, a cloud provider may choose to offer deflatable
VMs at fixed discounted prices (e.g., at 60-80% discount). The cloud
provider may also price deflatable VMs based on priority levels,
where the priority level determines the proportion by which VM
can be deflated and also the discount in the price. Finally, the cloud
provider may use variable pricing where the deflatable VM is billed
based on the actual allocation of resources over time, with lower
prices charged during periods of deflation. The different pricing
policies, when combined with placement and server-level deflation
policies, result in different levels of application performance, clus-
ter utilization, and revenue. These tradeoffs are presented in the
evaluation section.

6 IMPLEMENTATION

We have implemented all the deflation mechanisms and policies
discussed in Sections 4-5 as well as deflation-aware web applica-
tions, as part of a deflation-aware cluster manager framework. Our
system is comprised of two main components (see Figure 1). A cen-
tralized cluster manager implements and invokes the VM placement
policies and generally controls the global-state of the system. In
addition, we run local deflation controllers that run on each server.
These local controllers control the deflation of VMs by responding
to resource pressure, by implementing the proportional deflation
policies described in section 5. Both the centralized cluster manager
and the local-controllers are implemented in about 4,000 lines of
Python and communicate with each other via a REST APL

Deflation Mechanisms. Our prototype is based on the KVM hy-
pervisor [26], and uses the libvirt API for running VMs and for
dynamic resource allocation required for deflation. Our hybrid

resource deflation mechanisms presented in section 4 are imple-
mented by the per-server local controller. CPU and memory hot-
plugging (and unplugging) are performed via QEMU’s agent-based
hotplug. Hotplug commands are first passed to the user-space
QEMU agent, which then forwards them to the guest OS kernel.
Thus, the guest OS is made aware of the deflation attempt, and
knows the unplug is not due to hardware-failure, and allows the
hotplug to be “virtualization friendly”. For example, if the guest
kernel cannot safely unplug the requested amount of memory, the
hot unplug operation is allowed to return unfinished. In this case,
the memory reclaimed through hot plug will be lower, but the safety
of the operation is maintained.

For hypervisor level multiplexing of resources, we run KVM
VMs inside cgroups containers, which allows us to multiplex re-
sources. For CPU multiplexing, we adjust the cgroups cpu shares
of the VM through libvirt’s cgroups APL For transparent memory
deflation, we adjust the VM’s physical memory usage by setting
the memory usage of the cgroup (mem.limit_in_bytes). Disk and
network bandwidth are also dynamically adjusted via libvirt APT’s.
Deflation Policies. The server-level deflation policies are imple-
mented by a local deflation controller on each server, which main-
tains and manager all aspects of the server’s resource allocation
state, and determines deflation amounts of different VMs. Each
server updates the central master about all changes in server uti-
lization after every deflation event. New VMs are placed on servers
using a three-step approach. First, the centralized cluster manager
finds the “best” server for the VM based on the VM size and utiliza-
tions of all servers. The second step involves the server computing
the deflation required to accommodate the new VM. If this violates
any resource constraint, then the server rejects the VM. Finally, the
actual deflation is performed and the VM is launched.
Deflation-aware Web Cluster: When running web clusters on
deflatable VMs, the load balancer can be made deflation aware for
improved performance. The load balancer can adjust the number
of requests sent to a VM based on its deflation level. We implement
a deflation-aware load-balancing policy in HAProxy [4]. We have
modified HAProxy’s Weighted Round Robin algorithm by dynami-
cally changing the weights assigned to the different servers based
on the current deflation level, which adjusts the number of requests
sent to each server based on the “true” resource availability. The
load balancer changes are implemented in Python and Kotlin in a
total of 300 LOCs and are wrapped in a Docker container.

7 EXPERIMENTAL EVALUATION

In this section, using testbed experiments and simulation, we show
the performance of deflatable VMs, and focus on answering the
following questions:
(1) What is the performance of interactive applications when
deployed on deflatable VMs?
(2) What is the impact of deflation policies on cluster utilization,
application throughput, and cloud revenue?

7.1 Evaluation Environment
7.1.1 Web-based interactive applications. We use two interactive

applications to evaluate deflation on real-world web workloads:

Wikipedia: We replicate the German Wikipedia on our local testbed.

We choose the German Wikipedia as it is the second most popular
Wikipedia in terms of number of views—with more than 720000

Frontend Logic

Y User timeline

= storage

Home timeline

storage

) Social graph
storage

Media storage

Figure 15: The micro-service architecture of the social net-
work application used in our evaluation (Courtesy of [17]).
page views per hour—, and the fourth most in terms of number of
articles—with more 2.25 Million articles [1]. We setup a KVM VM
with MediaWiki, MySQL database, Apache HTTP webserver, and
Memcached. Our workload generator randomly selects from the
top 500 largest pages (page sizes ranging from 0.5-2.2 MB).
DeathStarBench is a recently released benchmark that imple-
ments different applications using the microservice architecture [17].
We evaluate the benchmark’s social networking application, which
consists of 30 microservices (Figure 15) built using Redis, Mem-
cached, MongoDB, RabbitMQ, Nginx, Jaeger, and other custom
made services that provide the required functionality. We run each
micro-service runs in a separate Docker container using using
Docker swarm. We use a workload generator based on wrk2 ! for

evaluating the overall application performance.
7.1.2 Cluster-level simulation framework. To analyze various cluster-

level deflation policies, we have developed a trace-driven discrete
event simulation framework that allows us to understand the impact
on application and cloud-level metrics. The simulation framework
is written in Python in about 2000 lines of code, and implements
our VM deflation and pricing policies, and allows large-scale simu-
lations with different policy and workload combinations. We use
the Azure VM-level dataset to determine the starting and stopping
times of VMs, their size (aka resource vectors), and CPU utilization
history. We also use the VM metadata such as VM category (batch,
interactive, unknown), and the 95-th percentile CPU utilization to
determine priority levels for our priority-based deflation policies.
The simulation framework allows us to determine the deflation
levels of VMs, preemptions in the cluster, and also correlate VM’s
dynamic resource allocation with its CPU utilization time-series to
determine the performance impact of deflation. For the simulation-
based cluster-level experiments, we primarily focus on the effect of
deflation on the cloud provider. This complements our application-
focused performance evaluation done using web services in the
next subsection, as well as prior work on deflation [38] that looked
at performance of distributed applications under deflation.

Given our focus on deflatability of interactive applications, we
assume that the interactive VMs in the trace are deflatable, while the
unknown and batch VMs are non-deflatable (“on-demand”). This
translates to roughly 50% of the VMs being deflatable. We consider
each VM’s CPU core count and memory size for bin-packing as
well as all deflation policies. We determine VM priorities based on
their 95-th percentile CPU usage and use 4 priority levels. We show
results on a randomly sampled trace of 10,000 VMs, which require
a cluster of 40 servers each with 48 CPUs and 128 GB RAM. For
simulating varying degrees of cluster overcommitment, we first find
the minimum cluster size capable of running all VMs without any

Uhttps://github.com/giltene/wrk2

Number of Cores
30272421181512 9 6 3 1

100

Median NS 90th% EEEEN 99th% E===
T T

100000 T T T

5

80

60 -

S
% requests served

5

N

o
T

Response Time (s)

\‘\\, 10000

1000

Response Time (ms)
=
o
o

=
o

0 10 20 30 40 50 60 70 80 90 97

Deflation %
Figure 16: Wikipedia response times

with CPU deflation.

preemptions or admission-controlled rejections. We then vary and
increase the overcommitment by reducing the number of servers
and use the same VM-trace throughout for all the experiments. We
do not look at the impact on individual application performance
in a cluster settings for two reasons 1) the cluster level impact of
deflation was examined in [38] and 2) we want to focus on the effect
of our deflation policies on large-scale cluster management.

7.2 VM deflation of Web services

Our first set of experiments aim to measure the effect of transparent
deflation on the performance of different types of web services,
and how the reduction in resource allocation can be mitigated by
well-engineered web applications.

Multi-tiered Applications. In order to evaluate the effects of de-
flation on the QoS of multi-tiered services, we use the German
Wikipedia replica running on a VM with 30 CPU cores, and 16 GB
of memory. We subject it to a mean load of 800 requests/s selected
randomly from the 500 largest pages. We set the request time out
period to 15 seconds, and consider that requests that take longer
are dropped, or no longer interesting to the users. We progressively
deflate the VM’s CPU for this CPU-bound application. Figure 16
shows a violin plot of the distribution of the response times of the
requests at each deflation level, with the y-axis in log-scale. As
shown, the response time does not increase significantly until the
deflation increases above 70%—even though the average CPU usage
at 50% deflation is 100%. We find that the average response time for
the application with no deflation is 0.3s, with 50% deflation is 0.45s,
and with 80% deflation is 0.6s—which is 2x the undeflated response
time. The 99th percentile response time is 6.8s for no deflation, and
increases by only 43% to 9.74s even at 80% deflation. We also find
that, even when deflated to a single core, the application did not
crash when serving a load of 800 req/s. This leads us to believe that
many well architected web services tolerate deflation well, with
a disproportionately small performance penalty. This observation
is further reinforced by Figure 17, which shows the percentage
of requests served with different deflation settings. Similar to our
previous result, we see that noticeable request loss rates occur only
after 70% deflation.

Micro-service based Applications. We next evaluate the impact
of transparent deflation on micro-service based applications. Fig-
ure 15 shows the architecture of the social networking application
described previously. The application microservices can be classi-
fied based on their functionality into three logical classes that are
similar to multi-tiered applications, namely, frontend microservices,
logic microservices, and finally, caching and storage microservices.

Figure 17: Almost all Wikipedia re-
quests are served till 70% deflation.

0
0 10 20 30 40 50 60 70 80 90 100 0 30 50 60 65
Deflation %

CPU Deflation %

Figure 18: Response times for the so-
cial media application.

In the social networking service used, there are three frontend mi-
croservices, 15 logic microservices, and 12 backend microservices.
In our deflation experiment, we deflate all microservices except for
the databases, i.e., we deflate all frontend and logic microservices,
and the four memcached microservices from the backend, deflating
a total of 22 microservices out of 30. We start by allocating a maxi-
mum limit of 2 cores per microservice, and a minimum of 0.05 CPUs
for each container. Each container is allocated 800MB of memory.
We use the workload generator to generate 500 requests per second,
and deflate the 22 microservices by 30%, 50%, 60% and 65%. Figure 18
shows the median, 90th%, and 99th% response times in milliseconds.
We again see that the service can be deflated by up to 50% with no
performance losses. Beyond this level, the degradation in QoS and
response time is more abrupt than the the multi-tiered Wikipedia
case, likely due to the higher communication- and coordination-
intensive nature of the application.

7.3 Deflation-aware Web Load Balancing
Next, we evaluate the effect of explicit deflation on clustered web

services. To do so, we compare the performance of using vanilla
HAProxy [4] with our modified deflation-aware HAProxy. We
run three replicas of the German Wikipedia application behind
HAProxy. Each instance starts with 10 vCPU cores, and 10 GB of
memory. We assume that two of these instances are running on
deflatable VMs , and the third runs on a non-deflatable VM.

We generate an average load of 200 requests/s and deflate the two
deflatable VMs equally. Our deflation-aware load balancer attempts
to masks the impact of deflation by changing the server weights
based on the deflated number of vCPUs, causing more requests to
be sent to the third undeflated replica. Figure 19 shows the average
and 90th percentile response times for the unmodified and deflation-
aware load balancers. We see that the deflation-aware load balancer
yields 15 to 40% lower tail latency at high deflation levels of 40 to
80% when compared to vanilla load balancing; mean response times
are also lower or comparable as shown in the figure.

7.4 Impact Of Cluster Deflation Policies

We now evaluate the effect of VM deflation at a cluster level using
trace-driven simulations. We are interested in the differences with
current transient server offerings that rely on preemptions, and the
impact of the different deflation policies on cluster overcommitment,
VM performance, and cloud revenue.

7.4.1 Eliminating Preemptions. VM deflation is intended to elimi-
nate preemptions, which are detrimental to interactive applications
because they cause downtimes. Currently, cloud operators preempt

9 T T T T

8t 90% RT deflation aware LB —+— P
my 90th% RT Non-deflation aware LB —>— e
~ 7t Mean RT deflation aware LB /,,/' 4
(] Mean RT non-deflation aware LB yd
E6F e 4
= e —
=5t A
Q P
o ;M 4
a 3
32)
o 1% 4

0 I I I I I I I

0 10 20 30 40 50 60 70 80

Deflation %
Figure 19: Our deflation-aware load balancer yields lower re-

sponse times even at high deflation levels.

1.0

—— Proportional
—e— Priority

—+— Deterministic
—&— Preemptible VMs

1N o o
ES o o

Failure Probability

o
N

0
0% 10% 20% 30% 40% 50% 60% 70% 80%
Cluster Overcommitment

Figure 20: Failure probability with deflation remains very
low even for high cluster overcommitment.

—e— Proportional
4% 1 —— Priority
—— Deterministic
Priority + Cluster Partitioning

N w
X X

Throughput Loss

-
ES

g8

o
X

0% 10% 20% 30% 40% 50% 60% 70% 80%
Cluster Overcommitment

Figure 21: Decrease in throughput of deflatable VMs is low
even at high overcommitment.

low-priority VMs when there is high resource pressure, which in-
creases at high cluster overcommitment levels. Figure 20 shows
the failure probability for low-priority VMs under different over-
commitment levels. Failure probability represents the probability
of failure to reclaim sufficient resources from deflatable VMs due to
"too much" overcommitment; for traditional preemptible instances,
it is same as preemption probability. Even at 70% overcommitment,
the failure probability is below 1% for proportional deflation, com-
pared to 35% for preemptible VMs. From a provider standpoint, this
implies that they can reclaim the desired amount of resources via de-
flation with >0.99 probability. The priority-based and deterministic
deflation policies have higher failure probability than proportional
but still below preemptible VMs. More broadly, this result shows
that a judicious choice of overcommitment level (of as much as 50%)
allows the provider to eliminate preemptions and use deflation to
reclaim the necessary resources under resource pressure.

Result: Deflatable VMs have very low probability of resource recla-
mation failure even when the overcommitment is as high as 50%
7.4.2 Throughput. While deflation can eliminate preemptions, it
comes with an important tradeoff: the reduction in resource alloca-
tion due to overcommitment can reduce application performance

and throughput. We examine the effect of deflation on VM perfor-
mance at a cluster level, using the CPU-traces of the Azure VMs.
Note that a VM’s deflation is dynamic and based on the time-varying
resource pressure conditions as VMs are launched and terminated.
At a given point in time, the performance depends on the deflation
and the VM’s resource utilization. Thus if the VM is deflated when
its resource (CPU) utilization is low, then we are reclaiming unused
resources (i.e., slack), and there should be no drop in throughput.
The loss in throughput only occurs when a VM is deflated below its
CPU usage, and is proportional to the total underutilization (area
under the curve of Figure 4 in Section 3. Based on this principle, Fig-
ure 21 shows the decrease in throughput for the different deflation
policies at varying overcommitment levels.

We see negligible reduction in throughput below 40% overcom-
mitment, and a 1% reduction at 50% overcommitment. Even at 80%
overcommitment, the loss in throughput is below 5% for all defla-
tion policies. We note that this is fundamentally due to the low
utilization of VMs of the Azure VMs (especially interactive VMs),
as was shown earlier in Figure 6. Additionally, the average VM
deflation is not equal to the cluster overcommitment but is signifi-
cantly lower. Our cluster was provisioned for the peak load, and
furthermore, deflatable VMs significantly improve the bin-packing
efficiency by allowing the cluster manager to slightly adjust VM
allocations to make room for new VMs that would have otherwise
not fit and required an additional server.

The priority-based and deterministic deflation policies take into
account the VM’s anticipated utilization levels by using their 95
percentile CPU usage to determine the deflation priority and the
minimum allocation levels. Thus, high utilization VMs are deflated
less, which reduces their loss in throughput compared to simple
proportional deflation. Thus, we see that adding priorities can re-
duce the loss in throughput by an order of magnitude. When we
place VMs into dedicated cluster partitions based on their priority
(as described in Section 5.2), Figure 21 also shows that incorpo-
rating partitioning does not significantly impact throughput loss.
Cluster-partitioning is thus a viable technique that can be used by
cloud operators to minimize the risk of performance interference
among deflatable VMs of different priorities.

Interestingly, deterministic deflation, which deflates VMs in
their priority order, has the lowest decrease in throughput. This
is because the proportional deflation policies (both the simple and
priority-based proportional) result in deflation of all VMs, even
though the magnitude of deflation of each VM is small. Thus, even
high priority deflatable VMs are deflated, and their throughput
will decrease if their CPU utilization is higher than the deflated
allocation. With deterministic deflation, the lower priority VMs
(with lower 95 percentile CPU usage) are penalized more, but the
average cluster-wide throughput loss is reduced.

Result: Deflatable VMs allow clusters to be overcommited by 80%,
and keep the performance degradation to less than 5%.

Impact on Quality of Experience. The low average loss in through-
put represents a low risk of QoS violations, since performance is
affected only when the application’s peak usage coincides with de-
flation. However, end-users of interactive applications may observe

a perceivable drop in their quality of experience due to the jitter
and the longer response times during deflation. Ultimately, evaluat-
ing the user experience with deflation requires user studies similar

IN
=)

w
S

N
o

///i

—e— Static
—— Priority-based
—+— Allocation-based

Increase in Revenue %
-
1)

0 10 20 30 40 50 60 70
Cluster Overcommitment %

Figure 22: Increase in cloud revenue due to deflatable VMs.
to [12], and is a potential candidate for future work. End-users can

be alerted with a “degraded mode” warning during periods of high
deflation, similar to downtime indicators for popular web services.
Finally, we note that distributed applications can also run on a
mix of non-deflatable and deflatable VMs with different priorities

(similar to [8]), and reduce the risk of QoS violations even further.
7.4.3 Cloud Revenue. We have seen how deflatable VMs can min-

imize preemptions and have negligible impact on performance
of interactive applications. Since deflation allows for increased
overcommitment, it provides cloud platforms the opportunity to
increase their revenue on low-priority resources. Figure 22 shows
the increase in revenue from the low-priority (i.e., deflatable) re-
sources, at different cluster overcommitment levels for different
combinations of deflation and pricing policies. For ease of expo-
sition, we assume that the static price of deflatable VMs is 0.2x
the on-demand price—corresponding to the discounts offered by
current transient cloud servers such as EC2 spot instances, Google
Preemptible VMs, and Azure Low-priority Batch VMs. For VMs
with different deflation priorities, we set their price equal to the
priority—i.e, priority-level 0.5 has price 0.5x the on-demand price,
etc. We also evaluate variable allocation-based pricing which con-
siders the actual resource allocation over time, and again price
resources linearly (i.e, VMs pay half price when at 50% allocation).
Figure 22 shows that as the cluster overcommitment increases,
the revenue with static-pricing VMs increases, and the cloud plat-
form can increase revenue by 15% at 60% overcommitment. Hav-
ing priority-based differentiated pricing significantly increases the
revenue, since higher priority VMs pay more. The priority-based
pricing (when used with priority-based deflation) increases the
revenue per server by 2X compared to simple static pricing.
Interestingly, the revenue with allocation-based pricing scheme,
which charges VMs what they were actually allocated, does not
increase with increasing overcommitment. This is because at low
overcommitment levels, VMs are not deflated and thus pay “full
price”, and as the overcommitment increases, there are more VMs
running per server, but they are highly deflated, and thus the total
revenue remains the same.
Policy Comparison: Deflation policies have different tradeoffs. Pro-
portional deflation minimizes resource reclamation failure, but pro-
vides lower revenues. Priority-based deflation and pricing increases
revenue, but also increases failure probability.

8 RELATED WORK

VM deflation draws upon many related techniques and systems.

Systems for handling transient server revocation use a com-
bination of fault tolerance and resource allocation to mitigate the
performance and cost effects of preemptions. Prior work has focused
on system [43, 45] and application [23, 30, 40, 41, 49, 51] support

for handling preemptions. We believe that deflatable VMs mini-
mize the need for such middleware, and can avoid the performance,
development, and deployment costs associated with preemption.
Resource overcommitment mechanisms have been extensively
studied and optimized to allow for more efficient virtualized clus-
ters. Memory overcommitment typically relies on a combination
of hypervisor and guest OS mechanisms, and has received signifi-
cant attention [9, 42, 47]. Memory ballooning is another memory
overcommitment technique with generally inferior performance
to hotplug [29, 37]. Hotplug can also be used for reducing energy
consumption [52], since unused but powered-on RAM draws a
significant amount of energy. CPU hotplugging can also be used
to mitigate lock-holder preemption problems in overcommitted
vCPUs [16, 33]. Burstable VMs [2, 48] also offer dynamic resource
allocation, but are the “inverse” of deflatable VMs. The resource
allocation is high by default for deflatable VMs and only reduced
during resource pressure, whereas burstable VMs have low alloca-
tion by default and only ocassionally can be “inflated” to higher
allocations. Furthermore, burstable VMs have been restricted to
CPU and I/O bursting, whereas deflatable VMs also adjust memory.
Resource consolidation using dynamic resource allocation [46]
and VM migration [50] is common to increase cluster utilization.
VMWare’s distributed resource scheduler [20] uses per-VM reser-
vations (minimum limits) and shares for dynamically allocating
resources—similar to our resource-pressure based local deflation
policies. Many approaches for performance-sensitive resource al-
location among co-located VMs have been suggested [22, 24, 28,
32, 55], but they assume some application performance model,
which our work does not. VM memory allocations can be set us-
ing working-set estimation [13, 53, 54], utility-maximizing [25], or
market-based approaches [6, 11]. As noted earlier, deflation was
first proposed in [38] but required OS and application cooperation,
while we focus on a hypervisor-only deflation approach.

Vertical scaling with performance differentiation for a single
server under resource pressure due to increasing application load
and server overbooking has been well studied in the past [27, 34, 36].
All previous work we are aware of tackles the problem of perfor-
mance differentiation for a single server. Our work focuses on
cluster-wide performance optimization when resources are de-
flated across the whole cluster. Application performance mod-
els and workload prediction is a key component of elastic scal-
ing [7, 18, 31, 35, 44]. In contrast, deflation is a black-box, applica-
tion agnostic, and reactive technique for handling resource pressure.
Our deflatable VMs use a combination of overcommitment mecha-
nisms that are adapt to application resource usage, and we consider
the simultaneous deflation of all resources. Deflation also exposes
an explicit performance tradeoff, whereas elastic scaling approaches
typically only reclaim unused resources.

9 CONCLUSIONS
In this paper we proposed the notion of deflatable VMs for running

low-priority interactive applications. Deflatable VMs allow applica-
tions to continue running on transient resources, while minimizing
the risk of preemptions and the associated downtimes. Our VM
deflation mechanisms and cluster-level deflation policies reduce the
performance overhead of applications and allow cloud platforms to
increase cluster overcommitment and revenue. The performance of

deflatable VMs is within 10% of their undeflated allocation—making
them a viable alternative to current cloud transient VMs.
Acknowledgments. We wish to thank all the anonymous review-
ers and our shepherd Renato Figueiredo, for their insightful com-
ments and feedback. This research was supported by NSF grants
1836752, 1763834, and 1802523

REFERENCES

(1]

[13]

[14

[15]

[16

[17]

[18]

[19

[20

[21]

[22

[23]

[24]

[25]

[26]

[27]

Wikipedia Statistics. Accessed: URL:
https://stats.wikimedia.org/EN/Sitemap.htm.

EC2 Burstable Instances. https://aws.amazon.com/blogs/aws/low-cost-burstable-
ec2-instances/, 2014.

Google preemptible instances. https://cloud.google.com/compute/docs/instances/
preemptible, September 24th 2015.

Haproxy. https://www.haproxy.org, 2016.

Azure low priority batch vms. https://docs.microsoft.com/en-us/azure/batch/
batch-low-pri-vms, June 2017.

AGMON BEN-YEHUDA, O., POSENER, E., BEN-YEHUDA, M., SCHUSTER, A., AND
Mu’ALEM, A. Ginseng: Market-driven memory allocation. In VEE (2014), ACM.
ALI-ELDIN, A., TORDSSON, J., AND ELMROTH, E. An adaptive hybrid elasticity
controller for cloud infrastructures. In Network Operations and Management
Symposium (NOMS), (2012), IEEE, pp. 204-212.

ALI-ELDIN, A., WESTIN, J., WANG, B., SHARMA, P., AND SHENOY, P. Spotweb:
Running latency-sensitive distributed web services on transient cloud servers.
In HPDC (2019), ACM, p. 14AS12.

AMIT, N., TSAFRIR, D., AND SCHUSTER, A. Vswapper: A memory swapper for
virtualized environments. VEE (2014).

BARR, J. New - EC2 Spot Instance Termination Notices. https://aws.amazon.com/
blogs/aws/new-ec2-spot-instance-termination-notices/, January 6th 2015.
BEN-YEHUDA, M., AGMON BEN-YEHUDA, O., AND TSAFRIR, D. The nom profit-
maximizing operating system. In VEE (2016), ACM.

CHEN, K.-T., HuaNG, C.-Y., HUANG, P., AND LE1, C.-L. Quantifying skype user
satisfaction. SIGCOMM (2006), 399-410.

CHIANG, J.-H., L1, H.-L., AND CHIUEH, T.-c. Working set-based physical memory
ballooning. In ICAC (2013), pp. 95-99.

CORTEZ, E., BONDE, A., MuzIo, A., RussiNovICH, M., FONTOURA, M., AND B1AN-
cHINL R. Resource central: Understanding and predicting workloads for improved
resource management in large cloud platforms. In SOSP (October 2017).

DiNG, H. Alibaba production cluster trace data. https://github.com/alibaba/
clusterdata, 2018.

Ding, X., GIBBONS, P. B., Kozuch, M. A., AND SHAN, J. Gleaner: mitigating the
blocked-waiter wakeup problem for virtualized multicore applications. In 2014
USENIX Annual Technical Conference (USENIX ATC 14) (2014), pp. 73-84.

GAN, Y., ZHANG, Y., CHENG, D., SHETTY, A., RaTHI, P., KATARKI, N., BRUNO, A.,
Hu, J., RITCHKEN, B., JACKSON, B, ET AL. An open-source benchmark suite for
microservices and their hardware-software implications for cloud & edge systems.
In ASPLOS (2019), ACM, pp. 3-18.

GONG, Z., Gu, X., AND WILKES, J. Press: Predictive elastic resource scaling for cloud
systems. In 2010 International Conference on Network and Service Management
(2010), IEEE.

GRANDL, R.,, ANANTHANARAYANAN, G., KANDULA, S., RAO, S., AND AKELLA, A.
Multi-resource packing for cluster schedulers. In ACM SIGCOMM Computer
Communication Review (2014), vol. 44, ACM, pp. 455-466.

GuraTi, A., HOLLER, A., J1, M., SHANMUGANATHAN, G., WALDSPURGER, C., AND
Znu, X. Vmware distributed resource management: Design, implementation,
and lessons learned. VMware Technical Journal 1, 1 (2012), 45-64.

Guo, J., CHANG, Z., WANG, S., DinG, H., FENG, Y., Mao, L., AND Bao, Y. Who
limits the resource efficiency of my datacenter: An analysis of alibaba datacenter
traces. In International Symposium on Quality of Service (2019), IWQoS "19, ACM.
GUPTA, V., LEE, M., AND ScHWAN, K. Heterovisor: Exploiting resource heterogene-
ity to enhance the elasticity of cloud platforms. In VEE (2015), ACM, pp. 79-92.
HarraP, A, TumANOV, A., CHUNG, A., GANGER, G. R., AND GIBBONS, P. B. Proteus:
Agile ml elasticity through tiered reliability in dynamic resource markets. In
EuroSys °17 (2017), ACM, pp. 589-604.

HE, L., Zou, D., ZHANG, Z., CHEN, C., JIN, H., AND JARvIs, S. A. Developing
resource consolidation frameworks for moldable virtual machines in clouds.
Future Generation Computer Systems 32 (2014), 69-81.

HiNEes, M. R., GORDON, A, SILVA, M., DA SiLva, D., Ryu, K., AND BEN-YEHUDA,
M. Applications know best: Performance-driven memory overcommit with
ginkgo. In Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third
International Conference on (2011), IEEE, pp. 130-137.

Krvity, A, KaMAY, Y., LAOR, D., LuBLIN, U., AND LIGUORI, A. kvm: the linux
virtual machine monitor. In Proceedings of the Linux symposium (2007), vol. 1,
pp. 225-230.

Lakew, E. B., KieiN, C., HERNANDEz-RODRIGUEZ, F., AND ELMROTH, E.
Performance-based service differentiation in clouds. In CCGrid (2015), IEEE,

October, 2015,

(28]

[29]

[30

)
=

(32]

[33

[34

@
i

[36]

[37

[38

[39

[40

[41

"~
&

[43

[44]

[45

[46

[47

[49

[50]

[51]

[52

[53

[55]

pp. 505-514.

Liu, H., AND HE, B. Reciprocal resource fairness: Towards cooperative multiple-
resource fair sharing in iaas clouds. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (2014), IEEE
Press, pp. 970-981. Weighted DRF with resource trading among applications.
Liu, H., JiN, H,, L1ao, X., DENG, W., HE, B., AND Xu, C.-z. Hotplug or ballooning:
A comparative study on dynamic memory management techniques for virtual
machines. IEEE Transactions on Parallel and Distributed Systems 26, 5 (2015),
1350-1363.

MARATHE, A., HARRIS, R., LOWENTHAL, D., DE SUPINSKI, B. R., ROUNTREE, B., AND
Scrurz, M. Exploiting redundancy for cost-effective, time-constrained execution
of hpc applications on amazon ec2. In HPDC (2014), ACM.

NGUYEN, H., SHEN, Z., Gu, X., SUBBIAH, S., AND WILKEs, J. Agile: Elastic dis-
tributed resource scaling for infrastructure-as-a-service. In Proceedings of the 10th
International Conference on Autonomic Computing (ICAC 13) (2013), pp. 69-82.
Ni1TU, V., TEABE, B., FOPA, L., TCHANA, A., AND HAGIMONT, D. Stopgap: elastic
vms to enhance server consolidation. Software: Practice and Experience 47, 11
(2017), 1501-1519.

OUYANG, J., AND LANGE, J. R. Preemptable ticket spinlocks: improving con-
solidated performance in the cloud. In SIGPLAN Notices (2013), vol. 48, ACM,
pp. 191-200.

PApALA, P., Hou, K.-Y,, SHIN, K. G,, Znu, X., UysaL, M., WANG, Z., SINGHAL, S.,
AND MERCHANT, A. Automated control of multiple virtualized resources. In
EuroSys (2009), ACM, pp. 13-26.

Papala, P, SHIN, K. G, ZHu, X., UysAL, M., WANG, Z., SINGHAL, S., MERCHANT,
A., AND SALEM, K. Adaptive control of virtualized resources in utility computing
environments. In SIGOPS Operating Systems Review (2007), vol. 41, pp. 289-302.
Rao, J., WEL Y., GONG, J., AND XU, C.-Z. Qos guarantees and service differentia-
tion for dynamic cloud applications. IEEE Transactions on Network and Service
Management 10, 1 (2013), 43-55.

ScHoPP, J. H., FRASER, K., AND SILBERMANN, M. J. Resizing memory with balloons
and hotplug. In Ottawa Linux Symposium (OLS) (2006), pp. 313-319.

SHARMA, P., ALI-EDLIN, A., AND SHENOY, P. Resource deflation: A new approach
for transient resource reclamation. In Eurosys (March 2019).

SHARMA, P., Guo, T., Hg, X., IRwIN, D., AND SHENOY, P. Flint: Batch-interactive
data-intensive processing on transient servers. In Eurosys (April 2016).
SHARMA, P., Guo, T,, HE, X., IRWIN, D., AND SHENOY, P. Flint: batch-interactive
data-intensive processing on transient servers. In EuroSys (2016), ACM.
SHARMA, P., IRWIN, D., AND SHENOY, P. Portfolio-driven resource management
for transient cloud servers. In Proceedings of ACM Measurement and Analysis of
Computer Systems (June 2017), vol. 1, p. 23.

SHARMA, P., AND KULKARNTI, P. Singleton: system-wide page deduplication in
virtual environments. In HPDC (2012), ACM.

SHARMA, P, LEE, S., Guo, T., IRWIN, D., AND SHENOY, P. Spotcheck: Designing a
derivative iaas cloud on the spot market. In EuroSys (2015), ACM, p. 16.

SHEN, Z., SUBBIAH, S., GU, X., AND WILKES, J. Cloudscale: elastic resource scaling
for multi-tenant cloud systems. In Symposium on Cloud Computing (2011), ACM.
SUBRAMANVYA, S., Guo, T., SHARMA, P., IRWIN, D., AND SHENOY, P. SpotOn: A
Batch Computing Service for the Spot Market. In SOCC (August 2015).

VERMA, A., PEDROSA, L., KoruPOLU, M., OPPENHEIMER, D., TUNE, E., AND WILKES,
J. Large-scale cluster management at google with borg. In EuroSys (2015), ACM.
WALDSPURGER, C. A. Memory resource management in vmware esx server. OSDI
(2002).

WANG, C., URGAONKAR, B., GUPTA, A., KEsIDIS, G., AND LIANG, Q. Exploiting spot
and burstable instances for improving the cost-efficacy of in-memory caches on
the public cloud. 620-634.

WIEDER, A., BHATOTIA, P., PosT, A., AND RODRIGUES, R. Orchestrating the
deployment of computations in the cloud with conductor. In NSDI (2012).
Woob, T., SHENOY, P., VENKATARAMANT, A., AND YOUsIF, M. Sandpiper: Black-box
and gray-box resource management for virtual machines. Computer Networks 53,
17 (2009), 2923-2938.

YaNG, Y., Kim, G.-W,, SonG, W. W,, LEE, Y., CHUNG, A, Q1AN, Z., CHO, B., AND
CHUN, B.-G. Pado: A data processing engine for harnessing transient resources
in datacenters. In EuroSys (2017), ACM, pp. 575-588.

ZHANG, D, EHsAN, M., FERDMAN, M., AND S1oN, R. Dimmer: A case for turning
off dimms in clouds. In Symposium on Cloud Computing (2014), ACM, pp. 1-8.
ZHANG, Q., L1u, L., REN, J., Su, G., AND IYENGAR, A. iballoon: Efficient vm memory
balancing as a service. In Web Services (ICWS), 2016 IEEE International Conference
on (2016), IEEE, pp. 33-40.

Zuao, W., WANG, Z., AND Luo, Y. Dynamic memory balancing for virtual ma-
chines. ACM SIGOPS Operating Systems Review 43, 3 (2009), 37-47.

Zuou, W,, YANG, S., FANG, J., N1u, X., AND SoNG, H. Vmctune: A load balanc-
ing scheme for virtual machine cluster using dynamic resource allocation. In
International Conference on Grid and Cooperative Computing (GCC) (2010), IEEE.

https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-instances/
https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-instances/
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://www.haproxy.org
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata

	Abstract
	1 Introduction
	2 Background
	3 Feasibility of Deflation in Public Clouds
	3.1 Application Behavior under Deflation
	3.2 Usage-based Feasibility Analysis

	4 Deflatable Virtual Machines
	4.1 VM Deflation Mechanisms
	4.2 Transparent VM Deflation
	4.3 Explicit Deflation via Hotplug
	4.4 Hybrid Deflation Mechanisms

	5 Cluster Deflation Policies
	5.1 Server-level Deflation Policies
	5.2 Deflation-aware VM Placement

	6 Implementation
	7 Experimental Evaluation
	7.1 Evaluation Environment
	7.2 VM deflation of Web services
	7.3 Deflation-aware Web Load Balancing
	7.4 Impact Of Cluster Deflation Policies

	8 Related Work
	9 Conclusions
	References

