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A new approach is demonstrated in which an Artificial Neural Network (ANN) was trained with first-
principles data to predict the chain length, polydispersity (Ð) and adiabatic temperature for a
zirconocene-catalyzed polymerization reaction. The ANN-generated data shows good agreement with
the theoretical results, with an overall R2 of 0.9987. Using its significantly enhanced computational
speed, the ANN was used to analyze the reaction space, providing insights into trends seen in molecular
weight and Ð with various combinations of kinetic parameters, particularly pointing out regions of desir-
able and undesirable operation. The network was trained in reverse and used to generate reaction rate
constants from chain length and Ð, enabling a new form of kinetic deduction for polymerization reac-
tions. This training was used to derive potential rate constants for different catalysts reported in the lit-
erature. Overall, this data indicates that ANNs are a plausible tool for analyzing data from complex
metallocene-catalyzed olefin polymerizations.
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1. Introduction relevant recent developments by Ahmadi et al. (2009) who used
Scheme 1. Three different types of zirconocene single-site polymerization cata-
lysts, from left to right are (SBI)ZrCl2 (Song et al., 2003), Et(Ind)2ZrCl2 (D’Agnillo
et al., 1998) and Cp2ZrCl2 (Song et al., 2003).
1.1. Machine learning

Machine Learning (ML) is a form of predictive analytics which
uses a training dataset to develop a mathematical model for
extrapolating conclusions from input data. Artificial Neural Net-
works (ANNs) are one example of ML and are a powerful tool for
modeling complex systems and processes with multiple inputs
and nonlinear behavior. In essence a neural network works in
much the same way as a brain, by summing the values of inputs,
normalizing them, and triggering a feedforward cascade to other
neurons. The field of applying ANNs to studies of catalytic perfor-
mance originated in 1994 with the papers of Kite et al. who used
neural networks to examine the oxidative dehydrogenation of
ethylbenzene (Kite et al., 1994) and Sasaki et al. who used the tech-
nology to investigate NO decomposition over a Cu/ZSM-5 zeolite
catalyst (Sasaki et al., 1995). Molga et al. used ANNs to model
the complex reaction system kinetics of the oxidation of 2-
octanol, successfully predicting the concentration and heat flow
profiles in a semi-batch reactor, but were not successful in gener-
alizing their results between runs (Molga et al., 2000). Saber et al.
used ANNs to estimate reaction rates for methanol dehydration
which they successfully used to replace complex analytical equa-
tions (Valeh-E-Sheyda et al., 2010). Finally, Hough et al. used
machine learning as a tool for process optimization in biomass
pyrolysis and Nandi et al. used an ANN in conjunction with a
genetic algorithm for the optimization of zeolites for benzene
hydroxylation (Hough et al., 2017; Nandi et al., 2002). Since then
there have been many contributions to the field including works
related to heterogeneous catalysis, biological catalysis, materials
science, petrochemical engineering, green chemistry and even
first-principles research.3–18 Most of these examples, along with
the work presented here, use supervised machine learning where
there is a set of known values to train the system. For other prob-
lems unsupervised learning may be used, particularly in situations
where the right output is not known. Overall, ML has become a
powerful tool for research due to its ability to analyze complex
trends in highly multivariate data.

The prevalence of using machine learning as a research tool in
these areas has been gaining popularity because it brings a level
of abstraction to the approximation of highly multidimensional
problems. However, there is also a disadvantage due to a lack of
insight into the physical basis of the solution, only an abstract
model (akin to a general solution to a PDE versus the PDE itself).
Additionally, for the machine learning approach to be successful
at representing the physics of the problem a large and statistically
robust data set must be used. In recent years Artificial Intelligence
(AI) has found favor in chemical engineering for modeling of com-
plex processes not easily amenable to numerical analysis, such as
the prediction of operating characteristics of industrial equipment.
Work has been done to use AI in modeling of unit operations and
chemical processes including studies about distillation (Diwekar
and Madhavan, 1991), polymerizations (Chan and Nascimento,
1994; Curteanu et al., 2014; Curteanu and Leon, 2008; Leite
et al., 2007; Nayak and Gupta, 2004), depolymerizations (Fazilat
et al., 2012), materials design (Giro et al., 2005; Polikar et al.,
2001; Zhang and Friedrich, 2003), reaction modeling (Hough
et al., 2017; Irfan et al., 2012; Kite et al., 1994; Molga et al.,
2000; Nakazaki and Inui, 1989; Nandi et al., 2002; Papes Filho
and Maciel Filho, 2010; Sasaki et al., 1995; Valeh-E-Sheyda et al.,
2010) and several review papers (Goncalves et al., 2013;
Himmelblau, 2000; Mohd Ali et al., 2015; Ruiz et al., 2000;
Sadiku et al., 2017; Schwaller et al., 2018). Finally there have been
ANNs to model the polymerization rate of ethylene and
Charoenpanich et al. (2016) who used neural networks to model
microstructures of ethylene/1-olefin copolymers. In this work
one potential application of this new modeling approach is shown
in the prediction of polymer characteristics from a multi-step met-
allocene alpha(olefin) polymerization reaction. The training set is
derived from a series of first-principles differential species bal-
ances. The performance of the resulting ML solution is then com-
pared with literary data to check the validity of the solution.

1.2. Metalocene catalysis

There have been many recent studies of zirconocene catalysts,
including both computational and experimental work. Since the
original works by Kaminsky (Kaminsky et al., 1985; Kaminsky
and Spiehl, 1989), Woo (Woo and Tilley, 1989), Brintzinger
(Kaminsky et al., 1985; Krauledat and Brintzinger, 1990; Lenton
et al., 2013) and Herrmann (Herrmann et al., 1989) multiple groups
have been tackling this complicated problem. An overview of a few
representative structure types can be seen in Scheme 1. These
works were followed by investigations of the structure by
Bochmann et al. (1994) and continued by Christopher et al.
(1996). Kawamura-Kuribayashi et al. have worked extensively to
develop Molecular Orbital (MO) and Molecular Mechanics (MM)
models of these catalytic processes (Kawamura-Kuribayashi
et al., 1992). Song et al. have worked to determine the role of the
anion in the polymerization process (Song et al., 2004b), along with
Soga and Kaminaka (1993) who investigated the effects of different
activators. Other kinetic studies were conducted by Song et al.
(2003) using a quenched-flow kinetic experiment and by
Moscato et al. (2012) using a chromophore labeled catalyst with
in-situ NMR and UV–Vis characterization. Additionally, Quantita-
tive Structure–Activity Relationship (QSAR) computational studies
has been carried out, yielding insight into the intricacies of the
active site and the catalytic mechanism (Cruz et al., 2004, 2014,
2007a, 2007b, 2005; Drummond and Sumpter, 2007; Martínez
et al., 2012; Möhring and Coville, 2006; Yu et al., 2019), along with
a DFT study was by Hölscher et al. (2002). Yu et al. used a novel
labeling method utilizing methyl propargyl ether (MPE) as a label-
ing agent to better understand the active sites in a Ziegler-Natta
polymerization (Yu et al., 2019). Additional kinetic experiments
were carried out by (Chan and Nascimento, 1994; Chen and
Marks, 2000; Christopher et al., 1996; Ibrehem et al., 2008;
Inkson et al., 2006; Kaminsky and Steiger, 1988; Kim and Nam
Hwang, 1998; Resconi, 1999; Rieger and Janiak, 1994; Song et al.,
2003; Wang et al., 2005; Yasin et al., 2005), just to name a few.
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Overall alpha(olefin) polymerization catalysis is a major topic of
research to this day, mainly due to its relevance to the largest
quantity commodity plastics in the world.

Overall metallocene alpha-olefin polymerization catalysts exhi-
bit characteristics which make them desirable for a range of appli-
cations. First, these catalysts are active at ambient conditions,
removing the need for extreme conditions in the reactor. Tradi-
tional poly(ethylene) and poly(propylene) processes rely upon
high temperature and pressure reactors, which not only use expo-
nentially more energy, but also present safety concerns. Second,
these catalysts allow for the very precise tailoring of polymer prop-
erties, allowing for optimized materials. By tuning the properties of
the catalyst molecule such as the stereochemistry, it becomes pos-
sible to make polymers with different tacticities and structures
(Kaminsky, 1994). Additionally, by modifying the activator compo-
sition, reaction concentrations and conditions, it becomes possible
to tune the chain length, degree of branching and polydispersity of
the resultant polymer (Dare et al., 2004; Rieger and Janiak, 1994).
However, due to the complex synthesis pathways and fragile
chemistry, these catalysts have only gained adoption in select parts
of the olefin polymerization market (Hutley and Ouederni, 2016).
Overall the broad range of metallocene single-site catalysts pro-
vides interesting advantages for the tuning of polymer properties
for ideal industrial applicability but require precise optimization
to be economical.

In general, metallocenes for polymerization of propylene, ethy-
lene, 1-hexene and other alpha-olefins exhibit several stages in the
catalytic cycle. The first step is initiation where a metal-alkyl bond
is formed. Next is propagation where monomer units are inserted
into the growing polymer chain, which could happen in a 1,2- or
2,1- direction. The final step is deactivation or termination. There
are also many possible intermediate and final steps including chain
transfer, beta-hydride elimination and chain transfer to various spe-
cies,whichdependon the specific catalyst/activator/monomer com-
bination being investigated (Prakash, 2013). For kinetic
determination and quantification of new catalysts three of these
steps are largely important: initiation (kinit), propagation (kprop)
and spontaneous catalyst deactivation (kd), which are for the most
part universal between catalyst systems. The resultant polymer is
either isotactic, atactic, or amixture thereof depending on the chiral
mixture of the catalyst (Ewen, 1984). Relevant mechanistic studies
include the work of Guo et al. who investigated homo-
polymerizations and co-polymerizations with ethylene and propy-
Table 1
Comparison of kinetic and polymer characteristic information for the polymerization of 1-h
the publication, crosses represent data which is not reported and ‘‘—” represents data inte

Publication Catalyst

(Ghiotto et al., 2013) rac-Me2Si(2-Me-Benz[e]Ind)2ZrCl2

(Moscato et al., 2012) (SBI)ZrCH2SiMe2(C6H4)NMe2

(Moscato et al., 2010) rac-(SBI)Zr(Chrom)Me

(Song et al., 2004a) (SBI)Zr(CH2SiMe)3

(Zhao et al., 2000) rac-(dimethylsilyl)bis(4,5,6,7-tetrahydro-1-indenyl)ZrCl4

(Liu et al., 2001) rac-(C2H4(1-indenyl)2)ZrMe

(Switzer et al., 2012) Zr(tBu-ONNMe2O)
lene (Guo et al., 2017), Pletcher et al. who compared Group IV Bis-
Phenolate catalysts (Pletcher et al., 2016), Henson et al. who looked
at slurry polymerization using a racemic catalyst (Gonzalez-Ruiz
et al., 2006), Klothammer et al. who used Attenuated Total Reflec-
tanceFourier Transform InfraredSpectroscopy (ATR-FT-IR) toobtain
kinetic information (Kolthammeret al., 1992) alongwith theworkof
Lin et al. and Subramanyam et al. who did a fundamental kinetic
study (Lin et al., 2000; Subramanyamand Sivaram, 2007) and Chris-
tianson et al. who used stop-flow NMR (Christianson et al., 2010).
However, despite all of these studies there still remains a gap in
the link between reaction rate constants and polymer characteris-
tics, along with inconsistent reports of kinetic parameters between
publications, with a summary of several example publications seen
in Table 1. Understanding the reaction mechanism and reaction
domain topology of alkene polymerization reactions has been of sig-
nificant interest, especially to industry.

Our overall goal is to investigate machine learning as an effi-
cient and robust tool for approximating the behavior of
zirconocene-catalyzed alpha-olefin polymerizations and to use this
information to gain insight into the broad reaction space in which
these polymerizations take place. The work further establishes a
link between physically observable characteristics and reaction
rate constants, allowing for ex situ analysis and interpretation of
kinetic information. The ANN approach offers two benefits over
first-principles calculations, the first being the ability to create
solutions much quicker and with more limited computational
power, and the second being the possibility of solving the system
in reverse, which is not possible with the traditional differential
mass balance approach. This has possible applications in industrial
control and operation of catalytic polyolefin production processes
in which marginal shifts in reaction characteristics can have a
strong influence on commercially relevant properties. It also has
potential application in research by removing the necessity to
monitor labeled active sites or other markers in order to establish
a link between the produced polymer and the catalytic cycle.

2. Methods

2.1. Reaction mechanism

Generation of the dataset began with a series of reaction steps
and the resulting differential mass balances along the methodology
of (Ahmadi et al., 2009; Prakash, 2013; Song et al., 2003; Young and
exene provided from the literature. Check marks represent data which is available in
rpolated using the correlation Ð =MWw/MWn.

Activator Monomer Kinetic information reported MWw MWn Ð

MAO 1-hexene kinit � 3.8
kprop � 1.0
kd � 2–7

U U U

MeB(C6F5)3 1-hexene kinit � 0.004
kprop � 1.0
kd �

� � �

MeB(C6F5)3 1-hexene kinit � 0.0001
kprop � 0.4
kd �

U — U

B(C6F5)4 1-hexene kinit �
kprop highly varried
kd �

� � �

MAO 1-hexene kinit �
kprop �
kd �

— U U

MeB(C6F5)3 1-hexene kinit �
kprop �
kd �

� � �

B(C6F5)3 1-hexene kinit � 0.1
kprop � 11
kd �

� � �



Fig. 1. Model of the neural network used for the prediction of polymer character-
istics based on kinetic information about the catalyst. The network used two hidden
layers each with 15 neurons and a Levenberg-Marquardt training algorithm, as this
combination gave the highest fit fidelity (see Fig. 3). The network was used to
predict the number and weight average molecular weights (MW

�
n;MW

�
W ), polydis-

persity index (PDI) and adiabatic temperature change (DT).
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Ma, 2002), with the exact series of balances being those derived by
Prakash (2013) with a plausible lower range of reaction rate con-
stants being taken fromMoscato et al. (2012), who studied the reac-
tion under NMR using conditions tailored for a lower reaction rate.
The series of reaction steps can be seen below and in Scheme 2.

1. Cat þ Cocat!ka Pð0Þ
2. Pð0Þ þM !kinit Pð1Þ
3. PðiÞ þM!kp Pðiþ 1Þ
4. PðiÞ!kd Pdð0Þ þ DðiÞ
5. Pð0Þ!kd Pdð0Þ
6. PðiÞ þ H2 !ktH DðiÞ þ Pð0Þ
7. PðiÞ þM!ktM D¼ðiÞ þ Pð1Þ
8. PðiÞ þ Cocat !ktCo D¼ðiÞ þ Pð0Þ
9. PðiÞ!kb D¼ðiÞ þ Pð0Þ

10. PðiÞ þ D¼ðjÞ!klcb Pðiþ jÞ
11. PðiÞ !kscb P0ðiÞ

2.2. Network training

To perform the ANN training, a dataset of 2000 possible combi-
nations of reaction rate constants was formulated by combining
constants from literature with random small up and down changes
as an input to the differential species balances. The small changes
were made as perturbations to the average literary values in order
to adequately sample the entire space of possible reaction rate con-
stants. The combination of rate constants was used in order to fully
encompass the range of possible values. This moderately sized
dataset was then used to train a neural network with 70% of the
data being used for training, 15% for validation and 15% for testing.
Since the initial conditions for the generation of the training set
were already randomized, and the form of the distribution was
known, retaining a 70/15/15 split was sufficient and it was not nec-
essary to further randomize the samples or perform bootstrapping
(Paass, 1993). The full dataset was used in the generation of all fig-
ures that follow. Based on a comparison of different training meth-
Scheme 2. Generalized catalytic cycle for the polymerization of ethylene using a
metallocene catalyst.
ods and numbers of hidden layer neurons a Levenberg-Marquardt
training algorithm was used with 15 hidden neurons per layer and
two layers. A full breakdown of the training results can be seen in
Fig. 3. A diagram of the network can be seen in Fig. 1 and the data-
flow for the experiment can be seen in Fig. 2. All hidden layer
weights and biases were computed automatically using the neural
network training function in MATLAB. Overall, the training dataset
was formulated using the 11-step reaction mechanism and then
used to train the ANN, which in turn was checked using additional
calculations and used to make predictions.

Analysis of these differential equations and training of the ANNs
was performed by using MATLAB R2018b and the ODE45 toolkit
running on dual Intel Xeon E5620 quad-core CPUs with 20 GB of
DDR3 memory.
3. Theory

3.1. Differential balances

The reaction steps enumerated above were used to construct a
series of differential mass balances as can be seen below. Again,
this analysis used the work of Prakash (2013) in an effort to use
validated literary assumptions and methods.

1. rcat ¼ �ka Cat½ � Cocat½ �
2. rP 0ð Þ ¼ ka Cat½ � Cocat½ � � kinit M½ � P 0ð Þ½ � � kd P 0ð Þ½ �þ

ktH H2½ �kl0 þ ktCo Cocat½ �kl0 þ kbk
l
0

3. rPd 0ð Þ ¼ kd P 0ð Þ½ � þ kl0
� �

4. rCocat ¼ �ka½Cat�½Cocat� � ktCo½Cocat�kl0
5. rM ¼ �kinit½M�½Pð0Þ� � kp½M�kl0 � ktM½M�kl0
6. rH2 ¼ �ktH½H2�kl0
7. rPðiÞ ¼ �kprop½M�½PðiÞ� þ kprop½M�½Pði� 1Þ� � kd½PðiÞ� þ ktH½H2�½PðiÞ��

�ktM ½M�½PðiÞ� � ktCo½Cocat�½PðiÞ� � kb½PðiÞ� � klcb½PðiÞ�k¼0 � kscb½PðiÞ�
8. rDðiÞ ¼ kd½PðiÞ� þ ktH½H2�½PðiÞ�
9. rD¼ðiÞ ¼ ktM ½M�½PðiÞ� þ kb½PðiÞ� þ ktCo½Cocat�½PðiÞ� � klcb½PðiÞ�k¼0

10. rPðiþjÞ ¼ klcb½PðiÞ�k¼0
11. rP0 ðiÞ ¼ kscb½PðiÞ�



Fig. 2. Data flow for the computational experiment. A training dataset is first
generated using a literary model with an augmented input matrix consisting of
validated rate constants with randomly fluctuating seeds to augment the range of
values. This dataset is used to train the neural network which is then in turn used to
make predictions.
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3.2. Method of moments and parameter estimation

These balance equations are then used to derive the moments of
chain length distribution (CLD) for living (kl0, k

l
1, k

l
2), dead (k0, k1,

k2), and dead with terminal double bond (k¼0 , k¼1 , k¼2 ) polymer
chains. Living polymer chains are ones which are still actively poly-
merizing, dead chains are no longer polymerizing and dead with
terminal double bond chains have a double bond at or proximal
to the end of the chain (Hildenbrand et al., 1982).

Next, the number average andweight averagemolecularweights
are computed from the moments of chain length distributions.

1. Mn

�
¼ 28:05 � ðkl1 þ k1 þ k¼1 Þ=ðkl0 þ k0 þ k¼0 Þ

2. MW

�
¼ 28:05 � ðkl2 þ k2 þ k¼2 Þ=ðkl1 þ k1 þ k¼1 Þ

3. PDI
�

¼ kl2 þ k2 þ k¼2
� �

kl0 þ k0 þ k¼0
� �� �

=ðkl1 þ k1 þ k¼1 Þ

This same methodology can be used to get other parameters of
interest such as polymerization rate and the number of long and
short chain branches in an average polymer chain.
Finally the adiabatic temperature change can be calculated
asT ¼ �DHRx T0ð Þ½ �Xð Þ= Pn

i¼1HiCPi

� �
, where T is the temperature,

�DHRx is the exotherm of reaction, T0 is the initial temperature,
X is the conversion and

Pn
i¼1HiCPi is the weighted average heat

capacity of the solution.
This analysis assumes a homogeneous, well-mixed, adiabatic

batch reactor, which allows for the separation of kinetic and trans-
port phenomena in the analysis, removing dependence on a speci-
fic reactor system. In industry numerous different types of reactor
systems are used, ranging from high pressure gas-phase to moder-
ate condition liquid-phase with various arrangements of side-
stream feeds and mixing devices (Galli et al., 2011; Kaminsky,
2011). In academic studies an even broader range of devices is
used, including microfluidic or very high pressure systems
(Kaminsky, 2011). Adaptation of this methodology to a particular
reactor system would involve an extra series of differential equa-
tions accounting for heat and mass transfer for the chosen system,
which will vary greatly between applications. Mass transfer may
affect the outcome of polymerization reactions as the viscosity of
the solution increases. Increasing viscosity would lead to decrease
of monomer at catalyst active sites and thus decrease the overall
yield of polymer. However, this is highly dependent on the applica-
tion as types of catalyst, reactors, feed streams and gelling charac-
teristics all vary widely (MacGregor, 1986).
4. Results and discussion

4.1. Network fit characterization

Upon generating the training dataset and a validation set the
network was trained and the quality of the fit was analyzed. Neural
network predictions were made for the Weight Average Molecular

Weight (MW
�

W ;Mw), Number Average Molecular Weight

(MW
�

N;Mn), Polydispersity Index (PDI, Ð) and the adiabatic tem-
perature change. The rate of activation was assumed very fast
and constant between all the trials, consistent with the work of
Prakash (2013). Statistical analysis was performed on this data to
verify the suitability of the ANN modeling approach to polymeriza-
tion data. For the polymer characteristics prediction network, it
was observed that the experimental (ANN-predicted) values clo-
sely matched the theoretically predicted (species balance-based)
targets. A fit regression plot for the network can be seen in Fig. 3
below, along with a comparison of different network architectures.

It is observed that for DT, Ð and MW the ANN predictions lies in
overall good agreement with the first-principles differential special
balance model. Next, basic statistical tests analysis was conducted
on all the output parameters. In Table 2 it can be seen that overall
the network represents the data with an R2-value of 0.9987
between all the output data points. A P-test indicates a value of
zero, meaning that the null hypothesis is statistically false. Finally,
a Kolmogorov-Smirnov (KS) test is carried out on the data, return-
ing a value of 1, indicating that the data does not in a whole repre-
sent a normal distribution. In Table 3 it is observed that the Root
Mean Square Error (RMSE) between the predicted and target values
lies within a relatively tight error band, indicating plausible predic-
tions. Overall these statistical tests indicate that the predicted data
matches the targets in a statistically reasonable manner.
4.2. Reaction space topology visualization and analysis

The next step in the investigation was to use the ANN to gener-
ate a very large sample range of possible kinetic parameters and to
test the effects these would have on the measured parameters. A
set of values was generated for kinit , kprop and kd and the neural



Table 2
Statistical test characteristics for overall ANN fit quality.

Statistical test Value

R2-value 0.9987

P-test 0
KS-test 1

Table 3
RMSE fit characteristics for ANN output.

Data point RMSE RMSE (percent)

MW
�

W
0.8518 0.2599

MW
�

n
1.6977 0.2705

Ð 0.1118 5.8411
Adiabatic DT 7.9865 0.3535
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network was run over this range, holding the other parameters
constant. A study of the different permutations leads to the data
in Figs. 4–6. Analysis of these figures allows for interpretation of
the experimental space and for a quick visual way to assess the
impacts of different combinations of parameters.

In Fig. 4 the effect of the various kinetic constants onMW
�

can be
seen, with the top plot indicated a low kd, then the middle a med-
ium kd and the bottom a high kd, all over the same range of kinit and
kprop . These results suggest that lower values of kinit result in a
lower average molecular weight, with kd having a strong inverse
correlation to molecular weight. This can be explained logically
because as the frequency of initiating polymer chains increases
statistically it is more probable for chains to have a larger distribu-
tion of lengths. Also, as the death rate of chains increases it is more
probable that chains are terminated at a shorter length. Addition-
ally it is observed that the ratio of kprop to kd has a strong influence
on the number average molecular weight, with an increasing ratio
Fig. 3. (Top) Comparison of different training algorithms for the neural network with different numbers of hidden layer neurons, with the fit indicated as the Mean Square
Error (lower is better). Algorithms: 1 = Levenberg-Marquardt (Damped Least Squares), 2 = quasi-Newton backpropagation, 3 = Resilient backpropagation (RProp), 4 = Scaled
conjugate gradient backpropagation, 5 = Conjugate gradient backpropagation with Fletcher-Reeves updates, 6 = Conjugate gradient backpropagation with Powell-Beale
restarts, 7 = Conjugate gradient backpropagation with Polak-Ribiére updates, 8 = One-step secant backpropagation. (Bottom) Regression plot displaying the network inputs
versus targets. This plot shows the predictive quality of the neural network as derived from the training function in MATLAB, using an equally-weighted combination of the all
the fitted factors, thus showing overall network fit quality. Fit quality (R-value) for validation and test datasets was 0.9987.



Fig. 5. Correlation between the relative number average molecular weight (MW
divided by maximum MW) to the ratio of the rate constants of propagation and
chain death. A positive correlation is observed, indicating that relatively higher
values of kprop result in larger chain lengths.

Fig. 4. Heatmaps for MW
�

n (�102) over a range of kinit , kprop and kd .
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leading to larger chains, with the results being summarized in
Fig. 5.

Next, a similar analysis is carried out on the Ð, with the results
being summarized in Fig. 6. It is observed that as the rate of initi-
ation increases the Ð also increases, with an inverse correlation
being seen for the death rate of chains. It is also observed that
the rate of propagation has little effect on the Ð, which is mainly
a function of the initiation rate. A similar theoretical explanation
can be offered as for the average chain length, as the number of ini-
tiated chains increases so does the distribution of chain lengths,
while as the death rate of the chains increases the Ð becomes lower
because chains are terminated faster.

Finally, the effect of the different parameters is observed on the
final adiabatic temperature of the reactor, and the summary of
these results can be seen in Fig. 7. The maximum temperature
changes are seen at high rates of propagation, which can be
explained because as the chain is growing more p bonds are being
converted to r bonds, releasing large amounts of energy. As the
initiation rate increases, the final temperature also appears to
increase, as more new chains are being nucleated. Finally, as the
death rate increases the temperature drops off quickly, as rela-
tively more active catalyst is being removed from the system and
more of the monomer remains unreacted.

4.3. Reverse prediction training and fit characterization

The next step of the investigation involved training the network
in reverse, meaning it would predict a possible combination of
kinetic parameters given the molecular weight and Ð of a sample.
The utility of this approach is that kinetic information can be
deduced from parameters which can be measured ex situ, This
would be particularly useful in R&D and production environments
where it is impossible to monitor the concentrations of intermedi-
ates in the reaction cycle and derive kinetic rate constants using
methods similar to those used by Moscato et al. (2012, 2010) or
the other mechanistic studies discussed earlier. Due to the inher-
ent multistep nature of the reactionmechanism (seen in Scheme 2),
the ability to predict rate constants from observable parameters
may be useful for optimizing catalyst turnover, or producing poly-
mer with consistent characteristics. The overall network fit results
for this approach can be seen in Table 4, with the dataset passing
the P and KS tests and having R2-value of 0.9755. Furthermore,
the RMSE for the various kinetic parameters, as seen in Table 5,
indicates that for all the parameters except the rate constant for
Long Chain Branching (klcb), the errors are within a plausible
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margin. A surface plot of the prediction errors among different
variables can be seen in Fig. 8. As with RMSE it is observed that
for klcb (long chain branching) the error is larger than for the other
Fig. 6. Heatmaps for Ð over a range of kinit , kprop and kd .
parameters, and the prediction has a stochastic nature to it. It is
theorized that this constant is harder to predict because of the
implicit nature of how a long chain branching event can only occur
Fig. 7. Heatmaps for adiabatic temperature change over a range of kinit , kprop and
kd .



Table 4
Statistical tests for reverse-trained network.

Statistical test value

R2 0.9755

P-test 0
KS-test 1

Table 5
First parameters for reverse-trained network.

Data point RMSE RMSE (percent)

kinit 0.0627 �1.1780
kprop 0.0004 0.3357
kd 0.0365 �0.6604
ktM 0.0749 �1.3561
ktCo 0.1155 �1.9876
kb 0.0120 �0.4038
klcb 0.9954 �14.4118
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when an activated polymer strand encounters a strand with a ter-
minal double bond.

The reverse training method results in a slightly worse quality
of fit over the forward network because three variables are being
used to predict seven. This can be remedied by introducing more
variables into the prediction algorithm, including the number of
branched polymers, rate of polymerization, etc., but for the pur-
poses of this study parameters were limited to those which could
be easily measured in a laboratory environment. Overall though
the reverse network plausibly predicts a possible combination of
kinetic parameters.

4.4. Reaction rate constant prediction from incomplete data

The final step in this investigation was the use of a trained ANN
for the prediction of kinetic rate constants from observable param-
eters which can be measured ex situ. Data was analyzed for cata-
lysts used in previous publications in an attempt to derive
kinetic rate constants from observable and recorded parameters
and demonstrate the viability of the methodology. For this investi-
gation a more basic neural network was trained, having weight
Fig. 8. Reverse prediction percent error for an ANN versus the constants (in order kinit ; k
has the largest error.
average molecular weight, number average molecular weight and
Ð as inputs and the kinetic rate constants for initiation and propa-
gation as outputs, essentially the reverse of the network con-
structed above. The reason for this smaller I/O network was due
to the limitations of data available in previous publications, along
with a trend in literature to report mainly just kinit and kprop. Neural
network training was updated using adaptive learning and data
from entries one and three from Table 1, and data was simulated
for values from one and five. This was necessary because the pre-
vious analysis assumed poly(propylene) production and the entries
in Table 1 are for poly(hexene), demonstrating the adaptability of
this approach. The reverse trained network was then used to pre-
dict theoretical rate constants given experimental outcomes based
on the training dataset.

Upon training the new network and adapting it using the two
known values, the rest of the experimental values from the litera-
ture were run through the analysis and results for the kinetic rate
constants of initiation, propagation and termination were com-
puted. The results for the predictions of the kinetic rate constants
based on the weight average molecular weight can be seen in
Fig. 9.

As a final step in the analysis a correlation matrix was com-
puted between the three kinetic rate constants and the weight
and number average molecular weights. The results from this cal-
culation can be seen in Fig. 10 and show that there is a strong pos-
itive correlation between weight average molecular weight and the
rate constant for initiation, and that the number average molecular
weight is more impacted by the rate constant of propagation.
Finally the analysis indicates, as expected, that the rate constant
of termination negatively impacts both of the molecular weights.

5. Conclusions

From the forward network training results, it may be concluded
that machine learning is a plausible method for approximating
results for complex polymerization reactions based off of a first-
principles training model using differential species balances. An
ANN approach was used to successfully predict polymer character-
istics including molecular weight a polydispersity in a forward
direction from kinetic constants and in a reverse direction to pre-
dict kinetic constants from these observable parameters. This has
prop , kd , ktM , ktCo , kb , and klcb ) and the experiment number. It is observed that klcb



Fig. 9. Reverse prediction for the kinetic rate constants for propagation and initiation. Green circles represent predicted data from Zhao et al. (2000), blue circles represent
predicted data from Ghiotto et al. (2013), with the triangles representing confirmation data. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. Correlation coefficients between three key kinetic parameters and molec-
ular weight information, with yellow hues representing a strong positive correla-
tion and blue hues a negative one. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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implications both on the intelligent design of reactor systems and
on the understanding of the process as a whole.

From analyzing the data produced by the forward training algo-
rithm it is possible to make some conclusions about the catalyst.
First, it is possible to see that there is a region of suboptimal oper-
ation at low rates of kinit , kprop and kd where the Ð is higher than in
neighboring regions. This has implications for industrial reactors
and production systems where the Ð is desired to be low. It is also
noted that at low kd the molecular weight increased. Additionally,
it is observed that the number average molecular weight is related
to the ratio between kprop and kd. Overall this demonstrated that
ANNs can be used as a tool to try to ascertain complex behavior
from kinetic systems.

Upon analyzing the data from the reverse training methodology
certain conclusions can also be drawn about this catalyst system,
including the possible rate constants of initiation, propagation
and termination given information of the weight average and num-
ber average molecular weights. Additionally, information was pro-
vided on the strength of relationships between these variables,
which indicated that a high rate constant of initiation negatively
impacts the number average molecular weight for polymer chains.
It should be noted that due to the lack of consistent and complete
data in the literature, combined with secrecy in industrial R&D,
these conclusions are drawn only upon a few publications, and fur-
ther studies are necessary to enhance understanding in this field.

By training a neural network to ‘understand’ an experimental
space for a particular catalyst, it was demonstrated that various
properties of the resultant polymer could be predicted. By using
data from these predictions, scientists could more quickly narrow
down desired experimental spaces, and engineers could better
understand scaleup considerations, among other uses. The reverse
training allows for the prediction of kinetic constants from observ-
able data, which has implications for robust process control. By
being able to monitor properties of a system in-line it becomes
possible to have a robust link between the reaction mechanism
and reactor performance. This could allow for safer reactor opera-
tion by bringing machine learning as a tool to prevent situations
where reaction runaway could occur. An additional use could be
for the fine-tuning of large industrial reactors as minor changes
in the reaction regime can strongly influence the properties of
the final polymer, which has implications for the marketability
and industrial applicability. It is generally considered that poly-
mers with longer chains and lower PDIs have better mechanical
properties, and it is desirable to ensure production in the regime
which optimizes these characteristics. It is also beneficial to under-
stand the degree of branching, both long chain and short chain, as
these characteristics also influence the final composition and prop-
erties of the polymer. This could also have applications in the
development of new polymers and processing techniques for 3D
printer filaments and other specialized applications. Overall the
AI-based link between reaction rate constants and observable
parameters has implications in different areas of polymer science
and engineering.
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