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The advent of synthetic plastics over the past century has 
drastically reshaped the chemical industry and the world at 
large. Long-chain α-olefin polymers are most often synthe-

sized using specialized catalysts that are carefully selected both for 
end-product performance and optimal process economics1–3. The 
discovery and design of conditions related to these catalysts is a 
time-consuming, wasteful and expensive process. Single-site cata-
lyst research alone is estimated to have cost five billion dollars by the 
year 2000, with the entire polymer industry being worth US$611.9 
billion in 20174,5. Traditional batch-based catalyst discovery con-
sumes litres of solvent per trial and results in large quantities of 
chemical waste. Additionally, catalysts and the associated activa-
tors are expensive and may be hazardous, exemplified by the com-
monly used activator trimethylaluminium6. Homogeneous catalytic 
polymerizations are an active area of research due to the advantages 
in control of the polymer product as well as environmental benefits 
in the manufacturing process2,7. However, problems with dissolved 
homogeneous catalyst recovery and recycling arise due to difficul-
ties in separating them from the solvent under the mild conditions 
that would preserve catalyst activity. Major aims are thus to reduce 
the amount of catalyst, activator and solvent used per experimental 
trial as well as minimizing the actual number of trials needed to 
complete a study.

The current state of polymer manufacturing has an environ-
mental impact from the vast amount of energy used to convert 
petrochemicals into commodity plastics such as poly(ethylene) and 
poly(propylene). It is estimated by the US Department of Energy 
that ~6% of all energy produced in the United States is used in the 
production of polymers8. More importantly, ~37% of all global 
greenhouse gases (GHGs) are created directly or indirectly by poly-
mer manufacturing9. In an industry that has shaped the world as we 
know it and is continuing to expand rapidly, innovative solutions 
are needed to quickly engineer and understand new production 
pathways10. The design of laboratory-scale reactors for quick dis-
covery and the integration of machine learning for robust process 
understanding are two possible ways to work towards developing 

more efficient polymerization catalysts while minimizing envi-
ronmental harm. Efficient and automated experimentation could 
reduce experimental times from weeks to hours and reduce chemi-
cal waste by several orders of magnitude.

Zirconocene-based alkene polymerization catalysts were derived 
from the knowledge gained on titanium-based metallocene cata-
lysts originating from the works of Ziegler and Natta11, with signifi-
cant early advances made by Chien12, Kaminsky13, Brintzinger1 and 
Rieger14. Additional important studies have been carried out since 
then by various groups investigating both the catalysts and resul-
tant polymers using numerous techniques15–17. Many novel methods 
have been applied to the study of these catalysts, including quan-
titative structure–activity relationships18, mass spectroscopy19,20, 
cyclic voltammetry21 and NMR22–24. However, many of these labora-
tory techniques are inherently limited by throughput as they rely 
on batch experimentation, relatively large quantities of reagents, 
and bulky spectroscopic equipment, greatly limiting the time to 
market of promising new catalyst compounds. Recently, Reubens 
et al. have demonstrated, through the use of online size exclusion 
chromatography, that it is possible to autonomously optimize the 
molecular weight of photopolymerized acrylate and methacrylate 
solutions, a significant advancement in autonomous polymerization 
development25. Other recent advances are summarized in the work 
of Knox and others26. Overall, designing zirconocene catalytic reac-
tions remains a challenge, as the ratios of reagents, activator compo-
sition and temperature play competing roles27. A method in which 
large amounts of potential candidate reactions can be screened, 
using in situ thermography to quantify catalytic-activity-based exo-
therms, has not yet been developed.

Microreaction engineering has evolved in the past few decades 
due to the benefits it offers for controlling chemical reactions. 
Decreasing the volume of the reactor enables careful manipula-
tion of heat and mass transport physics for desired performance. 
Additionally, microreactors allow for the integration of novel 
non-interfering in  situ and in operando spectroscopic meth-
ods. Microfluidics have been applied to numerous kinetic and  
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first-principles research problems, including applications in phar-
maceuticals, fine chemicals and petrochemicals28–32. These recent 
developments were driven by a desire to perform experiments more 
quickly, maintain better control over the reaction environment, 
and reduce waste in chemical research. There have been a number 
of studies in recent years integrating spectroscopic techniques33. 
Overall analysis and implementation of microsystems has emerged 
in pharmaceuticals and fine chemicals through robust understand-
ing and reaction design34,35. The rapid understanding and reaction 
design of metallocene catalysts has potentially large implications for 
the environmental footprint of polymer manufacturing. This accel-
eration in designing catalytic reactions can be accomplished using 
spectroscopic microreactors with machine intelligence.

A recently discovered catalyst of interest to academia and indus-
try is (SBI)ZrMe2 (I) in conjunction with a B(C6F5)3 (II) activator. 
This combination is active with a broad range of α-olefins, creates 
polymers with desirable properties, and reduces the reliance on 
dangerous activators like trimethylaluminium22,36–40. Recently, there 
have been several papers published about this and related catalyst 
systems aimed at understanding the kinetics and design of the reac-
tions with the general reaction mechanism shown in Fig. 119,22,37,41,42. 
Our findings expand on these works through a semi-automated 
study of the catalyst’s behaviour to quickly estimate the reaction 
space topology along with estimating technoeconomic operating 
parameters. Here, traditional data analysis and visualization are 
supplemented by using artificial neural networks (ANNs) as a non-
linear fitting tool to model and predict catalytic behaviour without 
full knowledge of the model’s underlying dependencies and degrees.

This work seeks to address two main challenges: (1) the design 
of flow-based microsystems for the quick and efficient screening of 
catalyst for exothermic chemical processes and (2) extraction of the 
most information possible out of a given set of experiments. The 
first challenge is addressed through the creation of an integrated 
continuous-flow microfluidic platform that incorporates pumps, 
manifolds, controls and analytics into a singular interface that is 
amenable to automation and integration with analytical techniques. 
Due to heat and mass transport considerations, flow-based micro-
reactors are challenging to use for such polymerization reactions, 
necessitating careful design and selection of operating conditions 
to ensure high data fidelity with minimal transport limitations and 
safe operation. The second challenge is addressed through the use 
of rational experimental design to sample an entire experimental 
space quickly and efficiently while extracting information of inter-
est from a non-invasive and real-time thermal camera. Neural 

networks were used as a fitting tool to supplement the analysis by 
modelling and visualizing the behaviour of the experimental space. 
Overall the system and process presented address current trends 
spanning chemical engineering and computer science by integrat-
ing microscale reactions with automated experimentation and 
MI-enhanced process understanding.

Microreactor design
Microfluidic platforms are uniquely suited to the study of olefin 
polymerizations, as these exothermic reactions take place very 
quickly, have multiple reaction pathways, require precise control, 
generate large amounts of chemical waste and use expensive and 
difficult-to-synthesize catalysts. Microfluidics have already been 
successfully applied to the research of various polymerizations and 
other exothermic reactions43–46.

The first step in our design of an intelligent microsystem is an 
order-of-magnitude estimation of heat and mass transport proper-
ties and dimensionless numbers, including the Damköhler num-
ber (defined as the ratio of reaction rate to mass transport rate, 
Da ¼ kCn�1

0 τ
I

, where k is the reaction rate constant, C0 is the initial 
concentration, n is the reaction order and τ is the residence time), 
the beta number (the ratio of heat generated to heat removed, 
β ¼ � rΔHrxnd2F

� �
= 4ΔTadκð Þ

I
, where r is the reaction rate, ΔHrxn 

is the heat of reaction, dF is the diameter of the channel, ΔTad is the 
adiabatic temperature change and κ is the thermal conductivity) and 
the Reynolds number (the ratio of inertial forces to viscous forces, 
Re = ρVL/μ, where ρ is the density of the fluid, V is the velocity, L is 
the characteristic length and μ is the viscosity). Knowledge of these 
quantities enables the design of microfluidic devices that offer scal-
able chemical data mimicking the physics found in industrial-scale 
processes and enabling visualization. Additionally, this provides 
context for analysing other properties of interest such as stream mix-
ing, dispersion, heat transfer, mass transfer and the reaction kinetics. 
Here, the microreactor was designed such that the Damköhler num-
ber can be varied between 0.3 and 101, enabling the sampling of both 
reaction-rate-limited and mass-transport-limited regimes. The beta 
number varies between O(10−3) and O(10) based on the standard heat 
of polymerization of 1-hexene (III), indicating that more heat is gen-
erated than removed, enabling thermographic analysis47. Finally, the 
Reynolds number varies between O(10−3) and O(1), meaning that the 
reaction is operating in a laminar flow regime. The final design for the 
reactor is shown in Fig. 2a. Overall, the analysis and understanding of 
heat and mass transport characteristics are important to the efficient 
functioning of the reactor and accurate data collection.
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Fig. 1 | Overview of the chemistry. Reaction mechanism for the polymerization of 1-hexene, showing the initiation, propagation and chain transfer steps, 
based on the work of Moscato and others22. Here, ki, kp and kt are the constant rates of initiation, propagation and termination, respectively.
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System characterization
The design of an intelligent microreactor involves characteriza-
tion of the desired operation, both computationally using finite 
element analysis (FEA) and analytically with methods such as 
residence time distribution studies with chemical tracers. These 
analyses help with fully characterizing the system and ensuring 
that analytical methods will yield reliable results. FEA simulations 
were carried out, verifying a perceptible difference in infrared 
radiative flux between a warm reactor channel and the ambient 
reactor. The results of this simulation are presented in Fig. 2b, 
showing an ~30 W m−2 difference in flux with a 20 K temperature 
gradient. Experiments were then carried out to verify the thermal 
performance of the microreactor. Reagent concentrations taken 
from previous literature were injected into the reactor and the exo-
therm was observed22. Figure 2c,d presents thermographic images 
of the reactor, highlighting the development of reactive flow as the 
reagents mix. The catalyst flows through the far feed channel and 
the activator flows through the closer one. On contact, a change 
in radiation is observed, as indicated by the lighter blue colour.  
It is further observed that the reaction is initiated almost instanta-
neously when the reagents mix, with the strongest thermal signa-
ture in the first centimetre of the channel.

Finally, the microsystem design involves its integration with 
analytical methods including both in and ex  situ measurement 
techniques. Accurate and precise control along with a diversity of 
measurable variables are critical to creating an accurate digital twin 
computer model of the complex polymerization. A challenge pre-
sented by a flow-based testing platform is the inclusion of calibrated 
pumps and manifolds not present in a traditional batch system. Other 
critical considerations are temperature mapping and homogeneity,  

which are uniquely difficult in typical flow reactors but are simpli-
fied in microsystems. The successful analysis, testing and integra-
tion of all these aspects results in a system that provides relevant 
data quickly and accurately. An overview of the experimental sys-
tem is summarized in Fig. 3.

Algorithmic concept
The current work seeks to develop a methodology for the testing, 
design and general understanding of one class of zirconocene-based 
catalyst by using an ANN fitting. The algorithm, used as a form of 
supervised machine learning (ML), helps aid in our understand-
ing of the complex kinetics and reaction design for a homogeneous 
catalysed polymerization. Fitting of traditional numerical models 
involves understanding the degree of dependence of various inde-
pendent variables (linear, polynomial, natural exponential and so 
on), while an ANN can be trained and adapted without complete 
knowledge of the system. It is, however, still necessary to have a 
rough understanding of the physical phenomenon to choose activa-
tion functions and a number of hidden-layer neurons that are plau-
sible. Recently, we demonstrated that ANNs can be used as a tool 
for modelling and understanding complex catalytic pathways for 
polymerization reactions from a first-principles in silico approach48. 
A design of experiments (DoE) strategy employing a Latin hyper-
cube design is used to accurately and randomly sample the mul-
tidimensional experimental space49. The integration of these steps 
together compounds the energy, cost and environmental impact 
savings of using a smaller lab space, with fewer trials, with a fraction 
of the time and labour. This enables faster data collection and devel-
opment of models, while reducing the time and amount of chemical 
waste generated. This methodology serves as a proof of concept for 
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Fig. 2 | Reactor schematic and computational and experimental verification of performance. a, Computer-aided design rendering of the assembled 
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connections, Peltier cells for heating/cooling and a liquid cooling block to ensure stable thermal performance. b, FEA simulation of the reactor surface 
measuring the infrared irradiance (W m−2) with a 20 K temperature gradient between the fluid and reactor. c, Image of the reactor channel with no flow, 
taken with the infrared camera. d, Image of the reactor with a fully developed reactive flow, taken with the same camera.

Nature Machine Intelligence | VOL 2 | April 2020 | 200–209 | www.nature.com/natmachintell202

http://www.nature.com/natmachintell


ArticlesNature Machine Intelligence

using DoE algorithms with ANN fitting and spectroscopic micro-
fluidics to quickly gain process understanding.

The concept presented herein is that a semi-autonomous 
reaction system can perform as a machine-assisted chemist to 
help understand the complex reaction space for a homogeneous 
metallocene catalyst. The first component of this comprises the 
control and data interpretation systems that perform the experi-
ments, gather the data and generate the fitted ANN models. 
An overview of the system used is provided in the top panel of  
Fig. 4. The process is controlled by a combination of MATLAB 
and LabVIEW, as each offers certain advantages. MATLAB allows 
for the development of advanced computational algorithms and 
includes a robust ML toolbox with different training algorithms. 
LabVIEW offers a real-time control environment with indepen-
dent loops running to provide control of the system, including 
interfacing with external devices. Reagent mixing is provided by 
electromagnetic diaphragm pumps, flow through the reactor is 
established by the use of a pressure controller and thermal control 
is established through Peltier elements. A full description of the 
system is provided in the Supplementary Methods and page 3 of 
the Supplementary Information.

Data from the infrared camera were collected using the native 
camera software at a maximum speed of 24 frames per  second 
and recorded across the reaction zone into a database. Reaction 
exotherm data were used to interpret the catalytic productivity, 

mainly the grams of polymer produced per (mole catalyst × mole 
monomer × hour). Catalytic productivity is an important metric for 
polymerization catalyst design and is used when discovering new 
catalysts, understanding existing catalysts and designing industrial 
plants. Due to the environmental concerns associated with catalyst 
production and reagent recycling, including GHG emissions and 
chemical waste, it is important to adjust catalytic performance to 
meet optimistic goals and government regulations.

By interpolating the data from a minimal number of experi-
ments using a quick and efficient fitting algorithm, it is possible to 
visualize the full range of the experimental topology, which could 
not be achieved using traditional trials.

Automated experimentation
Experimentation was conducted in such a way as to establish an 
understanding of the reaction space without the need for extensive 
trials. The reagents were manually prepared in an inert environment 
glovebox and connected to the experimental manifolds. An auto-
mated routine was used to establish control, clean the reactor and 
perform experiments (see flowchart presented in the bottom panel 
of Fig. 4). The purpose of the algorithm was to efficiently perform 
experiments in an automated fashion. The next experimental point 
was selected from a specified monomer, catalyst, activator concen-
tration bank based on the recommendation of a Latin hypercube 
DoE algorithm. This allows for a nearly random distribution to be 
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sampled across the experimental space, enhancing the robustness 
of the resultant model. The experimental system consisted of the 
reagent mixing and storage equipment, thermal control, the reac-
tor and associated control systems (see experimental flowchart in 
Fig. 3). The reactor and thermal camera were contained within a 

vacuum enclosure to reduce the effect of atmospheric interference, 
as air and water vapour contained in it would introduce noise into 
the data. The reactor used in this study was fabricated by photo-
polymerization stereolithography and bonded to an infrared-trans-
parent fluoropolymer film (for an overview of the reactor assembly 
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and dimensions see Fig. 2a; for full information on fabrication see 
Supplementary Information).

Overall the process and system were designed to handle several 
challenges, including maintaining an inert environment, ensur-
ing safety, performing experiments automatically and producing 
scalable data. The chosen catalyst and activator molecules are 
highly sensitive to moisture and oxygen, and must therefore be 
handled in such a way that they never come into contact with the 
atmosphere. Additionally, the solvent and monomer used present 
safety concerns as they are both toxic and highly flammable, pro-
ducing vapours that may be explosive. The next challenge in the 
system design was the integration of robust process automation. 
The experiment needed to integrate a thermal camera, analytics 
and fluid handling seamlessly and autonomously. This was accom-
plished through the combined use of MATLAB and LabVIEW 
with the integration of an open-source Arduino microcontroller 
for manifold control. The final challenge in system design was the 
microreactor itself. The reactor was designed from the ‘bottom 
up’ to ensure optimal fluidic and thermal performance supported 
with both computational and experimental evidence. Overall, 
the system was designed in such a way as to allow for automated 
experimentation using sensitive chemistries with in situ analytics 
integrated with the microreactor platform.

Data collection and analysis
On verifying reactor performance, a Latin hypercube sampling 
algorithm was used to test the effects of the concentrations of mono-
mer, activator and catalyst, with 29 initial experiments and eight 
additional trials performed at the random temperature setpoints of 
16, 11, 8, 6, 42, 46, 61 and 79 °C. An overview of the experimental 
concentration used for network training is shown in Fig. 5a with 
all thermal trials using a low catalyst loading and a high concentra-
tion of activator and monomer. It was determined that decoupling 
anisothermal trials from the anisotonic ones would yield the best 
quality of data because the experimental effects are not convoluted. 
If both sets of changing conditions were incorporated into the origi-
nal Latin hypercube design, it would be difficult to separate which 
effects are caused by changing concentration and which by chang-
ing temperature, resulting in questionable statistical interpretations 
of the data. In total, these experiments generated (with reactor 
rinses) less than 30 g of chemical waste, a two to three order of mag-
nitude reduction from traditional experiments. The footprint of the 
experiment and all associated support equipment was contained to 
a nine-square-foot area in a fume hood.

The reactor performed as designed, generating a series of exo-
therms with both dimensional and temporal resolution within the 
reactor. These exotherms were then used in conjunction with an 
energy balance for reacting laminar flow in a microchannel to glean 
information both on the catalytic productivity (a technoeconomic 
metric) and reaction kinetics (necessary for reactor design and scale-
up). Figure 5b shows how the catalytic productivity changes with 
changing reaction conditions. Finally, a series of ANNs were gener-
ated based on the experimental results in an effort to model the cat-
alytic productivity throughout the experimental space. The results 
of this training in the form of error percentage over the test data-
set (15% of the experimental data) are provided in Supplementary  
Fig. 3, ranging over both training method and the number of 
hidden-layer neurons. Cross-validation was performed while tak-
ing care to keep the training and test data distinct. To test the fit 
quality of the chosen network architecture, training was repeated 
five times using random indices for training versus test data; 
detailed results are provided in Supplementary Table 2. A Bayesian 
regularization backpropagation training algorithm with a feed-
forward network consisting of an input layer, two hidden layers 
with nine neurons each and an output layer resulted in the best 
quality of fit over the experimental space and was retrained after  

hyperparameter tuning using MATLAB’s automated routines for 
selecting the training rate parameters and manual selection of hid-
den layer/neuron numbers. The final network used for the study 
had a mean square error (MSE) losses of 1.5 × 10−2 and 6.0 × 10−5 
over the testing and training datasets, respectively. The Bayesian 
regularization backpropagation algorithm was predicted to have 
the best representation because it leverages the benefits of both the 
Levenberg–Marquardt optimization algorithm with robust regular-
ization to enhance prediction stability. Neural networks were used 
as opposed to polynomial fits due to the ease of adaptability to new 
experiments and input/output parameters. In the case presented 
here, the inputs consisted of concentration parameters and temper-
ature, but the architecture of the network can be easily adapted to 
include other inputs including flow parameters, chemical metrics 
such as Lewis acidity and adaptations for different reactants. The 
network can also be updated using reinforcement learning to adapt 
to different α-olefin polymerization reactions. The network was 
designed to output the catalytic activity, a technoeconomic param-
eter used to determine how much polymer is made per quanta of 
catalyst per quanta of time. Bayesian regularization and normaliza-
tion were used to provide a stable and scalable fit across a range 
of conditions. Raw data from the thermal camera were processed 
through ICI’s proprietary libraries, which provided non-uniformity 
correction and autocalibration. For additional details on network 
training see the Supplementary Information.

Kinetic and ANN analysis
The first step in kinetic analysis was determining the catalytic pro-
ductivity and kinetic rate constants for the various experiments. This 
was performed using automated MATLAB code, which extracted 
the exotherm from the experimental database and converted it into 
meaningful data through a heat balance. The raw experimental 
results are shown in Fig. 5b, where the experimental exotherms are 
compared with the neural network prediction over all trials. The 
average percent error of the fit is under 0.5%, with notable deviation 
being observed in the low-temperature and first high-temperature 
trials. It is hypothesized that this deviation was caused by adsorption 
of gelled polymer product from the low-temperature experiment to 
the reactor walls, which then became desorbed in the first high-
temperature trial. Following this deviation, the AI predictions once 
again lie in near-perfect agreement with the experimental results. 
Finally Fig. 5c,d shows the kinetic rate constants of chain initiation 
and propagation, respectively. From this data it can be seen how the 
rate constants change with varying concentrations and temperature 
(plots 1–29 and 30–37, respectively).

As the final component of the investigation, a neural network 
was trained and used to compute the catalytic productivity over a 
broad range of plausible points from the literature within the reac-
tion space. This methodology presents a way to efficiently visual-
ize the reaction space topology for complex catalytic cycles with a 
minimum number of experiments. The results of the ANN-based 
computation are shown in Fig. 6, where the first row shows the reac-
tion space over a range of activator concentrations, the second row 
over monomer concentrations and the third row over catalyst con-
centrations. It is observed that the catalytic productivity decreases 
with increasing catalyst and monomer concentrations, consistent 
with the mathematical interpretation of the term. This is also con-
sistent with the reaction mechanism, because as the concentration 
of monomer goes up, the prevalence of vinylene and vinylidene 
termination mechanisms may increase, and at high catalyst con-
centrations the activity per gram of catalyst is inherently lower due 
to the inverse relationship. There is also some nonlinear behaviour 
at mid-range concentrations of monomer with high activator con-
centrations, perhaps due to competing branching and termination 
steps. It is also observed that the productivity tends to increase with 
increasing activator concentration, consistent with its purpose in 
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the reaction mixture. This presents an interesting technoeconomic 
problem, which is investigated in the bottom half of Fig. 5, showing 
the catalytic productivity as a function of monomer concentration 
and temperature. These data represent a snapshot of 1,000 random 
concentration combinations over a range of temperatures, giving a 
randomized decision matrix from which an optimal value can be 
inferred given desired parameters. Over the experimental space 
presented here, this value was determined to be a catalyst concen-
tration of 54 mM, a nearly equimolar activator concentration of 
56 mM, a monomer concentration of 1.04 M and an operating tem-
perature between 40 and 78 °C. Overall, the ANN analysis allows 

for the generation of a very large dataset, which can then be used 
to make decisions about operating points as part of the catalyst dis-
covery process.

Conclusions
Semi-autonomous microfluidic platforms integrated with in  situ 
thermography may be used in conjunction with fitted regular-
ized and normalized neural networks to better understand cata-
lytic cycles for homogeneous polymerization reactions. It has been 
shown that a metallocene-catalysed polymerization can be per-
formed in a machine-assisted microreactor, and the results can be 
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Fig. 5 | Experimental results for catalytic productivity and kinetic rate constants. a, Experimental concentrations of the various reagents over the  
29 training trials. Red circles represent catalyst concentration, blue squares represent activator concentration and green diamonds represent monomer 
concentration. b, Catalytic productivity (g polymer/(mol(Zr) × mol (1-hexene) × h)) of the SBI(Zr)Me2 catalyst for the various experiments performed. 
Blue bars represent catalytic activity and red circles represent the AI prediction. The error bars represent the differences in analysed exotherm between 
frames in flow over the course of each experiment (standard deviation over the course of the experiment). Trials 9, 10, 13 and 34 were used for cross-
validation (indicated by the ‘T’ markings in the figure) and different random combinations were used for additional testing, as shown in Supplementary 
Table 2. c, Natural logarithm of the kinetic rate constant for chain initiation as computed through a nonlinear fit over the various experiments. d, The same 
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quantified using an infrared camera, interpreted using an energy 
balance and used to train an ANN. The ANN may then, in turn, be 
used to visualize the reaction space with a higher resolution than 
would otherwise be possible using traditional experimentation. 
The behaviour of the rate constants of initiation and propagation 
was also investigated, along with the behaviour of the catalyst at 
varying temperatures. The reaction space for an industrially and 
academically relevant homogeneous metallocene polymerization 
system was investigated and the behaviour towards varying con-
centrations of reactants was visualized. The combination of these 
data provides a useful tool for both scientific and technoeconomic 
analysis of catalyst systems. It was also determined that the Bayesian 
regularization backpropagation algorithm with nine hidden-layer 
neurons, used in conjunction with normalization, provides the best 
quality of fit. It is hypothesized that this result is due to the fact 
that in Bayesian regularization the training algorithm determines 
a combination of squared errors and weights that generalizes well. 
This enables construction of a network that is resilient across a wide 
range of conditions.

Overall, this study has demonstrated that high-throughput 
microfluidics can be aided by ML algorithms for the investigation 
of complex chemical reactions. This opens doors to new types of 
research, primarily the ‘robotic chemist’, increasing throughput, data 
fidelity and the efficiency of experimental campaigns. Future work 
could incorporate statistically based Monte Carlo design algorithms 
to aid in understanding the relationships between parameters. 
Depending on the use of the experimental results and knowledge of 
the underlying model, other numerical fitting techniques may also 
be used. Performing reactions at the microscale with automation 
reduces the amount of energy input and chemical waste generated, 
while also increasing safety because any failure in the reaction sys-
tem is small and contained. Finally, the study aimed to contribute 
knowledge to online learning for complex systems, as the training 
methodology could be applied to other chemical, mechanical and 
electricelectrical systems.

In the future, the methodology presented here may also be used 
to investigate other catalyst systems where a thermal signature may 
be expected, including other polymerizations, exothermic biochem-
ical transformations and catalytic breakdown of harmful emissions 
including SOx and NOx compounds. This experimentation lays the 
groundwork for the ability to predict optimal catalytic performance 
conditions autonomously. Optimization of industrially relevant cat-
alysts or catalyst/activator pairs may be accomplished by combin-
ing the neural network analysis with optimization techniques such 
as technoeconomic model minimization or genetic algorithms. 
Additionally, the high-resolution ANNs can be combined with vari-
ous topology topological analysis techniques to design new experi-
ments. This AI methodology and the design of machine-assisted 
microreactors reduces the amount of chemical waste and energy 
input while enhancing the time to actionable data and the resolu-
tion of reaction space topology.

Reporting Summary. Further information on research design 
is available in the Nature Research Reporting Summary linked to  
this article.

Data availability
The datasets generated and/or analysed during the current study 
are available in the Zenodo repository, http://doi.org/110.5281/
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Code availability
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This code is not publicly available due to inclusion of third party 
code but is available upon reasonable request from the correspond-
ing author.

Received: 17 September 2019; Accepted: 11 March 2020;  
Published online: 6 April 2020

References
	1.	 Brintzinger, H. H., Fischer, D., Mülhaupt, R., Rieger, B. & Waymouth, R. M. 

Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. 
Chem. Int. Ed. 34, 1143–1170 (1995).

	2.	 Shamiri, A. et al. The influence of Ziegler–Natta and metallocene catalysts  
on polyolefin structure, properties and processing ability. Materials 7, 
5069–5108 (2014).

	3.	 Kaminsky, W. Highly active metallocene catalysts for olefin polymerization.  
J. Chem. Soc. Dalton Trans. 1998, 1413–1418 (1998).

	4.	 Sinclair, K. B. Future trends in polyolefin materials. Macromol. Symp. 173, 
237–261 (2001).

	5.	 Plastics and Polymers Global Market Briefing 2018 (The Business Research 
Company, 2018).

	6.	 Sumerin, V. & Thorman, J. Ziegler–Natta catalyst and preparation thereof.  
US patent 10,118,977 (2018).

	7.	 Kesti, M. R., Coates, G. W. & Waymouth, R. M. Homogeneous Ziegler–Natta 
polymerization of functionalized monomers catalyzed by cationic group IV 
metallocenes. J. Am. Chem. Soc. 114, 9679–9680 (1992).

	8.	 Society of the Plastics Industry, US Department of Energy Improving Energy 
Efficiency at US Plastics Manufacturing Plants 40 (US DOE, 2005).

	9.	 Worrell, E., Bernstein, L., Roy, J., Price, L. & Harnisch, J. Industrial energy 
efficiency and climate change mitigation. Energy Efficiency 2, 109–123 (2009).

	10.	Khripko, D., Schlüter, B. A., Rommel, B., Rosano, M. & Hesselbach, J. Energy 
demand and efficiency measures in polymer processing: comparison between 
temperate and Mediterranean operating plants. Int. J. Energy Environ. Eng. 7, 
225–233 (2016).

	11.	Sinn, H. & Kaminsky, W. Ziegler–Natta catalysis. Adv. Organomet. Chem. 18, 
99–149 (1980).

	12.	Chien, J. C. W. & Wang, B.-P. Metallocene–methylaluminoxane catalysts for 
olefin polymerizations. IV. Active site determinations and limitation of the 
14CO radiolabeling technique. J. Polym. Sci. A 27, 1539–1557 (1989).

	13.	Kaminsky, W. (ed.) Metalorganic Catalysts for Synthesis and Polymerization 
(Springer, 2011).

	14.	Rieger, B., Jany, G., Steimann, M. & Fawzi, R. Synthesis of ethylene bridged 
biscyclopentadiene ligand precursor compounds and some of their 
ansa-zirconocene derivatives chiral epoxides: a synthetic strategy of high 
variability. Z. Naturforsch. B Chem. Sci. 49, 451–458 (1994).

	15.	Kolthammer, B. W. S., Mangold, D. J. & Gifford, D. R. Polymerization kinetics 
of octene-1 catalyzed by metallocene methylaluminoxane investigated with 
attenuated total reflectance Fourier transform infrared (ATR-FT-IR) 
spectroscopy. J. Polym. Sci. A 30, 1017–1026 (1992).

	16.	Charpentier, P. A., Zhu, S., Hamielec, A. E. & Brook, M. A. Continuous 
solution polymerization of ethylene using metallocene catalyst system, 
zirconocene dichloride/methylaluminoxane/trimethylaluminum. Ind. Eng. 
Chem. Res. 36, 5074–5082 (1997).

	17.	D’Agnillo, L., Soares, J. B. P. & Penlidis, A. Effect of operating conditions on 
the molecular weight distribution of polyethylene synthesized by soluble 
metallocene/methylaluminoxane catalysts. Macromol. Chem. Phys. 199, 
955–962 (1998).

	18.	Martínez, S., Cruz, V. L., Ramos, J. & Martínez-Salazar, J. Polymerization 
activity prediction of zirconocene single-site catalysts using 3D quantitative 
structure-activity relationship modeling. Organometallics 31, 1673–1679 (2012).

	19.	Moscato, B. M., Zhu, B. & Landis, C. R. GPC and ESI-MS analysis of labeled 
poly(1-hexene): rapid determination of initiated site counts during catalytic 
alkene polymerization reactions. J. Am. Chem. Soc. 132, 14352–14354 (2010).

	20.	Santos, L. S. & Metzger, J. O. Study of homogeneously catalyzed Ziegler–Natta 
polymerization of ethene by ESI-MS. Angew. Chem. Int. Ed. 45,  
977–981 (2006).

	21.	Silveira, F., De Sá, D. S., Da Rocha, Z. N. & Dos Santos, J. H. Z. Metallocene 
combinations in ethylene polymerization: a cyclic and differential pulse 
voltammetry study. Macromol. React. Eng. 2, 253–264 (2008).

	22.	Moscato, B. M., Zhu, B. & Landis, C. R. Mechanistic investigations into the 
behavior of a labeled zirconocene polymerization catalyst. Organometallics 31, 
2097–2107 (2012).

	23.	Gonzalez-Ruiz, R. A., Quevedo-Sanchez, B., Laurence, R. L., Henson, M. A. 
& Bryan Coughlin, E. Kinetic modeling of slurry propylene polymerization 
using rac-ET(Ind)2ZrCl2/MAO. AIChE J. 52, 1824–1835 (2006).

	24.	Christianson, M. D., Tan, E. H. P. & Landis, C. R. Stopped-flow NMR: 
determining the kinetics of [ rac-(C2H4(1-indenyl)2)ZrMe][MeB(C6F5)3]-
catalyze dpolymerization of 1-hexene by direct observation. J. Am. Chem. Soc. 
132, 11461–11463 (2010).

Nature Machine Intelligence | VOL 2 | April 2020 | 200–209 | www.nature.com/natmachintell208

http://doi.org/110.5281/zenodo.3706730
http://doi.org/110.5281/zenodo.3706730
http://doi.org/110.5281/zenodo.3706730
http://doi.org/110.5281/zenodo.3706730
http://doi.org/zenodo.3706734
http://www.nature.com/natmachintell


ArticlesNature Machine Intelligence

	25.	Rubens, M., Vrijsen, J. H., Laun, J. & Junkers, T. Precise polymer synthesis by 
autonomous self-optimizing flow reactors. Angew. Chem. Int. Ed. 58, 
3183–3187 (2019).

	26.	Knox, S. T. & Warren, N. J. Enabling technologies in polymer synthesis: 
accessing a new design space for advanced polymer materials. React. Chem. 
Eng. 5, 405–423 (2020).

	27.	Kaminsky, W. Zirconocene catalysts for olefin polymerization. Catal. Today 
20, 257–271 (1994).

	28.	Jensen, K. F. Flow chemistry—microreaction technology comes of age.  
AIChE J. 63, 858–869 (2017).

	29.	Heider, P. L. et al. Development of a multi-step synthesis and workup 
sequence for an integrated, continuous manufacturing process of a 
pharmaceutical. Org. Process Res. Dev. 18, 402–409 (2014).

	30.	Hartman, R. L., Naber, J. R., Buchwald, S. L. & Jensen, K. F. Multistep 
microchemical synthesis enabled by microfluidic distillation. Angew. Chem. 
Int. Ed. 49, 899–903 (2010).

	31.	Kim, J. O. et al. A monolithic and flexible fluoropolymer film microreactor 
for organic synthesis applications. Lab Chip 14, 4270–4276 (2014).

	32.	Hu, C., Morris, J. E. & Hartman, R. L. Microfluidic investigation  
of the deposition of asphaltenes in porous media. Lab Chip 14,  
2014–2022 (2014).

	33.	Rizkin, B. A., Popovic, F. G. & Hartman, R. L. Spectroscopic microreactors 
for heterogeneous catalysis. J. Vac. Sci. Technol. A 37, 050801 (2019).

	34.	Gromski, P. S., Granda, J. M. & Cronin, L. Universal chemical synthesis and 
discovery with ‘The Chemputer’. Trends Chem. 1–9 (2019); https://doi.
org/10.1016/j.trechm.2019.07.004

	35.	Coley, C. W. et al. A robotic platform for flow synthesis of organic 
compounds informed by AI planning. Science 365, eaax1566 (2019).

	36.	Theurkauff, G., Bondon, A., Dorcet, V., Carpentier, J. F. & Kirillov, E. 
Heterobi- and -trimetallic ion pairs of zirconocene-based isoselective  
olefin polymerization catalysts with AlMe3. Angew. Chem. Int. Ed. 54, 
6343–6346 (2015).

	37.	Song, F., Cannon, R. D. & Bochmann, M. Zirconocene-catalyzed propene 
polymerization: a quenched-flow kinetic study. J. Am. Chem. Soc. 125, 
7641–7653 (2003).

	38.	Christopher, J. N., Diamond, G. M., Jordan, R. F. & Petersen, J. L. Synthesis, 
structure and reactivity of rac-Me2Si(indenyl)2Zr(NMe2)2. Organometallics 15, 
4038–4044 (1996).

	39.	Lenton, T. N. et al. Formation of trivalent zirconocene complexes from 
ansa-zirconocene-based olefin-polymerization precatalysts: an EPR- and 
NMR-spectroscopic study. J. Am. Chem. Soc. 135, 10710–10719 (2013).

	40.	 Ning, Y., Cooney, M. J. & Chen, E. Y. X. Polymerization of MMA  
by oscillating zirconocene catalysts, diastereomeric zirconocene mixtures,  
and diastereospecific metallocene pairs. J. Organomet. Chem. 690,  
6263–6270 (2005).

	41.	Bochmann, M., Cannon, R. D. & Song, F. Kinetic and mechanism of alkene 
polymerization. Kinet. Catal. 47, 160–169 (2006).

	42.	Song, F., Hannant, M. D., Cannon, R. D. & Bochmann, M. Zirconocene-
catalysed propene polymerisation: kinetics, mechanism and the role of the 
anion. Macromol. Symp. 213, 173–185 (2004).

	43.	Su, Y., Song, Y. & Xiang, L. Continuous-flow microreactors for polymer 
synthesis: engineering principles and applications. Top. Curr. Chem. 376,  
44 (2018).

	44.	Zhang, J. S., Zhang, C. Y., Liu, G. T. & Luo, G. S. Measuring enthalpy  
of fast exothermal reaction with infrared thermography in a microreactor. 
Chem. Eng. J. 295, 384–390 (2016).

	45.	Hany, C., Lebrun, H., Pradere, C., Toutain, J. & Batsale, J. C. Thermal analysis 
of chemical reaction with a continuous microfluidic calorimeter. Chem. Eng. 
J. 160, 814–822 (2010).

	46.	Pradere, C., Joanicot, M., Batsale, J.-C., Toutain, J. & Gourdon, C. Processing 
of temperature field in chemical microreactors with infrared thermography. 
Quant. Infrared Thermogr. J. 3, 117–135 (2007).

	47.	Terms, F. Heat of polymerization. Polym. Rev. 3, 339–356 (1969).
	48.	Rizkin, B. A. & Hartman, R. L. Supervised machine learning for prediction  

of zirconocene-catalyzed α-olefin polymerization. Chem. Eng. Sci. 210, 
115224 (2019).

	49.	Iooss, B. & Lemaître, P. A review on global sensitivity analysis methods. 
Uncertain. Manag. Simulation-Optimization Complex Syst. Algorithms Appl. 
59, 101–122 (2015).

	50.	Rizkin, B. A., Shkolnik, A. S., Ferraro N. J. & Hartman R. L. Combining 
automated microfluidic experimentation with machine learning for efficient 
polymerization design. Zenodo https://doi.org/10.5281/zenodo.3706730 
(2020).

	51.	Rizkin, B. A., Shkolnik, A. S., Ferraro N. J. & Hartman R. L. Combining 
automated microfluidic experimentation with machine learning for efficient 
polymerization design, control code. Zenodo https://doi.org/10.5281/
zenodo.3706734 (2020).

Acknowledgements
This material is based on work supported by the National Science Foundation under 
grant no. CBET-1701393. Any opinions, findings and conclusions or recommendations 
expressed in this material are those of the authors and do not necessarily reflect the views 
of the National Science Foundation.

Author contributions
Conceptualization was provided by R.L.H., data curation by B.A.R., formal analysis by 
B.A.R. and A.S.S., funding acquisition by R.L.H., investigation by B.A.R. and A.S.S., 
methodology by B.A.R. and N.J.F., project administration by B.A.R. and R.L.H., resources 
by R.L.H., software by B.A.R., A.S.S. and N.J.F., supervision by R.L.H., validation by 
B.A.R. and A.S.S., visualization by B.A.R., A.S.S. and R.L.H., writing of the original draft 
by B.A.R. and A.S.S. and review and editing by R.L.H.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s42256-020-0166-5.

Correspondence and requests for materials should be addressed to R.L.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

Nature Machine Intelligence | VOL 2 | April 2020 | 200–209 | www.nature.com/natmachintell 209

https://doi.org/10.1016/j.trechm.2019.07.004
https://doi.org/10.1016/j.trechm.2019.07.004
https://doi.org/10.5281/zenodo.3706730
https://doi.org/10.5281/zenodo.3706734
https://doi.org/10.5281/zenodo.3706734
https://doi.org/10.1038/s42256-020-0166-5
https://doi.org/10.1038/s42256-020-0166-5
http://www.nature.com/reprints
http://www.nature.com/natmachintell


nature research  |  softw
are subm

ission checklist
June 2017

1

Corresponding author(s): Ryan Hartman

Code and Software Submission Checklist
Prior to submitting your work to Nature Research, we strongly recommend that you ask at least one colleague who is unfamiliar with your software to 
install the tool(s), follow the instructions, and provide feedback. This process will help ensure that reviewers will also be able to run your software. 

You must submit all required content as a single zip file prior to peer review or provide a link where editors and reviewers can access all required content.

   Required content
Compiled standalone software and/or source code✔

A small (simulated or real) dataset to demo the software/code✔

A README file that includes:

1.  System requirements
All software dependencies and operating systems (including version numbers)✔

Versions the software has been tested on✔

Any required non-standard hardware✔

2.  Installation guide
Instructions✔

Typical install time on a "normal" desktop computer✔

3.  Demo
Instructions to run on data✔

Expected output✔

Expected run time for demo on a "normal" desktop computer✔

4.  Instructions for use
How to run the software on your data✔

(OPTIONAL) Reproduction instructions✔

We encourage you to include instructions for reproducing all the quantitative results in the manuscript.

   Additional information
Describe your software's license for use. We strongly recommend using a license approved by the Open Source Initiative.

GPL v3

Provide a link to the code in an open source repository (when available).

http://doi.org/10.5281/zenodo.3647597

Your manuscript should include a complete, detailed description of the code's functionality (i.e. pseudocode). 
Please indicate where this is found:

Main text

Methods section

Elsewhere (specify):

   Examples of well-structured software packages
1.  https://github.com/neurodata-papers/MGC 
2.  https://github.com/neurodata-papers/LOL 
3.  https://www.nature.com/nbt/journal/v34/n6/abs/nbt.3569.html#supplementary-information 
4.  https://www.nature.com/nature/journal/v548/n7669/full/nature23463.html#extended-data 

https://github.com/yasharhezaveh/Ensai  
5.  https://www.nature.com/nbt/journal/v34/n11/full/nbt.3685.html#supplementary-information 

https://github.com/IFIproteomics/LFQbench


	Combining automated microfluidic experimentation with machine learning for efficient polymerization design

	Microreactor design

	System characterization

	Algorithmic concept

	Automated experimentation

	Data collection and analysis

	Kinetic and ANN analysis

	Conclusions

	Reporting Summary. 

	Acknowledgements

	Fig. 1 Overview of the chemistry.
	Fig. 2 Reactor schematic and computational and experimental verification of performance.
	Fig. 3 Process flow diagram for an automated thermographic microreactor system used in the understanding of metallocene catalysts.
	Fig. 4 Flowcharts for experimental control and data handling.
	Fig. 5 Experimental results for catalytic productivity and kinetic rate constants.
	Fig. 6 ANN results for catalytic productivity over various concentrations and temperatures.




