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Combining automated microfluidic experimentation
with machine learning for efficient polymerization
design

Benjamin A. Rizkin®, Albert S. Shkolnik, Neil J. Ferraro and Ryan L. Hartman® <

Understanding polymerization reactions has challenges relating to the complexity of the systems, the hazards associated
with the reagents, the environmental footprint of the operations and the highly nonlinear topologies of reaction spaces. In this
work, we aim to present a new methodology for studying polymerization reactions using machine-learning-assisted automated
microchemical reactors. A custom-designed rapidly prototyped microreactor is used in conjunction with automation and insitu
infrared thermography for efficient, high-speed experimentation to map the reaction space of a zirconocene polymerization
catalyst and obtain fundamental kinetic parameters. Chemical waste is decreased by two orders of magnitude and catalytic dis-
covery is reduced from weeks to hours. Bayesian regularization backpropagation is used in conjunction with kinetic modelling
to understand the reaction space and resultant technoeconomic topology. Here, we show that efficient microfluidic technology

can be coupled with machine-learning algorithms to obtain high-fidelity datasets on a complex chemical reaction.

drastically reshaped the chemical industry and the world at

large. Long-chain a-olefin polymers are most often synthe-
sized using specialized catalysts that are carefully selected both for
end-product performance and optimal process economics'~*. The
discovery and design of conditions related to these catalysts is a
time-consuming, wasteful and expensive process. Single-site cata-
lyst research alone is estimated to have cost five billion dollars by the
year 2000, with the entire polymer industry being worth US$611.9
billion in 2017*°. Traditional batch-based catalyst discovery con-
sumes litres of solvent per trial and results in large quantities of
chemical waste. Additionally, catalysts and the associated activa-
tors are expensive and may be hazardous, exemplified by the com-
monly used activator trimethylaluminium®. Homogeneous catalytic
polymerizations are an active area of research due to the advantages
in control of the polymer product as well as environmental benefits
in the manufacturing process>’. However, problems with dissolved
homogeneous catalyst recovery and recycling arise due to difficul-
ties in separating them from the solvent under the mild conditions
that would preserve catalyst activity. Major aims are thus to reduce
the amount of catalyst, activator and solvent used per experimental
trial as well as minimizing the actual number of trials needed to
complete a study.

The current state of polymer manufacturing has an environ-
mental impact from the vast amount of energy used to convert
petrochemicals into commodity plastics such as poly(ethylene) and
poly(propylene). It is estimated by the US Department of Energy
that ~6% of all energy produced in the United States is used in the
production of polymers®. More importantly, ~37% of all global
greenhouse gases (GHGs) are created directly or indirectly by poly-
mer manufacturing’. In an industry that has shaped the world as we
know it and is continuing to expand rapidly, innovative solutions
are needed to quickly engineer and understand new production
pathways'. The design of laboratory-scale reactors for quick dis-
covery and the integration of machine learning for robust process
understanding are two possible ways to work towards developing

| he advent of synthetic plastics over the past century has

more efficient polymerization catalysts while minimizing envi-
ronmental harm. Efficient and automated experimentation could
reduce experimental times from weeks to hours and reduce chemi-
cal waste by several orders of magnitude.

Zirconocene-based alkene polymerization catalysts were derived
from the knowledge gained on titanium-based metallocene cata-
lysts originating from the works of Ziegler and Natta'', with signifi-
cant early advances made by Chien'”, Kaminsky"’, Brintzinger' and
Rieger'’. Additional important studies have been carried out since
then by various groups investigating both the catalysts and resul-
tant polymers using numerous techniques'>~". Many novel methods
have been applied to the study of these catalysts, including quan-
titative structure-activity relationships'®, mass spectroscopy'>*,
cyclic voltammetry*' and NMR*-**. However, many of these labora-
tory techniques are inherently limited by throughput as they rely
on batch experimentation, relatively large quantities of reagents,
and bulky spectroscopic equipment, greatly limiting the time to
market of promising new catalyst compounds. Recently, Reubens
et al. have demonstrated, through the use of online size exclusion
chromatography, that it is possible to autonomously optimize the
molecular weight of photopolymerized acrylate and methacrylate
solutions, a significant advancement in autonomous polymerization
development®. Other recent advances are summarized in the work
of Knox and others®. Overall, designing zirconocene catalytic reac-
tions remains a challenge, as the ratios of reagents, activator compo-
sition and temperature play competing roles”’. A method in which
large amounts of potential candidate reactions can be screened,
using in situ thermography to quantify catalytic-activity-based exo-
therms, has not yet been developed.

Microreaction engineering has evolved in the past few decades
due to the benefits it offers for controlling chemical reactions.
Decreasing the volume of the reactor enables careful manipula-
tion of heat and mass transport physics for desired performance.
Additionally, microreactors allow for the integration of novel
non-interfering in situ and in operando spectroscopic meth-
ods. Microfluidics have been applied to numerous kinetic and
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Fig. 1| Overview of the chemistry. Reaction mechanism for the polymerization of 1-hexene, showing the initiation, propagation and chain transfer steps,

based on the work of Moscato and others”. Here, k; k,

first-principles research problems, including applications in phar-
maceuticals, fine chemicals and petrochemicals*®~*2. These recent
developments were driven by a desire to perform experiments more
quickly, maintain better control over the reaction environment,
and reduce waste in chemical research. There have been a number
of studies in recent years integrating spectroscopic techniques™.
Overall analysis and implementation of microsystems has emerged
in pharmaceuticals and fine chemicals through robust understand-
ing and reaction design’**. The rapid understanding and reaction
design of metallocene catalysts has potentially large implications for
the environmental footprint of polymer manufacturing. This accel-
eration in designing catalytic reactions can be accomplished using
spectroscopic microreactors with machine intelligence.

A recently discovered catalyst of interest to academia and indus-
try is (SBI)ZrMe, (I) in conjunction with a B(CF;), (II) activator.
This combination is active with a broad range of a-olefins, creates
polymers with desirable properties, and reduces the reliance on
dangerous activators like trimethylaluminium®>**-*’. Recently, there
have been several papers published about this and related catalyst
systems aimed at understanding the kinetics and design of the reac-
tions with the general reaction mechanism shown in Fig. 1'%2%¥74142,
Our findings expand on these works through a semi-automated
study of the catalyst’s behaviour to quickly estimate the reaction
space topology along with estimating technoeconomic operating
parameters. Here, traditional data analysis and visualization are
supplemented by using artificial neural networks (ANNs) as a non-
linear fitting tool to model and predict catalytic behaviour without
full knowledge of the model’s underlying dependencies and degrees.

This work seeks to address two main challenges: (1) the design
of flow-based microsystems for the quick and efficient screening of
catalyst for exothermic chemical processes and (2) extraction of the
most information possible out of a given set of experiments. The
first challenge is addressed through the creation of an integrated
continuous-flow microfluidic platform that incorporates pumps,
manifolds, controls and analytics into a singular interface that is
amenable to automation and integration with analytical techniques.
Due to heat and mass transport considerations, flow-based micro-
reactors are challenging to use for such polymerization reactions,
necessitating careful design and selection of operating conditions
to ensure high data fidelity with minimal transport limitations and
safe operation. The second challenge is addressed through the use
of rational experimental design to sample an entire experimental
space quickly and efficiently while extracting information of inter-
est from a non-invasive and real-time thermal camera. Neural
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and k, are the constant rates of initiation, propagation and termination, respectively.

networks were used as a fitting tool to supplement the analysis by
modelling and visualizing the behaviour of the experimental space.
Overall the system and process presented address current trends
spanning chemical engineering and computer science by integrat-
ing microscale reactions with automated experimentation and
MI-enhanced process understanding.

Microreactor design

Microfluidic platforms are uniquely suited to the study of olefin
polymerizations, as these exothermic reactions take place very
quickly, have multiple reaction pathways, require precise control,
generate large amounts of chemical waste and use expensive and
difficult-to-synthesize catalysts. Microfluidics have already been
successfully applied to the research of various polymerizations and
other exothermic reactions*-*.

The first step in our design of an intelligent microsystem is an
order-of-magnitude estimation of heat and mass transport proper-
ties and dimensionless numbers, including the Damkohler num-
ber (defined as the ratio of reaction rate to mass transport rate,
Da = kC}~! 7, where k is the reaction rate constant, C, is the initial
concentration, n is the reaction order and 7 is the residence time),
the beta number (the ratio of heat generated to heat removed,
B = —(rAHnd}) /(4AT.ax), where r is the reaction rate, AH,,
is the heat of reaction, dj. is the diameter of the channel, AT, is the
adiabatic temperature change and « is the thermal conductivity) and
the Reynolds number (the ratio of inertial forces to viscous forces,
Re=pVL/u, where p is the density of the fluid, V is the velocity, L is
the characteristic length and p is the viscosity). Knowledge of these
quantities enables the design of microfluidic devices that offer scal-
able chemical data mimicking the physics found in industrial-scale
processes and enabling visualization. Additionally, this provides
context for analysing other properties of interest such as stream mix-
ing, dispersion, heat transfer, mass transfer and the reaction kinetics.
Here, the microreactor was designed such that the Damkohler num-
ber can be varied between 0.3 and 101, enabling the sampling of both
reaction-rate-limited and mass-transport-limited regimes. The beta
number varies between O(10~%) and O(10) based on the standard heat
of polymerization of 1-hexene (III), indicating that more heat is gen-
erated than removed, enabling thermographic analysis*. Finally, the
Reynolds number varies between O(10~*) and O(1), meaning that the
reaction is operating in a laminar flow regime. The final design for the
reactor is shown in Fig. 2a. Overall, the analysis and understanding of
heat and mass transport characteristics are important to the efficient
functioning of the reactor and accurate data collection.
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Fig. 2 | Reactor schematic and computational and experimental verification of performance. a, Computer-aided design rendering of the assembled
reactor with thermal management and fluid delivery systems. The different components include the reactor, compression O-rings, fluid interface
connections, Peltier cells for heating/cooling and a liquid cooling block to ensure stable thermal performance. b, FEA simulation of the reactor surface
measuring the infrared irradiance (W m=2) with a 20 K temperature gradient between the fluid and reactor. ¢, Image of the reactor channel with no flow,
taken with the infrared camera. d, Image of the reactor with a fully developed reactive flow, taken with the same camera.

System characterization

The design of an intelligent microreactor involves characteriza-
tion of the desired operation, both computationally using finite
element analysis (FEA) and analytically with methods such as
residence time distribution studies with chemical tracers. These
analyses help with fully characterizing the system and ensuring
that analytical methods will yield reliable results. FEA simulations
were carried out, verifying a perceptible difference in infrared
radiative flux between a warm reactor channel and the ambient
reactor. The results of this simulation are presented in Fig. 2b,
showing an ~30 Wm~? difference in flux with a 20K temperature
gradient. Experiments were then carried out to verify the thermal
performance of the microreactor. Reagent concentrations taken
from previous literature were injected into the reactor and the exo-
therm was observed®. Figure 2¢,d presents thermographic images
of the reactor, highlighting the development of reactive flow as the
reagents mix. The catalyst flows through the far feed channel and
the activator flows through the closer one. On contact, a change
in radiation is observed, as indicated by the lighter blue colour.
It is further observed that the reaction is initiated almost instanta-
neously when the reagents mix, with the strongest thermal signa-
ture in the first centimetre of the channel.

Finally, the microsystem design involves its integration with
analytical methods including both in and ex situ measurement
techniques. Accurate and precise control along with a diversity of
measurable variables are critical to creating an accurate digital twin
computer model of the complex polymerization. A challenge pre-
sented by a flow-based testing platform is the inclusion of calibrated
pumps and manifolds not present in a traditional batch system. Other
critical considerations are temperature mapping and homogeneity,
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which are uniquely difficult in typical flow reactors but are simpli-
fied in microsystems. The successful analysis, testing and integra-
tion of all these aspects results in a system that provides relevant
data quickly and accurately. An overview of the experimental sys-
tem is summarized in Fig. 3.

Algorithmic concept

The current work seeks to develop a methodology for the testing,
design and general understanding of one class of zirconocene-based
catalyst by using an ANN fitting. The algorithm, used as a form of
supervised machine learning (ML), helps aid in our understand-
ing of the complex kinetics and reaction design for a homogeneous
catalysed polymerization. Fitting of traditional numerical models
involves understanding the degree of dependence of various inde-
pendent variables (linear, polynomial, natural exponential and so
on), while an ANN can be trained and adapted without complete
knowledge of the system. It is, however, still necessary to have a
rough understanding of the physical phenomenon to choose activa-
tion functions and a number of hidden-layer neurons that are plau-
sible. Recently, we demonstrated that ANNs can be used as a tool
for modelling and understanding complex catalytic pathways for
polymerization reactions from a first-principles in silico approach®.
A design of experiments (DoE) strategy employing a Latin hyper-
cube design is used to accurately and randomly sample the mul-
tidimensional experimental space®. The integration of these steps
together compounds the energy, cost and environmental impact
savings of using a smaller lab space, with fewer trials, with a fraction
of the time and labour. This enables faster data collection and devel-
opment of models, while reducing the time and amount of chemical
waste generated. This methodology serves as a proof of concept for
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Fig. 3 | Process flow diagram for an automated thermographic microreactor system used in the understanding of metallocene catalysts. Left to right:
input manifolds with solvent tank, nitrogen supply, electromagnetic dosing pumps (DP) used for mixing, reagent reservoirs (R1and R2), pressure controller
(EF OB2), mass flow meters (EF 0-5mlmin"), bypass valves, infrared (IR) camera, vacuum enclosure (used to reduce measurement noise) and outlet

manifold. UHP, ultrahigh purity.

using DoE algorithms with ANN fitting and spectroscopic micro-
fluidics to quickly gain process understanding.

The concept presented herein is that a semi-autonomous
reaction system can perform as a machine-assisted chemist to
help understand the complex reaction space for a homogeneous
metallocene catalyst. The first component of this comprises the
control and data interpretation systems that perform the experi-
ments, gather the data and generate the fitted ANN models.
An overview of the system used is provided in the top panel of
Fig. 4. The process is controlled by a combination of MATLAB
and LabVIEW, as each offers certain advantages. MATLAB allows
for the development of advanced computational algorithms and
includes a robust ML toolbox with different training algorithms.
LabVIEW offers a real-time control environment with indepen-
dent loops running to provide control of the system, including
interfacing with external devices. Reagent mixing is provided by
electromagnetic diaphragm pumps, flow through the reactor is
established by the use of a pressure controller and thermal control
is established through Peltier elements. A full description of the
system is provided in the Supplementary Methods and page 3 of
the Supplementary Information.

Data from the infrared camera were collected using the native
camera software at a maximum speed of 24 frames per second
and recorded across the reaction zone into a database. Reaction
exotherm data were used to interpret the catalytic productivity,
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mainly the grams of polymer produced per (mole catalyst X mole
monomer X hour). Catalytic productivity is an important metric for
polymerization catalyst design and is used when discovering new
catalysts, understanding existing catalysts and designing industrial
plants. Due to the environmental concerns associated with catalyst
production and reagent recycling, including GHG emissions and
chemical waste, it is important to adjust catalytic performance to
meet optimistic goals and government regulations.

By interpolating the data from a minimal number of experi-
ments using a quick and efficient fitting algorithm, it is possible to
visualize the full range of the experimental topology, which could
not be achieved using traditional trials.

Automated experimentation

Experimentation was conducted in such a way as to establish an
understanding of the reaction space without the need for extensive
trials. The reagents were manually prepared in an inert environment
glovebox and connected to the experimental manifolds. An auto-
mated routine was used to establish control, clean the reactor and
perform experiments (see flowchart presented in the bottom panel
of Fig. 4). The purpose of the algorithm was to efficiently perform
experiments in an automated fashion. The next experimental point
was selected from a specified monomer, catalyst, activator concen-
tration bank based on the recommendation of a Latin hypercube
DoE algorithm. This allows for a nearly random distribution to be
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Fig. 4 | Flowcharts for experimental control and data handling. Top: diagram of the system architecture of the high-throughput experimentation system
with the functions of MATLAB and LabVIEW broken down by control loops and communication protocols. Bottom: flowchart of how experiments are
performed, from reagent preparation to a report of the kinetic results. Analysis was performed after the experimental sequence was complete. CAN,
controller area network; Ul, user interface.

sampled across the experimental space, enhancing the robustness ~vacuum enclosure to reduce the effect of atmospheric interference,
of the resultant model. The experimental system consisted of the as air and water vapour contained in it would introduce noise into
reagent mixing and storage equipment, thermal control, the reac-  the data. The reactor used in this study was fabricated by photo-
tor and associated control systems (see experimental flowchart in  polymerization stereolithography and bonded to an infrared-trans-
Fig. 3). The reactor and thermal camera were contained within a  parent fluoropolymer film (for an overview of the reactor assembly
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and dimensions see Fig. 2a; for full information on fabrication see
Supplementary Information).

Overall the process and system were designed to handle several
challenges, including maintaining an inert environment, ensur-
ing safety, performing experiments automatically and producing
scalable data. The chosen catalyst and activator molecules are
highly sensitive to moisture and oxygen, and must therefore be
handled in such a way that they never come into contact with the
atmosphere. Additionally, the solvent and monomer used present
safety concerns as they are both toxic and highly flammable, pro-
ducing vapours that may be explosive. The next challenge in the
system design was the integration of robust process automation.
The experiment needed to integrate a thermal camera, analytics
and fluid handling seamlessly and autonomously. This was accom-
plished through the combined use of MATLAB and LabVIEW
with the integration of an open-source Arduino microcontroller
for manifold control. The final challenge in system design was the
microreactor itself. The reactor was designed from the ‘bottom
up’ to ensure optimal fluidic and thermal performance supported
with both computational and experimental evidence. Overall,
the system was designed in such a way as to allow for automated
experimentation using sensitive chemistries with in situ analytics
integrated with the microreactor platform.

Data collection and analysis

On verifying reactor performance, a Latin hypercube sampling
algorithm was used to test the effects of the concentrations of mono-
mer, activator and catalyst, with 29 initial experiments and eight
additional trials performed at the random temperature setpoints of
16, 11, 8, 6, 42, 46, 61 and 79°C. An overview of the experimental
concentration used for network training is shown in Fig. 5a with
all thermal trials using a low catalyst loading and a high concentra-
tion of activator and monomer. It was determined that decoupling
anisothermal trials from the anisotonic ones would yield the best
quality of data because the experimental effects are not convoluted.
If both sets of changing conditions were incorporated into the origi-
nal Latin hypercube design, it would be difficult to separate which
effects are caused by changing concentration and which by chang-
ing temperature, resulting in questionable statistical interpretations
of the data. In total, these experiments generated (with reactor
rinses) less than 30 g of chemical waste, a two to three order of mag-
nitude reduction from traditional experiments. The footprint of the
experiment and all associated support equipment was contained to
a nine-square-foot area in a fume hood.

The reactor performed as designed, generating a series of exo-
therms with both dimensional and temporal resolution within the
reactor. These exotherms were then used in conjunction with an
energy balance for reacting laminar flow in a microchannel to glean
information both on the catalytic productivity (a technoeconomic
metric) and reaction kinetics (necessary for reactor design and scale-
up). Figure 5b shows how the catalytic productivity changes with
changing reaction conditions. Finally, a series of ANNs were gener-
ated based on the experimental results in an effort to model the cat-
alytic productivity throughout the experimental space. The results
of this training in the form of error percentage over the test data-
set (15% of the experimental data) are provided in Supplementary
Fig. 3, ranging over both training method and the number of
hidden-layer neurons. Cross-validation was performed while tak-
ing care to keep the training and test data distinct. To test the fit
quality of the chosen network architecture, training was repeated
five times using random indices for training versus test data;
detailed results are provided in Supplementary Table 2. A Bayesian
regularization backpropagation training algorithm with a feed-
forward network consisting of an input layer, two hidden layers
with nine neurons each and an output layer resulted in the best
quality of fit over the experimental space and was retrained after
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hyperparameter tuning using MATLAB’s automated routines for
selecting the training rate parameters and manual selection of hid-
den layer/neuron numbers. The final network used for the study
had a mean square error (MSE) losses of 1.5% 1072 and 6.0x 10~°
over the testing and training datasets, respectively. The Bayesian
regularization backpropagation algorithm was predicted to have
the best representation because it leverages the benefits of both the
Levenberg-Marquardt optimization algorithm with robust regular-
ization to enhance prediction stability. Neural networks were used
as opposed to polynomial fits due to the ease of adaptability to new
experiments and input/output parameters. In the case presented
here, the inputs consisted of concentration parameters and temper-
ature, but the architecture of the network can be easily adapted to
include other inputs including flow parameters, chemical metrics
such as Lewis acidity and adaptations for different reactants. The
network can also be updated using reinforcement learning to adapt
to different a-olefin polymerization reactions. The network was
designed to output the catalytic activity, a technoeconomic param-
eter used to determine how much polymer is made per quanta of
catalyst per quanta of time. Bayesian regularization and normaliza-
tion were used to provide a stable and scalable fit across a range
of conditions. Raw data from the thermal camera were processed
through ICT’s proprietary libraries, which provided non-uniformity
correction and autocalibration. For additional details on network
training see the Supplementary Information.

Kinetic and ANN analysis

The first step in kinetic analysis was determining the catalytic pro-
ductivity and kinetic rate constants for the various experiments. This
was performed using automated MATLAB code, which extracted
the exotherm from the experimental database and converted it into
meaningful data through a heat balance. The raw experimental
results are shown in Fig. 5b, where the experimental exotherms are
compared with the neural network prediction over all trials. The
average percent error of the fit is under 0.5%, with notable deviation
being observed in the low-temperature and first high-temperature
trials. It is hypothesized that this deviation was caused by adsorption
of gelled polymer product from the low-temperature experiment to
the reactor walls, which then became desorbed in the first high-
temperature trial. Following this deviation, the AI predictions once
again lie in near-perfect agreement with the experimental results.
Finally Fig. 5¢,d shows the kinetic rate constants of chain initiation
and propagation, respectively. From this data it can be seen how the
rate constants change with varying concentrations and temperature
(plots 1-29 and 30-37, respectively).

As the final component of the investigation, a neural network
was trained and used to compute the catalytic productivity over a
broad range of plausible points from the literature within the reac-
tion space. This methodology presents a way to efficiently visual-
ize the reaction space topology for complex catalytic cycles with a
minimum number of experiments. The results of the ANN-based
computation are shown in Fig. 6, where the first row shows the reac-
tion space over a range of activator concentrations, the second row
over monomer concentrations and the third row over catalyst con-
centrations. It is observed that the catalytic productivity decreases
with increasing catalyst and monomer concentrations, consistent
with the mathematical interpretation of the term. This is also con-
sistent with the reaction mechanism, because as the concentration
of monomer goes up, the prevalence of vinylene and vinylidene
termination mechanisms may increase, and at high catalyst con-
centrations the activity per gram of catalyst is inherently lower due
to the inverse relationship. There is also some nonlinear behaviour
at mid-range concentrations of monomer with high activator con-
centrations, perhaps due to competing branching and termination
steps. It is also observed that the productivity tends to increase with
increasing activator concentration, consistent with its purpose in
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Fig. 5 | Experimental results for catalytic productivity and kinetic rate constants. a, Experimental concentrations of the various reagents over the

29 training trials. Red circles represent catalyst concentration, blue squares represent activator concentration and green diamonds represent monomer
concentration. b, Catalytic productivity (g polymer/(mol(Zr) x mol (1-hexene) x h)) of the SBI(Zr)Me, catalyst for the various experiments performed.
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frames in flow over the course of each experiment (standard deviation over the course of the experiment). Trials 9, 10, 13 and 34 were used for cross-
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Table 2. ¢, Natural logarithm of the kinetic rate constant for chain initiation as computed through a nonlinear fit over the various experiments. d, The same

as in ¢, but for the chain propagation rate constant.

the reaction mixture. This presents an interesting technoeconomic
problem, which is investigated in the bottom half of Fig. 5, showing
the catalytic productivity as a function of monomer concentration
and temperature. These data represent a snapshot of 1,000 random
concentration combinations over a range of temperatures, giving a
randomized decision matrix from which an optimal value can be
inferred given desired parameters. Over the experimental space
presented here, this value was determined to be a catalyst concen-
tration of 54mM, a nearly equimolar activator concentration of
56 mM, a monomer concentration of 1.04 M and an operating tem-
perature between 40 and 78°C. Overall, the ANN analysis allows
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for the generation of a very large dataset, which can then be used
to make decisions about operating points as part of the catalyst dis-
covery process.

Conclusions

Semi-autonomous microfluidic platforms integrated with in situ
thermography may be used in conjunction with fitted regular-
ized and normalized neural networks to better understand cata-
lytic cycles for homogeneous polymerization reactions. It has been
shown that a metallocene-catalysed polymerization can be per-
formed in a machine-assisted microreactor, and the results can be
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quantified using an infrared camera, interpreted using an energy
balance and used to train an ANN. The ANN may then, in turn, be
used to visualize the reaction space with a higher resolution than
would otherwise be possible using traditional experimentation.
The behaviour of the rate constants of initiation and propagation
was also investigated, along with the behaviour of the catalyst at
varying temperatures. The reaction space for an industrially and
academically relevant homogeneous metallocene polymerization
system was investigated and the behaviour towards varying con-
centrations of reactants was visualized. The combination of these
data provides a useful tool for both scientific and technoeconomic
analysis of catalyst systems. It was also determined that the Bayesian
regularization backpropagation algorithm with nine hidden-layer
neurons, used in conjunction with normalization, provides the best
quality of fit. It is hypothesized that this result is due to the fact
that in Bayesian regularization the training algorithm determines
a combination of squared errors and weights that generalizes well.
This enables construction of a network that is resilient across a wide
range of conditions.

Overall, this study has demonstrated that high-throughput
microfluidics can be aided by ML algorithms for the investigation
of complex chemical reactions. This opens doors to new types of
research, primarily the ‘robotic chemist) increasing throughput, data
fidelity and the efficiency of experimental campaigns. Future work
could incorporate statistically based Monte Carlo design algorithms
to aid in understanding the relationships between parameters.
Depending on the use of the experimental results and knowledge of
the underlying model, other numerical fitting techniques may also
be used. Performing reactions at the microscale with automation
reduces the amount of energy input and chemical waste generated,
while also increasing safety because any failure in the reaction sys-
tem is small and contained. Finally, the study aimed to contribute
knowledge to online learning for complex systems, as the training
methodology could be applied to other chemical, mechanical and
electricelectrical systems.

In the future, the methodology presented here may also be used
to investigate other catalyst systems where a thermal signature may
be expected, including other polymerizations, exothermic biochem-
ical transformations and catalytic breakdown of harmful emissions
including SOx and NOx compounds. This experimentation lays the
groundwork for the ability to predict optimal catalytic performance
conditions autonomously. Optimization of industrially relevant cat-
alysts or catalyst/activator pairs may be accomplished by combin-
ing the neural network analysis with optimization techniques such
as technoeconomic model minimization or genetic algorithms.
Additionally, the high-resolution ANNs can be combined with vari-
ous topology topological analysis techniques to design new experi-
ments. This Al methodology and the design of machine-assisted
microreactors reduces the amount of chemical waste and energy
input while enhancing the time to actionable data and the resolu-
tion of reaction space topology.

Reporting Summary. Further information on research design
is available in the Nature Research Reporting Summary linked to
this article.

Data availability

The datasets generated and/or analysed during the current study
are available in the Zenodo repository, http://doi.org/110.5281/
zenodo.3706730[50].

Code availability

The code used for data analysis in the current study is pub-
licly available in the Zenodo repository, http://doi.org/110.5281/
zen0do.3706730[50]. The code used for experimental control is avail-
able in the Zenodo repository, http://doi.org/zenodo.3706734[51].
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