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Natural language processing (NLP) and word embeddings trained neural networks were investigated as a
more efficient method to extract useful information on catalytic polymerizations. Thousands of abstracts
on metallocene-catalyzed polymerizations were accessed through journal Application Programming Inter-
faces. These abstracts were then used to create a group of related models to produce word embeddings,
making use of the word2vec algorithm. This algorithm turns vocabulary into high dimensional vectors
using unsupervised training. These vectors can then be used to show relationships between chemicals,
suggest catalysts and activators combinations, understand acronyms, and categorize chemical compounds
based on their reagent classification. We hypothesize that one can determine which areas of metallocene
catalysis are understudied by comparing the predicted abstract and catalysts combinations with those
found in existing abstracts, thereby guiding research to major breakthroughs as scientific literature con-
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1. Introduction

Data mining scientific research is an emerging technique used
to quickly gather relevant data as a prerequisite for starting a new
study. It was reported in 2015 that 2.5 million scholarly papers
were being published per year, with that number expected to rise
continuously (Ware and Mabe, 2015). Therefore, it is becoming in-
creasingly difficult to manually parse through even relatively nar-
row areas of research. An increasing volume of text and data does,
however, benefit neural network learning algorithms. The applica-
tion of neural networks to chemical and materials research has
been greatly expanded over recent years (Butler et al., 2018). Meth-
ods that take advantage of large quantities of text in order to un-
derstand and manipulate it for useful purposes are known as Nat-
ural Language Processing (NLP) (Chowdhury, 2003). Word embed-
dings is a technique in which all words in a set of text are as-
cribed to a high-dimensional vector generated by a neural net-
work which can learn from their syntactical context as well as
the semantics in which they are used (Schnabel et al., 2015). Em-
bedding models can be created from several algorithms, chiefly

Abbreviations: CBOW, Continuous Bag of Words; NLP, Natural Language Process-
ing; AP, Application Programming Interface; TF-IDF, Term Frequency - Inverse Doc-
ument Frequency; PCA, Principal Component Analysis; t-SNE, t-Distributed Scholas-
tic Neighbor Embeddings.
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word2vec (Goldberg and Levy, 2014). Within these algorithms, sev-
eral machine learning techniques with varying degrees of accu-
racy are used to generate models. Two competing word2vec al-
gorithms are Continuous Bag of Words (CBOW) and Skip-gram
(Mikolov et al., 2013). CBOW operates by using the projection layer
for all words, considering the distributed representations of con-
text. In other words, surrounding words are used to predict which
word should be put in that context. For this method of classifica-
tion, term frequencies are not necessarily a good representation as
common words have a greater appearance rate in a normal body of
text; thus using the term-frequency inverse-document-frequency
(TF-IDF) mitigates this issue. TF-IDF is a numerical statistic in or-
der to determine the importance of any term or word in a set of
documents.
The TF-IDF is calculated as follows:

tfidf (t.D, D*) = tf(t.d)« idf(t, D*)

The term frequency (tf) is used to identify the theme of a doc-
ument, where t is the term in document D. This calculates the
frequency of a specific term in any given document. The inverse
document frequency (idf) is used to show a term’s impact on the
document by comparing it to the other terms amongst all docu-
ments. The term t is once again the term, but D* is the total num-
ber of documents in the corpus divided by the number of docu-
ments where term t appears. This means that a high idf shows
a word which is not used frequently amongst many documents,
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Fig. 1. Continuous bag of words and SkipGram black-box mathematical visual representation of inputs and outputs.

thus showing its significance to its specific document (Salton and
Buckley, 2002).

It is well known that the Skip-gram algorithm is more accu-
rate than CBOW, but much slower. That being said, CBOW'’s accu-
racy is better for more frequent words; since we are focusing on
catalysis amongst catalysis research papers, the CBOW algorithm
was tested rather than simply relying on Skip-gram. In contrast to
CBOW, Skip-gram works by attempting to maximize the probabil-
ity of predicting the surrounding words or context of a given word.
The embeddings models are generated using mat2vec, a modified
version of the word2vec algorithm that has been used to study ma-
terial science (Weston and Shitoyan, 2019). The two methods can
be described by Fig. 1 above.

Typically, a large body of text is required as an input to
begin generating meaningful and accurate embeddings models
(Roberts, 2016). This comes with the hurdle of obtaining, storing,
and processing this large volume of data. By focusing solely on a
small window of research and only the keywords associated with
the topic, we hope to bypass the shortcomings of using a statisti-
cal method like this on a relatively small (~3000 abstracts) body of
text.

NLP techniques have been successfully applied before in the
context of science and chemistry. A study done in 2019 by Tshi-
toyan et al., demonstrated the predictive capability of embeddings
models by inputting a relatively large amount generic scientific and
chemical literature and making accurate predictions about chem-
ical and thermoelectric properties of existing and yet to be dis-
covered compounds. Without any prior chemical knowledge, their
word embeddings model was capable of finding complex material
science concepts including the underlying structure of the peri-
odic table as well as properties from different materials. From their
work in word embedding models being able to understand ma-
terial science theories, we pursued using word embedding mod-
els in order to understand catalytic polymerizations (Tshitoyan and
Dagdelen, 2019). Pei-Yua et al. made use of word embeddings in
order to study chemical-protein interactions from scientific text
faster than if done manually. Their machine learning model specifi-
cally extracted chemical-protein interaction pairs and triplets from
text where the model identified the chemical compound and its
corresponding protein. Being able to extract valuable words and
information from text is one of the first stepping stone for future
works of developing models capable of extracting high-level infor-
mation from sentences, such as the method used in identifying
catalytic polymerizations in this research (Lung et al., 2019). This
however only scratches the surface of what is possible from using
NLP to analyze scholarly articles. Furthermore, the application of
other machine learning tactics, including and expanding upon NLP,

have been discussed in order to predict atomistic potentials, under-
stand catalytic properties, and find cheaper ways to solve Kohn-
Sham equations in DFT (Kitchin, 2018). There are great strides to
provide methodology, usage and impacts of machine learning in
catalysis, and even future work that could shift traditional catalysis
research. The work by Toyao et al. shows the design, synthesis, and
characterization of catalytic materials as well as contributes to this
discussion of the potential in this newly growing field (Toyao et al.,
2020). This paper puts these theories into application, but also
broadens it by creating a template possibly useful to all material
science fields through the usage of NLP. The field of catalysis is
enormous, making it attractive for application of cutting-edge data
informatics tools.

This paper applies the word embedding algorithm to a rel-
atively small, highly focused dataset pertaining to metallocene-
catalyzed polymerizations. This was done in order to generate lists
of catalysts, activators, monomers, and their shared context as a
way of datamining literature from previously studied reactions. Al-
though this is a specific application, the underlying neural net-
work and algorithms can be trained for any focused dataset or
topic of research. The goals of this research were to demonstrate
an accurate grouping of similar categories of chemicals, visualize
the word embedding space of metallocene-catalyzed polymeriza-
tion research as whole, and autonomously generate previously un-
researched combinations of catalyst/activator/monomer predicted
by embedding vectors of the chemical names alone.

2. Methods
2.1. Abstract handling and manipulation

Approximately three thousand abstracts were obtained per-
taining to metallocene polymerization chemistry. The abstracts
were downloaded using Elsevier's Scopus Application Program-
ming Interface (API) (Elsevier, 2020) and Springer Nature’s API
(Springer Nature API Portal, 2020). From the APIs, abstracts that
contained a metallocene and the keyword polymer were down-
loaded and duplicates were removed. Spelling and nomenclature
of chemical names varied so the corpus was preprocessed to stan-
dardize and decrease the number of unique vocabulary words. Fur-
thermore, to gain the strongest correlation of related words, copy-
right symbols, watermarks, and other forms of identification from
authors were stripped. Using mat2vec, a modified word2vec al-
gorithm containing useful preprocessing steps for chemistry pa-
pers, the beginnings of sentences were made lowercase while pre-
serving the capitalization of acronyms, chemical formulas, and ro-
man numerals for oxidation states. All numbers were replaced by
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the token <num> which further reduced the size of the vocab-
ulary. Nomenclature was standardized across texts; for example,
“polypropene” and “polyethene” were translated to “polypropy-
lene” and “polyethylene”, respectively. Approximately 50 chemical
compounds were renamed and standardized. Overall, the size of
the vocabulary was reduced from 27,361 unique words to 25,945
unique words.

2.2. Unsupervised learning and training

Similarly to other word embedding algorithms and NLP tech-
niques used in catalysis research, this learning algorithm is un-
supervised; meaning data was gathered through specific searches
but models used all data collected. This was used rather than
a binary relevance network which filters data through a neural
network. The data obtained from the API searches were relevant
and the usage of binary relevant networks seemed unnecessary to
achieve the same results (Berger, 2015; Huang and Ling, 2019). A
machine learning model is only as capable as its data, and sepa-
rating the useful data from its useless counterparts is imperative
(Rothenberg, 2008). The usage of the API queries in order to find
abstracts were used as a filter in order to find research papers re-
lating to the keywords used: metallocene and some variation of
polymer. This returned all abstracts that the APIs found relevant;
from there, there was no neural network used to filter unrelated
articles amongst these results. Rather, every article was used in
the training of our model. Trying to train binary relevant/irrelevant
screening network using TF-IDF proved to be too inaccurate for the
relatively small size of the corpus and too time consuming to pro-
duce training data. Furthermore, using an unsupervised learning
method allows the process to be applicable towards any topic with
minimal tuning rather than just for metallocene catalysts.

Using the preprocessed corpus, mat2vec was used to generate a
series of embeddings models using Skip-gram and Continuous Bag
of Words. Further adjustments were also tested such as varying the
number of embedding dimensions and using an unprocessed cor-
pus, a preprocessed corpus, and a preprocessed corpus with phras-

ing enabled. The unprocessed corpus contained the plaintext of
all the abstracts while the other two normalized the entire text
file; normalizing the file consisted of the preprocessing techniques
mentioned earlier: making capitalization across sentences, chemi-
cals, and acronyms uniform; replacing numbers with <num>; and
standardizing nomenclature of chemical compounds. In addition,
the preprocessed corpus with phrasing enabled grouped common
words appearing in a similar context together as a phrase and
treated them similarly to a single word. These models are com-
pared against each other by their accuracy in solving a set of met-
allocene polymerization related analogies. These analogies were
prepared from both domain expertise as well as a previously made
set of chemical analogies. The analogies from domain expertise fo-
cused on catalytic polymerization and was weighted more than
the preset list of analogies. The total list of analogies amounted
to 201,350 analogies. Furthermore, the chemical names were also
defined from domain expertise and manual inspection rather than
from an information extraction tool.

The preset analogies come from the previously stated paper
from Tshitoyan et al. and a copy can be found in our source code.
The model that solves the most analogies correctly was selected
for further analysis. In total, 18 different models were tested in or-
der to determine the best model for this specific algorithm. The re-
sults of these models were normalized, returning a percentage of
the analogies solved over the analogies solved by the best model. It
was quickly found that the processed corpus Skip-gram model con-
sistently yielded the best results for completing analogies. Analo-
gies clearly shows grouping, clustering, and understanding of the
material; so the set of two-hundred thousand analogies was used
as the testing process. By being able to relate certain terms to solve
analogies, these models are capable of clustering and identifying
trends, patterns, and related materials. In the Figs. 2, and 3 below,
the relative analogy of each model was tested and shown; 100%
relative analogy accuracy resulting in 64.3% overall accuracy, cor-
rectly solving 129,453 analogies out of 201,350.

The embeddings of chemical names are collapsed down to two
dimensions using Principle Component Analysis (PCA) in order to
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Fig. 2. Flow diagram of abstract collection to corpus generation.
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Fig. 3. Grouped bar chart of relative analogy accuracies amongst different Natural Language Processing (NLP) training models.

see how the model groups these chemicals. PCA works by math-
ematically reducing the high dimension vectors created in the
model for each set of words by finding correlations between sim-
ilar dimensions to minimize the variables of each vector while
keeping the variance, distribution, and information of the original
vectors. PCA forms the linear combination attempting to maximize
the standard deviation and Rayleigh Quotient. PCA is extremely
useful for finding these linear correlations. Although studies such
as Chen et al. (2013) have shown that potentially useful informa-
tion is lost when the dimensions are reduced, it can still help a
researcher make qualitative decisions based on the results of PCA.

A larger set of vocabulary found by looking at the most simi-
lar words to some common chemicals used in metallocene catal-
ysis was plotted using t-Distributed Stochastic Neighbor Embed-
dings (t-SNE). T-SNE is a technique to visualize high dimensional
data by translating a data point to a two or three dimensional
map. It does this by first converting the high dimensional data
into conditional probabilities that show similarities between two
points. Then it uses a Student-t distribution to compute similari-
ties between two points in a low dimension space rather than the
high dimensional space like before. Ultimately, the algorithm min-
imizes the Kullback-Leibler divergence between the two probabil-
ity distributions and applies a gradient descent to form its graph
(Maaten and Hinton, 2008). We use this algorithm to take our 200-
dimensional embeddings vector of each word, apply it in order to
group words deemed similar and plot them in two dimensions. T-
SNE uses probability in order to find similarities and correlations
between the dataset in a high-dimensional space and the same
dataset in a lower dimensional space, while PCA uses a linear di-
mension reduction technique to preserve larger distances between
pairs. PCA geometrically projects the data points to a lower di-
mension. These data points are called principal components; PCA
attempts to obtain the best summary of the data while attempt-
ing to minimize the number of principal components and keep-
ing the variance of data points (Lever et al., 2017). In other words,
PCA finds the linear correlation within the dataset to give a lower-
dimension vector attempting to maintain the variance while t-

SNE attempts to find multiple patterns and correlations amongst a
high-dimension dataset and finds the similar correlations in a low-
dimensional dataset. Both of these graphs are then generated and
shown in order to show the clustering and determinations the NLP
algorithm has produced.

3. Results and discussion
3.1. Analogy determination

The embeddings model is shown to be capable of creat-
ing meaningful word analogies first outlined in Mikolov et al.
(Weston and Tshitoyan, 2019). These analogies are created by in-
putting two words with a known relationship, such as the cate-
gory of catalyst, zirconocene, and its metal element name, Zr, then
another word such as Ti, to find the word with the most similar
relationship as the first two, which in this case is titanocene. A list
of example analogies predicted by the embeddings model is show
in Table 1. The full list of all analogies used can be found in the
code.

General formula of the analogies is (a-b + ¢ = d)

3.2. Principal component analysis

Principal component analysis (PCA) was then used to visualize
the high dimensional vector representations of words by compar-
ing the dimensions with the greatest variation between the in-
putted words. A more complete set of the acronyms and chemical
names PCA can be found in figure S1 in the supplementary files.

As can be seen in Fig. 4, the acronyms appear relatively close
to their full name which shows their embeddings are correctly
drawing a close association between them. TMA is one exception
as it appears as an outlier in dimension 1 but is still close to its
full name trimethylaluminum in dimension 2. This suggests that
the acronym TMA is used somewhat differently to its full name
compared to the other activators. In the t-SNE plot later which is
initially seeded by PCA, TMA and trimethylaluminum are grouped
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methylaluminoxane

MAO

TEA

Table 1

Examples of word embeddings analogies used in comparisons for determining best Natural Language Processing (NLP) model.
Positive 112 Negativel! Positive 21 Result!d!
zirconocene Zr Ti titanocene
zirconocene Zr Hf hafnocene
titanocene Ti Zr zirconocene
titanocene Ti Hf hafnocene
hafnocene Hf Zr zirconocene
hafnocene Hf Ti titanocene
MAO methylaluminoxane triethylalmunium TEA
MAO methylaluminoxane triisobutylaluminum TIBA
MAO methylaluminoxane trimethylaluminum TMA
TEA triethylalmunium methylaluminoxane MAO
TEA triethylalmunium triisobutylaluminum TIBA
TEA triethylalmunium trimethylaluminum TMA
TIBA triisobutylaluminum methylaluminoxane MAO
TIBA triisobutylaluminum trimethylaluminum TMA
TIBA triisobutylaluminum triethylalmunium TEA
TMA trimethylaluminum methylaluminoxane MAO
TMA trimethylaluminum triisobutylaluminum TIBA
TMA trimethylaluminum triethylalmunium TEA

triethylaluminoxane

methylaluminoxane MAO
methylaluminoxane MAO
triethylaluminoxane TEA
triethylaluminoxane TEA
triethylaluminoxane TEA
triisobutylaluminum TIBA
triisobutylaluminum TIBA
triisobutylaluminum TIBA
trimethylaluminum TMA
trimethylaluminum TMA
trimethylaluminum TMA
polyethylene ethene
polypropylene propene
heterogeneous supported
homogeneous unsupported
unsupported homogeneous
supported heterogeneous
Cp2ZrCI2 Zr

Cp2ZrCI2 Zr

Cp2HfCI2 Hf

Cp2HfCI2 Hf

Cp2TiCI2 Ti

Cp2TiCI2 Ti

TIBA triisobutylaluminum
TMA trimethylaluminum
MAO methylaluminoxane
TIBA triisobutylaluminum
TEA triethylaluminoxane
MAO methylaluminoxane
TMA trimethylaluminum
TEA triethylaluminoxane
MAO methylaluminoxane
TIBA triisobutylaluminum
TEA triethylaluminoxane
propene polypropylene
ethene polyethylene
unsupported homogeneous
supported heterogeneous
heterogeneous supported
homogeneous unsupported

Hf Cp2HfCI2

Ti Cp2TiCl2

Zr Cp2ZrCI2

Ti Cp2TiCl2

Hf Cp2HfCI2

Zr Cp2ZrCI2

e Acroynms and Chemical Names PCA

151 sg{g&utylaluminum

1.0 1

0.5 A
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Fig. 4. Principal component analysis plot of metallocene activators and their
acronyms.

closely together when other types of chemical names are plot-
ted together. This suggests that the embeddings model is correctly
predicting which chemical names have similar meanings and also
that the acronym TMA might be being used differently than other
acronyms in relation to is full name.

The PCA plot provides an insightful visualization of the high-
dimensional word embeddings and their relative closeness to one
another. Fig. 5 shows how Skip-gram can identify when reagents
belong to distinct categories. Catalysts, co-catalysts/activators, and
monomers each can be seen grouped in three corners of a triangle,
maximizing the distance between themselves. The PCA serves as a
seed for a greater number of word representations.

3.3. T-SNE visualization

T-SNE has proven useful when plotting a greater number of
word representations than PCA. The t-SNE plot shown in Fig. 6 was
seeded using PCA initially.

The t-SNE plot shows how words’ similarities are interpreted
using word2vec embeddings. Cosine similarity was used in order
to determine the 50 closest words; cosine similarity measures the
likeness between two words by measuring the cosine of the an-
gle of the two vectors. This works well when translating a high
dimension vector space into a lower one, as done with NLP. This
concept is more effective in analyzing semantic similarity over Eu-
clidean distance as the Euclidean distance calculates the raw dis-
tance between two points rather than the angle of the two vec-
tors which can get obscured during translation. Word2vec inher-
ently calculates the cosine similarity when looking for most re-
lated words (Rehurek, 2019; Han et al.,, 2000; Yang et al., 2019).
Words that belong to categories such as monomers, polymers,
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Fig. 5. Principal component analysis (PCA) plot of embeddings for: monomers (green), catalysts (red), and activators (blue).
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Fig. 6. t-SNE plot of the entire vocabulary highlighting the top 50 closest words by Cosine Similarity in the embedding space to the words A) Cp,ZrMe;, B) MAO, and C)

1-hexene.

activators, catalysts, and physical properties group together while
dissimilar words spread apart. Other groupings observed are ad-
jectives for physical properties, words relating to crystallography,
and heterogeneous catalyst supports. The 50 closest words as well
as their cosine similarities can be found in the supplementary files
(1Hexene.csv, MAO.csv, and Cp2ZrMe2.csv). Exploring the outlying
groups also revealed vocabulary pertaining to unrelated abstracts
that slipped by the initial filtering, showing that this visualization
can be used for quality control in obtaining a corpus for the gen-
eration of embeddings models.

3.4. Under-researched topics

A list of catalysts and activators was created by looking through
the top similarity matches of sixteen common catalysts and acti-
vators. The corpus was checked to see how many times specific

catalysts and activators appeared in the same abstract. The top re-
sult, Cp,ZrCl, and MAO were used as a template catalyst-activator
combination analogy and each other catalyst was checked to see
what the top activator results would be (MAO - Cp,ZrCl, + Other
catalyst = Predicted Activator). The predicted activators for each
catalyst compared to the number of abstracts containing this com-
bination are presented in Table 2.

Searching through the corpus, it became evident that most cat-
alyst + activator combinations had not been studied for various
reasons including costs, availability, and predicted catalytic activ-
ity. That being said, it should be noted that this search of under-
researched catalyst and activator combinations has not been thor-
oughly tested, but is a feature that can be passably seen from
the results of our embeddings model. As expected, when predict-
ing catalyst-activator combinations, analogies to Cp,ZrCl,: MAO
display other, well studied reactions. This shows that the vector
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Table 2
Predicted catalyst-activator pairs based on analogies.

Catalyst Activator Number of Papers in Corpus
Cp*Ti(OBz)3 triisobutylaluminum 4
Cp*Ti(Obz)3 methylaluminoxane 7
Cp*Ti(Obz)3 triethylaluminum None
Cp*Ti(Obz)3 CPh3B(C6F5)4 None
Cp2ZrCI2 methylaluminoxane 121
Cp2ZrCl2 triethylaluminum 5
Cp2ZrCI2 CPh3B(C6F5)4 2
Cp2ZrCI2 TIBAO 1
Cp2ZrCI2 triisobutylaluminum 7
Cp2HfCI2 TIBAO None
Cp2HfCI2 CPh3B(C6F5)4 None
Cp2HfCI2 methylaluminoxane 4
Cp2HfCI2 triethylaluminum None
Cp2TiCl2 AIEtCI2 4
Cp2TiCl2 AIE2Cl 3
Cp2TiCl2 triethylaluminum 1

representations of these chemicals are not random. Upon inves-
tigation of the word2vec source code, it is apparent that these
words are indeed being correctly grouped as opposed to a random
output. During the training phase, word2vec takes every word in
order to increase or decrease its cosine similarity, or relatedness,
with the words around it. However, it not only brings the words’
vectors closer together if the two words appeared next to each
other, but also uses two phases, hierarchical and negative sam-
pling, in order to push away a sample of words. Negative sampling
randomly pushes away a random set of words to its given word
whenever that word is brought closer together with another word.
Hierarchical sampling takes the neighboring words of a given word
and compares it with its own subset of words chosen from a tree
data structure relating to more frequent words. Through this train-
ing process, not only are words that appear together in the cor-
pus related, but word2vec brings the words that are likely to ap-
pear together while disregarding extremely common words such
as prepositions. That is why chemical components, catalyst and
activator combinations, and even advanced materials are able to
be brought together as the corpus contains enough occurrences of
these complex phrases, and similar occurrences of these phrases
though the words may not be the same, in order to recognize their
connection. This is similar to the popular recognition word2vec
is able to make: man - king and woman - queen (Mikolov and
Sutskever, 2013; Mikolov et al., 2013). Combinations predicted but
not actually observed in the corpus could be potential areas of fu-
ture study. Overall this process presents a method of selecting un-
der researched combinations for a series of activator screenings
that is independent of any physical properties of the chemicals
themselves.

The “Holy Grail” of applying NLP to academic research would
be the ability to accurately predict the values of physical proper-
ties of the words being represented as embeddings. This would
require data that is usually locked away inside figures and tables
of the full articles to be put in a format that is friendlier for
a learning algorithm to decipher. Currently some general chem-
ical and physical properties can be predicted to varying degrees
of accuracy using a corpus encompassing millions of abstracts
about thermoelectric materials, but for highly focused areas of
research with relatively few papers, this becomes very difficult.
It is conceivable that an unsupervised NLP working as part of
a larger neural network seeded with a large volume of physical
data will be able to make predictions about the chemical prop-
erties of untested polymerization catalysts and activators. Neu-
ral machine translation models have been applied by Nam and
Kim (2016) to predict organic chemical reactions. Furthermore,
named entity recognition has been applied to extract information
from material science literature in order to drastically improve the

efficiency between researchers and literature. However, there are
still some drawbacks such as a lack of entity-relation extraction
(Corbett and Boyle, 2018; Weston et al., 2019). Regardless, work
like this shows how promising these techniques can be to reaction
chemistry.

The biggest challenge while creating embeddings models and
searching through the results was the number of fragmented
chemical formulas and identical chemicals named differently
across different abstracts. These inconsistencies of nomenclature
and formating necessitated the preprocessing step to correct com-
mon spelling differences (such as aluminum versus aluminum).
However, many other difficult to standardize inconsistencies, such
as chemical formulas, slipped through. One could spend a great
deal of time manually accounting for each inconsistency until ev-
ery chemical name and every formula is completely standardized,
but that would completely negate the speed advantage data min-
ing and NLP provides. In order to aid human and nonhuman read-
ers of scientific journals, authors and publishers should make more
strict formating rules when it comes to chemical names and for-
mulas. Not only will this aid future data scientists, but also the
amateur researcher who might not know the many different ways
the same catalyst can be represented as.

4. Conclusion

Making use of an embeddings algorithm when researching met-
allocene polymerizations can be a fast way for a researcher to be
introduced to the topic. Lists of catalysts, co-catalysts/activators,
and monomers can be compiled from the wealth of past research
based on closeness to such chemicals the researcher might already
know. Important properties to look out for that have been stud-
ied in the past in regard to certain polymerizations can also be
found by looking for words similar to the word property or us-
ing a known property of interest as a seed word. Synonyms and
acronyms can be found by looking for very closely matching word
vectors or by using analogies. Analogies can also be used to gener-
ate predicted catalyst/activator combinations that may be of inter-
est to research. Used in conjunction with other data sources, there
is potential for unsupervised embeddings to be applied in larger
neural networks to expand catalysis research by making use of the
wealth of existing knowledge.

The use of data visualization tools can make it feasible for an
amateur researcher to quickly learn about the range of different
catalysts/activators/monomers that exist for metallocene catalyzed
polymerization. Chemical names that appear frequently with sim-
ilar context words are automatically grouped together and ap-
pear as the closest neighbors in the high-dimensional space. Tra-
ditionally, researcher trying to substitute a reagent may need to
read dozens of papers to create a list of possible substitutes. This
can take many hours to do manually. Using NLP, this same re-
searcher can download the several thousand relevant abstracts,
create a Skip-gram model, and start searching keywords similar to
the reagent were searching for in under an hour.

Data and code access

The data abstracted came from Elsevier and Springer Nature’s
API. The abstracts can be similarly extracted from our code and
a unique public key. The public key can be input into the text file
provided. The API keys for Elsevier and Springer Nature can be cre-
ated from the publisher’s API on the developer portal, respectively
(Elsevier, 2020; Springer Nature API Portal, 2020). After those keys
are created, they can be used in the code base, which also con-
tains the training models used for the natural language processing
(Ho, 2014).
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