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a b s t r a c t 

Natural language processing (NLP) and word embeddings trained neural networks were investigated as a 

more efficient method to extract useful information on catalytic polymerizations. Thousands of abstracts 

on metallocene-catalyzed polymerizations were accessed through journal Application Programming Inter- 

faces. These abstracts were then used to create a group of related models to produce word embeddings, 

making use of the word2vec algorithm. This algorithm turns vocabulary into high dimensional vectors 

using unsupervised training. These vectors can then be used to show relationships between chemicals, 

suggest catalysts and activators combinations, understand acronyms, and categorize chemical compounds 

based on their reagent classification. We hypothesize that one can determine which areas of metallocene 

catalysis are understudied by comparing the predicted abstract and catalysts combinations with those 

found in existing abstracts, thereby guiding research to major breakthroughs as scientific literature con- 

tinues to grow. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Data mining scientific research is an emerging technique used

o quickly gather relevant data as a prerequisite for starting a new

tudy. It was reported in 2015 that 2.5 million scholarly papers

ere being published per year, with that number expected to rise

ontinuously ( Ware and Mabe, 2015 ). Therefore, it is becoming in-

reasingly difficult to manually parse through even relatively nar-

ow areas of research. An increasing volume of text and data does,

owever, benefit neural network learning algorithms. The applica-

ion of neural networks to chemical and materials research has

een greatly expanded over recent years ( Butler et al., 2018 ). Meth-

ds that take advantage of large quantities of text in order to un-

erstand and manipulate it for useful purposes are known as Nat-

ral Language Processing (NLP) ( Chowdhury, 2003 ). Word embed-

ings is a technique in which all words in a set of text are as-

ribed to a high-dimensional vector generated by a neural net-

ork which can learn from their syntactical context as well as

he semantics in which they are used ( Schnabel et al., 2015 ). Em-

edding models can be created from several algorithms, chiefly
Abbreviations: CBOW, Continuous Bag of Words; NLP, Natural Language Process- 

ng; API, Application Programming Interface; TF-IDF, Term Frequency – Inverse Doc- 

ment Frequency; PCA, Principal Component Analysis; t-SNE, t-Distributed Scholas- 

ic Neighbor Embeddings. 
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E-mail address: ryan.hartman@nyu.edu (R.L. Hartman). 

f  

d  

d  

m  

b  

m  

a  

ttps://doi.org/10.1016/j.compchemeng.2020.107026 

098-1354/© 2020 Elsevier Ltd. All rights reserved. 
ord2vec ( Goldberg and Levy, 2014 ). Within these algorithms, sev-

ral machine learning techniques with varying degrees of accu-

acy are used to generate models. Two competing word2vec al-

orithms are Continuous Bag of Words (CBOW) and Skip-gram

 Mikolov et al., 2013 ). CBOW operates by using the projection layer

or all words, considering the distributed representations of con-

ext. In other words, surrounding words are used to predict which

ord should be put in that context. For this method of classifica-

ion, term frequencies are not necessarily a good representation as

ommon words have a greater appearance rate in a normal body of

ext; thus using the term-frequency inverse-document-frequency

TF-IDF) mitigates this issue. TF-IDF is a numerical statistic in or-

er to determine the importance of any term or word in a set of

ocuments. 

The TF-IDF is calculated as follows: 

 f idf ( t , D, D 

∗) = t f ( t , d ) ∗ idf ( t , D 

∗) 

The term frequency (tf) is used to identify the theme of a doc-

ment, where t is the term in document D. This calculates the

requency of a specific term in any given document. The inverse

ocument frequency (idf) is used to show a term’s impact on the

ocument by comparing it to the other terms amongst all docu-

ents. The term t is once again the term, but D 

∗ is the total num-

er of documents in the corpus divided by the number of docu-

ents where term t appears. This means that a high idf shows

 word which is not used frequently amongst many documents,

https://doi.org/10.1016/j.compchemeng.2020.107026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.107026&domain=pdf
mailto:ryan.hartman@nyu.edu
https://doi.org/10.1016/j.compchemeng.2020.107026
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Fig. 1. Continuous bag of words and SkipGram black-box mathematical visual representation of inputs and outputs. 
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thus showing its significance to its specific document ( Salton and

Buckley, 2002 ). 

It is well known that the Skip-gram algorithm is more accu-

rate than CBOW, but much slower. That being said, CBOW’s accu-

racy is better for more frequent words; since we are focusing on

catalysis amongst catalysis research papers, the CBOW algorithm

was tested rather than simply relying on Skip-gram. In contrast to

CBOW, Skip-gram works by attempting to maximize the probabil-

ity of predicting the surrounding words or context of a given word.

The embeddings models are generated using mat2vec, a modified

version of the word2vec algorithm that has been used to study ma-

terial science ( Weston and Shitoyan, 2019 ). The two methods can

be described by Fig. 1 above. 

Typically, a large body of text is required as an input to

begin generating meaningful and accurate embeddings models

( Roberts, 2016 ). This comes with the hurdle of obtaining, storing,

and processing this large volume of data. By focusing solely on a

small window of research and only the keywords associated with

the topic, we hope to bypass the shortcomings of using a statisti-

cal method like this on a relatively small (~30 0 0 abstracts) body of

text. 

NLP techniques have been successfully applied before in the

context of science and chemistry. A study done in 2019 by Tshi-

toyan et al., demonstrated the predictive capability of embeddings

models by inputting a relatively large amount generic scientific and

chemical literature and making accurate predictions about chem-

ical and thermoelectric properties of existing and yet to be dis-

covered compounds. Without any prior chemical knowledge, their

word embeddings model was capable of finding complex material

science concepts including the underlying structure of the peri-

odic table as well as properties from different materials. From their

work in word embedding models being able to understand ma-

terial science theories, we pursued using word embedding mod-

els in order to understand catalytic polymerizations ( Tshitoyan and

Dagdelen, 2019 ). Pei-Yua et al. made use of word embeddings in

order to study chemical-protein interactions from scientific text

faster than if done manually. Their machine learning model specifi-

cally extracted chemical-protein interaction pairs and triplets from

text where the model identified the chemical compound and its

corresponding protein. Being able to extract valuable words and

information from text is one of the first stepping stone for future

works of developing models capable of extracting high-level infor-

mation from sentences, such as the method used in identifying

catalytic polymerizations in this research ( Lung et al., 2019 ). This

however only scratches the surface of what is possible from using

NLP to analyze scholarly articles. Furthermore, the application of

other machine learning tactics, including and expanding upon NLP,
ave been discussed in order to predict atomistic potentials, under-

tand catalytic properties, and find cheaper ways to solve Kohn-

ham equations in DFT ( Kitchin, 2018 ). There are great strides to

rovide methodology, usage and impacts of machine learning in

atalysis, and even future work that could shift traditional catalysis

esearch. The work by Toyao et al. shows the design, synthesis, and

haracterization of catalytic materials as well as contributes to this

iscussion of the potential in this newly growing field ( Toyao et al.,

020 ). This paper puts these theories into application, but also

roadens it by creating a template possibly useful to all material

cience fields through the usage of NLP. The field of catalysis is

normous, making it attractive for application of cutting-edge data

nformatics tools. 

This paper applies the word embedding algorithm to a rel-

tively small, highly focused dataset pertaining to metallocene-

atalyzed polymerizations. This was done in order to generate lists

f catalysts, activators, monomers, and their shared context as a

ay of datamining literature from previously studied reactions. Al-

hough this is a specific application, the underlying neural net-

ork and algorithms can be trained for any focused dataset or

opic of research. The goals of this research were to demonstrate

n accurate grouping of similar categories of chemicals, visualize

he word embedding space of metallocene-catalyzed polymeriza-

ion research as whole, and autonomously generate previously un-

esearched combinations of catalyst/activator/monomer predicted

y embedding vectors of the chemical names alone. 

. Methods 

.1. Abstract handling and manipulation 

Approximately three thousand abstracts were obtained per-

aining to metallocene polymerization chemistry. The abstracts

ere downloaded using Elsevier’s Scopus Application Program-

ing Interface (API) ( Elsevier, 2020 ) and Springer Nature’s API

 Springer Nature API Portal, 2020 ). From the APIs, abstracts that

ontained a metallocene and the keyword polymer were down-

oaded and duplicates were removed. Spelling and nomenclature

f chemical names varied so the corpus was preprocessed to stan-

ardize and decrease the number of unique vocabulary words. Fur-

hermore, to gain the strongest correlation of related words, copy-

ight symbols, watermarks, and other forms of identification from

uthors were stripped. Using mat2vec, a modified word2vec al-

orithm containing useful preprocessing steps for chemistry pa-

ers, the beginnings of sentences were made lowercase while pre-

erving the capitalization of acronyms, chemical formulas, and ro-

an numerals for oxidation states. All numbers were replaced by
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he token < num > which further reduced the size of the vocab-

lary. Nomenclature was standardized across texts; for example,

polypropene” and “polyethene” were translated to “polypropy- 

ene” and “polyethylene”, respectively. Approximately 50 chemical

ompounds were renamed and standardized. Overall, the size of

he vocabulary was reduced from 27,361 unique words to 25,945

nique words. 

.2. Unsupervised learning and training 

Similarly to other word embedding algorithms and NLP tech-

iques used in catalysis research, this learning algorithm is un-

upervised; meaning data was gathered through specific searches

ut models used all data collected. This was used rather than

 binary relevance network which filters data through a neural

etwork. The data obtained from the API searches were relevant

nd the usage of binary relevant networks seemed unnecessary to

chieve the same results ( Berger, 2015 ; Huang and Ling, 2019 ). A

achine learning model is only as capable as its data, and sepa-

ating the useful data from its useless counterparts is imperative

 Rothenberg, 2008 ). The usage of the API queries in order to find

bstracts were used as a filter in order to find research papers re-

ating to the keywords used: metallocene and some variation of

olymer. This returned all abstracts that the APIs found relevant;

rom there, there was no neural network used to filter unrelated

rticles amongst these results. Rather, every article was used in

he training of our model. Trying to train binary relevant/irrelevant

creening network using TF-IDF proved to be too inaccurate for the

elatively small size of the corpus and too time consuming to pro-

uce training data. Furthermore, using an unsupervised learning

ethod allows the process to be applicable towards any topic with

inimal tuning rather than just for metallocene catalysts. 

Using the preprocessed corpus, mat2vec was used to generate a

eries of embeddings models using Skip-gram and Continuous Bag

f Words. Further adjustments were also tested such as varying the

umber of embedding dimensions and using an unprocessed cor-

us, a preprocessed corpus, and a preprocessed corpus with phras-
Fig. 2. Flow diagram of abstract co
ng enabled. The unprocessed corpus contained the plaintext of

ll the abstracts while the other two normalized the entire text

le; normalizing the file consisted of the preprocessing techniques

entioned earlier: making capitalization across sentences, chemi-

als, and acronyms uniform; replacing numbers with < num > ; and

tandardizing nomenclature of chemical compounds. In addition,

he preprocessed corpus with phrasing enabled grouped common

ords appearing in a similar context together as a phrase and

reated them similarly to a single word. These models are com-

ared against each other by their accuracy in solving a set of met-

llocene polymerization related analogies. These analogies were

repared from both domain expertise as well as a previously made

et of chemical analogies. The analogies from domain expertise fo-

used on catalytic polymerization and was weighted more than

he preset list of analogies. The total list of analogies amounted

o 201,350 analogies. Furthermore, the chemical names were also

efined from domain expertise and manual inspection rather than

rom an information extraction tool. 

The preset analogies come from the previously stated paper

rom Tshitoyan et al. and a copy can be found in our source code.

he model that solves the most analogies correctly was selected

or further analysis. In total, 18 different models were tested in or-

er to determine the best model for this specific algorithm. The re-

ults of these models were normalized, returning a percentage of

he analogies solved over the analogies solved by the best model. It

as quickly found that the processed corpus Skip-gram model con-

istently yielded the best results for completing analogies. Analo-

ies clearly shows grouping, clustering, and understanding of the

aterial; so the set of two-hundred thousand analogies was used

s the testing process. By being able to relate certain terms to solve

nalogies, these models are capable of clustering and identifying

rends, patterns, and related materials. In the Figs. 2 , and 3 below,

he relative analogy of each model was tested and shown; 100%

elative analogy accuracy resulting in 64.3% overall accuracy, cor-

ectly solving 129,453 analogies out of 201,350. 

The embeddings of chemical names are collapsed down to two

imensions using Principle Component Analysis (PCA) in order to
llection to corpus generation. 
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Fig. 3. Grouped bar chart of relative analogy accuracies amongst different Natural Language Processing (NLP) training models. 
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see how the model groups these chemicals. PCA works by math-

ematically reducing the high dimension vectors created in the

model for each set of words by finding correlations between sim-

ilar dimensions to minimize the variables of each vector while

keeping the variance, distribution, and information of the original

vectors. PCA forms the linear combination attempting to maximize

the standard deviation and Rayleigh Quotient. PCA is extremely

useful for finding these linear correlations. Although studies such

as Chen et al. (2013) have shown that potentially useful informa-

tion is lost when the dimensions are reduced, it can still help a

researcher make qualitative decisions based on the results of PCA. 

A larger set of vocabulary found by looking at the most simi-

lar words to some common chemicals used in metallocene catal-

ysis was plotted using t-Distributed Stochastic Neighbor Embed-

dings (t-SNE). T-SNE is a technique to visualize high dimensional

data by translating a data point to a two or three dimensional

map. It does this by first converting the high dimensional data

into conditional probabilities that show similarities between two

points. Then it uses a Student-t distribution to compute similari-

ties between two points in a low dimension space rather than the

high dimensional space like before. Ultimately, the algorithm min-

imizes the Kullback-Leibler divergence between the two probabil-

ity distributions and applies a gradient descent to form its graph

( Maaten and Hinton, 2008 ). We use this algorithm to take our 200-

dimensional embeddings vector of each word, apply it in order to

group words deemed similar and plot them in two dimensions. T-

SNE uses probability in order to find similarities and correlations

between the dataset in a high-dimensional space and the same

dataset in a lower dimensional space, while PCA uses a linear di-

mension reduction technique to preserve larger distances between

pairs. PCA geometrically projects the data points to a lower di-

mension. These data points are called principal components; PCA

attempts to obtain the best summary of the data while attempt-

ing to minimize the number of principal components and keep-

ing the variance of data points ( Lever et al., 2017 ). In other words,

PCA finds the linear correlation within the dataset to give a lower-

dimension vector attempting to maintain the variance while t-
NE attempts to find multiple patterns and correlations amongst a

igh-dimension dataset and finds the similar correlations in a low-

imensional dataset. Both of these graphs are then generated and

hown in order to show the clustering and determinations the NLP

lgorithm has produced. 

. Results and discussion 

.1. Analogy determination 

The embeddings model is shown to be capable of creat-

ng meaningful word analogies first outlined in Mikolov et al.

 Weston and Tshitoyan, 2019 ). These analogies are created by in-

utting two words with a known relationship, such as the cate-

ory of catalyst, zirconocene, and its metal element name, Zr, then

nother word such as Ti, to find the word with the most similar

elationship as the first two, which in this case is titanocene. A list

f example analogies predicted by the embeddings model is show

n Table 1 . The full list of all analogies used can be found in the

ode. 

General formula of the analogies is (a- b + c = d ) 

.2. Principal component analysis 

Principal component analysis (PCA) was then used to visualize

he high dimensional vector representations of words by compar-

ng the dimensions with the greatest variation between the in-

utted words. A more complete set of the acronyms and chemical

ames PCA can be found in figure S1 in the supplementary files. 

As can be seen in Fig. 4 , the acronyms appear relatively close

o their full name which shows their embeddings are correctly

rawing a close association between them. TMA is one exception

s it appears as an outlier in dimension 1 but is still close to its

ull name trimethylaluminum in dimension 2. This suggests that

he acronym TMA is used somewhat differently to its full name

ompared to the other activators. In the t-SNE plot later which is

nitially seeded by PCA, TMA and trimethylaluminum are grouped
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Table 1 

Examples of word embeddings analogies used in comparisons for determining best Natural Language Processing (NLP) model. 

Positive 1 [a] Negative [b] Positive 2 [c] Result [d] 

zirconocene Zr Ti titanocene 

zirconocene Zr Hf hafnocene 

titanocene Ti Zr zirconocene 

titanocene Ti Hf hafnocene 

hafnocene Hf Zr zirconocene 

hafnocene Hf Ti titanocene 

MAO methylaluminoxane triethylalmunium TEA 

MAO methylaluminoxane triisobutylaluminum TIBA 

MAO methylaluminoxane trimethylaluminum TMA 

TEA triethylalmunium methylaluminoxane MAO 

TEA triethylalmunium triisobutylaluminum TIBA 

TEA triethylalmunium trimethylaluminum TMA 

TIBA triisobutylaluminum methylaluminoxane MAO 

TIBA triisobutylaluminum trimethylaluminum TMA 

TIBA triisobutylaluminum triethylalmunium TEA 

TMA trimethylaluminum methylaluminoxane MAO 

TMA trimethylaluminum triisobutylaluminum TIBA 

TMA trimethylaluminum triethylalmunium TEA 

methylaluminoxane MAO TEA triethylaluminoxane 

methylaluminoxane MAO TIBA triisobutylaluminum 

methylaluminoxane MAO TMA trimethylaluminum 

triethylaluminoxane TEA MAO methylaluminoxane 

triethylaluminoxane TEA TIBA triisobutylaluminum 

triethylaluminoxane TEA TEA triethylaluminoxane 

triisobutylaluminum TIBA MAO methylaluminoxane 

triisobutylaluminum TIBA TMA trimethylaluminum 

triisobutylaluminum TIBA TEA triethylaluminoxane 

trimethylaluminum TMA MAO methylaluminoxane 

trimethylaluminum TMA TIBA triisobutylaluminum 

trimethylaluminum TMA TEA triethylaluminoxane 

polyethylene ethene propene polypropylene 

polypropylene propene ethene polyethylene 

heterogeneous supported unsupported homogeneous 

homogeneous unsupported supported heterogeneous 

unsupported homogeneous heterogeneous supported 

supported heterogeneous homogeneous unsupported 

Cp2ZrCl2 Zr Hf Cp2HfCl2 

Cp2ZrCl2 Zr Ti Cp2TiCl2 

Cp2HfCl2 Hf Zr Cp2ZrCl2 

Cp2HfCl2 Hf Ti Cp2TiCl2 

Cp2TiCl2 Ti Hf Cp2HfCl2 

Cp2TiCl2 Ti Zr Cp2ZrCl2 

Fig. 4. Principal component analysis plot of metallocene activators and their 

acronyms. 
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losely together when other types of chemical names are plot-

ed together. This suggests that the embeddings model is correctly

redicting which chemical names have similar meanings and also

hat the acronym TMA might be being used differently than other

cronyms in relation to is full name. 
The PCA plot provides an insightful visualization of the high-

imensional word embeddings and their relative closeness to one

nother. Fig. 5 shows how Skip-gram can identify when reagents

elong to distinct categories. Catalysts, co-catalysts/activators, and

onomers each can be seen grouped in three corners of a triangle,

aximizing the distance between themselves. The PCA serves as a

eed for a greater number of word representations. 

.3. T-SNE visualization 

T-SNE has proven useful when plotting a greater number of

ord representations than PCA. The t-SNE plot shown in Fig. 6 was

eeded using PCA initially. 

The t-SNE plot shows how words’ similarities are interpreted

sing word2vec embeddings. Cosine similarity was used in order

o determine the 50 closest words; cosine similarity measures the

ikeness between two words by measuring the cosine of the an-

le of the two vectors. This works well when translating a high

imension vector space into a lower one, as done with NLP. This

oncept is more effective in analyzing semantic similarity over Eu-

lidean distance as the Euclidean distance calculates the raw dis-

ance between two points rather than the angle of the two vec-

ors which can get obscured during translation. Word2vec inher-

ntly calculates the cosine similarity when looking for most re-

ated words ( Rehurek, 2019 ; Han et al., 20 0 0 ; Yang et al., 2019 ).

ords that belong to categories such as monomers, polymers,
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Fig. 5. Principal component analysis (PCA) plot of embeddings for: monomers (green), catalysts (red), and activators (blue). 

Fig. 6. t-SNE plot of the entire vocabulary highlighting the top 50 closest words by Cosine Similarity in the embedding space to the words A) Cp 2 ZrMe 2 , B) MAO, and C) 

1-hexene. 
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activators, catalysts, and physical properties group together while

dissimilar words spread apart. Other groupings observed are ad-

jectives for physical properties, words relating to crystallography,

and heterogeneous catalyst supports. The 50 closest words as well

as their cosine similarities can be found in the supplementary files

(1Hexene.csv, MAO.csv, and Cp2ZrMe2.csv). Exploring the outlying

groups also revealed vocabulary pertaining to unrelated abstracts

that slipped by the initial filtering, showing that this visualization

can be used for quality control in obtaining a corpus for the gen-

eration of embeddings models. 

3.4. Under-researched topics 

A list of catalysts and activators was created by looking through

the top similarity matches of sixteen common catalysts and acti-

vators. The corpus was checked to see how many times specific
atalysts and activators appeared in the same abstract. The top re-

ult, Cp 2 ZrCl 2 and MAO were used as a template catalyst-activator

ombination analogy and each other catalyst was checked to see

hat the top activator results would be (MAO – Cp 2 ZrCl 2 + Other

atalyst = Predicted Activator). The predicted activators for each

atalyst compared to the number of abstracts containing this com-

ination are presented in Table 2 . 

Searching through the corpus, it became evident that most cat-

lyst + activator combinations had not been studied for various

easons including costs, availability, and predicted catalytic activ-

ty. That being said, it should be noted that this search of under-

esearched catalyst and activator combinations has not been thor-

ughly tested, but is a feature that can be passably seen from

he results of our embeddings model. As expected, when predict-

ng catalyst-activator combinations, analogies to Cp 2 ZrCl 2 : MAO

isplay other, well studied reactions. This shows that the vector
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Table 2 

Predicted catalyst-activator pairs based on analogies. 

Catalyst Activator Number of Papers in Corpus 

Cp ∗Ti(OBz)3 triisobutylaluminum 4 

Cp ∗Ti(Obz)3 methylaluminoxane 7 

Cp ∗Ti(Obz)3 triethylaluminum None 

Cp ∗Ti(Obz)3 CPh3B(C6F5)4 None 

Cp2ZrCl2 methylaluminoxane 121 

Cp2ZrCl2 triethylaluminum 5 

Cp2ZrCl2 CPh3B(C6F5)4 2 

Cp2ZrCl2 TIBAO 1 

Cp2ZrCl2 triisobutylaluminum 7 

Cp2HfCl2 TIBAO None 

Cp2HfCl2 CPh3B(C6F5)4 None 

Cp2HfCl2 methylaluminoxane 4 

Cp2HfCl2 triethylaluminum None 

Cp2TiCl2 AlEtCl2 4 

Cp2TiCl2 AlEt2Cl 3 

Cp2TiCl2 triethylaluminum 1 
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epresentations of these chemicals are not random. Upon inves-

igation of the word2vec source code, it is apparent that these

ords are indeed being correctly grouped as opposed to a random

utput. During the training phase, word2vec takes every word in

rder to increase or decrease its cosine similarity, or relatedness,

ith the words around it. However, it not only brings the words’

ectors closer together if the two words appeared next to each

ther, but also uses two phases, hierarchical and negative sam-

ling, in order to push away a sample of words. Negative sampling

andomly pushes away a random set of words to its given word

henever that word is brought closer together with another word.

ierarchical sampling takes the neighboring words of a given word

nd compares it with its own subset of words chosen from a tree

ata structure relating to more frequent words. Through this train-

ng process, not only are words that appear together in the cor-

us related, but word2vec brings the words that are likely to ap-

ear together while disregarding extremely common words such

s prepositions. That is why chemical components, catalyst and

ctivator combinations, and even advanced materials are able to

e brought together as the corpus contains enough occurrences of

hese complex phrases, and similar occurrences of these phrases

hough the words may not be the same, in order to recognize their

onnection. This is similar to the popular recognition word2vec

s able to make: man – king and woman – queen ( Mikolov and

utskever, 2013 ; Mikolov et al., 2013 ). Combinations predicted but

ot actually observed in the corpus could be potential areas of fu-

ure study. Overall this process presents a method of selecting un-

er researched combinations for a series of activator screenings

hat is independent of any physical properties of the chemicals

hemselves. 

The “Holy Grail” of applying NLP to academic research would

e the ability to accurately predict the values of physical proper-

ies of the words being represented as embeddings. This would

equire data that is usually locked away inside figures and tables

f the full articles to be put in a format that is friendlier for

 learning algorithm to decipher. Currently some general chem-

cal and physical properties can be predicted to varying degrees

f accuracy using a corpus encompassing millions of abstracts

bout thermoelectric materials, but for highly focused areas of

esearch with relatively few papers, this becomes very difficult.

t is conceivable that an unsupervised NLP working as part of

 larger neural network seeded with a large volume of physical

ata will be able to make predictions about the chemical prop-

rties of untested polymerization catalysts and activators. Neu-

al machine translation models have been applied by Nam and

im (2016) to predict organic chemical reactions. Furthermore,

amed entity recognition has been applied to extract information

rom material science literature in order to drastically improve the
fficiency between researchers and literature. However, there are

till some drawbacks such as a lack of entity-relation extraction

 Corbett and Boyle, 2018 ; Weston et al., 2019 ). Regardless, work

ike this shows how promising these techniques can be to reaction

hemistry. 

The biggest challenge while creating embeddings models and

earching through the results was the number of fragmented

hemical formulas and identical chemicals named differently

cross different abstracts. These inconsistencies of nomenclature

nd formating necessitated the preprocessing step to correct com-

on spelling differences (such as aluminum versus aluminum).

owever, many other difficult to standardize inconsistencies, such

s chemical formulas, slipped through. One could spend a great

eal of time manually accounting for each inconsistency until ev-

ry chemical name and every formula is completely standardized,

ut that would completely negate the speed advantage data min-

ng and NLP provides. In order to aid human and nonhuman read-

rs of scientific journals, authors and publishers should make more

trict formating rules when it comes to chemical names and for-

ulas. Not only will this aid future data scientists, but also the

mateur researcher who might not know the many different ways

he same catalyst can be represented as. 

. Conclusion 

Making use of an embeddings algorithm when researching met-

llocene polymerizations can be a fast way for a researcher to be

ntroduced to the topic. Lists of catalysts, co-catalysts/activators,

nd monomers can be compiled from the wealth of past research

ased on closeness to such chemicals the researcher might already

now. Important properties to look out for that have been stud-

ed in the past in regard to certain polymerizations can also be

ound by looking for words similar to the word property or us-

ng a known property of interest as a seed word. Synonyms and

cronyms can be found by looking for very closely matching word

ectors or by using analogies. Analogies can also be used to gener-

te predicted catalyst/activator combinations that may be of inter-

st to research. Used in conjunction with other data sources, there

s potential for unsupervised embeddings to be applied in larger

eural networks to expand catalysis research by making use of the

ealth of existing knowledge. 

The use of data visualization tools can make it feasible for an

mateur researcher to quickly learn about the range of different

atalysts/activators/monomers that exist for metallocene catalyzed 

olymerization. Chemical names that appear frequently with sim-

lar context words are automatically grouped together and ap-

ear as the closest neighbors in the high-dimensional space. Tra-

itionally, researcher trying to substitute a reagent may need to

ead dozens of papers to create a list of possible substitutes. This

an take many hours to do manually. Using NLP, this same re-

earcher can download the several thousand relevant abstracts,

reate a Skip-gram model, and start searching keywords similar to

he reagent were searching for in under an hour. 

ata and code access 

The data abstracted came from Elsevier and Springer Nature’s

PI. The abstracts can be similarly extracted from our code and

 unique public key. The public key can be input into the text file

rovided. The API keys for Elsevier and Springer Nature can be cre-

ted from the publisher’s API on the developer portal, respectively

 Elsevier, 2020 ; Springer Nature API Portal, 2020 ). After those keys

re created, they can be used in the code base, which also con-

ains the training models used for the natural language processing

 Ho, 2014 ). 
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