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—— Abstract
This paper studies the lattice agreement problem in asynchronous systems and explores its application
to building a linearizable replicated state machine (RSM). First, we propose an algorithm to solve the
lattice agreement problem in O(log f) asynchronous rounds, where f is the number of crash failures
that the system can tolerate. This is an exponential improvement over the previous best upper
bound of O(f). Second, Faleiro et al have shown in [Faleiro et al. PODC, 2012] that combination of
conflict-free data types and lattice agreement protocols can be applied to implement a linearizable
RSM. They give a Paxos style lattice agreement protocol, which can be adapted to implement a
linearizable RSM and guarantee that a command by a client can be learned in at most O(n) message
delays, where n is the number of proposers. Later, Xiong et al in [Xiong et al. DISC, 2018] gave a
lattice agreement protocol which improves the O(n) message delay guarantee to O(f). However,
neither of the protocols is practical for building a linearizable RSM. Thus, in the second part of
the paper, we first give an improved protocol based on the one proposed by Xiong et al. Then, we
implement a simple linearizable RSM using our improved protocol and compare our implementation
with an open source Java implementation of Paxos. Results show that better performance can be
obtained by using lattice agreement based protocols to implement a linearizable RSM compared to
traditional consensus based protocols.
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1 Introduction

Lattice agreement, introduced in [2], to solve the atomic snapshot problem [1] in shared
memory, is also an important decision problem in message passing systems. In this problem,
n processes start with input values from a lattice and need to decide values which are
comparable to each other in spite of f process failures, where n is the number of processes
and f is the maximum number of failures in the system.

There are two primary applications of lattice agreement. First, Attiya et al [2] give a logn
rounds algorithm to solve the lattice agreement problem in synchronous message systems
and use it as a building block to solve the atomic snapshot problem. Second, Faleiro et al [6]
© Xiong Zheng, Vijay K. Garg, and John Kaippallimalil,
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propose the problem of generalized lattice agreement (GLA), which is a generalization of
lattice agreement problem for a sequence of inputs, and demonstrate that the combination
of conflict-free data types (CRDT) [14,15] and generalized lattice agreement protocols can
be applied to implement a special class of RSM and provide linearizability [8]. We call this
special class of state machines as Update-Query (UQ) state machines. The operations of
UQ state machines can be classified into two kinds: updates (operations that modify the
state) and queries or reads (operations that only return values and do not modify the state).
An operation that both modifies the state and returns a value is not supported. In this
paper, when we talk about linearizable RSMs, we mean UQ state machines. As shown in [6],
to implement a linearizable RSM, we can first design the underlying data structure to be
CRDT. This makes all update operations commute. Then, the generalized lattice agreement
protocol is invoked for each operation to guarantee linearizability. In this paper, we call a
linearizable RSM built by using the combination of CRDT and a GLA protocol as LaRSM.

RSM [13] is a popular technique for fault tolerance in a distributed system. Traditional
RSMs typically enforce strong consistency among replicas by using a consensus based protocol
to order all the requests from the clients. In this approach, each replica executes all the
requests in an identical order to ensure that all replicas are at the same state at any given time.
The most popular consensus based protocol for building a RSM is Paxos [9,11]. In Paxos,
processes are divided into three different roles: proposer, acceptor and learner. Proposers
are responsible for proposing requests from clients to acceptors. Acceptors decide the order
of a request and guarantee all learners learn a identical order of requests. When there are
multiple proposers in the system, termination is not guaranteed in Paxos. Since the initial
proposal of Paxos, many variants have been proposed. FastPaxos [10] reduces the typical
three message delays in Paxos to two message delays by allowing clients to directly send
commands to acceptors. MultiPaxos [4] is the typical deployment of Paxos in the industrial
setting. It assumes that usually there is a stable leader which acts as a proposer, so there
is no need for the first phase in the basic Paxos protocol. CheapPaxos [12] extends basic
Paxos to reduce the requirement in the number of processors. Even though in the Paxos
protocol, there could be multiple proposers, usually only one leader (proposer) is used in
practice due to its non-termination problem when there are multiple proposers. The system
performance is limited by the resources of the leader. Also, the unbalanced communication
pattern limits the utilization of bandwidth available in all of the network links connecting
the servers. SPaxos [3] is a Paxos variant which tries to offload the leader by disseminating
clients to all replicas. However, the leader is still the only process which can order requests.

Since lattice agreement can be applied to implement a linearizable RSM, if we can solve
lattice agreement efficiently, we may not need consensus in some cases. This is promising,
since lattice agreement has been shown to be a weaker decision problem than consensus in
theory. In synchronous systems, consensus cannot be solved in fewer than f + 1 rounds [5],
but lattice agreement can be solved in log f + 1 rounds [17]. In asynchronous systems,
consensus cannot be solved even with one failure [7], whereas lattice agreement can be solved
if a majority of processes is correct [6,17].

The lattice agreement problem in asynchronous message systems is first studied by Faleiro
et al in [6]. They present a Paxos style protocol when a majority of processes are correct.
Their algorithm needs O(n) asynchronous round-trips in the worst case. They also propose a
protocol for generalized lattice agreement, adapted from their protocol for lattice agreement,
which requires O(n) message delays for a value to be learned. Later, a protocol which runs in
O(f) asynchronous round-trips was proposed by Xiong et al in [17]. They also give a protocol
for generalized lattice agreement which improves the O(n) message delays complexity to
O(f). In this work, we improve the upper bound for lattice agreement in asynchronous
systems to O(log f), which is an exponential improvement.
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Although [6] has demonstrated that generalized lattice agreement protocol can be applied

to implement a linearizable RSM, both the protocols proposed in [6] and [17] are impractical.

This is due to the following reason. In both protocols, each process has an accept command
which keeps track of all received proposal values. When the protocols are applied to implement
a linearizable RSM, this accept command is a set which records all previously proposed
commands. When a process rejects a proposal, it has to send back this whole set. Even worse,
this set keeps increasing as more commands arrive from clients. In this work, we propose
an improved algorithm for the generalized lattice agreement problem, which is specifically
designed to make it practical to build a linearizable RSM.

In summary, this paper makes the following contributions:

We present an algorithm, AsyncLA, to solve the lattice agreement in asynchronous

system in O(log f) rounds, where f is the maximum number of crash failures in the

system. This bound is an exponential improvement to the previously known best upper

bound of O(f) by [17].

We give an improved algorithm for the generalized lattice agreement protocol based on

the one proposed in [17] to make it practical to implement a linearizable RSM.

We implement a simple linearizable RSM in Java by combining a CRDT map data

structure and our improved generalized lattice agreement algorithm. We demonstrate its

performance by comparing with SPaxos. Our experiments show that LaRSM achieves

around 1.3x times throughput than SPaxos and a lower operation latency in normal case.

2 System Model and Problem Definitions
2.1 System Model

We consider a distributed message passing system with n processes, p1, ..., pn, in a completely
connected topology. We only consider asynchronous systems, which means that there is no
upper bound on the time for a message to reach its destination. The model assumes that
processes may have crash failures but no Byzantine failures. The model parameter f denotes
the maximum number of processes that may crash in a run. We do not assume that the
underlying communication system is reliable.

2.2 Lattice Agreement

In the lattice agreement problem, given a join semi-lattice (X, <, L) with < as the partial
order and U as the join operation, each process p; proposes a value z; in X and must decide
on some output y; also in X. An algorithm solves the lattice agreement problem if the
following properties are satisfied:

Downward-Validity: For all correct processes i € [1..n], z; < y;.

Upward-Validity: For all correct processes i € [1..n], y; < U{z1,..., 2, }.

Comparability: For any two correct ¢ € [1..n] and j € [1..n], either y; <y, or y; < y;.

2.3 Generalized Lattice Agreement

In the generalized lattice agreement problem [6], each process may receive a possibly infinite
sequence of values belong to a lattice at any point of time. Let z! denote the ith value
received by process p. The aim is for each process p to learn a sequence of output values y?
which satisfies the following conditions:
Validity: Any learned value yf is a join of some subset of received input values.
Stability: The value learned by any correct p is non-decreasing: j < k —> y? < k.

29:3
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Comparability: Any two values yf and y{ learned by any two correct processes p and
q are comparable.

Liveness: Every value z¥ received by a correct process p is eventually included in some
learned value y; of every correct process ¢: i.e, 2 < yf.

3  Asynchronous Lattice Agreement

In this section, we give an algorithm to solve the lattice agreement problem in asynchronous
systems which only needs O(log f) asynchronous rounds. The proposed algorithm is inspired
by the algorithm for synchronous setting in [17]. The basic idea is to apply a Classifier
procedure, which is associated with a specific threshold value, to divide processes into master
and slave groups and ensure that any process in the master group have values great than or
equal to any process in the slave group. Then, by recursively applying a Classifier procedure
within each subgroup, eventually all processes have comparable values. Equivalently, we can
think of the above recursive procedure as letting all processes traverse through a virtual
binary Classifier tree. Each node of this tree has a Classifier procedure with a specific
threshold value. When traversing through a node in this tree, the processes will invoke the
Classifier procedure at this node. Some processes will be classified as master and go to the
right child, and others will be classified as slave and go to the left child. The threshold value
associated with the Classifier procedure is used to decide which processes should be classified
as master and which should be classified as slave. By carefully setting the threshold value
for each Classifier procedure in the virtual tree, we can make sure all processes eventually
have comparable values.

The main difficulty of the above recursive procedure lies in constructing a Classifier
procedure to divide a group of processes into two subgroups such that processes in one
subgroup have values greater than or equal to processes in the other subgroup. In synchronous
systems, [17] gives a very simple procedure. First, each process sends its value to all processes
within the same group. Then, it takes join of all values received from processes in the same
group. If the join is greater than the threshold value, it is classified as master and updates
its value to be the join. Otherwise, it is classified as slave and keeps its value unchanged. We
can easily see that the value of each slave process must be received by each master process,
since the system is synchronous. Thus, each master process has value greater than or equal
to each slave process. In asynchronous systems, however, it is not straightforward to design
such a Classifier procedure, since we cannot guarantee that the value of a slave process
is received by each master process. Our primary idea for such a Classifier procedure in
asynchronous systems is as follows. In an asynchronous system, at each round, each process
can only wait for n — f. If we can guarantee that (1) the value of a slave process is stored in
at least n — f processes at some point, and (2) each master process reads from at least n — f
processes, then the value of each slave process must be known by each master process. This
claim holds since any two group of n — f processes have at least one process in common, if
we assume f < 5.

The virtual Classifier tree is built based on the knowledge of the height of the input
lattice, which is unknown. Thus, instead of directly agreeing on the input value lattice, we
first agree on a view lattice, which has a known maximum height.

We associate each process p; with a view v;, which is an array composed of n entries.
Each entry of the view corresponds to the input value of each process known by p;. Initially,
vi[i] = z; and Vj # i,v;[j] = L, where z; is the input value of p;. We say L is smaller that
any input value. For any two views v and u, we say v dominates u, if for all 4, v[i] > u[i].
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Consider the lattice formed by the initial views of all processes with the order defined by
the domination relation, i.e, v < w iff © dominates v. We call this lattice the view lattice.
This view lattice has its smallest element (or bottom) equal to [L, ..., L] and the top element
equal to [z, ..., x,]. The height of the view lattice is n (the length of the longest chain). We
say v and u are comparable if either v < u or u < v. The join of any two views is defined
as the component-wise maximum. The height of a view v, denoted as h(v), is defined as
the number of components which are not L, i.e, the number of processes whose values are
contained in this view. Since the ith entry of any view is either the input value of p; or L,
if a view v < u, then view u contains all input values contained in view v. That is, in the
original input lattice, we have U{v[i] : i € [1.n]} < U{u[é] : ¢ € [1..n]} if v < w. Thus, if
all correct processes can output comparable views from the view lattice, they can output
comparable values from the input value lattice by taking join of all values contained in its
output view. Therefore, in our algorithm, instead of directly working on the input value
lattice, we apply the Classifier technique on the view lattice. The Classifier procedure is
shown in Fig. 1. The main algorithm, AsyncLA, is shown in Fig. 2.

3.1 The Classifier Procedure

The Classifier procedure has three input parameters: the input view, the threshold value,
and the round number. Each process keeps a label. Whenever a process invokes the
Classifier procedure, it passes its current view, its label and the current round number as
the parameters. We say any two processes p; and p; are in the same group at a certain
round if they invoke the Classifier procedure with the same threshold value, i.e, they have
the same label. When processes are classified into different subgroups, they update their
labels accordingly (to be explained later). Since processes pass their labels as the threshold
value of the Classifier procedure, we use label or threshold value interchangeably henceforth.
Details of the Classifier procedure for p; at round r are shown as below:

Line 0: p; set its acceptVal, to be empty. This acceptVal, set is used to record all the
< view, label > pairs received from all processes at round r via write or read messages. Note
that this acceptVal,. also includes < view,label > pairs received from processes that are not
in the same group as p;.

Line 1-2: p; sends a write message with its current view v and the threshold value (current
label) k to all processes and waits for n — f write_acks. This step is to ensure that the value
and label of p; is in the acceptVal, set of n — f processes.

Line 3-5: p; sends a read message with its current round number r to all processes and
waits for n — f read__acks. It collects all received views associated with the same label &k in a
set U, i.e, collects all views from processes within the same group. It may seem that lines
3-5 perform the same functionality as lines 1-2 and there is no need to have both. However,
this part is actually the key of the Classifier procedure. The reason will be clear in the
correctness proof section.

Line 6-14: p; performs classification based on the views received from processes in the
same group. Let w be the join of all received views in U. If the height of w is greater than k,
then p; sends a write message with w, k and r to all and waits for n — f write_acks with
round number r. Then in line 10-12, it takes the join of w and all the views contained in the
write__acks from the same group, denoted as w’. It returns (w’, master) as output of the
Classifier procedure in which master indicates its classified into master group in the next
round. Otherwise, it returns its own input view v and slave.

When p; receives a write message for round r; from pj;, it includes the < view,label >
pair contained in the message into its acceptVal,; set and sends a write_ack message
containing the current acceptVal,; back. When p; receives a read message for round r; from
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Py, it sends a read__ack message containing its current acceptVal,; back. Basically, the write
message is used to ensure at least n — f processes know the current view and label of a
process and the read message is used to retrieve the knowledge of at least n — f processes.

Note that when a process which is invoking the Classifier at round r receives a write or
read message with a round number 1’ > r, it buffers this message and delivers it when it
reaches round r’.

Classifier(v, k,r): 7: if h(w) > k /* height of w is greater than
v: input view its label */
k: threshold value 8: Send write(w, k,r) to all
r: round number 9: wait for n — f write__ack(—, —,r)
10: Let U’ be views contained in received
0: acceptVal, = (0 // set of <view, acks with label equals k /* views received in
threshold> pairs. the same group */
11: Let w' :==wU{u:ueU'}
/* write */ 12: return (w’, master)
1: Send write(v, k,r) to all 13: else
2: wait for n — f write_ack(—, —, ) 14: return (v, slave)
/* read */ Upon receiving write(v;, k;,r;) from p;
3: Send read(r) to all acceptVal,; := acceptVal,;, U <wvj, k; >
4: wait for n — f read_ack(—,—,r) Send write__ack(acceptVal,;,r;) to p;
5: Let U be views contained in received acks
with label equals k Upon receiving read(r;) from p;
/* Classification */ Send read__ack(acceptVal,;,r;) to p;
6: Let w:=1{u:ue U}

Figure 1 The Classifier Procedure.

3.2 Algorithm AsyncLA

Now let us look at the main algorithm, AsyncLA. The basic idea of AsyncLA is to let all
processes recursively invoke the Classifier procedure with a carefully set threshold value. Let
y; denote the output value of p;. Let v] denote its view at the beginning of round r. The
algorithm for p; proceeds in asynchronous rounds. The algorithm runs in log f + 1 rounds.

At round 0, all processes exchange their views. The purpose of round 0 is to allow us to
construct the virtual Classifier tree with height equal to log f. In such case, the recursive
invocation of the Classifier procedure terminate in log f rounds. The reason is as follows.
After round 0, the view of each correct process must have height at least n — f in the view
lattice. Since the height of the view lattice is n, the join-closed subset that includes all
current views after round 0 (which is also a lattice) has height at most f. Then we can
construct a the binary Classifier tree with height equals to log f by setting the threshold
value of the root Classifier to be W % in the virtual tree. We say the root
Classifier is at level 1. For any node at level r of the tree with threshold value k, we set the
threshold value of its right child to be k + 27% and the threshold value of its left child to be
k— 27% Thus, we can easily see that the height of the tree is log f. Note that the initial

label of each process is n — é which means all processes are at the root of the tree.

= n —

From round 1 to log f, each process simply traverses the virtual Classifier tree. At round
r, each process is at level r of the tree. For process p;, it invokes the Classifier procedure
with its current view v], current label I; and r as parameters. Based on the output of the
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Classifier procedure, p; adjust its label to be the threshold value of the Classifier procedure
it will invoke at next round. If it is classified as master, then it increases its label by 27"%7
i.e, it goes to the right subtree of the virtual Classifier tree. Otherwise, it reduces its label
by T%, i.e, it goes to the left subtree of the virtual Classifier tree. At the end of round
log f, p; outputs the join of all values contained in its current view as its decision value.

AsyncLA(x;) for p;: /* Round 1 to log f */
x;: input value vl i=U{u|ueU}
y;: output value for r :=1 to log f
li:=n— % // label of p; (vi*t class) := Classifier(vl,l;,r)
v} : the view of p; at the beginning of round if class = master
r, an array of size n. lLi=1+ 2%
Initially, v0[i] = z; AV0[j] = L,Vj £ else
li = ll — 2,«%
/* Round 0 */ end for
Send value(®?, 0) to all Let V; := 08 /!

wait for n — f messages of form value(-, 0) y; = L{V;[j] : j € [1.n]}
Let U denote the set of all received values

Figure 2 Algorithm AsyncLA.

3.3 Proof of Correctness

Let us prove the correctness of AsyncLA. Let w] be the value of w at line 6 of the Classifier
procedure at round r. Let G be a group of processes at round r. Recall that a group G at
round r is a set of processes which have the same label at round r. The label of a group
is the label of the processes in this group. Let M(G) and S(G) be the group of processes
which are classified as master and slave, respectively, when they run the Classifier procedure
in group G. Recall that h(v) denote the height of view v in the view lattice. The following
lemma presents the key properties of the Classifier procedure, with detailed proof given in
the full paper [16].

» Lemma 1. Let G be a group at round r with label k. Let L and R be two nonnegative integers
such that L <k < R. If L < h(v}) < R for every process i € G, and h(U{v] :i € G}) <R,
then
(p1) for each processi € M(G), k < h(vi*') <R
(p2) for each process i € S(G), L < h(v]™') <k
(p3) AU{v Tt ie M(G)}) <R
(p4) h(U{v T i€ S(G)}) <k, and
(p5) for each process i € M(G), v/ ™ > U{v] ™! i € S(G)}

Once we have the above lemma, the correctness proof for AsyncL A follows in a similar
fashion as the synchronous algorithm in [17]. We only give the primary lemmas and put the
detailed proof in the full paper [16].

» Lemma 2. Let G be a group of processes at round r with label k. Then
(1) for each processi € G, k — ZLT <h(@l) <k+ 2%
(2) h(U{vl i€ GY) <k+ &

» Lemma 3. Let i and j be two processes that are within the same group G at the end of
round r = log f. Then vl !

i

1
and v;+ are equal.

29:7
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Proof. (Sketch of Proof) Intuitively, after round 0, the join-closed subset that includes all
current views after round 0 (which is also a lattice) has height at most f. We know that
the height interval of values in a group are shrinking by a factor of 2, from Lemma 2. Thus,
after log f rounds, any two processes in a same group must have a same value. |

» Lemma 4. Let process i decides on y;. Let G be a group at round r such that i € S(G),
then y; < U{vjt 1i € S(@)}.

Proof. Immediate from (p2) and (p4) of Lemma 1. <

Since the value of a process is non-decreasing at each round, from (p5) of Lemma 1 and
Lemma 4, we have that once two processes are classified into two subgroups, their values
must be comparable. We immediately have the following lemma.

» Lemma 5. Let i and j be any two processes in two different groups G; and G; at the end
of round log f, then y; is comparable with y;.

» Theorem 6. Algorithm AsyncLA solves the lattice agreement problem in O(log f) round-
trips when at least a majority of processes are correct.

Proof. Down-Validity holds since the value held by each process is non-decreasing. Upward-
Validity follows because each learned value must be the join of a subset of all initial values
which is at most U{x1, ..., z,}. For Comparability, from Lemma 3, we know that any two
processes which are in the same group at the end of AsyncLA, they must have equals values.
For any two processes which are in two different groups, from Lemma 5 we know they must
have comparable values. |

3.4 Complexity Analysis

Each invocation of the Classifier procedure takes at most three round-trips. Therefore, log f
invocation of Classfier results in at most 3*log f round-trips. Thus, the total time complexity
is 3 x log f + 1 round-trips. For message complexity, each process sends out at most 3 write
and read messages and at most 3 x n write_ack and read _ack messages. Therefore, the
message complexity for each process is O(n * log f).

4 Improved Generalized Lattice Agreement Protocol for RSM

In this part, we give optimizations for the generalized lattice agreement protocol proposed
n [17] (referred as GLA) to implement a linearizable RSM. Inside GLA, a f + 1 round-trips
asynchronous lattice agreement protocol proposed in the same paper is embedded. We do not
change their f + 1 round-trips asynchronous protocol to our O(log f) protocol for reasons as
follows. First, our primary goal in this section is not to give a new protocol for the generalized
lattice agreement problem, yet to make it practical to implement. The optimizations we make
in this section do not involve the lattice agreement protocol part. Keeping the simple f + 1
round-trips algorithm would make things easier. Second, in practice, the f + 1 round-trips
algorithm is favorable compared to the O(log f) algorithm due to its smaller constant.

The optimized protocol, GLAA, is shown in Fig. 3 with the two main changes marked
using A. Note that although we only have two primary changes compared to GLA, we claim
those changes are the key for its applicability in building a linearizable RSM. The basic idea
of GLAA is to invoke a separate lattice agreement instance for a set of concurrent commands.
To ensure Comparability and Stability of generalized lattice agreement, we associate each
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lattice agreement instance with a distinct sequence number and ensure that lattice agreement
instance with higher sequence number only starts running after the instance with smaller
sequence number has completed. In this way, we guarantee that any value learned by higher
sequence lattice agreement instance is greater than or equal to the value learned by lower
sequence lattice agreement instance. Along with the Comparability property of each lattice
agreement instance, we can obtain Comparability and Stability for the generalized lattice
agreement problem. Details are given in correctness proof section.

In GLAA, the sequence number assigned for lattice agreement instances starts from 0
and increase by 1 when a new lattice agreement instance is created. Each process keeps
an integer s, which is the next available sequence number. Since different processes might
be executing lattice agreement instance with different sequence number, mazSeq is used to
record the largest sequence number known by a process. buffVal stores all the commands
received which need to be learned. LV denotes the mapping from a sequence number to
its corresponding learned command set. acceptVal stores all commands received from all
processes via proposal messages.

GLAA for p;: Procedure Agree():

s := 0 // sequence number guard: (active = false) A (buffVal # L
mazSeq := -1 // largest sequence number  V maxSeq > s)

seen active 1= true

buffVal := 1 // commands buffer
LV := 1 // map from seq to learned com-

acceptVal := buffVal L acceptVal
buffVal := L

mands set /* Lattice Agreement with sequence
acceptVal :== L // current accepted com-  number s */
mands set for r:==1to f+1

val := acceptVal
Send prop(wval, 7, s) to all

active := false //proposing status

Procedure ReceiveValue(v):
buffVal := buffVal U v

on receiving prop(vj,r,s’) from p;:

if & <s
buffVal := buffVal U v; Ay
Send ACK (“decide”, LV[s'], r,s)
return

mazSeq := max{s’, maxSeq}

wait until s’ = s

if acceptVal C v,
Send ACK (“accept”, —,r,s")
acceptVal := v

else
Send ACK (“reject”,acceptVal, r,s)

wait for n — f ACK(—,—,r,s)
Let V be values in reject ACKs
Let D be values in decide ACKs
Let tal be the number of accept
ACKs
if |[D|>0
val :=LH{d | d € D} ; break
else if tal > 5
break
else
acceptVal =
U{v|veV}
end
LV|[s] := val
acceptVal := acceptVal - LV[s — 1] Ay
si=s+1
active := false

acceptVal

Figure 3 Algorithm GLAA.

When a process receives a command v from a client, it invokes ReceiveValue(v) to include

v into its buffer (buffVal).
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Each process invokes the Agree() procedure to start a new lattice agreement instance.
This procedure is automatically executed when the guard condition is satisfied. Inside the
Agree() procedure, a process first updates its acceptVal to be the join of current acceptVal
and buffVal. Then, it starts a lattice agreement instance with the next available sequence
number. The lattice agreement instance runs the f + 1 round-trips protocol in [17]. At each
round of the lattice agreement, a process sends its current acceptVal to all and waits for
n — f ACKs. If it receives any decide ACK, it decides on the join of all decide values. If it
receives a majority of accept ACKs, it decides on its current value. Otherwise, it updates its
acceptVal to be the join of all received values and starts next round. When a process receives
a proposal from some other process, if the proposal is associated with a smaller sequence
number, then it sends decide ACKs back with its decided value for that sequence number
and includes the received value into its own buffer set. Otherwise, it waits until its current
sequence number to reach the sequence number associated with the proposal. Then, it checks
whether the proposed value contains its current acceptVal. If true, the process sends back a
accept ACK. Otherwise, it sends back a reject ACK along with its current acceptVal. When a
process completes lattice agreement for sequence number s, it stores learned values in LV/s/
and removes all learned values for sequence number s — 1.

Now we explain the our proposed improvements in detail.

4.1 Truncate the Accept Command Set

Let us first look at the challenges of directly applying the GLA protocol in [17] or the
one in [6] to implement a linearizable RSM. In a RSM, each input value is a command
from a client. Thus, the input lattice is a finite boolean lattice formed by the set of all
possible commands. The order in this lattice is defined by the set inclusion, and the join is
defined as the union of two sets. This boolean input lattice poses a challenge for both the
algorithms in [6] and [17]. In these algorithms, for each process there is an accept command
set (acceptVal), which stores the join of whatever value the process has accepted. Now since
the join is defined as union in the RSM setting, this set keeps increasing. For example, in the
original algorithm given in [17], it does not include the line marked as A;. Suppose, we have
three processes p1, p2 and ps which handles commands from clients. Suppose p1, p2 and
ps first receive commands {a}, {b} and {c}, respectively. They start the lattice agreement
instance with the sequence number 0 and learn {a}, {a,b} and {a,b, ¢} respectively for the
sequence number 0. After that, p;, ps and p3 receive {d}, {e}, and {f} as input, respectively.
Now, they start a lattice agreement instance with the sequence number 1. In order to ensure
Comparability and Stability of GLA, the accept command set for sequence number 1 have
to include the largest learned value of sequence 0, which is {a, b, ¢}, although each process
only proposes a single command. Therefore, the accept command set keeps increasing. This
problem makes applying lattice agreement to implement a linearizable RSM impractical.
To tackle the above problem, we need to truncate the accept command set. A naive
way is to remove all learned commands in the accept command set when proposing for the
next available sequence number. This way does not work. Suppose we have two processes:
p1, p2 and ps. They propose {a}, {b} and {c}, respectively for sequence number 0. After
execution of lattice agreement for sequence number 0, suppose p1, p2 and p3 both have
learned value set and accept command set to be {a}, {a,b,c}, and {a,b, c}, respectively. It
is easy to verify this case is possible for an execution of lattice agreement. When completing
sequence number 0, all processes remove learned value set for sequence number 0 from their
accept command set. Thus, the accept command set of all the three processes becomes to
be empty. Now, suppose p1, p2 and ps start to propose for sequence number 1 with new
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commands {d}, {e} and {f}. Since the accept command sets of ps and ps do not contain
value {b} and {c}, p; will never be able to learn {b} and {c}. Thus, learned command set of
p1 for sequence 1 and the learned command set of ps and p3 for sequence 0 are incomparable.
Instead of removing all learned commands from the accept command set, we propose to
remove all learned commands for the sequence numbers smaller than the largest learned
sequence number from the accepted command set. In order to achieve this, the line marked
by A; in the pseudocode is added, compared to the original algorithm in [17]. In this line,
after a process has learned a value set for sequence number s, it removes the learned value
set corresponding to sequence number s — 1 from its accept command set.

4.2 Remove Forwarding

In both the algorithms of [6] and [17], a process has to forward all commands it receives
to all other processes to ensure liveness. This forwarding results in load that is multiplied
many fold, since many processes may propose the same request. In [17], this forwarding is to
ensure that the commands proposed by slow processes can also be learned. However, for the
fast processes, there is no need to forward their requests to others because they can learn
requests quickly. Therefore, instead of forwarding every request to all servers, we require
that when a process receives some proposal with a smaller sequence number than its current
sequence number, it sends back a decide message and also includes the received proposal
value into its buffer set. These values will be proposed by the server in its next sequence
number. In this way, only when a process is slow, its value will be proposed by the fast
processes. This change is shown as addition of the line marked by As.

4.3 Proof of Correctness

Let us prove the correctness of GLAA. Although we only have two primary changes compared
to the algorithm in [17], the correctness proof is quite different due to the modification
marked by A;. Let LV,[s] denote the learned value of process p for sequence number s. Let
LearnedVal? denote all the learned values of process p after completing lattice agreement
for sequence number s. Thus, LearnedVal? = LI{LV,[t] : t € [0...s]}. Due to the page limit,
we put the proof for Lemma 7-9 in the full paper [16].

» Lemma 7. For any sequence number s, LV,[s] is comparable with LV,[s] for any two

processes p and q.

» Lemma 8. For any sequence number s, LearnedVal, C Learned‘/al;Jrl for any two
correct processes p and q.

» Lemma 9. For any sequence number s and s, LearnedVal; and LearnedVal;;/ are
comparable for any two correct processes p and q.

» Theorem 10. Algorithm GLAA solves the generalized lattice agreement problem when a
majority of processes is correct.

Proof. Validity holds since any learned value is the join of a subset of values received.

Stability follows from Lemma 8. Comparability follows from Lemma 9. Liveness follows from
the termination of lattice agreement. <
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5 LaRSM vs Paxos

In this section, we compare LaRSM and Paxos from both theoretical and engineering
perspective. Table 1 shows the theoretical perspective. The main difference between Paxos
and LaRSM lies in their termination guarantee. In the worst case, Paxos may not terminate
(0o message delays), though very unlikely. Whereas, LaRSM always guarantee termination
in at most O(log f) message delays. This difference is because Paxos is consensus based and
LaRSM is lattice agreement based. In the best case, both Paxos and LaRSM need three
message delays. One limitation of LaRSM is that it is only applicable to UQ state machines.

For engineering perspective, Paxos is typically deployed with only one single proposer
(leader) due to its non-termination. Only the leader can handle handle requests from clients.
Thus, in a typical deployment the leader becomes the bottleneck, i.e, the throughput of
the system is limited by the leader’s resources. Besides, the unbalanced communication
pattern limits the utilization of bandwidth available in all of the network links connecting
the servers. In LaRSM, however, there could be multiple proposers since termination is
guaranteed, which can simultaneously handle requests from clients and may yield better
throughput. In the failure case, a new leader needs to be elected in Paxos and there could be
multiple leaders in the system. During this time, Paxos generally takes longer to terminate
because of conflicting proposals. However, a failure of a replica in LaRSM has limited impact
on the whole system. This is because other replicas can still handle requests from clients as
long as less than a majority of replicas has failed.

Table 1 Paxos vs LaRSM.

Properties Paxos LaRSM
Consistency Linearizability Linearizability
Underlying Protocol Consensus Lattice Agreement
Best Case #Message Delays 3 3
Worse Case #Message Delays 00 O(log f)
Applicable to All Yes Only UQ
Sate Machines State Machines

6 Evaluation

In this section, we evaluate the performance of LaRSM and compare with SPaxos. To
implement LaRSM, we also propose some practical optimizations for the procedure proposed
in [6] to implement a RSM by combining CRDT and a generalized lattice agreement protocol,
which can be found in the full paper [16].

Although the lattice agreement protocol proposed in this paper has round complexity of
O(log f), it has a large constant, which is only advantageous when the number of replicas is
large. In practical cases, the number of replicas is usually small, often 3 to 5 nodes. Thus, we
adopt the lattice agreement protocol from [17] which runs in f + 1 asynchronous round-trips
in our implementation. In order to evaluate LaRSM, we implemented a simple RSM which
stores a Java hash map data structure. We implement the hash map date structure to be a
CRDT by assigning a timestamp to each update operation and maintain the last writer wins
semantics. We measure the performance of SPaxos and our implementation in the following
three perspectives: performance in the normal case (no crash failure), performance in failure
case, and performance under different work loads.
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All experiments are performed on Amazon’s EC2 micro instances, which have variable
ECUs (EC2 Compute Unit), 1 vCPUs, 1 GBytes memory, and low to moderate network
performance. All servers run Ubuntu Server 16.04 LTS (HVM) and the socket buffer sizes
are equal to 16 MBytes. All experiments are performed in a LAN environment with all
processes distributed among the following three availability zones: US-West-2a, US-West-2b
and US-West-2c.

The keys and values of the map are string type. We limit the range of keys to be within
0 to 1000. Two operations are supported: update and get. The update operation changes
the value of a specific key. The get operation returns the value for a specific key. A client
execute one request per time and starts executing next request when it completes the current
one. The request size is 20 bytes. For each request, the server returns a response to indicates
its completion. In order to compare with SPaxos, we set its crash model to be CrashStop. In
this model, SPaxos would not write records into stable storage. In SPaxos, batching and
pipelining are implemented to increase the performance of Paxos. There are some parameters
related to those two modules: the batch size, batch waiting timeout and the window size. The
batch size controls how many requests the batcher needs to wait before starting proposing
for a batch. The batch waiting timeout controls the maximum time the batch can wait for
a batch. The window size is the maximum number of parallel proposals ongoing. We set
the batch size to be 64KB, which is the largest message size in a typical system. We set the
batch timeout according to the number of clients from 0 to 10 at most. The window size
is set to 2 because we found that increasing the window size further does not improve the
performance in our evaluation.

6.1 Performance in Normal Case

In this experiment, we build a RSM system with three instances. We measure the throughput
of the system and latency of operations while increasing the number of clients. The load from
the clients are composed of 50% writes and 50% reads. The left part of Fig. 4 shows the
throughput of SPaxos and LaRSM. The throughput is measured by the number of requests
handled per second by the system. The latency is the average time in milliseconds taken
by the clients to complete execution of a request. We can see from Fig. 4, as we increase
the number of clients, the throughput of both SPaxos and LaRSM increases until there are
around 1000 clients. At that point, the system reaches its maximum handling capability. If
we further increase the clients number, the throughput of both LaRSM and SPaxos does not
change in a certain range and begins to decrease. This is because both systems do not limit
the number of connections from the client side. A large number of clients connection results
in large burden on IO, decreasing the system performance. Comparing SPaxos and LaRSM,
we can see that LaRSM always has better throughput than SPaxos.

The right part of Fig. 4 shows the latency of LaRSM and SPaxos. In both LaRSM and
SPaxos, read and write perform the same procedure, thus their latency should be similar. So,
in our evaluation, we just use operation latency. From Fig. 4, we find that operation latency
of LaRSM keeps increasing. As we increase the number of clients, the latency of SPaxos
decreases first up to some point and then begins to increase. This performance is because
the latency is the average response time of all clients and SPaxos has a batching module
which batches multiple requests from different clients to propose in a single proposal. Thus,
initially when there are very few clients, they can only propose a small number of requests in
a single proposal, which makes the latency relatively higher. While the number of clients
increases, more requests can be proposed in one single batch, thus the average latency for
one client decreases. If the number of clients increases further, the handling capability limit
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Figure 4 Throughput and latency of LaRSM and SPaxos with increasing number of clients.

of the system increases the operation latency. Comparing SPaxos and LaRSM, we find that
the latency of LaRSM is always around 5ms smaller.
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Figure 5 Throughput in Case of Failure. Figure 6 Latency in Case of Failure.

6.2 Performance in Failure Case

In this section, we evaluate the performance of both LaRSM and SPaxos in the case of failure.
In this experiment, the RSM system is composed of five replicas. There are 100 clients that
keep issuing requests to the system. In LaRSM, since all replicas perform the same role
and can handle requests from the clients concurrently. Thus, for loading balancing, each
client randomly selects a replica to connect. Each client has a timeout, unlike SPaxos, this
timeout is typically small. Timeout on an operation does not necessarily mean failure of
the connected replica. It might also be due to an overload of the replica. In this case, the
client randomly chooses another replica to connect. However, in SPaxos, the timeout set for
a client is usually used to suspect the leader. That is, when an operation times out, most
likely the leader has failed. Thus, the timeout in SPaxos is typically large.

We run the simulation for 40 seconds. The first 10 seconds is for the system to warm up,
so we do not record the throughput and latency data. A crash failure is triggered at 25th
second after the start of the system. For LaRSM, we randomly shut down one replica since
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all replicas are performing the same role. For SPaxos, we shut down the leader, since crash of
a follower does not have much impact on the system. Figure 5 shows the throughput of both
LaRSM and SPaxos. Figure 6 shows the latency change. From Fig. 5 and Fig. 6, for LaRSM
we can see that when the failure occurs, the throughput drops sharply from around 20K
requests/sec to around 15K requests/sec, but not to 0. However, the throughput of SPaxos
drops to 0 when leader fails. The latency of LaRSM only increases slightly, whereas the
latency of SPaxos goes to infinity (Note that in the figure it is shown as around 500ms). This
is because when leader fails, SPaxos stops ordering requests, thus no requests are handled by
the system. For LaRSM, the clients which are connected to the failed replica, timeout on
their current requests and then randomly connect to another replica. As discussed before,

this timeout is usually much smaller than the timeout for suspecting a failure in SPaxos.

Thus, the latency of a client in LaRSM only increases by a small amount. After the failure,
the throughput of LaRSM remains around 16K requests/sec, which is because now there
is one less replica in the system and the handling capability of the system decreases. For
SPaxos, after a new leader is selected, the throughput increases to be a level slightly smaller
than the throughput before the failure and the latency also decreases to be slightly higher
than the latency before the failure. We also find that even though the throughput of LaRSM
drops when a failure occurs, it still has better throughput than SPaxos, which indicates the
better performance of LaRSM.
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Figure 7 Throughput and Latency Under Different Reads Ratio.

6.3 Performance under Different Loads

In this part, we evaluate the performance of LaRSM on different types of work loads. This

evaluation is done in a system of three replicas with 500 clients that keep issuing requests.
We measure the throughput and latency as we increase the ratio of reads in a work load.
The left part and right part of Fig. 7 give the throughput and latency change, respectively.

It is shown in Fig. 7 that as the ratio of reads increases in a work load, the throughput of
the system increases and the operation latency decreases. This confirms our optimization
for the procedure to implement a linearizable RSM. As the reads ratio increases, the writes
ratio decreases. Note that in a lattice agreement instance the input lattice is formed only
by all the writes. When the number of writes is small, the proposal command set would
be small and the message size would be small as well. Thus, the system can complete a
lattice agreement instance faster. This shows that the performance LaRSM is even better for
settings with fewer writes.
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7

Conclusion

In this paper, we first give an algorithm to solve the lattice agreement problem in O(log f)
rounds asynchronous rounds, which is an exponential improvement compared to previous
O(f) upper bound. We also give some optimizations for the GLA protocols proposed in
literature. Evaluation results show that using lattice agreement to build a linearizable RSM
has better performance than conventional consensus based RSM technique. Specifically, our

implementation yields around 1.3x times throughput than SPaxos and incurs smaller latency

in normal case.
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