
Linearizable Replicated State Machines With

Lattice Agreement

Xiong Zheng
Electrical and Computer Engineering Department, University of Texas at Austin, USA

zhengxiongtym@utexas.edu

Vijay K. Garg
Electrical and Computer Engineering Department, University of Texas at Austin, USA

garg@ece.utexas.edu

John Kaippallimalil
Wireless Access Laboratories, Huawei, USA

John.Kaippallimalil@huawei.com

Abstract

This paper studies the lattice agreement problem in asynchronous systems and explores its application

to building a linearizable replicated state machine (RSM). First, we propose an algorithm to solve the

lattice agreement problem in O(log f) asynchronous rounds, where f is the number of crash failures

that the system can tolerate. This is an exponential improvement over the previous best upper

bound of O(f). Second, Faleiro et al have shown in [Faleiro et al. PODC, 2012] that combination of

conflict-free data types and lattice agreement protocols can be applied to implement a linearizable

RSM. They give a Paxos style lattice agreement protocol, which can be adapted to implement a

linearizable RSM and guarantee that a command by a client can be learned in at most O(n) message

delays, where n is the number of proposers. Later, Xiong et al in [Xiong et al. DISC, 2018] gave a

lattice agreement protocol which improves the O(n) message delay guarantee to O(f). However,

neither of the protocols is practical for building a linearizable RSM. Thus, in the second part of

the paper, we first give an improved protocol based on the one proposed by Xiong et al. Then, we

implement a simple linearizable RSM using our improved protocol and compare our implementation

with an open source Java implementation of Paxos. Results show that better performance can be

obtained by using lattice agreement based protocols to implement a linearizable RSM compared to

traditional consensus based protocols.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Lattice Agreement, Generalized Lattice Agreement, Replicated State Ma-

chine, Consensus

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.29

Related Version https://arxiv.org/abs/1810.05871

Funding This work was partially supported by NSF CSR-1563544,CNS-1812349, WNCG Agreement,

and Cullen Trust Professorship.

1 Introduction

Lattice agreement, introduced in [2], to solve the atomic snapshot problem [1] in shared

memory, is also an important decision problem in message passing systems. In this problem,

n processes start with input values from a lattice and need to decide values which are

comparable to each other in spite of f process failures, where n is the number of processes

and f is the maximum number of failures in the system.

There are two primary applications of lattice agreement. First, Attiya et al [2] give a log n

rounds algorithm to solve the lattice agreement problem in synchronous message systems

and use it as a building block to solve the atomic snapshot problem. Second, Faleiro et al [6]

© Xiong Zheng, Vijay K. Garg, and John Kaippallimalil;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 29; pp. 29:1–29:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

29:2 Linearizable Replicated State Machines With Lattice Agreement

propose the problem of generalized lattice agreement (GLA), which is a generalization of

lattice agreement problem for a sequence of inputs, and demonstrate that the combination

of conflict-free data types (CRDT) [14,15] and generalized lattice agreement protocols can

be applied to implement a special class of RSM and provide linearizability [8]. We call this

special class of state machines as Update-Query (UQ) state machines. The operations of

UQ state machines can be classified into two kinds: updates (operations that modify the

state) and queries or reads (operations that only return values and do not modify the state).

An operation that both modifies the state and returns a value is not supported. In this

paper, when we talk about linearizable RSMs, we mean UQ state machines. As shown in [6],

to implement a linearizable RSM, we can first design the underlying data structure to be

CRDT. This makes all update operations commute. Then, the generalized lattice agreement

protocol is invoked for each operation to guarantee linearizability. In this paper, we call a

linearizable RSM built by using the combination of CRDT and a GLA protocol as LaRSM .

RSM [13] is a popular technique for fault tolerance in a distributed system. Traditional

RSMs typically enforce strong consistency among replicas by using a consensus based protocol

to order all the requests from the clients. In this approach, each replica executes all the

requests in an identical order to ensure that all replicas are at the same state at any given time.

The most popular consensus based protocol for building a RSM is Paxos [9, 11]. In Paxos,

processes are divided into three different roles: proposer, acceptor and learner. Proposers

are responsible for proposing requests from clients to acceptors. Acceptors decide the order

of a request and guarantee all learners learn a identical order of requests. When there are

multiple proposers in the system, termination is not guaranteed in Paxos. Since the initial

proposal of Paxos, many variants have been proposed. FastPaxos [10] reduces the typical

three message delays in Paxos to two message delays by allowing clients to directly send

commands to acceptors. MultiPaxos [4] is the typical deployment of Paxos in the industrial

setting. It assumes that usually there is a stable leader which acts as a proposer, so there

is no need for the first phase in the basic Paxos protocol. CheapPaxos [12] extends basic

Paxos to reduce the requirement in the number of processors. Even though in the Paxos

protocol, there could be multiple proposers, usually only one leader (proposer) is used in

practice due to its non-termination problem when there are multiple proposers. The system

performance is limited by the resources of the leader. Also, the unbalanced communication

pattern limits the utilization of bandwidth available in all of the network links connecting

the servers. SPaxos [3] is a Paxos variant which tries to offload the leader by disseminating

clients to all replicas. However, the leader is still the only process which can order requests.

Since lattice agreement can be applied to implement a linearizable RSM, if we can solve

lattice agreement efficiently, we may not need consensus in some cases. This is promising,

since lattice agreement has been shown to be a weaker decision problem than consensus in

theory. In synchronous systems, consensus cannot be solved in fewer than f + 1 rounds [5],

but lattice agreement can be solved in log f + 1 rounds [17]. In asynchronous systems,

consensus cannot be solved even with one failure [7], whereas lattice agreement can be solved

if a majority of processes is correct [6, 17].

The lattice agreement problem in asynchronous message systems is first studied by Faleiro

et al in [6]. They present a Paxos style protocol when a majority of processes are correct.

Their algorithm needs O(n) asynchronous round-trips in the worst case. They also propose a

protocol for generalized lattice agreement, adapted from their protocol for lattice agreement,

which requires O(n) message delays for a value to be learned. Later, a protocol which runs in

O(f) asynchronous round-trips was proposed by Xiong et al in [17]. They also give a protocol

for generalized lattice agreement which improves the O(n) message delays complexity to

O(f). In this work, we improve the upper bound for lattice agreement in asynchronous

systems to O(log f), which is an exponential improvement.

X. Zheng, V. K. Garg, and J. Kaippallimalil 29:3

Although [6] has demonstrated that generalized lattice agreement protocol can be applied

to implement a linearizable RSM, both the protocols proposed in [6] and [17] are impractical.

This is due to the following reason. In both protocols, each process has an accept command

which keeps track of all received proposal values. When the protocols are applied to implement

a linearizable RSM, this accept command is a set which records all previously proposed

commands. When a process rejects a proposal, it has to send back this whole set. Even worse,

this set keeps increasing as more commands arrive from clients. In this work, we propose

an improved algorithm for the generalized lattice agreement problem, which is specifically

designed to make it practical to build a linearizable RSM.

In summary, this paper makes the following contributions:

We present an algorithm, AsyncLA, to solve the lattice agreement in asynchronous

system in O(log f) rounds, where f is the maximum number of crash failures in the

system. This bound is an exponential improvement to the previously known best upper

bound of O(f) by [17].

We give an improved algorithm for the generalized lattice agreement protocol based on

the one proposed in [17] to make it practical to implement a linearizable RSM.

We implement a simple linearizable RSM in Java by combining a CRDT map data

structure and our improved generalized lattice agreement algorithm. We demonstrate its

performance by comparing with SPaxos. Our experiments show that LaRSM achieves

around 1.3x times throughput than SPaxos and a lower operation latency in normal case.

2 System Model and Problem Definitions

2.1 System Model

We consider a distributed message passing system with n processes, p1, . . . , pn, in a completely

connected topology. We only consider asynchronous systems, which means that there is no

upper bound on the time for a message to reach its destination. The model assumes that

processes may have crash failures but no Byzantine failures. The model parameter f denotes

the maximum number of processes that may crash in a run. We do not assume that the

underlying communication system is reliable.

2.2 Lattice Agreement

In the lattice agreement problem, given a join semi-lattice (X, ≤, t) with ≤ as the partial

order and t as the join operation, each process pi proposes a value xi in X and must decide

on some output yi also in X. An algorithm solves the lattice agreement problem if the

following properties are satisfied:

Downward-Validity: For all correct processes i ∈ [1..n], xi ≤ yi.

Upward-Validity: For all correct processes i ∈ [1..n], yi ≤ t{x1, ..., xn}.

Comparability: For any two correct i ∈ [1..n] and j ∈ [1..n], either yi ≤ yj or yj ≤ yi.

2.3 Generalized Lattice Agreement

In the generalized lattice agreement problem [6], each process may receive a possibly infinite

sequence of values belong to a lattice at any point of time. Let x
p
i denote the ith value

received by process p. The aim is for each process p to learn a sequence of output values y
p
j

which satisfies the following conditions:

Validity: Any learned value y
p
j is a join of some subset of received input values.

Stability: The value learned by any correct p is non-decreasing: j < k =⇒ y
p
j ≤ y

p
k.

OPODIS 2019

29:4 Linearizable Replicated State Machines With Lattice Agreement

Comparability: Any two values y
p
j and y

q
k learned by any two correct processes p and

q are comparable.

Liveness: Every value x
p
i received by a correct process p is eventually included in some

learned value y
q
k of every correct process q: i.e, x

p
i ≤ y

q
k.

3 Asynchronous Lattice Agreement

In this section, we give an algorithm to solve the lattice agreement problem in asynchronous

systems which only needs O(log f) asynchronous rounds. The proposed algorithm is inspired

by the algorithm for synchronous setting in [17]. The basic idea is to apply a Classifier

procedure, which is associated with a specific threshold value, to divide processes into master

and slave groups and ensure that any process in the master group have values great than or

equal to any process in the slave group. Then, by recursively applying a Classifier procedure

within each subgroup, eventually all processes have comparable values. Equivalently, we can

think of the above recursive procedure as letting all processes traverse through a virtual

binary Classifier tree. Each node of this tree has a Classifier procedure with a specific

threshold value. When traversing through a node in this tree, the processes will invoke the

Classifier procedure at this node. Some processes will be classified as master and go to the

right child, and others will be classified as slave and go to the left child. The threshold value

associated with the Classifier procedure is used to decide which processes should be classified

as master and which should be classified as slave. By carefully setting the threshold value

for each Classifier procedure in the virtual tree, we can make sure all processes eventually

have comparable values.

The main difficulty of the above recursive procedure lies in constructing a Classifier

procedure to divide a group of processes into two subgroups such that processes in one

subgroup have values greater than or equal to processes in the other subgroup. In synchronous

systems, [17] gives a very simple procedure. First, each process sends its value to all processes

within the same group. Then, it takes join of all values received from processes in the same

group. If the join is greater than the threshold value, it is classified as master and updates

its value to be the join. Otherwise, it is classified as slave and keeps its value unchanged. We

can easily see that the value of each slave process must be received by each master process,

since the system is synchronous. Thus, each master process has value greater than or equal

to each slave process. In asynchronous systems, however, it is not straightforward to design

such a Classifier procedure, since we cannot guarantee that the value of a slave process

is received by each master process. Our primary idea for such a Classifier procedure in

asynchronous systems is as follows. In an asynchronous system, at each round, each process

can only wait for n − f . If we can guarantee that (1) the value of a slave process is stored in

at least n − f processes at some point, and (2) each master process reads from at least n − f

processes, then the value of each slave process must be known by each master process. This

claim holds since any two group of n − f processes have at least one process in common, if

we assume f < n
2 .

The virtual Classifier tree is built based on the knowledge of the height of the input

lattice, which is unknown. Thus, instead of directly agreeing on the input value lattice, we

first agree on a view lattice, which has a known maximum height.

We associate each process pi with a view vi, which is an array composed of n entries.

Each entry of the view corresponds to the input value of each process known by pi. Initially,

vi[i] = xi and ∀j 6= i, vi[j] = ⊥, where xi is the input value of pi. We say ⊥ is smaller that

any input value. For any two views v and u, we say v dominates u, if for all i, v[i] ≥ u[i].

X. Zheng, V. K. Garg, and J. Kaippallimalil 29:5

Consider the lattice formed by the initial views of all processes with the order defined by

the domination relation, i.e, v ≤ u iff u dominates v. We call this lattice the view lattice.

This view lattice has its smallest element (or bottom) equal to [⊥, ..., ⊥] and the top element

equal to [x1, ..., xn]. The height of the view lattice is n (the length of the longest chain). We

say v and u are comparable if either v ≤ u or u ≤ v. The join of any two views is defined

as the component-wise maximum. The height of a view v, denoted as h(v), is defined as

the number of components which are not ⊥, i.e, the number of processes whose values are

contained in this view. Since the ith entry of any view is either the input value of pi or ⊥,

if a view v ≤ u, then view u contains all input values contained in view v. That is, in the

original input lattice, we have t{v[i] : i ∈ [1..n]} ≤ t{u[i] : i ∈ [1..n]} if v ≤ u. Thus, if

all correct processes can output comparable views from the view lattice, they can output

comparable values from the input value lattice by taking join of all values contained in its

output view. Therefore, in our algorithm, instead of directly working on the input value

lattice, we apply the Classifier technique on the view lattice. The Classifier procedure is

shown in Fig. 1. The main algorithm, AsyncLA, is shown in Fig. 2.

3.1 The Classifier Procedure

The Classifier procedure has three input parameters: the input view, the threshold value,

and the round number. Each process keeps a label. Whenever a process invokes the

Classifier procedure, it passes its current view, its label and the current round number as

the parameters. We say any two processes pi and pj are in the same group at a certain

round if they invoke the Classifier procedure with the same threshold value, i.e, they have

the same label. When processes are classified into different subgroups, they update their

labels accordingly (to be explained later). Since processes pass their labels as the threshold

value of the Classifier procedure, we use label or threshold value interchangeably henceforth.

Details of the Classifier procedure for pi at round r are shown as below:

Line 0: pi set its acceptV alr to be empty. This acceptV alr set is used to record all the

< view, label > pairs received from all processes at round r via write or read messages. Note

that this acceptV alr also includes < view, label > pairs received from processes that are not

in the same group as pi.

Line 1-2: pi sends a write message with its current view v and the threshold value (current

label) k to all processes and waits for n − f write_acks. This step is to ensure that the value

and label of pi is in the acceptV alr set of n − f processes.

Line 3-5: pi sends a read message with its current round number r to all processes and

waits for n − f read_acks. It collects all received views associated with the same label k in a

set U , i.e, collects all views from processes within the same group. It may seem that lines

3-5 perform the same functionality as lines 1-2 and there is no need to have both. However,

this part is actually the key of the Classifier procedure. The reason will be clear in the

correctness proof section.

Line 6-14: pi performs classification based on the views received from processes in the

same group. Let w be the join of all received views in U . If the height of w is greater than k,

then pi sends a write message with w, k and r to all and waits for n − f write_acks with

round number r. Then in line 10-12, it takes the join of w and all the views contained in the

write_acks from the same group, denoted as w′. It returns (w′, master) as output of the

Classifier procedure in which master indicates its classified into master group in the next

round. Otherwise, it returns its own input view v and slave.

When pi receives a write message for round rj from pj , it includes the < view, label >

pair contained in the message into its acceptV alrj
set and sends a write_ack message

containing the current acceptV alrj
back. When pi receives a read message for round rj from

OPODIS 2019

29:6 Linearizable Replicated State Machines With Lattice Agreement

pj , it sends a read_ack message containing its current acceptV alrj
back. Basically, the write

message is used to ensure at least n − f processes know the current view and label of a

process and the read message is used to retrieve the knowledge of at least n − f processes.

Note that when a process which is invoking the Classifier at round r receives a write or

read message with a round number r′ > r, it buffers this message and delivers it when it

reaches round r′.

Classifier(v, k, r):

v: input view

k: threshold value

r: round number

0: acceptV alr := ∅ // set of <view,

threshold> pairs.

/* write */

1: Send write(v, k, r) to all

2: wait for n − f write_ack(−, −, r)

/* read */

3: Send read(r) to all

4: wait for n − f read_ack(−, −, r)

5: Let U be views contained in received acks

with label equals k

/* Classification */

6: Let w := t{u : u ∈ U}

7: if h(w) > k /* height of w is greater than

its label */

8: Send write(w, k, r) to all

9: wait for n − f write_ack(−, −, r)

10: Let U ′ be views contained in received

acks with label equals k /* views received in

the same group */

11: Let w′ := w t {u : u ∈ U ′}

12: return (w′, master)

13: else

14: return (v, slave)

Upon receiving write(vj , kj , rj) from pj

acceptV alrj
:= acceptV alrj

∪ < vj , kj >

Send write_ack(acceptV alrj
, rj) to pj

Upon receiving read(rj) from pj

Send read_ack(acceptV alrj
, rj) to pj

Figure 1 The Classifier Procedure.

3.2 Algorithm AsyncLA

Now let us look at the main algorithm, AsyncLA. The basic idea of AsyncLA is to let all

processes recursively invoke the Classifier procedure with a carefully set threshold value. Let

yi denote the output value of pi. Let vr
i denote its view at the beginning of round r. The

algorithm for pi proceeds in asynchronous rounds. The algorithm runs in log f + 1 rounds.

At round 0, all processes exchange their views. The purpose of round 0 is to allow us to

construct the virtual Classifier tree with height equal to log f . In such case, the recursive

invocation of the Classifier procedure terminate in log f rounds. The reason is as follows.

After round 0, the view of each correct process must have height at least n − f in the view

lattice. Since the height of the view lattice is n, the join-closed subset that includes all

current views after round 0 (which is also a lattice) has height at most f . Then we can

construct a the binary Classifier tree with height equals to log f by setting the threshold

value of the root Classifier to be (n−f)+n

2 = n − f
2 in the virtual tree. We say the root

Classifier is at level 1. For any node at level r of the tree with threshold value k, we set the

threshold value of its right child to be k + f
2r+1 and the threshold value of its left child to be

k − f
2r+1 . Thus, we can easily see that the height of the tree is log f . Note that the initial

label of each process is n − f
2 , which means all processes are at the root of the tree.

From round 1 to log f , each process simply traverses the virtual Classifier tree. At round

r, each process is at level r of the tree. For process pi, it invokes the Classifier procedure

with its current view vr
i , current label li and r as parameters. Based on the output of the

X. Zheng, V. K. Garg, and J. Kaippallimalil 29:7

Classifier procedure, pi adjust its label to be the threshold value of the Classifier procedure

it will invoke at next round. If it is classified as master, then it increases its label by f
2r+1 ,

i.e, it goes to the right subtree of the virtual Classifier tree. Otherwise, it reduces its label

by f
2r+1 , i.e, it goes to the left subtree of the virtual Classifier tree. At the end of round

log f , pi outputs the join of all values contained in its current view as its decision value.

AsyncLA(xi) for pi:

xi: input value

yi: output value

li := n − f
2 // label of pi

vr
i : the view of pi at the beginning of round

r, an array of size n.

Initially, v0
i [i] = xi ∧ v0

i [j] = ⊥, ∀j 6= i

/* Round 0 */

Send value(v0
i , 0) to all

wait for n − f messages of form value(-, 0)

Let U denote the set of all received values

/* Round 1 to log f */

v1
i := t{u | u ∈ U}

for r := 1 to log f

(vr+1
i , class) := Classifier(vr

i , li, r)

if class = master

li := li + f
2r+1

else

li := li − f
2r+1

end for

Let Vi := v
log f+1
i

yi := t{Vi[j] : j ∈ [1..n]}

Figure 2 Algorithm AsyncLA.

3.3 Proof of Correctness

Let us prove the correctness of AsyncLA. Let wr
i be the value of w at line 6 of the Classifier

procedure at round r. Let G be a group of processes at round r. Recall that a group G at

round r is a set of processes which have the same label at round r. The label of a group

is the label of the processes in this group. Let M(G) and S(G) be the group of processes

which are classified as master and slave, respectively, when they run the Classifier procedure

in group G. Recall that h(v) denote the height of view v in the view lattice. The following

lemma presents the key properties of the Classifier procedure, with detailed proof given in

the full paper [16].

I Lemma 1. Let G be a group at round r with label k. Let L and R be two nonnegative integers

such that L ≤ k ≤ R. If L < h(vr
i) ≤ R for every process i ∈ G, and h(t{vr

i : i ∈ G}) ≤ R,

then

(p1) for each process i ∈ M(G), k < h(vr+1
i) ≤ R

(p2) for each process i ∈ S(G), L < h(vr+1
i) ≤ k

(p3) h(t{vr+1
i : i ∈ M(G)}) ≤ R

(p4) h(t{vr+1
i : i ∈ S(G)}) ≤ k, and

(p5) for each process i ∈ M(G), vr+1
i ≥ t{vr+1

i : i ∈ S(G)}

Once we have the above lemma, the correctness proof for AsyncLA follows in a similar

fashion as the synchronous algorithm in [17]. We only give the primary lemmas and put the

detailed proof in the full paper [16].

I Lemma 2. Let G be a group of processes at round r with label k. Then

(1) for each process i ∈ G, k − f
2r < h(vr

i) ≤ k + f
2r

(2) h(t{vr
i : i ∈ G}) ≤ k + f

2r

I Lemma 3. Let i and j be two processes that are within the same group G at the end of

round r = log f . Then vr+1
i and vr+1

j are equal.

OPODIS 2019

29:8 Linearizable Replicated State Machines With Lattice Agreement

Proof. (Sketch of Proof) Intuitively, after round 0, the join-closed subset that includes all

current views after round 0 (which is also a lattice) has height at most f . We know that

the height interval of values in a group are shrinking by a factor of 2, from Lemma 2. Thus,

after log f rounds, any two processes in a same group must have a same value. J

I Lemma 4. Let process i decides on yi. Let G be a group at round r such that i ∈ S(G),

then yi ≤ t{vr+1
i : i ∈ S(G)}.

Proof. Immediate from (p2) and (p4) of Lemma 1. J

Since the value of a process is non-decreasing at each round, from (p5) of Lemma 1 and

Lemma 4, we have that once two processes are classified into two subgroups, their values

must be comparable. We immediately have the following lemma.

I Lemma 5. Let i and j be any two processes in two different groups Gi and Gj at the end

of round log f , then yi is comparable with yj.

I Theorem 6. Algorithm AsyncLA solves the lattice agreement problem in O(log f) round-

trips when at least a majority of processes are correct.

Proof. Down-Validity holds since the value held by each process is non-decreasing. Upward-

Validity follows because each learned value must be the join of a subset of all initial values

which is at most t{x1, ..., xn}. For Comparability, from Lemma 3, we know that any two

processes which are in the same group at the end of AsyncLA, they must have equals values.

For any two processes which are in two different groups, from Lemma 5 we know they must

have comparable values. J

3.4 Complexity Analysis

Each invocation of the Classifier procedure takes at most three round-trips. Therefore, log f

invocation of Classfier results in at most 3∗ log f round-trips. Thus, the total time complexity

is 3 ∗ log f + 1 round-trips. For message complexity, each process sends out at most 3 write

and read messages and at most 3 ∗ n write_ack and read_ack messages. Therefore, the

message complexity for each process is O(n ∗ log f).

4 Improved Generalized Lattice Agreement Protocol for RSM

In this part, we give optimizations for the generalized lattice agreement protocol proposed

in [17] (referred as GLA) to implement a linearizable RSM. Inside GLA, a f + 1 round-trips

asynchronous lattice agreement protocol proposed in the same paper is embedded. We do not

change their f + 1 round-trips asynchronous protocol to our O(log f) protocol for reasons as

follows. First, our primary goal in this section is not to give a new protocol for the generalized

lattice agreement problem, yet to make it practical to implement. The optimizations we make

in this section do not involve the lattice agreement protocol part. Keeping the simple f + 1

round-trips algorithm would make things easier. Second, in practice, the f + 1 round-trips

algorithm is favorable compared to the O(log f) algorithm due to its smaller constant.

The optimized protocol, GLA∆, is shown in Fig. 3 with the two main changes marked

using ∆. Note that although we only have two primary changes compared to GLA, we claim

those changes are the key for its applicability in building a linearizable RSM. The basic idea

of GLA∆ is to invoke a separate lattice agreement instance for a set of concurrent commands.

To ensure Comparability and Stability of generalized lattice agreement, we associate each

X. Zheng, V. K. Garg, and J. Kaippallimalil 29:9

lattice agreement instance with a distinct sequence number and ensure that lattice agreement

instance with higher sequence number only starts running after the instance with smaller

sequence number has completed. In this way, we guarantee that any value learned by higher

sequence lattice agreement instance is greater than or equal to the value learned by lower

sequence lattice agreement instance. Along with the Comparability property of each lattice

agreement instance, we can obtain Comparability and Stability for the generalized lattice

agreement problem. Details are given in correctness proof section.

In GLA∆, the sequence number assigned for lattice agreement instances starts from 0

and increase by 1 when a new lattice agreement instance is created. Each process keeps

an integer s, which is the next available sequence number. Since different processes might

be executing lattice agreement instance with different sequence number, maxSeq is used to

record the largest sequence number known by a process. buffVal stores all the commands

received which need to be learned. LV denotes the mapping from a sequence number to

its corresponding learned command set. acceptVal stores all commands received from all

processes via proposal messages.

GLA∆ for pi:

s := 0 // sequence number

maxSeq := -1 // largest sequence number

seen

buffVal := ⊥ // commands buffer

LV := ⊥ // map from seq to learned com-

mands set

acceptVal := ⊥ // current accepted com-

mands set

active := false //proposing status

Procedure ReceiveValue(v):

buffVal := buffVal t v

on receiving prop(vj , r, s′) from pj :

if s′ < s

buffVal := buffVal t vj ∆2

Send ACK (“decide”, LV [s′], r, s′)

return

maxSeq := max{s′, maxSeq}

wait until s′ = s

if acceptVal ⊆ vj

Send ACK (“accept”, −, r, s′)

acceptVal := vj

else

Send ACK (“reject”,acceptVal, r, s′)

Procedure Agree():

guard: (active = false) ∧ (buffVal 6= ⊥

∨ maxSeq ≥ s)

active := true

acceptVal := buffVal t acceptVal

buffVal := ⊥

/* Lattice Agreement with sequence

number s */

for r := 1 to f + 1

val := acceptVal

Send prop(val, r, s) to all

wait for n − f ACK (−, −, r, s)

Let V be values in reject ACKs

Let D be values in decide ACKs

Let tal be the number of accept

ACKs

if |D| > 0

val := t{d | d ∈ D} ; break

else if tal > n
2

break

else

acceptVal := acceptVal

t {v | v ∈ V }

end

LV [s] := val

acceptVal := acceptVal - LV [s − 1] ∆1

s := s + 1

active := false

Figure 3 Algorithm GLA∆.

When a process receives a command v from a client, it invokes ReceiveValue(v) to include

v into its buffer (buffVal).

OPODIS 2019

29:10 Linearizable Replicated State Machines With Lattice Agreement

Each process invokes the Agree() procedure to start a new lattice agreement instance.

This procedure is automatically executed when the guard condition is satisfied. Inside the

Agree() procedure, a process first updates its acceptVal to be the join of current acceptVal

and buffVal. Then, it starts a lattice agreement instance with the next available sequence

number. The lattice agreement instance runs the f + 1 round-trips protocol in [17]. At each

round of the lattice agreement, a process sends its current acceptVal to all and waits for

n − f ACKs. If it receives any decide ACK, it decides on the join of all decide values. If it

receives a majority of accept ACK s, it decides on its current value. Otherwise, it updates its

acceptVal to be the join of all received values and starts next round. When a process receives

a proposal from some other process, if the proposal is associated with a smaller sequence

number, then it sends decide ACKs back with its decided value for that sequence number

and includes the received value into its own buffer set. Otherwise, it waits until its current

sequence number to reach the sequence number associated with the proposal. Then, it checks

whether the proposed value contains its current acceptVal. If true, the process sends back a

accept ACK. Otherwise, it sends back a reject ACK along with its current acceptVal. When a

process completes lattice agreement for sequence number s, it stores learned values in LV[s]

and removes all learned values for sequence number s − 1.

Now we explain the our proposed improvements in detail.

4.1 Truncate the Accept Command Set

Let us first look at the challenges of directly applying the GLA protocol in [17] or the

one in [6] to implement a linearizable RSM. In a RSM, each input value is a command

from a client. Thus, the input lattice is a finite boolean lattice formed by the set of all

possible commands. The order in this lattice is defined by the set inclusion, and the join is

defined as the union of two sets. This boolean input lattice poses a challenge for both the

algorithms in [6] and [17]. In these algorithms, for each process there is an accept command

set (acceptVal), which stores the join of whatever value the process has accepted. Now since

the join is defined as union in the RSM setting, this set keeps increasing. For example, in the

original algorithm given in [17], it does not include the line marked as ∆1. Suppose, we have

three processes p1, p2 and p3 which handles commands from clients. Suppose p1, p2 and

p3 first receive commands {a}, {b} and {c}, respectively. They start the lattice agreement

instance with the sequence number 0 and learn {a}, {a, b} and {a, b, c} respectively for the

sequence number 0. After that, p1, p2 and p3 receive {d}, {e}, and {f} as input, respectively.

Now, they start a lattice agreement instance with the sequence number 1. In order to ensure

Comparability and Stability of GLA, the accept command set for sequence number 1 have

to include the largest learned value of sequence 0, which is {a, b, c}, although each process

only proposes a single command. Therefore, the accept command set keeps increasing. This

problem makes applying lattice agreement to implement a linearizable RSM impractical.

To tackle the above problem, we need to truncate the accept command set. A naive

way is to remove all learned commands in the accept command set when proposing for the

next available sequence number. This way does not work. Suppose we have two processes:

p1, p2 and p3. They propose {a}, {b} and {c}, respectively for sequence number 0. After

execution of lattice agreement for sequence number 0, suppose p1, p2 and p3 both have

learned value set and accept command set to be {a}, {a, b, c}, and {a, b, c}, respectively. It

is easy to verify this case is possible for an execution of lattice agreement. When completing

sequence number 0, all processes remove learned value set for sequence number 0 from their

accept command set. Thus, the accept command set of all the three processes becomes to

be empty. Now, suppose p1, p2 and p3 start to propose for sequence number 1 with new

X. Zheng, V. K. Garg, and J. Kaippallimalil 29:11

commands {d}, {e} and {f}. Since the accept command sets of p2 and p3 do not contain

value {b} and {c}, p1 will never be able to learn {b} and {c}. Thus, learned command set of

p1 for sequence 1 and the learned command set of p2 and p3 for sequence 0 are incomparable.

Instead of removing all learned commands from the accept command set, we propose to

remove all learned commands for the sequence numbers smaller than the largest learned

sequence number from the accepted command set. In order to achieve this, the line marked

by ∆1 in the pseudocode is added, compared to the original algorithm in [17]. In this line,

after a process has learned a value set for sequence number s, it removes the learned value

set corresponding to sequence number s − 1 from its accept command set.

4.2 Remove Forwarding

In both the algorithms of [6] and [17], a process has to forward all commands it receives

to all other processes to ensure liveness. This forwarding results in load that is multiplied

many fold, since many processes may propose the same request. In [17], this forwarding is to

ensure that the commands proposed by slow processes can also be learned. However, for the

fast processes, there is no need to forward their requests to others because they can learn

requests quickly. Therefore, instead of forwarding every request to all servers, we require

that when a process receives some proposal with a smaller sequence number than its current

sequence number, it sends back a decide message and also includes the received proposal

value into its buffer set. These values will be proposed by the server in its next sequence

number. In this way, only when a process is slow, its value will be proposed by the fast

processes. This change is shown as addition of the line marked by ∆2.

4.3 Proof of Correctness

Let us prove the correctness of GLA∆. Although we only have two primary changes compared

to the algorithm in [17], the correctness proof is quite different due to the modification

marked by ∆1. Let LVp[s] denote the learned value of process p for sequence number s. Let

LearnedV alp
s denote all the learned values of process p after completing lattice agreement

for sequence number s. Thus, LearnedV alp
s = t{LVp[t] : t ∈ [0...s]}. Due to the page limit,

we put the proof for Lemma 7-9 in the full paper [16].

I Lemma 7. For any sequence number s, LVp[s] is comparable with LVq[s] for any two

processes p and q.

I Lemma 8. For any sequence number s, LearnedV als
p ⊆ LearnedV als+1

q for any two

correct processes p and q.

I Lemma 9. For any sequence number s and s′, LearnedV als
p and LearnedV als′

q are

comparable for any two correct processes p and q.

I Theorem 10. Algorithm GLA∆ solves the generalized lattice agreement problem when a

majority of processes is correct.

Proof. Validity holds since any learned value is the join of a subset of values received.

Stability follows from Lemma 8. Comparability follows from Lemma 9. Liveness follows from

the termination of lattice agreement. J

OPODIS 2019

29:12 Linearizable Replicated State Machines With Lattice Agreement

5 LaRSM vs Paxos

In this section, we compare LaRSM and Paxos from both theoretical and engineering

perspective. Table 1 shows the theoretical perspective. The main difference between Paxos

and LaRSM lies in their termination guarantee. In the worst case, Paxos may not terminate

(∞ message delays), though very unlikely. Whereas, LaRSM always guarantee termination

in at most O(log f) message delays. This difference is because Paxos is consensus based and

LaRSM is lattice agreement based. In the best case, both Paxos and LaRSM need three

message delays. One limitation of LaRSM is that it is only applicable to UQ state machines.

For engineering perspective, Paxos is typically deployed with only one single proposer

(leader) due to its non-termination. Only the leader can handle handle requests from clients.

Thus, in a typical deployment the leader becomes the bottleneck, i.e, the throughput of

the system is limited by the leader’s resources. Besides, the unbalanced communication

pattern limits the utilization of bandwidth available in all of the network links connecting

the servers. In LaRSM, however, there could be multiple proposers since termination is

guaranteed, which can simultaneously handle requests from clients and may yield better

throughput. In the failure case, a new leader needs to be elected in Paxos and there could be

multiple leaders in the system. During this time, Paxos generally takes longer to terminate

because of conflicting proposals. However, a failure of a replica in LaRSM has limited impact

on the whole system. This is because other replicas can still handle requests from clients as

long as less than a majority of replicas has failed.

Table 1 Paxos vs LaRSM.

Properties Paxos LaRSM

Consistency Linearizability Linearizability

Underlying Protocol Consensus Lattice Agreement

Best Case #Message Delays 3 3

Worse Case #Message Delays ∞ O(log f)

Applicable to All

Sate Machines
Yes

Only UQ

State Machines

6 Evaluation

In this section, we evaluate the performance of LaRSM and compare with SPaxos. To

implement LaRSM, we also propose some practical optimizations for the procedure proposed

in [6] to implement a RSM by combining CRDT and a generalized lattice agreement protocol,

which can be found in the full paper [16].

Although the lattice agreement protocol proposed in this paper has round complexity of

O(log f), it has a large constant, which is only advantageous when the number of replicas is

large. In practical cases, the number of replicas is usually small, often 3 to 5 nodes. Thus, we

adopt the lattice agreement protocol from [17] which runs in f + 1 asynchronous round-trips

in our implementation. In order to evaluate LaRSM, we implemented a simple RSM which

stores a Java hash map data structure. We implement the hash map date structure to be a

CRDT by assigning a timestamp to each update operation and maintain the last writer wins

semantics. We measure the performance of SPaxos and our implementation in the following

three perspectives: performance in the normal case (no crash failure), performance in failure

case, and performance under different work loads.

X. Zheng, V. K. Garg, and J. Kaippallimalil 29:13

All experiments are performed on Amazon’s EC2 micro instances, which have variable

ECUs (EC2 Compute Unit), 1 vCPUs, 1 GBytes memory, and low to moderate network

performance. All servers run Ubuntu Server 16.04 LTS (HVM) and the socket buffer sizes

are equal to 16 MBytes. All experiments are performed in a LAN environment with all

processes distributed among the following three availability zones: US-West-2a, US-West-2b

and US-West-2c.

The keys and values of the map are string type. We limit the range of keys to be within

0 to 1000. Two operations are supported: update and get. The update operation changes

the value of a specific key. The get operation returns the value for a specific key. A client

execute one request per time and starts executing next request when it completes the current

one. The request size is 20 bytes. For each request, the server returns a response to indicates

its completion. In order to compare with SPaxos, we set its crash model to be CrashStop. In

this model, SPaxos would not write records into stable storage. In SPaxos, batching and

pipelining are implemented to increase the performance of Paxos. There are some parameters

related to those two modules: the batch size, batch waiting timeout and the window size. The

batch size controls how many requests the batcher needs to wait before starting proposing

for a batch. The batch waiting timeout controls the maximum time the batch can wait for

a batch. The window size is the maximum number of parallel proposals ongoing. We set

the batch size to be 64KB, which is the largest message size in a typical system. We set the

batch timeout according to the number of clients from 0 to 10 at most. The window size

is set to 2 because we found that increasing the window size further does not improve the

performance in our evaluation.

6.1 Performance in Normal Case

In this experiment, we build a RSM system with three instances. We measure the throughput

of the system and latency of operations while increasing the number of clients. The load from

the clients are composed of 50% writes and 50% reads. The left part of Fig. 4 shows the

throughput of SPaxos and LaRSM. The throughput is measured by the number of requests

handled per second by the system. The latency is the average time in milliseconds taken

by the clients to complete execution of a request. We can see from Fig. 4, as we increase

the number of clients, the throughput of both SPaxos and LaRSM increases until there are

around 1000 clients. At that point, the system reaches its maximum handling capability. If

we further increase the clients number, the throughput of both LaRSM and SPaxos does not

change in a certain range and begins to decrease. This is because both systems do not limit

the number of connections from the client side. A large number of clients connection results

in large burden on IO, decreasing the system performance. Comparing SPaxos and LaRSM,

we can see that LaRSM always has better throughput than SPaxos.

The right part of Fig. 4 shows the latency of LaRSM and SPaxos. In both LaRSM and

SPaxos, read and write perform the same procedure, thus their latency should be similar. So,

in our evaluation, we just use operation latency. From Fig. 4, we find that operation latency

of LaRSM keeps increasing. As we increase the number of clients, the latency of SPaxos

decreases first up to some point and then begins to increase. This performance is because

the latency is the average response time of all clients and SPaxos has a batching module

which batches multiple requests from different clients to propose in a single proposal. Thus,

initially when there are very few clients, they can only propose a small number of requests in

a single proposal, which makes the latency relatively higher. While the number of clients

increases, more requests can be proposed in one single batch, thus the average latency for

one client decreases. If the number of clients increases further, the handling capability limit

OPODIS 2019

29:16 Linearizable Replicated State Machines With Lattice Agreement

7 Conclusion

In this paper, we first give an algorithm to solve the lattice agreement problem in O(log f)

rounds asynchronous rounds, which is an exponential improvement compared to previous

O(f) upper bound. We also give some optimizations for the GLA protocols proposed in

literature. Evaluation results show that using lattice agreement to build a linearizable RSM

has better performance than conventional consensus based RSM technique. Specifically, our

implementation yields around 1.3x times throughput than SPaxos and incurs smaller latency

in normal case.

References

1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. Journal of the ACM (JACM), 40(4):873–890, 1993.

2 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots using lattice agreement.

Distributed Computing, 8(3):121–132, 1995.

3 Martin Biely, Zarko Milosevic, Nuno Santos, and Andre Schiper. S-paxos: Offloading the

leader for high throughput state machine replication. In 2012 IEEE 31st Symposium on

Reliable Distributed Systems, pages 111–120. IEEE, 2012.

4 Tushar D Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an engineering

perspective. In Proceedings of the twenty-sixth annual ACM symposium on Principles of

distributed computing, pages 398–407. ACM, 2007.

5 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.

SIAM Journal on Computing, 12(4):656–666, 1983.

6 Jose M Faleiro, Sriram Rajamani, Kaushik Rajan, G Ramalingam, and Kapil Vaswani.

Generalized lattice agreement. In Proceedings of the 2012 ACM symposium on Principles of

distributed computing, pages 125–134. ACM, 2012.

7 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed

consensus with one faulty process. Technical report, Massachusetts Inst of Tech Cambridge

lab for Computer Science, 1982.

8 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for

concurrent objects. ACM Transactions on Programming Languages and Systems (TOPLAS),

12(3):463–492, 1990.

9 Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS),

16(2):133–169, 1998.

10 Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

11 Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

12 Leslie Lamport and Mike Massa. Cheap paxos. In International Conference on Dependable

Systems and Networks, 2004, pages 307–314. IEEE, 2004.

13 Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A

tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

14 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated

data types. In Symposium on Self-Stabilizing Systems, pages 386–400. Springer, 2011.

15 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Convergent and commut-

ative replicated data types. 2011.

16 Xiong Zheng, Vijay K Garg, and John Kaippallimalil. Linearizable replicated state machines

with lattice agreement. arXiv preprint arXiv:1810.05871, 2018.

17 Xiong Zheng, Changyong Hu, and Vijay K Garg. Lattice agreement in message passing

systems. In 32nd International Symposium on Distributed Computing (DISC 2018). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

	Introduction
	System Model and Problem Definitions
	System Model
	Lattice Agreement
	Generalized Lattice Agreement

	Asynchronous Lattice Agreement
	The Classifier Procedure
	Algorithm AsyncLA
	Proof of Correctness
	Complexity Analysis

	Improved Generalized Lattice Agreement Protocol for RSM
	Truncate the Accept Command Set
	Remove Forwarding
	Proof of Correctness

	LaRSM vs Paxos
	Evaluation
	Performance in Normal Case
	Performance in Failure Case
	Performance under Different Loads

	Conclusion

