
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Asynchronous Coded Caching With
Uncoded Prefetching

Hooshang Ghasemi , Member, IEEE, and Aditya Ramamoorthy , Senior Member, IEEE

Abstract— Coded caching is a technique that promises huge
reductions in network traffic in content-delivery networks. How-
ever, the original formulation and several subsequent contri-
butions in the area, assume that the file requests from the
users are synchronized, i.e., they arrive at the server at the
same time. In this work, we formulate and study the coded
caching problem when the file requests from the users arrive at
different times. We assume that each user also has a prescribed
deadline by which they want their request to be completed. In the
offline case, we assume that the server knows the arrival times
before starting transmission and in the online case, the user
requests are revealed to the server over time. We present a linear
programming formulation for the offline case that minimizes the
overall transmission rate from the server subject to the constraint
that each user meets his/her deadline. While the online case is
much harder, we introduce a novel heuristic for it and show that
under certain conditions, with high probability the request of
each user can be satisfied with her/his deadline. Our simulation
results indicate that in the presence of mild asynchronism, much
of the benefit of coded caching can still be leveraged.

Index Terms— Coded caching, asynchronous, deadlines, linear
programming.

I. INTRODUCTION

CACHING is a core component of solving the problem
of large scale content delivery over the Internet. Con-

ventional caching typically relies on placing popular content
closer to end-users. Statistically, popular content is requested
more frequently and the cache can be used to serve the user
requests in this case. Contacting the central server that has all
the content is not needed. This serves to reduce the induced
network traffic.
In their pioneering work [1], Maddah-Ali and Niesen con-

sidered the usage of coding in the caching problem. In this
“coded caching” setting, there is a server containing a library
of N files. There are K users each with a cache that can
store up to M files. The users are connected to the server via
an error-free shared broadcast link (see Fig. 1). The system
operates in two distinct phases. In the placement phase the
content of the caches is populated by the server. This phase

Manuscript received July 8, 2019; revised March 13, 2020 and June 16,
2020; accepted June 17, 2020; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor B. Shrader. This work was supported in part by the
National Science Foundation (NSF) under Grant CCF-1718470 and Grant
CCF-1910840. This article was presented in part at the 2017 IEEE Interna-
tional Symposium on Information Theory and in part at the 2017 Asilomar
Conference on Signals, Systems, and Computers. (Corresponding author:
Hooshang Ghasemi.)
Hooshang Ghasemi was with the Electrical and Computer Engi-

neering Department, Iowa State University, Ames, IA 50011 USA.
He is now with Qualcomm Inc., San Diego, CA 92121 USA (e-mail:
hghasemi@qti.qualcomm.com).
Aditya Ramamoorthy is with Iowa State University, Ames, IA 50011 USA

(e-mail: adityar@iastate.edu).
Digital Object Identifier 10.1109/TNET.2020.3003907

does not depend on the future requests of the users which are
assumed to be arbitrary. In the delivery phase each user makes
a request and the server transmits potentially coded signals to
satisfy the requests of the users. The work of [1] demonstrated
that significant reductions in the network traffic were possible
as compared to conventional caching. Crucially, these gains
continue to hold even if the popularity of the files is not taken
into account.
While this is a significant result, the original formulation of

the coded caching problem assumes that the user requests are
synchronized, i.e., all file requests from the users arrive at the
server at the same time. Henceforth, we refer to this as the
synchronous setting. From a practical perspective, it is impor-
tant to consider the asynchronous setting where user requests
arrive at different times. In this case, a simple strategy would
be to wait for the last request to arrive and then apply the
scheme of [1]. Such a strategy will be quite good in terms of
the overall rate of transmission from the server. However, this
may be quite bad for an end user’s experience, e.g., the delay
experienced by the users will essentially be dominated by the
arrival time of the last request.
In this work, we formulate and study the coded caching

problem when the user requests arrive at different times. Each
user has a specific deadline by which his/her demand needs
to be satisfied. The goal is to schedule the transmission of
packets so that each user is able to recover the requested file
from the transmitted packets and his/her cache content within
the prescribed deadline. We present algorithms for both the
offline and online versions of this problem.
This paper is organized as follows. In Section II we discuss

the background and related work and overview our main
contributions. The problem formulation appears in Section III.
Sections IV and V discuss our work on the offline and the
online versions of the problem, respectively. We conclude the
paper with a discussion of opportunities for future work in
Section VII.

II. BACKGROUND, RELATED WORK AND

SUMMARY OF CONTRIBUTIONS

A coded caching system contains a server with N files,
denoted Wn, n = 1, . . . , N , each of size F subfiles, where a
subfile is a basic unit of storage. These subfiles are indexed as
Wn,j , j = 1, . . . , F . The system also contains K users each
connected to the server through an error free, broadcast shared
link. Each of the users is equipped with a local cache. The
i-th cache can store the equivalent of MiF subfiles. We denote
the cache content of user i by Zi, where Zi is a function of
W1, . . . , WN . Our formulation supports users with different
cache sizes. A block diagram of a coded caching system for
N = K = 3 is depicted in Fig. 1.

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5457-1704
https://orcid.org/0000-0003-3448-1271

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. Block diagram of the coded caching system with N = K = 3 where
cache of each user contains 1/3-rd fraction of each file as shown. Users 1,
2, and 3 request file A, B, and C respectively and the server transmits three
subfiles over the shared link to satisfy their demands.

In general, a user might choose to store a coded combination
of the subfiles, i.e., Zi can be a non-trivial function of
{Wn,j}n=1,...,N,j=1,...,F . However, in this work, we assume
that an uncoded placement scheme is being used by the
coded caching system, i.e., user i caches at most a MiF -
sized subset of all the subfiles at the server, i.e., Zi is a subset
of {Wn,j}n=1,...,N,j=1,...,F . The uncoded placement scheme
was shown in [1] to have excellent performance. It has also
been considered in several follow-up works as well. It is well
recognized that the delivery phase in the uncoded placement
case, corresponds to an index coding problem [2]. While
the optimal solution for an arbitrary index coding problem
is known to be hard, techniques such as clique cover on
the side information graph are well-recognized to have good
performance [2]. In this case, each transmitted equation from
the server is such that a certain number of users “benefit”
from it simultaneously. Under this assumption, we formulate
and study the asynchronous coded caching problem when the
file requests arrive at the server at different times. Each user
specifies a deadline by which he/she expects the request to be
satisfied.1 We assume that

• the delivery phase proceeds via a clique cover and
• transmitting a single packet over the shared link takes a

certain number of time slots.
We study the rate gains of coded caching under this setup,
i.e., among the class of strategies that allow the users to
meet their deadlines, we attempt to determine those where
the server transmits the fewest number of packets. Both the
offline and online versions of the problem are studied. In the
offline scenario, we assume that information about all request
arrival times and deadlines are known to the server before
transmission, whereas in the online scenario, the arrival times
and deadlines are revealed to the server as time progresses.

A. Main Contributions

• Linear programming (LP) formulation in the offline case.
We propose an LP in the offline scenario that determines
a schedule for the equations that need to be transmitted
from the server. A feasible point of the LP can be
interpreted as a coding solution that can be used by the
server, such that each user meets its deadlines.

1It is not too hard to see that in the absence of deadlines the server can
simply wait for enough user requests to arrive before starting transmission.
Thus, the deadline-free case essentially reduces to the synchronous setting.
Section IV.B of [3] has more details.

The computational complexity of solving this LP can
be quite high for a large number of users. Accordingly,
we develop a dual decomposition technique where the
dual problem decouples into a set of independent min-
imum cost network flow problems that can be solved
efficiently [4].

• A novel online algorithm. For the online problem,
we demonstrate that, in general, coding within subfiles
of the same file is essential. Interestingly, this is not
needed in the synchronous case where the transmitted
signals by the server are coded combination of subfiles
belonging to different files. Furthermore, we propose a
novel online algorithm that is inspired by recursively
solving the offline LP and interpreting the corresponding
output appropriately. Under certain conditions, we also
show that the algorithm will result in a solution that
satisfies the deadline constraints with high probability.

For both scenarios, we present exhaustive simulation results
that corroborate our findings and demonstrate the superiority
of our algorithm concerning prior work. Overall, our work
indicates that under mild asynchronism, much of the benefits
of coded caching can still be leveraged.

B. Related Work

The area of coded caching has seen a flurry of research
activity along several dimensions in recent years. From a the-
oretical perspective, significant work has attempted to under-
stand the fundamental rate limits of a coded caching system
[5]–[7]. Extensions of the basic model to general networks
have been examined in [8]–[10]. Issues related to subpacketi-
zation (i.e., the number of subfiles F) have been considered
in [11]–[13]. A high subpacketization level can cause several
issues in practical implementations. Coded caching ideas have
also been used within the domain of distributed computing
[14]–[16].
There are relatively few prior works that have considered

asynchronism within the context of coded caching. To our
best knowledge, it was first studied in [17]. They considered
the decentralized coded caching model [18] and a situation
where each subfile has a specific deadline. Only the online
case was considered and heuristics for transmission from the
server were proposed. The heuristics are found to have good
performance. However, the transmission time for a packet
was not considered in their formulation. Reference [19] also
considers the asynchronous setting; again, they do not consider
the transmission time of a transmitted packet. In that sense,
their setting is closer to the work of [17] and can be viewed
as a set of rules that the server should follow in the online
case. [19] (Section III.C) also considers an offline setting for
the centralized placement scheme of [1]. Our LP formulation
can be viewed as a bound on the possible performance of
any online scheme. Our proposed online algorithm has signif-
icantly better performance than the ones presented in [17].
Reference [18] (Section V.C) also discusses the issue

of asynchronism within the context of decentralized coded
caching, without considering deadlines or packet transmission
times. They advocate a further subpacketization of each subfile
(referred to as a segment in [18]). It is important to note that
any system will need to commit to a certain subpacketization
scheme before deployment. Given this subpacketization and

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHASEMI AND RAMAMOORTHY: ASYNCHRONOUS CODED CACHING WITH UNCODED PREFETCHING 3

with user specified deadlines, the formalism of our work and
our algorithms can be used to arrive at schemes that address
asynchronous requests.
The work of [20] proposes an algorithm for the online

scenario under the assumption of decentralized coded caching
for reducing the worst-case load of fronthaul links in fog radio
access networks (F-RANs); this is a different model than ours.
Their work does not take transmission time into account and
considers the scenario where each user has the same deadline.
The asynchronous setting has also been considered in [21]

for video delivery by taking into account an appropriately
defined audience retention rate. Their work considers a prob-
abilistic arrival model and presents a decentralized coded
caching scheme for it.

III. PROBLEM FORMULATION AND PRELIMINARIES

We assume that time τ ≥ 0 is slotted. Let [n] denote the set
{1, . . . , n} and the symbol ⊕ represent the XOR operation.
We assume that the server contains N ≥ K files2 denoted
by Wn, n = 1, . . . , N . The subfiles are denoted by Wn,f so
that Wn = {Wn,f : f ∈ [F]} and the cache of user i by
Zi ⊆ {Wn,f : n ∈ [N], f ∈ [F]}. Zi contains at most MiF
subfiles. In the delivery phase, user i requests file Wdi , where
di ∈ [N], from the server. We let Ω(i) denote the indices of
the subfiles that are not present in the i-th user’s cache, i.e.,

Ω(i) � {f : f ∈ [F], Wdi,f /∈ Zi}.
The equations in the delivery phase are assumed to be of the
all-but-one type.
Definition 1 (All-But-One Equation): Consider an equation

E such that

E � ⊕�
l=1Wdil

,fl
.

We say that E is of the all-but-one type if for each l ∈ [�],
we have Wdil

,fl
/∈ Zil

and Wdil
,fl

∈ Zik
for all k ∈ [�] \ {l}.

It is evident that an all-but-one equation transmitted from the
server allows each of the users participating in the equation
to recover a missing subfile that they need. The asynchronous
coded caching problem can be formulated as follows.
Inputs:
• User requests: User i requests file Wdi , with di ∈ [N] at

time Ti.
• Deadlines: The i-th user needs to be satisfied by time

Ti + ∆i, where ∆i is a positive integer.
• Transmission Delay: Each subfile needs r time-slots to

be transmitted over the shared link, i.e., each subfile can
be treated as equivalent to r packets, where each packet
can be transmitted in one time slot.

As the problem is symmetric with respect to users, w.l.o.g.
we assume that T1 ≤ T2 ≤ . . . ≤ TK . Let Tmax =
maxi(Ti + ∆i). Note that upon sorting the set of arrival
times and deadlines, i.e., ∪K

i=1{Ti, Ti + ∆i}, we can divide
the interval [T1, Tmax) into at most 2K − 1 non-overlapping
intervals. Let the integer β, where 1 ≤ β ≤ 2K − 1 denote
the number of intervals. Let Π1, . . . , Πβ represent the intervals
where Πi appears before Πj if i < j; |Π�| denotes the length

2We assume that N ≥ K as it corresponds to the worst case rate (under
most reasonable placement schemes) where each of the K users can request
a different file. Furthermore, it is also the more practical scenario.

Fig. 2. Offline solution corresponding to the Example 1 (system with
N = K = 3). The double-headed arrows show the active time slots for
each user. The transmitted equations are shown above the timeline.

of interval Π�. The intervals are left-closed and right-open.
An easy to see but very useful property of the intervals that we
have defined is that for a given i, either [Ti, Ti+∆i)∩Π� = Π�

or [Ti, Ti + ∆i) ∩ Π� = ∅. Fig. 2 shows an example when
K = 3. We define U� � {i ∈ [K] : [Ti, Ti +∆i)∩Π� = Π�},
and D� � {di ∈ [N] : i ∈ U�}. Thus, U� is the set of active
users in time interval Π� and D� is the corresponding set of
active file requests.
Outputs:
• Transmissions at Each Time Slot: If the problem is

feasible, the schedule specifies which equations (of the
all-but-one type) need to be transmitted at each time. The
schedule is such that each user can recover all its missing
subfiles within its deadline. The equations transmitted at
time τ ∈ Π� only depend on D�.

We consider two versions of the above problem.
• Offline Version: In the offline version, we assume that the

server is aware of {Ti, ∆i, di}K
i=1 at τ = 0. However,

at time τ ∈ Π� the transmitted equation(s) will only
depend on D�, i.e., the server cannot start sending missing
subfiles for a given user until its request arrives.

• Online Version: In the online version, information about
the file requests are revealed to the server as time pro-
gresses. At each time τ , the server only has information
about {Ti, ∆i, di} if Ti ≤ τ , i.e., the requests that have
arrived by time τ .

We begin by defining some relevant sets; for convenience,
a tabulated list of most of the items needed in the subsequent
sections can be found in Table I. Consider a subset of users
U ⊆ [K]. For each user i ∈ U we let F{i,U} denote the indices
of all missing subfiles of the i-th user that have been stored
in the cache of the other users in U , i.e.,

F{i,U} �
{
f ∈ Ω(i) : Wdi,f ∈ Zj for all j ∈ U \ {i}

}
.

Definition 2: User Group. A subset U ⊆ [K] is said to be
a user group if F{i,U}
= ∅ for all users i ∈ U so that there is
at least one all-but-one type equation associated with U .
For a user group U there are

∏
i∈U |F{i,U}| different all-

but-one equations. This is because for any choice of fi ∈
F{i,U} for i ∈ U , we can construct the all-but-one equation
⊕i∈UWdi,fi . Thus, for each i ∈ U there are |F{i,U}| choices
for fi. Recall that U� is the set of active users in time interval
Π� and D� represents their file requests. Let U� be a subset
of the power set of U� (i.e. the set of all subsets of U�) such
that each element in U� is an user group (cf. Definition 2). For
any U ⊆ [K], let IU be the set of indices of all time intervals
where the users in U are simultaneously active, i.e.,

IU �
{
� : [Ti, Ti + ∆i) ∩ Π� = Π�, ∀ i ∈ U

}
.

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

For each missing subfile W{di,f} (where f ∈ Ω(i)) we
let U{i,f} denote the set of user groups where it can be
transmitted, i.e.,

U{i,f} �
{

U ∈ ∪β
�=1U� : i ∈ U, f ∈ F{i,U}

}
.

We note here that for a fixed i, there are potentially multiple
indices f1, f2, . . . , fl ∈ Ω(i) such that U ∈ U{i,fj} for j =
1, . . . , l.
Example 1: Consider a system (shown in Fig. 2) with

N = 3 files, W1, W2, and W3 where each file is divided
into three subfiles, so that F = 3. There are K = 3 users
with the following cache content, Z1 = {W2,1, W2,2, W3,3},
Z2 = {W1,1, W2,3, W3,1}, and Z3 = {W2,2, W3,2, W2,1}.
Thus, Mi = 1 for i ∈ [K]. The arrival times are T1 = 0,
T2 = 1, T3 = 3, and deadlines are ∆1 = 5, ∆2 = 4, and
∆3 = 2. The i-th user requests file Wi, for i = 1, . . . , 3.
Therefore, Ω(1) = {1, 2, 3}, Ω(2) = {1, 2}, and Ω(3) = {1, 3}.
In this system we have F{1,{1,2}} = {1} as W1,1 ∈ Z2, and

F{2,{1,2}} = {1, 2} as W2,1, W2,2 ∈ Z1. Therefore, {1, 2} is
an user group and the corresponding all-but-one equations are
W1,1 ⊕W2,1 and W1,1 ⊕W2,2. However, F{1,{1,3}} = ∅ thus
{1, 3} is not an user group.
As U = {1, 2} is an user group, we have U2 =

{{1}, {2}, {1, 2}}. The set of time intervals where user group
{1, 2} is active is I{1,2} = {2, 3}. Finally, note that user
group U = {2, 3} is a member of U{2,1} since 2 ∈ U and
1 ∈ F{2,U} = {1, 2}. Similarly, U ∈ U{2,2} as well since
2 ∈ U and 2 ∈ F{2,U}.

IV. OFFLINE ASYNCHRONOUS CODED CACHING

In this section, we discuss the offline version of the problem
where the server knows the arrival times/deadlines of all the
requests at τ = 0. The offline solution of the system in
Example 1 is depicted in Fig. 2 where the transmitted equation
in each time slot appears above the timeline. It can be verified
that each user can recover the missing subfiles that they need.
In what follows we argue that the offline setting can be cast
as a linear programming problem.

A. Linear Programming Formulation

For each time interval Π� with � = 1, . . . , β and for
each U ∈ U�, we define variable xU (�) ∈ [0, |Π�|] that
represents the portion of time interval Π� that is allocated to
an equation that benefits user group U . The actual equation
will be determined shortly. For each missing subfile W{di,f}
and each U ∈ U{i,f}, we define variable y{i,f}(U) ∈ [0, r]
that represents the portion of the missing subfile W{di,f}
transmitted within some or all of the equations associated
with xU (�) for � ∈ IU . As pointed out before, for a fixed
i, U can be used to transmit different missing subfiles needed
by user i. However, a single equation can only help recover
one missing subfile needed by i. Thus,

∑
�∈IU

xU (�) must
be shared between the appropriate y{i,f}(U)’s. Accordingly,
we need the following constraint for user i and a user group
U which contains i.∑

f∈F{i,U}

y{i,f}(U) ≤
∑
�∈IU

xU (�).

TABLE I

LIST OF VARIABLES USED IN THE DESCRIPTION

In addition, at time interval Π� at most |Π�| packets can be
transmitted, so that

∑
U⊆U�

xU (�) ≤ |Π�|. To ensure that each
missing subfile W{di,f} is transmitted in exactly r time slots,
we have

∑
U∈U{i,f} y{i,f}(U) = r.

The following LP minimizes the overall rate of transmission
from the server while respecting all the deadline constraints of
the users under the assumption that the server only transmits
all-but-one equations. However, we point out that in general
this may not be the information-theoretically optimal strategy
for the server.

min
{xU (�),y{i,f}(U)}

β∑
�=1

∑
U∈U�

xU (�)

s.t.
∑

U∈U�

xU (�) ≤ |Π�|, for � = 1, . . . , β,

∑
f∈F{i,U}

y{i,f}(U) ≤
∑
�∈IU

xU (�), for i ∈ U,

U ∈ ∪β
�=1U�,∑

U∈U{i,f}

y{i,f}(U) = r, for f ∈ Ω(i), i ∈ [K],

xU (�), y{i,f}(U) ≥ 0, for ∀i ∈ [K], � ∈ [β],

U ∈ ∪β
�=1U�. (1)

Note that [17] considers the case when each missing subfile
has a prescribed deadline. Our LP above can be modified in
a straightforward manner to incorporate this aspect.

B. Interpretation of Feasible Point of (1) as a Coding
Solution

We start by assigning time intervals to user groups. The time
interval Π�, � ∈ [β], will be arbitrarily assigned to user groups
U ∈ U� so that the time assigned to one user group does
not overlap with another. The constraint

∑
U∈U�

xU (�) ≤ |Π�|
implies that such an assignment exists. For each user group U
and each i ∈ U , suppose that f1, . . . , fl ∈ F{i,U} are such that
y{i,fj}(U)
= 0 for j = 1, . . . , l. We assign y{i,fj}(U) part of
the total time allocated to user group U , i.e.,

∑
�∈IU

xU (�),
to the missing subfile Wdi,fj for j = 1, . . . , l. The con-
straint

∑
f∈F{i,U} y{i,f}(U) ≤ ∑

�∈IU
xU (�) ensures that

such an assignment always exists, i.e., it is possible to assign

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHASEMI AND RAMAMOORTHY: ASYNCHRONOUS CODED CACHING WITH UNCODED PREFETCHING 5

Fig. 3. Interpretation of feasible point in (1) for Example 1. For readability,
only equations corresponding to user groups {1, 2} and {2, 3} are depicted.

y{i,f}(U)’s (for fixed i) to the available (strictly) positive
xU (�)’s, such that there is no overlap between them. This
assignment is not unique in general. However, this is not
a problem as any assignment can be used to determine the
equations. This process is repeated for all users i ∈ U .
The equation transmitted on a particular interval is simply

the XOR of the subfile indices that map to that interval. This
equation is valid since the missing subfile Wdi,f with f ∈
F{i,U} is in the cache of all the users in U \ {i}.

Finally, according to the constraint
∑

U∈U{i,f} y{i,f}(U) =
r, each missing subfile Wdi,f is transmitted in its entirety in
some equations. The following example serves to illustrate the
arguments above.
Example 2: Consider again the system in Example 1. Part

of a feasible solution to the LP in (1), corresponding to user
groups U = {2, 3} and U ′ = {1, 2}, is presented below.

x{1,2}(2) = 0.5, x{1,2}(3) = 0.5, x{2,3}(3) = 1,

y{1,1}({1, 2}) = 1, y{2,1}({1, 2}) = 0.5,

y{2,2}({1, 2}) = 0.5,

y{2,1}({2, 3}) = 0.5, y{2,2}({2, 3}) = 0.5,

y{3,1}({2, 3}) = 1.

According to the solution, x{2,3}(3) = 1. Therefore, only
one unit of Π3 is assigned to U (though |Π3| = 2). This
is denoted by the light blue color line in Fig. 3. For user
3 ∈ U , there is only one missing subfile in F{3,{2,3}}, namely
W3,1. As y{3,1}({2, 3}) = 1 it is assigned to x{2,3}(3) in its
entirety. This is depicted by the gray line in Fig. 3. For user
2 in U we have F{2,{2,3}} = {1, 2}. The solution specifies
y{2,1}({2, 3}) = y{2,2}({2, 3}) = 0.5. Thus, we assign the
first half of x{2,3}(3) to missing subfile W2,1 and the second
half to W2,2 (see the dark blue and dotted dark blue lines
in Fig. 3). Accordingly, the server transmits equations such
that the first half of the time interval assigned to user group
U corresponds to the E2 = W2,1 ⊕ W3,1 whereas the second
half corresponds to E3 = W2,2 ⊕ W3,1. The interpretation of
the user group U ′ is similar (see Fig. 3).
Remark 1: The output of the above LP will typically result

in a fractional solution for the variables. A fractional solution
can be interpreted by assuming that each packet that is
transmitted over the shared edge can be subdivided as finely
as needed. Thus, in each time slot, we could transmit multiple
equations that may serve potentially different subsets of users.
This assumption is reasonable if the underlying subfiles and
hence the packets are quite large. In any case, the above LP
provides a lower bound on the performance of a solution where
integrality constraints are enforced.

Remark 2: We note that for the offline solution, within a
given time interval, the user groups can be assigned in any
order according to the xU (�)′s as long as they don’t overlap.
Moreover, the assignment of yi,f (U)′s is also arbitrary as long
as the constraints of the LP are respected. However, for the
online case (cf. Section V), the order does matter since we
make the best effort decision on each individual slot as we do
not know the future arrivals.

C. Modified LP With Fixed User Group Assignments

Note that the LP in (1) includes the variables xU (�)’s
that determine the user groups in the different time-intervals.
Suppose instead that at a certain time τ we are given the total
time allocated to user group U thus far (denoted by z̃U) and
only need to determine the y{i,f}(U) values for each i. Let Ũ
be the set of user groups used until time τ . For user i ∈ [K],
this can be written as a related LP as shown below which
returns the total number of missing packets that user i has
obtained until time τ .

max
{yi,f (U)}

∑
U∈Ũ

∑
f∈Fi,U

yi,f (U)

s.t.
∑

f∈F{i,U}

y{i,f}(U) ≤ z̃U , for i ∈ U, U ∈ Ũ ,

∑
U∈U{i,f}

y{i,f}(U) ≤ r, for f ∈ Ω(i),

y{i,f}(U) ≥ 0, for U ∈ Ũ . (2)

This follows since given the zU ’s we only need to find an
assignment of the y{i,f}(U)’s to the corresponding zU ’s that
respect the first constraint above. Moreover, since we are not
considering the entire transmission time, each missing subfile
may not be transmitted in its entirety.
For instance, in Example 1 suppose that at time τ = 4,

we have z{1} = 2, z{1,2} = 1, z{2,3} = 1, then the LP
above in (2) for user 1 has the optimum point y{1,1}({1}) =
y{1,3}({1}) = 1, y{1,2}({1, 2}) = 1. Likewise for user 2,
the LP has the optimum point y{2,1}({1, 2}) = 1 and
y{2,2}({2, 3}) = 1.
Remark 3: The complexity of our solution in (1) does not

have any dependence on arrival times Ti’s and deadlines ∆i’s.
Our formulation of the LP in terms of the intervals allows us
to circumvent this potential dependence.
Nevertheless, the complexity of solving the LP does grow
quite quickly (cubic) in the problem parameters (number of
constraints + number of variables) [22]. Next, we discuss a
solution based on dual decomposition that is much faster.

D. Dual Decomposition Based LP Solution

As it stands, the LP in (1) cannot be interpreted as a network
flow. Yet, intuitively one can view the missing subfiles from
each user as flowing through the user groups and getting
absorbed in sinks that correspond to their valid time intervals.
However, the flows corresponding to different users can be
shared as the all-but-one equations allow different users to
benefit from the same equation. We note here that a similar
sharing of flows also occurs in the problem of minimum
cost multicast with network coding [23]. The LP in (1) can,

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

however, be modified slightly so that the corresponding dual
function is such that it can be evaluated by solving a set of
decoupled minimum cost network flow optimizations.
1) Decoupling Procedure: For each user i ∈ U the variable

x
(i)
U (�) represents the amount of flow corresponding to user i

outgoing from user group U to time interval Π�. Evidently,
this amount can’t be more than xU (�). Therefore, we have

x
(i)
U (�) ≤ xU (�),

which holds for all i ∈ U and all U ∈ U�, � ∈ [β]. We define
U (i)

� ⊆ U� to be the subset of possible user groups at time
interval Π� that include user i, i.e., i ∈ U for all U ∈ U (i)

� .
By the flow interpretation of x

(i)
U (�), we have∑

f∈F{i,U}

y{i,f}(U) =
∑
�∈IU

x
(i)
U (�),

for all U ∈ ∪β
�=1U (i)

� . For i = 1, . . . , K , let Ci denote the
following set of constraints.∑

f∈F{i,U}

y{i,f}(U) =
∑

�∈IU

x
(i)
U (�), for U ∈ ∪β

�=1U (i)
� ,

∑
U∈U{i,f}

y{i,f}(U) = r, for f ∈ Ω(i),

x
(i)
U (�), y{i,f}(U) ≥ 0, for U ∈ U (i)

� , � ∈ [β], f ∈ Ω(i).

Then, the original LP can be compactly rewritten as

min
β∑

�=1

∑
U∈U�

xU (�)

s.t. x
(i)
U (�) ≤ xU (�) for U ∈ U (i)

� , � ∈ [β], i ∈ [K],∑
U∈U�

xU (�) ≤ |Π�|, for � ∈ [β],

C1, C2, . . . , CK . (3)

It is not too hard to see that the LPs in (1) and (3) are
equivalent. The only difference with (1) is the introduction of
variables x

(i)
U (�) (for appropriate ranges of i, U and �) such

that the second set of inequality constraints in (1) are replaced
by equality constraints. Moreover, the original constraints are
maintained by setting x

(i)
U (�) ≤ xU (�).

By the Slater’s constraint qualification condition [24],
we know that if the primal LP is feasible, then strong
duality holds and the primal and dual optimal values are
the same. Thus, we proceed by considering the dual of
the LP in (3) with respect to the constraints that involve
the variables xU (�). The Lagrangian L({xU (�), x(i)

U (�),
λ

(i)
U (�)}i∈U,U∈U�,�∈[β], {ζ�}�∈[β]) can be expressed as

L �
β∑

�=1

∑
U∈U�

xU (�) +
β∑

�=1

∑
U∈U�

∑
i∈U

λ
(i)
U (�)

(
x

(i)
U (�) − xU (�)

)

+
β∑

�=1

ζ�

(∑
U∈U�

xU (�) − |Π�|
)

where λ
(i)
U (�)’s and ζ�’s are nonnegative dual variables. It turns

out that minimizing the Lagrangian for fixed dual variables
can be simplified by defining γ

(i)
U (�) = λ

(i)
U (�)/(1 + ζ�) for

Fig. 4. Min-cost flow network associated with subproblem (5) corresponding
to the second user, N2(Γ2, ζ2, ζ3). The constraints and costs are given in the
text.

i ∈ U , U ∈ U�, and � ∈ [β]. We define Γ(i) = {γ(i)
U (�), � ∈

IU , U ∈ U (i)
� }, x = {xU (�), U ∈ U�, � ∈ [β]}, and

x(i) = {x(i)
U (�), � ∈ IU , U ∈ U (i)

� }. The dual function
g(Γ(1), . . . , Γ(K), {ζ�}�∈[β]) is obtained by solving for

min
x,x(1),...,x(K)

L
s.t. C1, C2, . . . , CK .

It is evident that the dual function g(Γ(1), . . . , Γ(K), {ζ�}�∈[β])
takes a nontrivial value only if∑

i∈U

γ
(i)
U (�) = 1, ∀ U ∈ U�, � ∈ [β].

The evaluation of g(Γ(1), . . . , Γ(K), {ζ�}�∈[β]) at a fixed set
of dual variables Γ(i)’s and ζ�’s can therefore be written as

min
x(1),...,x(K)

β∑
�=1

∑
U∈U�

∑
i∈U

(1 + ζ�)γ
(i)
U (�)x(i)

U (�) −
β∑

�=1

ζ�|Π�|

s.t. C1, C2, . . . , CK . (4)

We emphasize that (4) is still a convex problem and that
γ

(i)
U (�), ζ� ≥ 0. Let hi(Γi, {ζ�}�∈[β]), i ∈ [K] be

hi(Γi, {ζ�}�∈[β]) � min
x(i)

β∑
�=1

∑
U∈U(i)

�

(1 + ζ�)γ
(i)
U (�)x(i)

U (�),

s.t. Ci. (5)

Then, the dual function becomes

g(Γ(1), . . . , Γ(K), {ζ�}�∈[β])

=
K∑

i=1

hi(Γi, {ζ�}�∈[β]) −
β∑

�=1

ζ�|Π�|, (6)

if
∑

i∈U γ
(i)
U (�) = 1 for all U ∈ U�, � ∈ [β]. We present an

approach to maximize the dual function in (6) shortly.
The sub-problem in (5) for fixed Γi and {ζ�}�∈[β], is a

standard minimum-cost flow problem. The associated flow
network corresponding to user i, i ∈ [K], depends on Γi and
{ζ�}�∈[β] and we denote it by Ni(Γi, {ζ�}�∈[β]). It contains
a source node s and three intermediate layers followed by
a terminal node t (see Fig. 4 for an example). The nodes
in the first, second, and third layer correspond to missing
subfiles in Ω(i), user groups in ∪�∈[β]U (i)

� , and time intervals

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHASEMI AND RAMAMOORTHY: ASYNCHRONOUS CODED CACHING WITH UNCODED PREFETCHING 7

{Π� : � ∈ [β] and i ∈ U�} respectively. The edges in
Ni(Γi, {ζ�}�∈[β]) can be expressed as follows. There are |Ω(i)|
edges going from source node s to each of missing subfiles in
Ω(i). Also, for each f ∈ F{i,U} there is an edge going from
missing subfile node f to user group node U . Furthermore,
there is an edge going from user group U ∈ ∪�∈[β]U (i)

� to
time interval Π� for each � ∈ IU . Finally, corresponding to
each time interval in {Π� : � ∈ [β] and i ∈ U�} there is an
edge going from this time interval to the terminal node t.
In flow network Ni(Γi, {ζ�}�∈[β]), i ∈ [K], a zero cost is

assigned to all edges except those from the user group nodes to
the time intervals. The cost of the edge between user group U

and time interval Π� is (1+ζ�)γ
(i)
U (�). The edge between time

interval Π� and the terminal node has a capacity constraint of
|Π�| and the edge between the source node and a missing
subfile has a capacity constraint of r; the other edges have no
capacity constraint. The variable x

(i)
U (�) is the amount of flow

carried by the edge from user group U to time interval Π�.
The source injects a flow of value |Ω(i)|r which needs to be
absorbed in the terminal.
We emphasize that minimum cost network flow algorithms

have been subject of much investigation [4] within the opti-
mization literature and large scale instances can be solved
very quickly. For our work, we leverage Capacity Scaling
algorithms within the open-source LEMON package [25].
2) Maximizing the Dual Function: The dual function in (6)

is concave (as it can be expressed as the pointwise infimum
of a family of affine functions of the dual variables [24]).
We exploit the projected subgradient method to maximize the
dual function iteratively. Let x

(i)
U (�, n−1) for all i ∈ [K], U ∈

U� denote the optimal point of (5) when solved for i ∈ [K]
at the n − 1 iteration. Let {γ(i)

U (�, n − 1), ζ�(n − 1), ∀ U ∈
U (i)

� , � ∈ [β], i ∈ [K]} denote a dual feasible point of (6) at
the (n − 1)-th iteration.
According to the subgradient method, at the n-th iteration,

for i ∈ [K], we first compute

γ̃
(i)
U (�, n) = γ

(i)
U (�, n − 1) + θnx

(i)
U (�, n)(1 + ζ�(n − 1)),

ζ̃�(n) = ζ�(n − 1) + θn(
∑

U∈U�

∑
i∈U

γ
(i)
U

×(�, n)x(i)
U (�, n) − |Π�|),

where θn is the step size. These intermediate variables are
projected onto the feasible set and primal recovery is per-
formed by the method of [26]. The details can be found in the
Appendix A. Numerical results appear in Section VI.

V. ONLINE ASYNCHRONOUS CODED CACHING

In the online scenario, at time τ only information about
the already arrived requests are known to the server, i.e., it
only knows Ti, di and ∆i for i ∈ [K] such that Ti ≤
τ . Ideally, one would want to design an online algorithm
that is guaranteed to be feasible whenever the corresponding
offline version is feasible. However, this appears to be a
hard problem. Specifically, routinely used algorithms such as
earliest-deadline-first (EDF) do not have this property [27].
In the upcoming subsection we demonstrate that the online
solution requires additional ideas from a coding standpoint.

Fig. 5. Online solution corresponding to the Example 3. Note that the server
is forced to transmit W1,2 ⊕ W1,3 at τ = 1.

A. Necessity of Coding Across Missing Subfiles of a User

Example 3: Consider a system with N = K = 3 and Mi =
1 with Zi = {Wn,i : n ∈ [N]} for i ∈ [K] (also depicted
in Fig. 1). The arrival times and deadlines of the users are Ti =
i, and ∆i = 2 for i ∈ [K] (as shown in Fig. 5). We assume that
user i is interested in files Wi for i ∈ [K] and that transmitting
a subfile takes a single time slot, i.e., r = 1.
Suppose that the server does not code across any user’s

missing subfiles. At τ = 1, it has the choice to transmit
either W1,2 or W1,3. We emphasize that it has to transmit
either of these as the deadline for user 1 is T1 + ∆1 = 3.
If the server transmits W1,3, then consider the scenario where
(T3, ∆3) = (2, 2) and (T2, ∆2) = (3, 2), i.e., the third user’s
request comes at τ = 2 and the second user’s request comes
at τ = 3. In this case, the server is forced to transmit W1,2

at τ = 2, which implies that user 3 misses its deadline.
On the other hand, if the server transmits W1,2 at τ = 1, then
(T2, ∆2) = (2, 2) and (T3, ∆3) = (3, 2) will cause user 2 to
miss its deadline.
This issue can be circumvented if we transmit a linear

combination of both W1,2 and W1,3 in the first time slot as
shown in Fig 5. Intuitively, this is the correct strategy since
transmitting W1,3 ⊕ W1,2 allows the server to hedge its bets
against the identity of the next request arrival. This example
demonstrates that coding across missing subfiles of user 1
is strictly better than the alternative. We emphasize that the
synchronized model of [1] and the offline scenario do not
require this.
Accordingly, for the online scenario we treat each missing

subfile Wdi,f as an element of a large enough finite field F.
This allows us to consider linear combinations of the missing
subfiles over F. Note that any equation of the form⊕

i∈U

⊕
f∈F{i,U}

α{i,f}W{di,f}, (7)

where the coefficients α{i,f} belong to the field F and
⊕

represents F-addition is also an all-but-one equation from
which user i can recover

⊕
f∈F{i,U} α{i,f}W{di,f}.

B. Recursive LP Based Algorithm

In the online scenario at time τ our only decision is to
transmit an equation in the time slot [τ, τ + 1). In particular,
it is possible that a request arrives at τ +1 and that can change
the situation drastically. It makes intuitive sense to transmit
equations that benefit a large number of users. However,
we also need to take into account the deadline constraints of
each user. These requirements need to be balanced. At the top
level, our approach can be summarized as follows.

• Solving a Linear Program When a User Request Arrives:
We solve an LP which is similar to (1) each time a new

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. An illustration of arrival times and user groups associated with the
already submitted equations upon time τ = 8 in Example 4. Associated with
each user group in each time slot, an equation has been submitted by the
server at the same time slot.

user request comes into the system. This specifies a set
of xU (�) and yi,f (U) variables. However, in the offline
case, the ordering of the xU (�)’s within an interval does
not matter (cf. Remark 2). In the online case, this is no
longer true. As we have no knowledge of future arrivals,
it becomes important to choose the “best” user group for
the time slot in which transmission needs to take place.

• Deciding Which User Group to Pick: Based on the xU (�)
variables we first decide a candidate list of feasible user
groups that can be chosen for transmission at each time
slot. Suppose user group U is a candidate. We calculate
a metric for U depending upon (i) the benefit of this
equation to the participating users within U , and (ii) the
stringency of the deadlines of the users in U . Our measure
of stringency for user i is the ratio of the remaining
number of missing packets of user i to the number of
remaining time-slots for user i. If the calculated metric
for U is above a pre-defined threshold then an equation
corresponding to U (of the form in (7)) is transmitted.

• Updating Variables and Continuing Recursively: Follow-
ing this, we update certain variables and the process
continues for each time slot thereafter. When the next
user request arrives into the system, the history of the
variable assignments is used to solve a new LP (similar
to (1)), and the process continues recursively.

1) Measuring the Benefit of User Group U to User i:
As we need to commit to a user group at each time instant
in the online case, we first discuss how we can measure
the benefit to a user i ∈ U if user group U is chosen for
transmission at a given time slot. In particular, if U has been
used for transmission in the past, then the current transmission
may be less beneficial to some of the users or of no benefit.
We demonstrate this by means of the following example.
Example 4: Consider a system N = K = 5, Mi = 2 for all

users i ∈ [K], and r = 1. The placement scheme is the same
as [1] so that each file is divided to F = 10 subfiles and each
user misses 6 subfiles. The cache content and missing subfiles
are specified in Table II. We assume that the current time is
τ = 8 and that the request of users 1, . . . , 4 have arrived to
the server. More specifically, we have T1 = 0, T2 = 2, T3 =
3, T4 = 6 with deadlines ∆i = 15 for all users i ∈ [K]. The
server has already transmitted eight equations corresponding
to the user groups depicted in Fig. 6.
Suppose that the server considers scheduling the user group

{2, 3, 5} at τ = 8. We note here that users 2 and 3 have
already participated in previous transmissions. Thus, it needs
to be determined how beneficial this equation is to each user.
Considering user 2, as shown in Table II, it can recover a
linear combination of {W{d2,f}, f = 2, 8, 9} (from user group
{2, 3}),W{d2,2} (from user group {1, 2, 3}) and W{d2,8} (from
user group {2, 3, 4}) from the prior equations; this in turn
implies that it can also recover W{d2,9} by solving linear

TABLE II

CACHE CONTENT AND MISSING SUBFILES OF EXAMPLE 4. CACHE
CONTENTS Zi = {W{n,f}, n ∈ [5], f ∈ SECOND COLUMN}
AND MISSING SUBFILES {W{di,f}, f ∈ THIRD COLUMN}

equations. However, note the the user group {2, 3, 5} also
results in user 2 recovering W{d2,9}. Thus, from user 2’s
perspective, this equation is of no benefit. A similar argument
shows that this user group does not benefit user 3 either.
We observe at this point that the modified LP in

Section IV-C, can be used here to determine a given user’s
benefit. In particular, the past history of the transmission
contains information on the total time allocated to a given user
group U . At time τ , if we consider transmitting user group Û ,
we can add it to the set of user groups and update its time
allocation. Following this, for each user the LP in (2) can be
used to measure the number of subfiles that can be transmitted
for it, were Û to be chosen.
Let Usent(τ) denote the set of user groups chosen for time

≤ τ , Û be a user group under consideration at time τ , and let
Ũsent(τ) = Usent(τ)∪{Û}. Let z̃U (τ) denote the time allocated
to user group U ∈ Ũsent(τ), where z̃Û (τ) is incremented by
one if Û ∈ Ũsent(τ), otherwise it is set to 1. Consider the
following LP.

max
{ỹ{i,f}(U)}

∑
U∈Ũsent(τ),U�i

∑
f∈F{i,U}

ỹ{i,f}(U)

s.t.
∑

f∈F{i,U}

ỹ{i,f}(U) ≤ z̃U (τ) for U ∈ Ũsent(τ), U � i

∑
U∈U{i,f}∩Ũsent(τ)

ỹ{i,f}(U) ≤ r for f ∈ Ω(i),

ỹ{i,f}(U) ≥ 0. (8)

Now suppose that we have already tracked the number of
useful packets for user i until time τ . Then the above LP can
be used to determine the benefit of transmitting user group Û
at time τ .
Remark 4: The LP in (8) can also be expressed as a

maximum flow problem. The associated flow network consists
of a source node s, a node for each f ∈ Ω(i), a node for each
user group U ∈ Ũsent(τ), and a terminal node t. There are
edges with capacity r going from s to each f ∈ Ω(i) and
edges from f ∈ Ω(i) to node U ∈ Ũsent(τ) if f ∈ F{i,U}. The
flow on such an edge is ỹ{i,f}(U). Moreover, from each node
U ∈ Ũsent(τ) to t there exist an edge of capacity z̃U (τ). These
capacity constraints model the first two inequality constraints
in (8). Fig. 7 illustrates an example of this network. It is
well-known that if all capacities in a flow network are integers,
there exists an integral maximum flow ([28], Chapter 7).
Therefore, there exists an integral solution for ỹ{i,f}(U)’s
in (8) if z̃U (τ)’s are integers.
2) Solving LP Upon User Arrival: Consider a time τ = Tk

when the request of the k-th user arrives at the server. We

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHASEMI AND RAMAMOORTHY: ASYNCHRONOUS CODED CACHING WITH UNCODED PREFETCHING 9

Fig. 7. Max flow network associated with LP in (8).

let Usent(τ) be the set of user groups associated with the
previously transmitted equations. We also let zU (τ) be the
total time allocated to equations corresponding to user group
U prior to time τ . Thus, if in time interval [τ, τ +1) the server
transmits an equation that exclusively benefit users in U then
zU (τ + 1) = zU (τ) + 1 otherwise zU (τ + 1) = zU (τ). Time
intervals Π1,k, . . . , Πβk,k are formed by the set of times in

{Tk} ∪ {Ti + ∆i : i ∈ [k], Ti + ∆i > Tk} .

As in the offline case in (1), the sets of active users U�,k,
user groups U�,k and I(k)

U are defined corresponding to these
time intervals, e.g., U�,k is the set of active users in Π�,k.
Moreover, Vk is a set of user groups that either already have
been transmitted or might be transmitted after τ = Tk. That is
Vk = Usent(τ) ∪ {U�,k : � ∈ [βk]}. The variables xU (�)’s and
y{i,f}(U)’s have the same interpretation as the offline case.
With these variables, the server solves the following LP.

min
{xU (�), y{i,f}(U)}

βk∑
�=1

∑
U∈U�,k

xU (�)

s.t.
∑

U∈U�,k

xU (�) ≤ |Π�,k|, for � = 1, . . . , βk

∑
f∈F{i,U}

y{i,f}(U) ≤
∑

�∈I(k)
U

xU (�) + zU (Tk)

for i ∈ U, U ∈ Vk,∑
U∈U{i,f}

y{i,f}(U)=r, for f ∈ Ω(i), ∀ i ∈ ∪βk

�=1U�,k,

xU (�), y{i,f}(U) ≥ 0, for i ∈ [k], � ∈ [β], U ∈ Vk.

(9)

An important feature of time intervals Π1,k, …, Πβk,k is that
these time intervals end at a deadline and except the first time
interval Π1,k that starts with arrival time Tk, the other time
intervals start with a deadline. Thus, we have U�+1,k ⊂ U�,k,
i.e., the set of active users in interval Π�+1,k is a subset of the
active users in interval Π�,k for the range of �.
Next, the server creates a list of candidate user groups. Let

{x∗
U (�), ∀ U ∈ U�, � = 1, . . . , βk} be the solution of (9) and

let X ∗ = {x∗
U (�) : x∗

U (�) ≥ 1}. The elements of X ∗ are first
ordered based on time intervals. Then, among the elements
with the same time interval, they are ordered based on length
of user group. Therefore, for two elements x∗

U (�), x∗
U ′(�′) ∈

X ∗ we say x∗
U (�) is before x∗

U ′(�′) if � < �′, or if � = �′
and |U | ≥ |U ′|. We let X ∗

sorted denote the sorted version of
X ∗ using this procedure. Let vi(τ) be the number of missing

Algorithm 1 Recursive LP Algorithm

Input: Caches Zi for i ∈ [K], η0, {Ti, ∆i}, for i ∈ [K].
1: Initialization:
2: set Usent(0) ← ∅, Xoff ← ∅, �off ← 0, m ← 1 and k ← 1.
3: set Mi = ∅, and vi(0) = 0 for i = 1, . . . , K .
4: for τ = 0, 1, 2, . . . , Tmax do
5: if τ = Ti + ∆i and vi(τ) < r|Ω(i)| for some i then
6: return INFEASIBLE.
7: end if
8: if τ = Ti (a new user makes request) for some i then
9: k = arg maxi∈[K] τ = Ti

10: Solve LP (9). Form X ∗ and then X ∗
sorted.

11: end if
12: If τ = Ti or τ = Ti+∆i for some i then �off ← �off+1.
13: if X ∗

sorted
= ∅ then
14: Pick first in order x∗

U∗(�) ∈ X ∗
sorted with ηU∗(τ) ≥ η0.

15: Randomly select α{i,f,j,m}’s from F and send

⊕
i∈U

⊕
f∈F{i,U}

r⊕
j=1

α{i,f,j,m}W{di,f,j},

16: If U∗ ∈ Usent(τ) then zU∗(τ + 1) ← zU∗(τ) + 1,
otherwise zU∗(τ + 1) = 1 and Usent(τ + 1) ← Usent(τ) ∪
{U∗}

17: If x̃U∗(�off) ∈ Xoff then x̃U∗(�off) ← x̃U∗(�off) + 1,
otherwise x̃U∗(�off) = 1 and Xoff ← Xoff ∪ {x̃U∗(�off)}

18: Set x∗
U∗(�) ← x∗

U∗(�)−1, if x∗
U∗(�) < 1 remove it from

X ∗
sorted.

19: For all i ∈ U∗, set vi(τ + 1) ← w{i,U∗}(τ), set Mi ←
Mi ∪ {m}, then m ← m + 1

20: for all U ∈ Usent(τ) \ {U∗} set zU (τ + 1) ← zU (τ)
21: for all i ∈ [K] \ U∗ set vi(τ + 1) ← vi(τ).
22: end if
23: end for

packets (subfiles when r = 1) that have been transmitted for
user i until time τ ; this value is tracked in Algorithm 1.
Note that user i needs to recover r|Ω(i)| − vi(τ) missing

packets and it has Ti+∆i−τ time slots to obtain them. We use
the ratio of these quantities as a measure of the stringency of
the deadline of user i. Let w{i,Û} denote the total number of
missing packets of user i that can be communicated by the
user groups chosen thus far and by picking Û at time τ . The
LP in (8) allows us to compute w{i,Û} and in turn w{i,Û}(τ)−
vi(τ). Therefore the metric ηU (τ) is obtained by the following
weighted sum.

ηU (τ) �
∑
i∈U

(
r|Ω(i)| − vi(τ)

)
Ti + ∆i − τ

(w{i,U}(τ) − vi(τ)).

At time τ = Tk, the server picks the first element x∗
U (�) ∈

X ∗
sorted such that ηU (τ) ≥ η0 for some threshold η0 and trans-

mits an equation corresponding to it. Unlike the synchronous
case, we choose a random linear combination of all missing
packets of user i that can be transmitted by user group U .
When r > 1, we subdivide a missing subfile into r packets

that are denoted W{di,f,j} for j = 1, . . . , r. Thus, the server

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

transmits

⊕
i∈U

⊕
f∈F{i,U}

r⊕
j=1

α{i,f,j,m}W{di,f,j},

at time interval [τ, τ + 1) where m denotes the m-th equation
transmitted by the server and α{i,f,j,m} are chosen indepen-
dently and uniformly at random from the finite field F. If none
of the elements in x∗

U (�) ∈ X ∗
sorted satisfy ηU (�) ≥ η0 then

nothing will be transmitted at this time interval.
If a new user request does not come at time τ + 1, then

the server updates the user group values and then solves (8)
again to decide the user group for the time slot [τ +1, τ +2).
The process continues this way until the next user request
comes when the LP in (9) is solved. The complete details are
provided in Algorithm 1.
In general, there is no guarantee that Algorithm 1 will

return a feasible schedule if the corresponding offline schedule
is feasible. In that sense, Algorithm 1 can be viewed as
a heuristic with good experimental performance. However,
if Algorithm 1 does not return “INFEASIBLE”, we can show
that a feasible solution for the corresponding offline LP can be
identified. This fact coupled with usage of the Schwartz-Zippel
Lemma allows us to conclude that our algorithm works with
high probability if it does not return “INFEASIBLE”. The
proofs of the following claim and lemma appear in Appen-
dix B and C respectively.
Claim 1: For user requests, {Ti, ∆i, di}, where i ∈ [K],

if Algorithm 1 does not return “INFEASIBLE” then there
exists a feasible integral solution for the offline LP in (1).
The following lemma shows that if Algorithm 1 does not return
“INFEASIBLE” then with high probability each user recovers
all its missing subfiles from the transmitted equations.
Lemma 1: If Algorithm 1 does not return “INFEASIBLE”

then with probability at least
(
1 − 1

|F|
)rKF

all requests will
be satisfied within their deadline.
Thus, by choosing the field size |F| large enough, we can

make the probability of success as large as we want. We point
out that increasing the field size results in a corresponding
increase in the computational requirements at the server and
the user nodes.

VI. SIMULATION RESULTS AND COMPARISONS

WITH PRIOR WORK

In this section we present simulation results for both the
proposed offline and the online algorithms (software are avail-
able in [29]). Prior work in this area is primarily the work of
[17] that presents heuristics for the online scenario. However,
we note that [17] works with deadlines for subfiles and does
not take into account the time required to transmit a packet.
It uses intuitively plausible rules to decide the equations
transmitted by the server depending on the deadlines of the
users.
For both scenarios, the request arrival times {Ti, i ∈ [K]}

are generated according to a Poisson process with parameter
λF . The arrival time is quantized to the nearest time slot.
The deadlines ∆i, i ∈ [K] are generated uniformly at random
from the range [∆min, ∆max] (these values will be specified
for each setting below).

TABLE III

EXECUTION TIME FOR SOLVING THE LP USING OUR APPROACH; WE
RUN 1000 ITERATIONS OF SUBGRADIENT ASCENT. COLUMNS 2 & 3
INDICATE THE SIZE OF THE ASSOCIATED FLOW NETWORK. THE

TABLE IS ORDERED BY THE NUMBER OF NODES IN THE

FLOW NETWORK

Fig. 8. Convergence of primal recovery to the optimal solution for a system
with N = K = 20, r = 1, and t = 2. Dashed line is the optimal value
obtained by solving (1).

A. Offline Scenario Simulation

In the first set of simulations we examine the execution
time of our approach for various values of (K, t) where
t = KM/N is an integer; the placement scheme in [1] was
used. In these simulations we set r = 1, λ = 0.4, F =

(
K
t

)
,

∆min =
(
K−1

t

)
, and ∆max =

(
K

t+1

)
. Table III shows the details

of the overall execution time and the size of the corresponding
flow networks for the various instances. The last column of
the table corresponds to the execution time (in MATLAB) of
the LP in (1), while the second-last column corresponds to the
execution time of the proposed approach above. It is evident
that the proposed approach is significantly faster. In fact,
memory requirements make it infeasible to even formulate the
problems corresponding to the first three rows in MATLAB.
Fig. 8 shows the convergence of the primal recovery procedure
to the actual rate for a system with N = K = 20, t = 2, and
r = 1. It can be observed that there is a clear convergence of
the solution to the optimal value.

B. Online Scenario Simulation

For the online scenario we consider both centralized [1] and
decentralized [18] placement schemes for a system with N =
K = 6 and M = 2 with ∆min = (KM/N)F and ∆max =
KF . For each experiment we run 200 trials for generating the
arrivals. For the centralized case, we use the placement scheme
of [1] and the placement is fixed during each experiment. In the

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHASEMI AND RAMAMOORTHY: ASYNCHRONOUS CODED CACHING WITH UNCODED PREFETCHING 11

Fig. 9. Centralized Placement in [1]: (a) average coding gain over all feasible
offline problem instances, (b) feasibility probability of the online algorithm
conditioned on feasibility of the offline problem. The placement has been fixed
for all trials and at each trial a new arrival time and deadline is generated.
In this simulation, we set η0 = 0.4− 0.5

λ
and η0 = 0.8− 0.2

λ
in Case I and II

respectively.

decentralized scheme, at each trial the cache content of each
user is independently and uniformly chosen as well.
For each set of generated arrivals, we first run the offline LP

to check whether it is feasible. The online algorithm is run only
if the offline LP is feasible. The online algorithm requires a
threshold η0 (see Section V-B). We run simulations with a low
threshold (case I) and a high threshold (case II). The coding
gain is defined as the ratio of the uncoded rate3 to the rate
achieved by the system. Fig. 9 (a) and Fig. 10 (a) depict plots
of the coding gain vs. 1/(Fλ) in centralized and decentralized
cases, respectively. As λ decreases, the arrivals are spaced
further apart on average, and the coding gain of any scheme
is expected to reduce.
The coding gain is computed by taking an average over all

instances where a given scheme is feasible. For the offline
scheme, this means that we take the average of all instances
where it is feasible. For the online algorithm, some of the
arrival patterns may result in infeasibility; these instances
were not taken into account when computing the average
coding gain. This explains why the coding gain of the case II
sometimes appears to be higher than the offline algorithm.
However, the coding gain of the case I is significantly lower,
because of its low threshold.

3The uncoded rate is simply the total number of missing subfiles of all users
normalized by F .

Fig. 10. Decentralized placement scheme for N = K = 6, M = 2, and
F = 100: (a) average coding gain over all feasible offline problem instances,
(b) feasibility probability of the online algorithm conditioned on feasibility
of the offline problem. At each trial cache content of each user is placed
randomly and uniformly. In this simulation, we set η0 = 0.4 − 0.5

λ
and

η0 = 0.8 − 0.2
λ

in Case I and Case II respectively.

The feasibility probability of a scheme vs. the arrival rate
is plotted in Fig. 9 (b) and Fig. 10 (b) for the centralized and
decentralized placement schemes respectively. As expected the
low threshold online algorithm has a very high feasibility
probability ≈ 1 for a range of arrival parameters, while the
high threshold algorithm has a lower feasibility probability.
Note that the high threshold algorithm (when compared to the
low threshold case) only transmits an equation when a large
enough number of users benefit from the transmission. Thus,
its feasibility probability is lower, but when it is feasible, its
coding gain is much higher than the low threshold case.
For both plots, we also include the results of [17]. In this

scheme feasibility and coding gain can be traded off by setting
a threshold for the defined misfit function (Section III in [17]).
We use this scheme by setting the threshold to zero; this is
the so-called First-Fit Rule in [17]. The First-Fit rule prefers
feasibility over coding gain. The setting in [17] considers a
scenario where each subfile has a deadline. We have adapted
their algorithm for our case. It can be observed that the feasi-
bility probability of [17] is quite poor. Accordingly, we also
plot the fraction of subfiles that meet the deadline; this is
somewhat better. The coding gain numbers for [17] are also
quite unreliable as the algorithm is infeasible in most cases.
Thus, we do not plot it.

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. Decentralized placement scheme with deadlines for individual
subfiles for K = N = 6, M = 2, and F = 20: (a) average coding gain over
all feasible offline problem instances, (b) feasibility probability of the online
algorithm conditioned on feasibility of the offline problem. For the scheme
in [17] two probabilities are reported. The first one is the probability that all
requests are satisfied, and the second one is the probability that a fixed request
is satisfied (lines with circle and diamond marks respectively). At each trial,
the cache content of each user is populated randomly and uniformly. In this
simulation, we set η0 = 0.4− 0.5

λ
and η0 = 0.8− 0.2

λ
in Case I and Case II

respectively.

C. Scenario Where Individual Subfiles Have Deadlines

The work of [17] considers a situation where each subfile
has its own deadline. This is inspired by applications such as
video delivery over the Internet. We emphasize that this setting
can be captured by our techniques. In particular, suppose that
each user requests a set of subfiles from the server where the
subfile requests arrive at different times and each subfile has
a different deadline. In this case, we can treat each subfile
request of user i ∈ [K] as corresponding to a distinct virtual
user whose cache content is the same as user i. However,
the requests of the users are different. In this situation, each
virtual user has precisely one missing subfile. Thus, the issue
of coding over the corresponding subfiles does not arise.
Our setting is again one where K = N = 6, M = 2. Each

file is subdivided into F = 20 subfiles. Arrival times and dead-
lines are generated similar to the previous simulations with
Poisson parameters 1/(λF) and the deadlines are randomly
chosen uniformly from [∆min, ∆max] with ∆min = KMF/N
and ∆max = KF . Similar to the previous experiments we run
200 trials and at each trial, the cache content of each user
is populated randomly and uniformly among all placement

schemes with cache of size MF subfiles. Thus, different
users might request different number of subfiles from the
server. The only difference is that here each requested subfile
has its own arrival time and deadline. The results are illustrated
in Fig. 11. It can be observed that our proposed approach
provides significantly superior coding gain and feasibility
probability as compared to the work of [17].

VII. CONCLUSIONS AND FUTURE WORK

In this work, we considered the asynchronous coded caching
problem where user requests (with deadlines) arrive at the
main server at different times. We considered both offline and
online versions of this problem. We demonstrated that under
the assumption of all-but-one equations, the offline scenario
can be optimally solved by a linear program (LP). Moreover,
we presented a low-complexity solution to this LP based on
dual decomposition. In contrast to the synchronous case and
the offline scenario, we show that the online scenario requires
coding across missing subfiles of a given user. Furthermore,
we present an online algorithm that leverages offline LP in a
recursive fashion. Extensive simulation results indicate that our
proposed algorithm significantly outperforms prior algorithms.
Our online algorithm considers the situation where there

is no knowledge about future request arrival times and file
identities; this corresponds to a worst-case scenario. It would
be interesting to consider cases where there is statistical infor-
mation available on the arrival times and file popularity and/or
algorithms where these can be learned and to investigate how
this knowledge can be used to further improve the performance
of the algorithm. For instance, it may be possible to design
better placement schemes under this knowledge. Throughout
the paper, we implicitly considered the case when different
users request different files. It may be interesting to adapt our
techniques for the case of repeated requests.

APPENDIX

A. Quadratic Projection and Primal Recovery in Dual
Decomposition

For the projection of γ̃
(i)
U (�, n) and ζ̃�(n) to the con-

straint space we simply set ζ�(n) = max
(
ζ̃�(n), 0

)
and

{γ(i)
U (�, n), ∀ i ∈ U} is obtained via the following quadratic

optimization.

min
{v

(i)
U : ∀ i∈U}

∑
i∈U

(
v
(i)
U − γ̃

(i)
U (�, n)

)2

s.t.
∑
i∈U

v
(i)
U = 1. (10)

In [23, Appendix I] an algorithm has been proposed to
solve (10). This solution can be explained as follows. For
fixed � ∈ [β] and for each U ∈ U�, we sort γ̃

(i)
U (�, n) so

that γ̃
(i1)
U (�, n) ≥ . . . ≥ γ̃

(i|U|)
U (�, n). We take k̂ to be the

minimum k such that

1
k

1 −

k∑
j=1

γ̃
(ij)
U (�, n)

 ≤ −γ̃

(ik+1)
U (�, n)

or let k̂ = |U | if such a k doesn’t exist. Then γ
(ij)
U (�, n) =

γ̃
(ij)
U (�, n) + 1−�k̂

l=1 γ̃
(il)
U (�,n)

k̂
if j ∈ [k̂] and zero otherwise.

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHASEMI AND RAMAMOORTHY: ASYNCHRONOUS CODED CACHING WITH UNCODED PREFETCHING 13

The initial setting for the dual variables is chosen as
γ

(i)
U (�, 0) = 1/|U |, for i ∈ U, U ∈ U�, � ∈ [β], and ζ� = 0

for � ∈ [β].
Primal Recovery: After solving the dual problem, the primal

variables, i.e., xU (�, n)’s, are recovered by the method of [26]
whereby

xU (�, n) =
n∑

l=1

µl(n)
(

max
i∈U

x
(i)
U (�, l)

)
(11)

where µl(n)’s are sequence of convex combination weights for
each non-negative integer n, i.e.

∑n
l=1 µl(n) = 1 and µl(n) ≥

0 for all l = 1, . . . , n. In [23], it has been shown that if the
step size θn and convex combination weights µl(n) are chosen
so that

• ηl,n ≥ ηl−1,n for all l = 2, . . . , n and n = 0, 1, . . .,
• ∆max

ηn
→ 0 as n ← ∞, and

• η1,n → 0 as n ← ∞ and ηn,n ≤ δ for all n = 0, 1, . . .
for some δ > 0,

then {xU (�, n)}�∈[β], U∈Ul
is an optimal primal solution. Here

ηl,n = µl(n)
θn

and ∆max
ηn

= maxl=2,...,n{ηl,n − ηl−1,n}. Some
sequences for θn and µl(n) that satisfy the above conditions
has been proposed by [23]. Among them we choose µl(n) = 1

n
and θn = n−α where 0 < α < 1. Then, the primal solution
will be updated as,

xU (�, n + 1) =
n

n + 1
xU (�, n) +

maxi∈U x
(i)
U (�, n)

n + 1
. (12)

B. Proof of Claim 1

Proof: For simplicity, we prove the claim for r = 1
and the proof for the general case follows directly. We will
construct xU (�) and y{i,f}(U) variables for the offline LP
from the decisions made in Algorithm 1. Note that we update
the set Xoff with the user groups chosen in Algorithm 1.
It is not difficult to verify that for any x̃U (�) ∈ Xoff user
group U is a member of U�. Moreover, the algorithm assigns
integer values to x̃U (�). Now, for any U ∈ U� in (1), we set
xU (�) = x̃U (�) if x̃U (�) ∈ Xoff and xU (�) = 0 otherwise.
Therefore, xU (�)’s take integer values. Since at each time only
one equation is transmitted in Algorithm 1, the first condition∑

U∈U�
xU (�) ≤ |Π�| holds for all � ∈ [β].

For each i ∈ [K] we define [τi, τi + 1) to be the last time
slot that user i benefits from the equation transmitted by the
server. Clearly we have that vi(τi + 1) ≥ |Ω(i)| otherwise
Algorithm 1 will be infeasible at τ = Ti + ∆i. We let Ui,last

to be the user group associated with this equation where i ∈
Ui,last.

Note that Algorithm 1 tracks a set Usent(τ) that contains all
the user groups that have been used by the algorithm before
time τ . We let ỹ{i,f}(U), f ∈ F{i,U} and U ∈ Usent(τi) with
U � i be the solution of (8) when solving it for w{i,Ui,last}(τi).
Then, for each U ∈ ∪β

�=1U� with U � i and for each f ∈
F{i,U} we assign y{i,f}(U) = ỹ{i,f}(U) if U ∈ Usent(τi) and
y{i,f}(U) = 0 otherwise. We apply this assignment for all
i ∈ [K]. Algorithm 1 assigns integer values to zU (τ)’s. From
Remark 4 it follows that there exists an integral solution for
ỹ{i,f}(U)’s and consequently the y{i,f}(U)’s as well. With
these assignments, we now demonstrate that the second and
third conditions in (1) hold.

For the second condition we note that if U /∈ Usent(τi) then
y{i,f}(U) = 0 and we have nothing to show. For U ∈ Usent(τi)
we have that y{i,f}(U) = ỹ{i,f}(U). Recall that ỹ{i,f}(U) is
the solution of (8) at time τ = τi. By the way that zU (τ) has
been updated in Algorithm 1, we have zU (τ) ≤ zU (Tmax).
Therefore, we have zU (τi + 1) ≤ zU (Tmax) =

∑
�∈IU

x̃U (�)
and from (8) for w{i,Ui,last}(τi),∑
f∈F{i,U}

y{i,f}(U) =
∑

f∈F{i,U}

ỹ{i,f}(U)≤ z̃U (τi)=zU (τi+1)

≤
∑
�∈IU

x̃U (�) =
∑
�∈IU

xU (�).

For the third condition, consider any user i ∈ [K] and any
f ∈ Ω(i). Recalling the definition of τi and w{i,Ui,last}(τi),
we know that w{i,Ui,last}(τi) = vi(τi +1) ≥ |Ωi| which implies
that in (8), we have

|Ω(i)| ≤
∑

U∈Usent(τi),U�i

∑
f∈F{i,U}

ỹ{i,f}(U)

=
∑

f∈Ω(i)

∑
U∈U{i,f}∩Usent(τi)

ỹ{i,f}(U) ≤
∑

f∈Ω(i)

1 = |Ω(i)|,

where the last inequality comes from the second constraint
in (8). The middle equality holds by counting arguments for
missing subfiles f ∈ Ω(i) and user groups in U ∈ Usent(τi). To
verify this, consider a bipartite graph in which the left and right
nodes correspond to f ∈ Ω(i) and U ∈ Usent(τi) with U � i
respectively. There is an edge between nodes corresponding
to f and U if and only if f ∈ F{i,U}. We let ỹ{i,f}(U) to
be the label of this edge. By the definition of U{i,f} we know
that f ∈ F{i,U} implies U ∈ U{i,f}. Therefore, outgoing edges
from the node corresponding to f are the edges between f and
the nodes U ∈ U{i,f}∩Usent(τi). Similarly, the outgoing edges
between node U ∈ Usent(τi) with U � i are the edges between
U and f ∈ F{i,U}. By counting ỹ{i,f}(U) in two ways,
from the left and right nodes, we have the required equality.
Therefore, we have that

∑
U∈U{i,f}∩Usent(τi)

ỹ{i,f}(U) = 1 for

any f ∈ Ω(i). This further implies that
∑

U∈U{i,f} y{i,f}(U) =
1 for all f ∈ Ω(i) and completes the proof.

C. Proof of Lemma 1

Proof: For simplicity, in the discussion below we assume
that r = 1. The proof for r > 1 follows in straightfor-
ward manner. By the way that Mi and vi(τ) are updated
in Algorithm 1, we have |Mi| = vi(τ) at each time τ .
Furthermore, vi(Tmax) = |Ω(i)| for all i ∈ [K]. Therefore,
each user i ∈ [K] benefits from |Ω(i)| equations. For a
m ∈ Mi, let

⊕
i∈U

⊕
f∈F{i,U} α{i,f,m}W{di,f} represent

the m-th equation (the dependence on index j is suppressed
since we assume that r = 1). User i ∈ U can recover⊕

f∈F{i,U} α{i,f,m}W{di,f} from this equation since the miss-
ing subfiles W{dj ,f ′}, for f ′ ∈ F{j,U} and j ∈ U \ {i}, exist
in the cache of user i.
For each user i ∈ [K] we define matrix Bi ∈ F

|Ω(i)|×|Ω(i)|
whose rows and columns correspond to equation numbers in
Mi and missing subfiles in Ω(i) respectively. For m ∈ Mi,
assume that m-th equation is associated with user group U ,
where i ∈ U . Then, the entry of Bi for the row and column

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

corresponding to m ∈ Mi and f ∈ Ω(i) is α{i,f,m} if f ∈
F{i,U} and zero otherwise. Therefore, if matrixBi is invertible
then user i can recover all the missing subfiles W{di,f}, for
f ∈ Ω(i), from equations

∑
f∈F{i,U} α{i,f,m}W{di,f} for m ∈

Mi. Thus, we need to show that the determinant of Bi is
nonzero for all i ∈ [K] with high probability.
Towards this end, let hi({α{i,f,m}, f ∈ Ω(i), m ∈ Mi})

denote the determinant of Bi; we treat the {α{i,f,m}, f ∈
Ω(i), m ∈ Mi} as indeterminates at this point. Note that
since Algorithm 1 did not return “INFEASIBLE”, we have a
feasible integral solution for the corresponding offline LP (cf.
Claim 1). Thus, there exists an interpretation of this solution
(cf. Section IV-B) such that in each time slot, only one equation
is transmitted, i.e., unlike a fractional solution, we do not need
to potentially transmit multiple equations in the same time
slot. This in turn implies that there is a setting for coefficients
α{i,f,m} with α{i,f,m} ∈ {0, 1} such that the multivariate
polynomial hi evaluates to a non-zero value over F, i.e., hi is
not identically zero. This further implies that h =

∏
i∈[K] hi

is not identically zero. Now, since each α{i,f,m} appears only
once in Bi thus its degree in polynomial hi is one. Also, hi is
a polynomial of degree |Ω(i)| ≤ F thus h is a polynomial of
degree at most KF . Therefore, we can use Lemma 4 in [30] to
show that by choosing α{i,f,m}’s independently and uniformly
at random from F, the determinants of Bi’s, i ∈ [K], are

nonzero with probability at least
(
1 − 1

|F|
)KF

.
When r > 1 we will need to split a missing subfile W{di,f}

into r packets and code over these as well. Thus, the corre-
sponding system of equations will be of size F

r|Ω(i)|×r|Ω(i)|

leading to the bound
(
1 − 1

|F|
)rKF

.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] F. Arbabjolfaei et al., “Fundamentals of index coding,” Found. Trends
Commun. Inf. Theory, vol. 14, nos. 3–4, pp. 163–346, 2018.

[3] H. Ghasemi and A. Ramamoorthy, “Asynchronous coded caching,” in
Proc. IEEE Int. Symp. Inf. Theory, Jun. 2017, pp. 2438–2442.

[4] R. K. Ahuja, T. L. Maganti, and J. B. Orlin, Network Flows: The-
ory, Algorithms and Applications. Upper Saddle River, NJ, USA:
Prentice-Hall, 1993.

[5] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded
caching,” IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4388–4413,
Jul. 2017.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Trans.
Inf. Theory, vol. 64, no. 2, pp. 1281–1296, 2017.

[7] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Trans. Inf. Theory, vol. 65, no. 1, pp. 647–663, Jan. 2019.

[8] L. Tang and A. Ramamoorthy, “Coded caching for networks with the
resolvability property,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2016, pp. 420–424.

[9] K. Wan, M. Ji, P. Piantanida, and D. Tuninetti, “Caching in combination
networks: Novel multicast message generation and delivery by leverag-
ing the network topology,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1–6.

[10] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Funda-
mental limits of cache-aided interference management,” IEEE Trans. Inf.
Theory, vol. 63, no. 5, pp. 3092–3107, May 2017.

[11] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

[12] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced
subpacketization from linear block codes,” IEEE Trans. Inf. Theory,
vol. 64, no. 4, pp. 3099–3120, Apr. 2018.

[13] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes,” IEEE J. Sel. Areas Commun., vol. 36,
no. 6, pp. 1176–1188, Jun. 2018.

[14] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous
coded distributed computing,” in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), 2017.

[15] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, 2017.

[16] K. Konstantinidis and A. Ramamoorthy, “Resolvable designs for speed-
ing up distributed computing,” IEEE/ACM Trans. Netw., early access,
May 29, 2020, doi: 10.1109/TNET.2020.2992989.

[17] U. Niesen and M. A. Maddah-Ali, “Coded caching for delay-sensitive
content,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015,
pp. 5559–5564.

[18] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23,
no. 4, pp. 1029–1040, Aug. 2015.

[19] Y. Lu, W. Chen, and H. V. Poor, “Coded joint pushing and caching with
asynchronous user requests,” IEEE J. Sel. Areas Commun., vol. 36, no. 8,
pp. 1843–1856, Aug. 2018.

[20] Y. Jiang, W. Huang, M. Bennis, and F.-C. Zheng, “Decentralized
asynchronous coded caching design and performance analysis in fog
radio access networks,” IEEE Trans. Mobile Comput., vol. 19, no. 3,
pp. 540–551, Mar. 2020.

[21] Q. Yang, M. M. Amiri, and D. Gündüz, “Audience-retention-rate-aware
caching and coded video delivery with asynchronous demands,” 2018,
arXiv:1808.04835. [Online]. Available: http://arxiv.org/abs/1808.04835

[22] P. M. Vaidya, “An algorithm for linear programming which requires
O(((m+n)n2+(m+n)1.5n)L) arithmetic operations,” Math. Prog., vol. 47,
pp. 175–201, May 1990.

[23] D. S. Lun et al., “Minimum-cost multicast over coded packet networks,”
IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2608–2623, Jun. 2006.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[25] LEMON. Library for Efficient Modeling and Optimization in Networks.
[Online]. Available: http://lemon.cs.elte.hu

[26] H. D. Sherali and G. Choi, “Recovery of primal solutions when using
subgradient optimization methods to solve Lagrangian duals of linear
programs,” Oper. Res. Lett., vol. 19, no. 3, pp. 105–113, Sep. 1996.

[27] H. Ghasemi, “Coded caching: Information theoretic bounds and
asynchronism,” Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Iowa State Univ., Ames, IA, USA, 2019. [Online]. Available:
http://www.ece.iastate.edu/~ghasemi/publication

[28] J. Kleinberg and E. Tardos, Algorithm Design. New Delhi, India: Pearson
Education, 2006.

[29] (2019). Coded Caching. [Online]. Available: https://hooshanggh.
github.io/Coded-Caching/

[30] T. Ho et al., “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

Hooshang Ghasemi (Member, IEEE) received the Ph.D. degree from Iowa
State University, in 2019. He was with the Electrical and Computer Engineer-
ing Department, Iowa State University. He is currently with Qualcomm Inc.,
San Diego, CA, USA.

Aditya Ramamoorthy (Senior Member, IEEE) received the B. Tech. degree
in electrical engineering from the Indian Institute of Technology, Delhi, in
1999, and the M.S. and Ph.D. degrees from the University of California,
Los Angeles (UCLA), in 2002 and 2005, respectively. He is currently a
Professor of Electrical and Computer Engineering and (by courtesy) of
Mathematics at Iowa State University. His research interests are in the areas
of information theory and coding techniques with applications to networks,
distributed storage and distributed computation. He served as an editor for the
IEEE TRANSACTIONS ON INFORMATION THEORY, from 2016 to 2019, and
for the IEEE TRANSACTIONS ON COMMUNICATIONS, from 2011 to 2015.
He was the recipient of the 2020 Mid-Career Achievement in Research Award
and the 2012 Early Career Engineering Faculty Research Award from Iowa
State University, the 2012 NSF CAREER award, and the Harpole-Pentair
professorship in 2009 and 2010.

Authorized licensed use limited to: Iowa State University. Downloaded on September 04,2020 at 15:41:08 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNET.2020.2992989

