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ABSTRACT: Molecular conduction operating in dielectric solvent environments is often
described using kinetic rates based on the Marcus theory of electron transfer at a molecule−
metal electrode interface. However, the successive nature of charge transfer in such a system
implies that the solvent does not necessarily reach equilibrium in such processes. Here we
generalize the theory to account for solvent nonequilibrium and consider a molecular junction
consisting of an electronic donor−acceptor system coupled to two metallic electrodes and
placed in a polarizable solvent. We determine the nonequilbrium distribution of the solvent by
solving diffusion equations in the strong- and weak-friction limits and calculate the charge
current and its fluctuating behavior. In extreme limits, the absence of the solvent or fast solvent
relaxation, the charge-transfer statistics is Poissonian, while it becomes correlated by the
dynamic solvent between these limits. A Kramers-like turnover of the nonequilibrium current
as a function of the solvent damping is found. Finally, we propose a way to tune the solvent-
induced damping using geometrical control of the solvent dielectric response in nanostructured
solvent channels.

Metal−molecule−metal junctions that operate in a
dielectric solvent are common in many applications,

for example in junctions controlled by electrochemical gating.
Charge transport in such junctions often occurs by successive
electron hopping between molecular sites as well as between
the molecule and the metal leads.1 In the simplest model when
the molecule supports only one electron localization site, this
site is repeatedly occupied and deoccupied as electrons hop
between the metal and the molecule. Each such hopping event
is accompanied by solvent relaxation (so-called reorganization)
to accommodate the molecule’s charging state and determines
the time for transient localization. The overall conduction in
this case is determined by metal−molecule coupling, the
solvent-imparted stabilization (determined by the reorganiza-
tion energy or the polaron formation energy), and solvent
fluctuations needed to overcome the localization barrier.
Theoretical treatments of such sequential hopping events

usually rely on the Marcus electron-transfer theory.1 This is a
transition-state type theory that assumes that solvent relaxation
between hopping events proceeds to full thermal equilibrium
so that the next electron-transfer event takes place out of a
thermal equilibrium distribution of solvent configurations.
Such behavior can be realized when solvent reorganization in
response to charge localization on the connecting molecule is
fast relative to the molecule-leads’ tunneling rates. The other
extreme limit, where the solvent is not sensitive to the
molecular charge redistribution, corresponds to co-tunneling
transport that is described by the Landauer theory. However,
even when localization and solvent relaxation make consec-
utive hopping, the dominant mechanism, the assumption of

full thermal relaxation embedded in the Marcus theory, is not
necessarily valid, and an extension of Marcus theory to
situations where the electron-transfer rate is “solvent
controlled” in the sense that it depends on the solvent
relaxation dynamics is abundant.2−5

Most relevant to the present work are studies that focus on
solvent dynamic effects in bridge-mediated electron transfer,7,8

where solvent dynamics is not manifested just in the electron-
transfer rate but also in the determination of the very nature of
the processes between the limiting forms of co-tunneling (or
superexchange) and sequential hopping.
The papers cited above are representative of a substantial

body of literature that analyzes deviations of the electron-
transfer rate from its transition-state theory (TST) form due to
finite solvent relaxation time. TST becomes valid when this
relaxation is assumed to be fast, implying that bridge-mediated
transfer is sequential, with the individual hopping rates
assuming their respective Marcus form. As discussed
extensively in the context of the classical theory of barrier
crossing, slow relaxation does not necessarily imply weak
coupling to the solvent.10−12 Indeed, solvent relaxation in
response to solute state change is manifested in classical barrier
crossing rates as a crossover between the low- and high-friction
limits,12−14 with the rate increasing or decreasing with
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increasing friction at the low- (underdamped) and high-
(overdamped) friction limits, while the TST approximation
provides an upper bound on the rate in the intermediate
crossover region. Most treatments of such effects in electron
transfer have focused on the low-friction case, although the
other limit has also been considered.15

In this Letter, we consider the effect of finite solvent-induced
relaxation on hopping conduction in molecular junctions, thus
going beyond the standard treatments of transport in solvated
molecular junctions that rely on Marcus theory. We keep other
assumptions of this theory: electron tunneling is conditional on
the possibility to conserve the total (electronic and nuclear)
energy, and broadening of molecular electronic levels due to
their interaction with the metal leads is disregarded so that
transfer rates into or out of the metal electron energy level at ϵ
are proportional to Γf(ϵ) and Γ[1 − f(ϵ)], respectively. Here,
Γ is a golden rule rate associated with the molecule−metal
coupling, and f(ϵ) is the Fermi function.16,17,26 The
corresponding Marcus rates kAB (from the electrode to the
molecule) and the reverse kBA are

k f F Ed ( ) ( ) ( )AB AB∫= ϵΓ ϵ ϵ + ϵ
(1)

k f F Ed ( ) 1 ( ) ( )BA BA∫= ϵΓ ϵ [ − ϵ ] − ϵ
(2)

where EAB = EA − EB is the energy difference between the
molecular states A and B and
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with T and kB denoting the temperature and the Boltzmann
constant, respectively (throughout this work we assume that
the temperature of the metal electrodes and the solvent are
equal), and ER is the solvent reorganization energy, the free
energy released by relaxation of the solvent to its stable
(equilibrium) configuration following a sudden transition
between the oxidized and reduced molecular states.
Equation 3 is the high-temperature limit of the average, over

a thermal (Boltzmann) distribution of solvent configurations in
the initial electronic state, of the Franck−Condon factors that
reflect the difference between the solvent equilibrium
configurations in the two molecular electronic states. When
the finite time scale of the solvent relaxation is taken into
account, this thermal distribution is replaced by a time-
dependent distribution that reflects this relaxation. Below we
describe this dynamics by diffusion (Smoluchowski) equations
that take different forms in the high- and low-friction limit. In
analogy to the Kramers theory of activated barrier crossing,10

the high-friction (overdamped) limit is characterized by
diffusion along the position of the reaction coordinate, while
the low-friction limit is described by diffusion in energy space.
In either case, the average junction current resulting from this
calculation depends on the friction parameter γ that
determines the solvent relaxation rate. Of further significance
is the dependence of the current noise on this relaxation rate.
For small damping, the process is Markovian and the hopping
statistics is Poissonian. When solvent relaxation occurs on a
finite time scale, successive electron hopping events are
correlated. We suggest that a combined measurement of the
average charge current and the current noise may serve to
identify such situations in solvated electronic junctions. Finally,

we discuss the possibility to realize these limiting behaviors as
well as intermediate solvent friction behaviors through the
dependence of solvent relaxation dynamics on its geometrical
confinement.
Theoretical Model. We consider a molecule weakly coupled

to two metal electrodes R (right) and L (left) which are
modeled as free electron reservoirs characterized by their
respective chemical (μK) and electrical (ϕK) (K = L, R)
potentials due the externally applied voltage.
The associated Fermi functions for the electron energy ϵ

read

( )
f ( )

1

exp 1
e

k T

K
K K

B

ϵ =
+μϵ − + Φ

(4)

where K = L or R and e, kB, and T are the electron charge, the
Boltzmann constant, and the temperature, respectively.
The molecule comprises a single transport channel, thus

forming a two-state system with an oxidized state A with N − 1
electrons and energy EA and a reduced state B with N electrons
and energy EB. The molecule is furthermore embedded in a
polar solvent that imposes a fluctuating environment and
responds electrodynamically to the charging state of the
molecule.18,24

In the Marcus theory19,20,25 this response is expressed by a
distribution of solvent configurations along a single reaction
coordinate, x, determined by free-energy surfaces that depend
on the molecular electronic state according to17

E x E x( , )
1
2A A 0

2ωϵ = + ℏ + ϵ
(5)

E x E x d( )
1
2

( )B B 0
2ω= + ℏ −

(6)

In this shifted harmonic surfaces model, EA and EB are the
electronic energies at the equilibrium solvent configurations,
chosen as xA = 0 and xB = d for the state A and B, respectively.
The harmonic forms and the identical curvatures of these
surfaces correspond to the assumption that the solvent
responds linearly to the charging state of the molecule and
has the consequence that the reorganization energy

E d
1
2R 0

2ω= ℏ
(7)

is the same irrespective on the process direction from A to B or
vice versa.
The single-electron energy ϵ is added to the molecular

energy in state A (cf. eq 4), expressing the fact that when the
molecule is oxidized, the electron removed from it is occupying
a single-electron state of energy ϵ in the metal. The integrals
over ϵ in eqs 1 and 2 reflect the broad band of single-electron
states in the metal. The Marcus theory makes two further
simplifying assumptions: the small molecule−metal coupling
and the high-temperature limit. Together they have several
implications. First, the assumption that ℏΓ ≪ kBT allows us to
disregard level broadening due to the finite lifetime of excess
electron or holes on the molecule. Second, in the high-
temperature limit, nuclear tunneling can be disregarded in
evaluating the electron hopping rate; that is, such events are
assumed to be dominated by crossings of nuclear potential
surfaces. Finally, the small electronic coupling Γ makes it
possible to use perturbation theory to the lowest order in the
electronic coupling for evaluating the electron hopping
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probability, essentially disregarding level splitting in this
calculation (e.g., using the nonadiabatic limit of the Landau−
Zenner expression for this probability). Under these
assumptions, electron-transfer (ET) events are dominated by
nuclear configurations where EA(x) = EB(x), namely at the
transition point along the reaction coordinate given by

x
E E d

dTR
B A

1
2 0

2

0

ω

ω
=

− − ϵ + ℏ

ℏ (8)

Marcus theory19,20 is based on transition-state theory, an
essentially equilibrium theory of reaction rates. It provides a
framework for representing the solvent state on a one-
dimensional free-energy surface defined with respect to a
single reaction coordinate which is valid provided that the
electronic energies in states A and B depend only on a single-
solvent quantifier, in the present case, the local solvent
polarization. Extending this theory to the dynamical regime
requires the additional assumption, tacitly made in most
studies like those cited above, that the same free-energy
surfaces EA(x) and EB(x) can be used as potential energy
surfaces for the reaction coordinate x, provided that account is
taken for the fact that this coordinate can exchange energy with
all other solvent degrees of freedom. Making the additional
assumption that this dynamics is Markovian, the motion of the
reaction coordinate when the molecule is in state A or B can be
described using a Langevin equation obtained by augmenting
Newtonian dynamics on potential surfaces (5) or (6) by a
Stokes friction of strength γ and a corresponding random noise
that together satisfy the standard fluctuation-dissipation
relation. Equivalently, the probability distribution for the
position and velocity of the reaction coordinate Pj(x, v; t) for
the molecular state j = A, B obeys under these conditions the
Fokker−Planck equation
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In eq 9, the normalized potential surfaces are V̅j = Vj/(ℏω0)
with V x x( )A

1
2 0

2ω= ℏ and V x x d( ) ( )B
1
2 0

2ω= ℏ − . Note that

the position and velocity variables in eqs 5, 6, and 9 are
dimensionless. The solvent properties that enter at this level of
description are manifested via the parameters ω0 and γ that can
be obtained from fitting of the observed dielectric response of
the solvent to standard dielectric response models.9 The
solvent−molecule coupling enters via the parameter d that
determines the solvent reorganization energy ER as given in eq
7. Note that the overdamped limit of eq 9 has been used in the
Zusman generalization of the Marcus theory.2,3

In the following, in analogy to Kramers’ treatment of
activated barrier crossing,10 we consider the implications of
this dynamics in two limits. In the overdamped limit, γ ≫ ω0,
eq 9 leads to a Smoluchowski equation that describes diffusion
along the x coordinate
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where β = (kBT)
−1. In the opposite underdamped limit, γ ≪

ω0, the relaxation implied by eq 9 may be reduced, after phase
averaging, to diffusion in energy space, which is described by
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The distribution functions P(x, t) in eq 10 or P(E, t) in eq
11 replace the Boltzmann distribution in evaluating the
instantaneous probability for electron transfer in the Marcus
theory, leading to time-dependent rates that will replace the
rates given by eqs 1 and 2. We note that the stationary solution
of both eqs 10 and 11 is the Boltzmann distribution, implying
that transition-state theory will be recovered when relaxation is
fast, γ → 0 in eq 10, or γ → ∞ in eq 11.
In what follows, using eqs 10 and 11 as our starting points,

we construct numerical simulation procedures for calculating
the charge-transport characteristics operating in solvent
environments in the corresponding dynamical limits (see
section S3 in the Supporting Information for details). We
investigate their implications for standard observables like the
average charge current and the charge current noise as a
function of voltage bias and solvent induced friction.
Overdamped Regime. The probability densities resulting from

the Smoluchowski equations (10) for the overdamped reaction
coordinate x (γ ≫ ω0) can be calculated exactly (see section
S1 in the Supporting Information for details). We are
interested in the time evolution of the probability density
P(x, t|xTR′ , tTR) that the reaction coordinate takes the value x
following a previous transition event that took place at time tTR
at position xTR′ of this coordinate. This corresponds to the
initial condition P(x, tTR|xTR′ , tTR) = δ(x − xTR′ ) for which we
find the evolutions in the state A and B (see also illustration in
Figure 1)
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where D = βℏω0 and ( )a t t( ) exp 0
2

= − ω
γ

. For γ → 0, a(t) →

∞ for all time t > 0, indicating “instantaneous” relaxation to an
equilibrium Boltzmann distribution in the corresponding wells.
PA(x, t|xTR′ , tTR)dx is the probability of finding a solvent

configuration with a reaction coordinate in [x, x + dx] for the
oxidized state A at time t, given that the previous transition
from the reduced state B has occurred at the solvent
configuration xTR′ at time tTR. Correspondingly, PB(x, t|xTR′ ,
tTR)dx describes the equivalent for the reduced state B. It is
important to notice that the next electronic transition can take
place at any x. This x then becomes the next transition
configuration xTR for which the energy ϵ(xTR) and
consequently the probabilities to find a corresponding metal
level occupied f K(x) or unoccupied 1 − f K(x) are determined
from eq 8.
Correspondingly, the ET rates (probabilities per unit time),

kAB into the molecule, and kBA out of the molecule are given in
this high-friction limit by
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k t t x x P x t x t f x( ; ) d ( , , ) ( )AB
K

TR TR A TR TR K∫− ′ = Γ | ′
−∞

∞

(14)

k t t x x P x t x t f x( ; ) d ( , , ) 1 ( )BA
K

TR TR B TR TR K∫− ′ = Γ | ′ [ − ]
−∞

∞

(15)

where K = L or R. Γ is assumed to be independent of the
solvent configuration x, while Γ−1 characterizes the time span
between the electronic hopping events.
We emphasize again that the integration over all solvent

configuration x in eqs 14 and 15 can be extended to ±∞
because a transition may occur at every solvent configuration
along the reaction coordinate, subjected to the Pauli principle
that is accounted for explicitly in eqs 14 and 15. In agreement
with the above observation that the limit γ → 0 corresponds to
“infinitely fast” relaxation to equilibrium, the rates given in eqs
14 and 15 become the thermal Marcus rates of eqs 1 and 2.
Using the rates of eqs 14 and 15, we can calculate the

average charge current with a numerical Monte Carlo
procedure (see section S3 in the Supporting Information for
details). We set μR = μL = ΔE = EB − EA in eqs 4−6 and apply
a symmetric bias voltage ΦR = −ΦL = ΔΦ/2 between the
leads. The solvent dynamics is propagated using eq 12 or 13
depending on the present state of the molecule and at any time
step transition is attempted using the probabilities in eq 14 or
15 depending again on the current molecular state.
The average charge current ⟨I⟩ obtained from this

calculation is shown in Figure 2 as a function of the bias

voltage and the solvent-induced damping γ. Depending on the
voltage bias, three modes of behavior are seen. (a) When the
applied bias voltage is moderately larger than the thermal
energy, i.e. eΔΦ/2 > kBT (while kBT ≈ 25 meV at 300 K) the
current increases, then saturates, with increasing γ (see Figure
2 for 200−400 mV). The reason for this behavior is that for
large γ relaxation is slow. Therefore, the system remains close
to a transition configuration; that is, the energy barrier to the
transition does not develop quickly enough. (b) For
considerably larger bias (1000 mV in Figure 2) there is no
sensitivity to solvent configuration (states are vacant on one
lead and occupied on the other for any configuration); hence,
no effect on the average current at which this configuration
evolves is seen. (c) For small bias (100 mV in Figure 2)
increasing γ initially enhances the electronic current for the
same reason as in mode a: At larger γ, staying in the small
energy window at which transfer can occur implies a larger
probability of an electron transfer. However, some relaxation is
needed to stabilize the “product” of this transfer. Further
increase of γ makes such relaxation too slow and leads to
current reduction because for such large γ the dot level sticks
in an energy region which exhibits a large probability to return
to the electrode where it originated.
Reiterating, a larger friction γ implies, in the limit under

consideration, a slower solvent-induced stabilization of the
electron on the molecular bridge. The initial increase of the
current with growing γ for relatively small damping for all
imposed biases (see inset Figure 2) may be understood as
solvent-mediated delay near the molecular transition-state
configuration. For larger γ, this delay becomes a practical
freezing of configuration that is more (eΔΦ/2 > kBT) or less
(eΔΦ/2 ≈ kBT) favorable to subsequent electron-transfer
events.
We note that, although the diffusion equation in the

overdamped regime is strictly valid only for γ ≫ ω0, it
reproduces the Boltzmann distribution as a solution for γ = 0.
However, the calculated average current in the intermediate
regime γ ∼ ω0 may be seen as an interpolation between the
tractable limits of vanishing and strong damping.
We next consider the current noise (see eq S52 of section S3

in the Supporting Information). As is commonly done, we
characterize the noise in terms of the Fano factor,27,28

Figure 1. Energy representation of the nonequilibrium electron-
transfer process. The black diabat represents the oxidized state A
including the energy alignment with a charge of arbitrarily chosen
energy ϵ*; the gray diabat corresponds to the reduced state B. The
energy distribution of the charges and vacancies in the left (K = L)
and right (K = R) electrode follows from the Fermi distribution f K(ϵ)
(or 1 − f K(ϵ), respectively, eq 4) with temperature T. The state
energy strongly depends on the solvent configuration described by the
reaction coordinate x (see eqs 5 and 6). The relaxation of the reaction
coordinate x after a previous transition at xTR′ is described by its
probability density (red) under the action of the damping γ. In the
strong friction limit the velocity quickly settles to its equilibrium
distribution, and the dynamics is affected by the distribution of the
position coordinate (red colored) while in the weak friction case;
averaging over phase leaves energy, whose distribution is displayed in
blue, as the relevant dynamical variable. The boxes show the
equilibrium solvent configuration xA = 0 with equilibrium energy EA
for the oxidized state and xB = d for the reduced state with equilibrium
energy EB indicating the fluctuating dipoles of the solvent molecules.

Figure 2. Expectation value of the current ⟨I⟩/⟨I0⟩ at ambient
temperature T = 300 K for the reorganization energy ER = 200 meV at
different applied bias potentials ΔΦ as indicated as a function of the
damping rate γ. The current is normalized to ⟨I0⟩ for infinitely fast
solvent relaxation, γ → 0. The dotted lines are functional fits to the
data points for better readability. The inset shows a zoom to the
regime of small γ.
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F 1I I
I

2 2

= >⟨ ⟩ − ⟨ ⟩
⟨ ⟩ , with the limit F = 1 achieved for Poissonian

(uncorrelated) statistics. The result, displayed in Figure 3,

shows clear evidence of a non-Poissonian ET process for a
nonvanishing friction, while Poisson statistics characterizes the
limit γ → 0 (fast solvent-induced relaxation). Once the applied
bias voltage is large enough, the solvent relaxation shows no
impact on the ET because the position of the dot “level” does
not change its orientation relative to empty and occupied
single-electron states of the metal; hence, F = 1 for all γ. For an
applied bias in the regime of relevant thermal fluctuations, i.e.,
eΔΦ ∼ kBT (see ΔΦ = 50 mV and ΔΦ = 100 mV in Figure 3),
the Fano factor first increases before it declines to a steady
value when the molecular “state” is localized in a region when
its sees probabilities of similar magnitudes for vacancies or
occupations on the leads of both sides.
More insight on current correlations may be obtained from

the correlation function C(t) = ⟨I(t)I(0)⟩ − ⟨I⟩2 (see eq S50 of
section S3 in the Supporting Information). The inset in Figure
3 shows the correlation time τc, defined by fitting C(t) to an

exponential
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑC t( ) exp t

c
≈ −

τ . An increased correlation time τc

with larger damping signals a higher current correlation in
correspondence with the observations made above.
The Low-Damping Regime. In the low-damping regime, γ ≪

ω0, the reaction coordinate oscillates many times under its
harmonic restoring force before appreciable relaxation occurs.
In this case, as in the Kramers10 regime of low damping, the
parameter that determines the probability of electron transfer
and relaxes due to the interaction with the thermal environ-
ment is the energy. In the Kramers case, the rate in this limit is
determined by the inverse mean first-passage time to reach a
critical energy. Here, the rate can be obtained from the golden
rule, say for the A → B transition, in the form
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where EA(v) and EB(v′) are eigenvalues of the solvent
Hamiltonian (harmonic oscillator state on the potential
surfaces EA(x) and EB(x)); V AB is the interstate coupling,
and ρm(ϵ) is the density of single-electron states in the metal.
We further consider the density of states ρM(ϵ) = ρM = const.
as independent of the electron energy.
In section S4 of the Supporting Information, we show that

eq 16 can be transformed into the expression
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where
VM A,B

2

2Γ = ρ | |
ℏ

is the conditional rate and g determines the

coupling between the solvent (oscillator) states and the
molecular state A or B. Equations 16 and 17 are not limited to
the semiclassical limit used in the Marcus theory and in fact
constitute, for this low-damping limit, an extension of the
Marcus formalism. Consider, for simplicity, the Marcus level of
treatment which entails an additional approximation equivalent
to the high-temperature limit used in the transition-state
theory limit of this treatment (see ref 17, Chapter 16):
Assuming n(t)≫ 1 in the relevant range of solvent energy, and
because the reaction coordinate x interacts in this energy range
with many solvent degrees of freedom, the integrand is very
short-lived23 and can be approximated by expanding the sine
term up to first order and the cosine term up to second order
in the argument ω0t. This short-time expansion leads to
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where we consider n(t) to evolve only slightly in time for slow
energy relaxation (γ ≪ ω0). Moreover, we perform the time
integral in eq 18 by regarding n(t) as a constant parameter. We
introduce a = (2n(t) + 1)g2ω0

2/2 ≃ E(t)ER/ℏ
2 as well as the

reorganization energy ER = ℏg2ω0 and the solvent energy E(t)
= ℏω0n(t) in eq 18.
The rates for the electron insertion and removal process

accompanied by slow energy relaxation finally follow as
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Remarkably, the final result under this short-time approx-
imation is similar to Marcus’ result, except that the thermal
energy kBT is replaced by E(t), the (time-dependent) solvent
energy expressed by the energy content in the reaction

Figure 3. Normalized Fano factor Fτ′/e at ambient temperature T =
300 K for different applied bias potentials ΔΦ at reorganization
energy ER = 200 meV by varying the damping rate γ. τ′ is the
observation time (see eq S52 in the Supporting Information), and e is
the electron charge. Inset: Normalized correlation time τc/τc0 by
varying the damping γ from fitting C(t) = ⟨I(t)I(0)⟩ − ⟨I⟩2 (see eq
S50 in the Supporting Information) to exp[−t/τc]. τc0 is the
correlation time for infinitely fast solvent relaxation, γ → 0. The
dotted lines are functional fits to the data points for better readability.
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coordinate, calculated at time t, which is the time elapsed since
the preceding electron hopped onto or out off the molecule,
and subject to the initial condition E(t = 0) = E0, which is the
energy at which the preceding hopping took place.
Next, we consider the energy relaxation (or diffusion)

dynamics, sketched in Figure 1. As before, we look at the time
evolution between two electron hopping events. For
definiteness, assume that the next electron hopping will be
an A → B transition and the preceeding B → A event
happened at time t0 under system energy E0. Following this
event, the probability to find the system at time t with energy E
is the solution of eq 11 with the initial condition P(E, t0|E0, t0)
= δ(E − E0). It is given by (see section S2 in the Supporting
Information for details)
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Using the energy-dependent rates of eqs 19 and 20 and the
evolving probability distribution for this energy, eq 21, we have
constructed a numerical Monte Carlo procedure for generating
a sequence of electronic transitions (see section S3 in the
Supporting Information for details) from which the average
current as well as the current noise can be evaluated. For the
results shown in Figure 4 we have used μR = μL = ΔE = EB −
EA, see eqs 4−6, and a symmetric bias voltage ΦR = −ΦL =
ΔΦ/2 in eq 4.

Consider first the average current and recall that in the low-
damping regime energy relaxation is faster for larger γ. For
eΔΦ/2 < ER, the average current increases with growing
solvent-induced damping γ (see Figure 4 for ER = 380 meV
and ER = 350 meV). This increase appears to stem from the
fact that the energy distribution becomes broader in time, such
that more metal states can be accessed. This enhances the rates
and hence the current through the molecule for growing γ. It is
evident that this effect becomes more pronounced at higher

temperature (see Figure 4 for ER = 380 meV at T = 200 K and
T = 300 K) because the thermal fluctuations are enhanced,
thus leading to a thermally activated ET processes. If the
reorganization energy becomes much larger than the applied
bias voltage, the broadening of the molecular states becomes
irrelevant because the alignment with the Fermi states of the
leads vanishes. When the bias voltage ΔΦ satisfies eΔΦ/2 = ER
(see Figure 4 for ER = 300 meV or inset of Figure 4 for ER =
500 meV), the average current shows no sensitivity to an
increasing damping γ. The reason appears to be the fact that in
this case the molecular energy state aligns with the occupied/
vacant electronic energy levels in the leads.
For eΔΦ/2 > ER, the average current decreases with

increasing solvent-induced damping γ (see Figure 4 for ER =
220 meV). In this case, the molecular states which are
broadened because of γ drop out of the conduction window of
the leads. This reduces the ET rates (eqs 19 and 20) and, thus,
the current through the molecule.
In addition to the average current, we also consider the noise

properties (see eq (S52) of section S3 in the Supporting
Information). Figure 5 shows the calculated Fano factor

F 1I I
I

2 2

= >⟨ ⟩ − ⟨ ⟩
⟨ ⟩ . It reveals a strongly non-Poissonian ET

process for a small applied bias voltage calculated for a large
reorganization energy. Here, the effect of molecular level
broadening induced by larger γ leads to correlated electron
hopping in time just as the current through the molecule. This
correlation disappears if the applied voltage exceeds the
reorganization energy considerably. Again by fitting an

exponential
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c
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τ to the normalized calculated

correlation function, the impact of damping on the current
correlations can be directly quantified (see inset in Figure 5).
An increased correlation time τc with an enhanced damping
directly leads to a stronger current correlation and confirms the
prior observations.
Kramers-like Turnover. It is interesting to consider the

dependence of the average current on the damping strength.

Figure 4. Expectation value of the current ⟨I⟩/⟨I0⟩ for different values
of the reorganization energy ER for varying damping strength γ in the
underdamped regime. The bias potential is set to ΔΦ = 600 mV. The
current is normalized to ⟨I0⟩ obtained for γ → 0 (no solvent energy
relaxation). Inset: ⟨I⟩/⟨I0⟩ for different values of the reorganization
energy ER at the bias voltage ΔΦ = 1000 mV at temperature T = 300
K. The dotted lines are functional fits to the data points for better
readability.

Figure 5. Normalized Fano factor Fτ′/e at ambient temperature T =
300 K for the reorganization energy ER = 200 meV at different applied
bias voltages ΔΦ as a function of γ. Here, τ′ is the observation time
(see eq S52 of section S3 in the Supporting Information) and e the
electron charge. Inset: Normalized correlation time τc/τc0 for varying
damping γ as obtained from the fitting C(t) = ⟨I(t)I(0)⟩ − ⟨I⟩2 (see
eq S50 of section S3 in the Supporting Information) to exp[−t/τc].
Here, τc0 is the correlation time for γ → 0 (no solvent energy
relaxation). The dotted lines are functional fits to the data points for
better readability.
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This is shown in Figure 6. For eΔΦ/2 < ER, we see for ΔΦ =
100 mV in the low-friction regime that ⟨I⟩ ∝ γ and that the

current is controlled by energy diffusion and the resulting
broadening of the molecular level inside the conduction
window. In the high-damping regime, we find that ⟨I⟩ ∝ γ−1 for
small bias voltage, eΔΦ/2 ∼ kBT, and the current is strongly
influenced by the configurational change along the reaction
coordinate. For large damping, the solvent configurations
freeze the molecular state at a transition state which may fall
into occupied or vacant electronic levels in the leads of
opposite directions. This reduces the current. For eΔΦ/2 > ER,
see Figure 6 for ΔΦ = 600 mV, the molecular level broadening
exceeds the width of the conduction window for small but
growing γ such that ⟨I⟩ ∝ γ−1, while for eΔΦ/2 > kBT the
solvent stabilizes a possible transition state in the high-
damping regime where ⟨I⟩ ∝ γ.
The “turnover” between the regimes of low and the high

damping seen in Figure 6 is reminiscent of the Kramers
turnover of activated barrier-crossing rates.10 Despite a
conceptual similarity, there is an important difference: We
consider the average current which is composed in the
sequential hopping affected by four different time-dependent
ET rates describing electron insertion and removal to/from the
molecular dot via the left/right contact. All four rates depend
on the solvent damping and the applied bias voltage.
Therefore, there is no one-to-one mapping of the charge
current to the Kramers rate as shown in Chapter 14 of ref 17 in
the strict sense. However, the analogy is obvious.
Proposal for Experimental Control of Solvent Damping. The

question may arise how to suitably tune the damping strength
γ in a real junction experiment. Because the solvent adjusts to
the charge distribution on the molecule, its relaxation
properties are determined by electromagnetic response. In
particular, for a polar solvent, they depend via the spectral

density linearly on the dielectric function.9 Provided that the
damping experienced by the Marcus reaction coordinate stems
from the solvent, we may aim to control damping by tuning the
dielectric properties of the solvent. This is indeed possible in a
dielectric solvent confined on the nanoscale and can be
realized by tuning the geometry of the confinement. A proof-
of-principle is the recent observation of the dependence of the
dielectric function of water confined in nanochannels.29

To illustrate this connection in more detail, we use the
spectral density of a fluctuating dipolar solvent specified by9
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where ωD = ϵ0/(ϵ∞τD) with the low- (ϵ0) and high- (ϵ∞)
frequency dielectric constants and the Debye relaxation time
τD for solvent relaxation described by an Onsager continuum
model of the solvent with Debye relaxation. In the Ohmic
regime where ωD ≫ ω0, the damping kernel for the Langevin
equation for the diffusive coordinates x or E can be evaluated
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∞ = t( )γδ . For the latter equation, we use the

definition of the damping kernel of ref 32 but multiply J(ω) by
ω2 (we note the different definition of the spectral densities of
refs 9 and 32) and the limit ωD → ∞ to obtain the δ-
distribution.
It is interesting to see that Fumagalli et al.29 have found

experimentally an anomalous decline of the static dielectric
constant following the phenomenological relation ϵ0(h) = h/
[2hi/ϵi + (h − 2hi)/ϵbulk] for water confined in nanochannels
of height h with ϵi = 2.1, ϵ∞ = 1.8 and hi = 7.4 Å. They explain
the strong reduction of ϵ0(h) for the nanostructured water
channel as compared to the bulk configuration with a restricted
mobility of the water dipoles at the boundary surfaces which
the nanochannel forms with the host material in which they are
immersed.
The relationship between the damping constant and the

reorganization energy implies in turn that the friction
experienced by a solute in a dielectric solvent depends on
the dielectric function. For example, using the common

relation
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,9 A being a solvent/solute depend-

ent coefficient with the dimension of an energy, we find a
connection between γ and ϵ0 and consequently between γ and
any geometrical parameter that may affect ϵ0. In detail, we find
a geometry-dependent damping strength
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where the strong change of the static dielectric constant in
confined geometries enters.
Obviously, we can effectively tune the damping strength γ by

tuning the height h of the nanochannel, i.e., the degree of
confinement of the solvent, in which the metal−molecule−
metal junction operates. The resulting dependence of γ on h is
shown in inset ii of Figure 6. This effect intensifies further if
one takes into account the enhanced relaxation time τD for
water molecules restricted in their mobility.30 For different
modes of operation, i.e., for different relations of ER, ΔΦ, and
kBT, we thus may control the current ⟨I⟩ by tuning γ. Even
though the change of γ may not lead to a turnover from low to

Figure 6. Ratio ⟨I⟩/⟨IM⟩ between the actual average current ⟨I⟩ and
the current obtained in the TST (Marcus) limit [γ → 0 in the high-
friction calculation (red dots) or γ→∞ in the low-friction one (black
dots)], plotted as a function of γ in a range encompassing both low-
and high-friction (LF and HF, respectively) regimes and displayed for
different values of the bias potential ΔΦ. The reorganization energy is
set to ER = 200 meV, and the temperature is taken to be T = 300 K. In
the main panel, the results displayed in red were obtained from the
high-friction formalism based on eqs 14 and 15, whereas those in
black correspond to the low-friction calculation of eqs 19 and 20. The
dotted lines are functional fits to the data points for better readability.
Inset i: Focus on the transition from low to high friction of the
average current. Inset ii: Effective frequency-dependent damping γ/ω0
in confined nanochannels of height h filled with water (ℏ ≡ 1) based
on data taken from Fumagalli et al.29
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high damping or vice versa, the characteristic ⟨I⟩ ∝ γ or ⟨I⟩ ∝
γ−1indicates the high- or low-damping regime.
In conclusion, we have calculated the average charge current

for a sequential electron transfer in a metal−molecule−metal
junction, where consecutive events of charge transfer may be
strongly influenced by relaxation of surrounding solvent,
thereby affecting the observed current and its fluctuations.
The resulting dynamics was described by a kinetic model that
comprises rates of electron exchange between molecules and
leads with relaxation of the thermal environment in response to
the changing molecular charge. This relaxation is described by
a diffusion process that focuses on the reaction coordinate in
the high-friction regime and on its associated energy in the
low-friction limit. We have considered the average current as
well as the current noise. In the regime of low friction, an
increasing solvent damping strength leads to an increasingly
fluctuating energy level which is associated with an effective
broadening of the molecular energy level that lies inside
(eΔΦ/2 < ER) or outside (eΔΦ/2 > ER) the conduction
window of the metal−molecular−metal junction (using the
language of a combined Marcus−Landauer model6,31).
Consequently, the average current is enhanced (eΔΦ/2 <
ER) or reduced (eΔΦ/2 > ER) when friction becomes larger in
this regime. In the regime of large damping, increasing friction
implies a more slowly relaxing configuration along the reaction
coordinate. Therefore, in the course of successive electron-
transfer events the molecular configuration remains more
localized near a transition point. This leads to an average
current that increases with friction when eΔΦ/2 > kBT but
decreases when an enhanced localization leads to an increased
probability of back ET, which becomes possible when eΔΦ/2
∼ kBT. A unified look at both regimes indicates a Kramers-like
turnover of electron transfer which translates into a
corresponding turnover behavior of the overall current as a
function of the damping strength. This clearly reflects the
nonequilibrium fluctuations at work under an applied bias
voltage.
It should be noted that “turnover” is a generic mode of

behavior of rate (or transport) processes. The overall transport
dynamics determined by the underlying rate(s) changes its
character between different regimes by varying some control
parameter. In the Kramer problem this parameter is the friction
on the reaction coordinate, while in our case it is the (not
unrelated) dielectric relaxation associated with the solvation
coordinate (as defined by Marcus). Other mechanisms have
been considered, see, for example refs 33 and 34 where the
control parameter changes the dephasing of local energy levels
leading to turnover in exciton transport behavior. To the best
of our knowledge, our present work is the first where the
consequence of such turnover is considered not only for the
average rate (or transport coefficient) but also for the noise in
the ensuing current.
The calculated Fano factor indicates a non-Poissonian

current statistics for an enhanced damping in both regimes
for a small applied bias voltage and a large reorganization
energy. Once the applied voltage is large enough, the solvent-
induced friction has no impact on the ET, because the solvent-
mediated orientation (in the high-damping regime) or the
broadening (in the low-damping regime) of the molecular level
does not change relative to empty and occupied single-electron
states in the metal. Current noise as an additional observable
may help to distinguish between different modes of operation.

Additionally, this mechanism may help to interpret current−
voltage observations (see ref 35).
Furthermore, we illustrate a viable means to tune the

damping strength γ of the solvent which depends on the
dielectric properties of the solvent via the static dielectric
constant. For this, we illustrate a possible way to effectively use
experimentally measured data which report an extreme decline
of the static dielectric constant of water in confined
nanochannels of variable height. By this, we deduce a direct
dependence of γ on the height of the nanochannel which can
be readily used to observe and control the characteristic
current-damping behavior in molecular junctions.
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