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a b s t r a c t

The family of rank estimators, including Han’s maximum rank correlation (Han, 1987)
as a notable example, has been widely exploited in studying regression problems. For
these estimators, although the linear index is introduced for alleviating the impact of
dimensionality, the effect of large dimension on inference is rarely studied. This paper
fills this gap via studying the statistical properties of a larger family of M-estimators,
whose objective functions are formulated as U-processes and may be discontinuous
in increasing dimension set-up where the number of parameters, pn, in the model is
allowed to increase with the sample size, n. First, we find that often in estimation, as
pn/n → 0, (pn/n)1/2 rate of convergence is obtainable. Second, we establish Bahadur-
type bounds and study the validity of normal approximation, which we find often
requires a much stronger scaling requirement than p2n/n → 0. Third, we state conditions
under which the numerical derivative estimator of asymptotic covariance matrix is
consistent, and show that the step size in implementing the covariance estimator has to
be adjusted with respect to pn. All theoretical results are further backed up by simulation
studies.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The general set-up, motivation, and main results

Let Z1, . . . , Zn ∈ Rmn denote a random sample of size n from the probability measure P. Let F := {f (·, ·; θ) : θ ∈

Θ ⊂ Rpn} be a class of real-valued, possibly asymmetric and discontinuous, functions on Rmn × Rmn . This paper studies
the following M-estimator with an objective function of a U-process structure,

θ̂n := argmax
θ∈Θ

Γn(θ) = argmax
θ∈Θ

1
n(n − 1)

n∑
i̸=j=1

f (Z i, Z j; θ). (1.1)

Let

θ0 := argmax
θ∈Θ

Γ (θ) = argmax
θ∈Θ

EΓn(θ).

∗ Corresponding author.
E-mail addresses: fany88@uw.edu (Y. Fan), fanghan@uw.edu (F. Han), weylpeking@pku.edu.cn (W. Li), azhou@uw.edu (X.-H. Zhou).

https://doi.org/10.1016/j.jeconom.2019.08.003
0304-4076/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jeconom.2019.08.003
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2019.08.003&domain=pdf
mailto:fany88@uw.edu
mailto:fanghan@uw.edu
mailto:weylpeking@pku.edu.cn
mailto:azhou@uw.edu
https://doi.org/10.1016/j.jeconom.2019.08.003


380 Y. Fan, F. Han, W. Li et al. / Journal of Econometrics 214 (2020) 379–412

This paper aims to establish asymptotic properties of θ̂n as an estimator of θ0 in situations with large or increasing
dimensions mn → ∞ and pn → ∞ (with respect to the sample size n), to which existing results do not apply.

Members of (1.1) include the following notable examples proposed and studied in the current literature in fixed
dimension, i.e., mn ≡ m and pn ≡ p for all n: (1) Han’s maximum rank correlation (MRC) estimator for the generalized
regression model (Han, 1987); (2) Cavanagh and Sherman’s rank estimator for the same model as Han’s (Cavanagh and
Sherman, 1998); (3) Khan and Tamer’s rank estimator for the semiparametric censored duration model (Khan and Tamer,
2007); and (4) Abrevaya and Shin’s rank estimator for the generalized partially linear index model (Abrevaya and Shin,
2011). One common feature of these models is the presence of a linear index of the form x⊤θ, where x represents
covariates of dimension p which is typically large in many economic applications. The linear index structure is introduced
to alleviate the ‘‘curse of dimensionality’’ associated with fully nonparametric models. Although motivated by possibly
large dimension p, properties of θ̂n in these examples have only been established for fixed p when n approaches infinity
(i.e., p does not change with n). Instead, this paper models the large p case by allowing p to go to infinity as n → ∞,
denoted as pn, facilitating an explicit characterization of the effect of dimensionality on inference in these models.

More broadly, for the general set-up (1.1), we allow both mn and pn to go to infinity as n → ∞ and establish the
following properties of θ̂n: (i) consistency; (ii) rate of convergence; (iii) normal approximation; and (iv) accuracy of normal
approximation. The last property is also referred to as the ‘‘Bahadur–Kiefer representation’’ or simply the ‘‘Bahadur-type
bound’’ (Bahadur, 1966; Kiefer, 1967; He and Shao, 1996), and is the major focus of this paper. Specifically, in Theorems 2.2,
2.3, and 2.4, under different scaling requirements for n, pn, and νn, where νn characterizes the function complexity of F ,
we prove consistency, efficient rate of convergence, and derive Bahadur-type bounds for the general M-estimator θ̂n of the
form (1.1). To facilitate inference, we construct consistent estimators of the asymptotic covariance matrix of θ̂n similar
to the numerical derivative estimators in Pakes and Pollard (1989), Sherman (1993), and Khan and Tamer (2007). The
increasing dimension set-up in this paper reveals that for consistent variance–covariance matrix estimation, the step size
in computing the numerical derivative should depend not only on the sample size n but also the dimensions mn and pn.

To provide further insight on the role of the dimension pn, we apply our general results, Bahadur-type bounds
especially, to the aforementioned rank estimators (1)-(4). Note that for these estimators νn = mn = pn. Corollaries 3.1–3.4
provide sufficient conditions to guarantee consistency, efficient rate of convergence, and asymptotic normality (ASN) of
the rank correlation estimators in increasing dimension. They demonstrate that, compared to competing alternatives such
as simple linear regression, in terms of estimation, rank estimators are very appealing, maintaining the minimax optimal
(pn/n)1/2 rates (Yu, 1997), while enjoying an additional robustness property to outliers and modeling assumptions. With
regard to normal approximation, on the other hand, a much stronger scaling requirement might be needed, and a lower
accuracy in normal approximation is anticipated. This observation also echoes a common belief in robust statistics that
stronger scaling requirement than p2n/n → 0 is needed for normal approximation validity (Jurečková et al., 2012).

All the theoretical results are further backed up by simulation studies. In particular, using Han’s MRC estimator
introduced below, we have demonstrated that for a given sample size, the accuracy of the normal approximation
deteriorates quickly as the number of parameters pn increases, indicating that our theoretical bound is difficult to improve
further. Also, our simulation results suggest that for variance estimation, the step size needs to be adjusted with respect to
pn. Practically, our results indicate that although the linear index was introduced to alleviate the curse of dimensionality,
one must be cautious in conducting inference using rank estimators when there are many covariates.

1.2. The generalized regression model and Han’s MRC

Han’s MRC in Example (1) is the first rank correlation estimator proposed to estimate the parameter β0 in the
generalized regression model:

Y = D ◦ F (X⊤β0, ϵ), (1.2)

where β0 ∈ Rpn+1, F (·, ·) is a strictly increasing function of each of its arguments, and D(·) is a non-degenerate monotone
increasing function of its argument. Important members of the generalized regression model in (1.2) include many widely
known and extensively used econometrics models in diverse areas in empirical microeconomics such as the binary
choice models, the ordered discrete response models, transformation models with unknown transformation functions,
the censored regression models, and proportional and additive hazard models under the independence assumption and
monotonicity constraints.

Han (1987) proposed estimating β0 in (1.2) with

β̂
H
n = argmax

β:β1=1

{ 1
n(n − 1)

∑
i̸=j

1(Yi > Yj)1(X⊤

i β > X⊤

j β)
}
. (1.3)

For model identification, following Sherman (1993), we assume the first component of β0 is equal to 1, and express β0

as β0 = (1, θ⊤

0 )
⊤. We consider estimating θ0 by θ̂

H
n := β̂

H
n,−1, the subvector of β̂

H
n excluding its first component. We will

use the generalized regression model (1.2) and Han’s MRC θ̂
H
n to illustrate our notation, assumptions, and main results in

Section 2. We defer a rigorous analysis of Han’s estimator including verification of assumptions to Section 3 which also
presents results for the other three rank correlation estimators.
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Empirically, consider estimating the individual demand curve for a durable good such as a refrigerator. Let Yi be
whether the individual i buys a refrigerator and X i be the vector of characteristics of the individual and the refrigerator
included in the model. There are many potential candidates for the components of X i such as personal income, marital
status, the number of children, space of the kitchen, food habits; size of the refrigerator, temperature controls, lighting,
shelves, dairy compartment, chiller, door styles. Assuming a single index form with mn = pn +1, this binary choice model
falls into our framework with (1.2). Our increasing dimension set-up allows more characteristics to be included in X i
as the sample size n increases and our results show that even with the single index form, estimation and inference are
possible if pn increases very mildly with n but otherwise are very challenging.

1.3. A brief review of related works and technical challenge

In contrast with the fixed dimension setting, where the model is assumed unchanged as n goes to infinity, the
increasing dimension triangular array setting (Portnoy, 1984; Fan et al., 2015; Chernozhukov et al., 2015, 2017) makes our
analysis different from and more challenging than most existing ones (cf. Theorem 3.2.16 and Example 3.2.22 in van der
Vaart and Wellner (1996), or the main theorem in He and Shao (1996)). Technically, this paper builds on and contributes
to two distinct literatures: the literature on estimation and inference in increasing dimension where existing works
exclude discontinuous loss functions and the literature on rank estimation where existing works focus exclusively on finite
dimensions. As a technical contribution, we establish a maximal inequality, yielding a uniform bound for degenerate
U-processes in increasing dimensions which not only allows us to extend existing results on rank estimation in finite
dimension to increasing dimensions but also establish Bahadur-type bounds. Besides the crucial role played by our new
maximal inequality for degenerate U-processes in this paper, it should prove to be an indispensable tool in nonparametric
and semiparametric econometrics in increasing dimensions where many estimators and test statistics are closely related
to U-processes.

Since Huber’s seminal paper (Huber, 1973), there has been a long history in statistics on evaluating the impact
of parameter dimension on inference. Huber himself raised questions on the scaling limits of (n, pn) for assuring
M-estimation consistency and asymptotic normality in his 1973 paper (Huber, 1973). For addressing them, Portnoy
(1984), Portnoy (1985), Mammen (1989, 1993) studied the linear regression model using smooth M-estimators such as
the ordinary least squares. Their results revealed that, in response to Huber’s question, for the simple linear regression
model, asymptotic normality is usually attainable even when p2n/n is large. In contrast, Portnoy (1988) studied maximum
likelihood estimators of generalized linear models, and proved that, for guaranteeing the validity of normal approximation,
the requirement p2n/n → 0 is in general unrelaxable. Different from the analysis in large p2n/n setting, the techniques
in Portnoy (1988) are applicable to more general cases. For example, focusing on the general likelihood problem with
a differentiable likelihood function, Spokoiny (2012a) has provided a finite-sample analysis of normal approximation
accuracy. Related results have also been developed in He and Shao (2000). As a direct consequence, a set of regularity
conditions could be derived for constructing Bahadur-type bounds, guaranteeing ASN provided some scaling requirements
hold.

Extending existing works allowing for increasing parameter dimension, this paper studies asymptotic properties of θ̂n
in (1.1), allowing both mn and pn to go to infinity as n → ∞. The potential discontinuity and U-process structure of the
objective function Γn(θ) prevent results or the proof strategy in the current literature on increasing parameter dimension
from being directly applicable. On the other hand, for (1.1), the increasing dimension set-up in this paper poses technical
challenges to the proof strategy adopted for fixed mn and pn exclusively studied in the current literature. To see this,
recall that the main argument used in the current literature to establish asymptotic properties for estimators of the form
(1.1) for fixed mn and pn follows Sherman (Sherman, 1993, 1994), which relies on the Hoeffding decomposition, a uniform
bound for degenerate U-processes, and the classical M-estimation framework tracing back to Huber’s seminal paper, Huber
(1967). Specifically, for the statistic Γn(θ) in (1.1), Hoeffding (1948) derived the following well-known expansion now
known as the Hoeffding decomposition:

Γn(θ) = Γ (θ) + Png(·; θ) + Unh(·, ·; θ), (1.4)

where

g(z; θ) := Ef (z, ·; θ) + Ef (·, z; θ) − 2Γ (θ),

h(z1, z2; θ) := f (z1, z2; θ) − Ef (z1, ·; θ) − Ef (·, z2; θ) + Γ (θ), (1.5)

Png(·; θ) :=

n∑
i=1

g(Z i)/n, and

Unh(·, ·; θ) :=

n∑
i̸=j=1

h(Z i, Z j; θ)/{n(n − 1)}.

Hoeffding (1948) further showed that for fixed mn and pn,

Γn(θ) ≈ Γ (θ) + Png(·; θ)  
Γ̃n(θ)

, (1.6)
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where the remainder term Unh(·, ·; θ), formulated as a degenerate U-statistic, is asymptotically negligible in large samples.
As a result, θ̂n is asymptotically equivalent to θ̃n defined below:

θ̃n := argmax
θ∈Θ

Γ̃n(θ). (1.7)

Sherman (Sherman, 1993, 1994) was the first to notice that, by (1.4) and the negligibility of Unh(·, ·; θ), the U-statistic
formulation has intrinsically helped smooth the loss function in (1.1) from Γn(θ) to Γ̃n(θ), and hence renders an
asymptotically normal estimator θ̂n, even though the original loss function Γn(θ) may not be differentiable.

For increasing dimensions mn and pn, the Hoeffding decomposition of Γn(θ) takes the same form as in the case
of fixed mn and pn. However existing maximal inequalities or uniform bounds for degenerate U-processes for finite
dimensions crucial to Sherman (Sherman, 1993, 1994) and the classical M-estimation theory for finite dimensions are
inapplicable. In response to the first challenge, this paper develops a maximal inequality, yielding a uniform bound
for degenerate U-processes in increasing dimensions, which allows us to show that under regularity conditions, θ̂n is
asymptotically equivalent to θ̃n. Due to the smoothness of Γ̃n(θ), we are able to build on and improve arguments used
in the proofs of Spokoiny (2012a) on M-estimators with differentiable objective functions in increasing dimensions to
establish asymptotic properties of θ̃n.

1.4. Notation

For a set S , denote its binary Cartesian product as S ⊗ S. For a probability measure P, denote its product measure
as P ⊗ P. For q ∈ [1,∞], the Lq-norm of a vector β is denoted by ∥β∥q. The Lq -induced matrix operator norm of a
matrix A is denoted by ∥A∥q. One example is the spectral norm ∥A∥2, which represents the maximal singular value of
A. In the sequel, when no confusion is possible, we will omit the subscript in the Lq-norm of β or A when q = 2. The
minimum and maximum eigenvalues of a real symmetric matrix are denoted by λmin(·) and λmax(·) respectively. Let Ip
denote the p × p identity matrix. Let Sp−1 denote the unit-sphere of Rp under ∥ · ∥. For a twice differentiable real-valued
function τ (θ), let ∇1τ (θ) denote the vector of partial derivatives (∂τ/∂θ1, . . . , ∂τ/∂θp)⊤ and ∇2τ (θ) denote the Hessian
matrix of τ (θ). Let B(θ0, r) = {θ ∈ Θ, ∥θ − θ0∥ < r} denote an open ball of radius r > 0 centered at θ0 ∈ Θ , and let
B(θ0, r) = {θ ∈ Θ, ∥θ − θ0∥ ≤ r} denote a closed ball of center θ0 and radius r . For two real numbers a and b, we define
a ∨ b = max(a, b) and a ∧ b = min(a, b). We use

P
−→ to denote convergence in probability with respect to P, and ⇒

to denote convergence in distribution. For any two real sequences {an} and {bn}, we write an = O(bn) if there exists an
absolute positive constant C such that |an| ≤ C |bn| for any large enough n. We write an ≍ bn if both an = O(bn) and
bn = O(an) hold. We write an = o(bn) if for any absolute positive constant C , we have |an| ≤ C |bn| for any large enough
n. We write an = OP(bn) and an = oP(bn) if an = O(bn) and an = o(bn) hold stochastically. We let C, C ′, C ′′, c, c ′, c ′′, . . . be
generic absolute positive constants, whose values will vary at different locations.

1.5. Paper organization

The rest of this paper is organized as follows. In Section 2, we introduce general methods for handling M-estimators
of the particular format. In particular, Section 2.1 gives a new U-process bound in increasing dimensions, and Section 2.2
studies M-estimators of the form (1.1), whose loss functions are possibly discontinuous. Section 3 applies the results in
Section 2 to the four motivating rank estimators. Section 4 offers detailed finite-sample studies, illustrating the impact of
dimension on coverage probability and tuning parameter selection in the asymptotic covariance estimation. Concluding
remarks and possible extensions are put in the end of the main text. All proofs are relegated to an Appendix.

2. Asymptotic theory for the M-estimator

Recall that Z1, Z2, . . . , Zn ∈ Rmn is a random sample from P, rendering an empirical measure Pn. Let F = {f (·, ·; θ) :

θ ∈ Θ ⊂ Rpn} be a VC-subgraph class of real-valued functions, with νn denoting the VC-dimension of F (see Section 2.6.2
in van der Vaart and Wellner (1996) for explicit definitions of VC-subgraph and VC-dimension of a VC-subgraph class).
In addition, we assume the function class F to be uniformly bounded by an absolute constant. The family of bounded
VC-subgraph classes includes, as subfamilies, those rank estimators proposed in Han (1987), Cavanagh and Sherman
(1998), Khan and Tamer (2007), and Abrevaya and Shin (2011), and suffices for our purpose.

Without loss of generality, we assume that

f (z1, z2; θ0) = 0 for all (z1, z2) ∈ Rmn ⊗ Rmn , (2.1)

which can always be arranged by working with f (z1, z2; θ) − f (z1, z2; θ0) throughout.
The derivation of asymptotic properties of θ̂n can be understood in two steps. First we show the asymptotic equivalence

of θ̂n and θ̃n by proving negligibility of Unh(·, ·; θ) and then establish asymptotic properties of θ̃n. Essential to the first step
is an increasing dimension analogue of maximal inequalities for degenerate U-processes in finite dimensions. Because of
increasing dimensions, we need to calculate an exact order of the decaying rate of supθ |Unh(·, ·; θ)| in a local neighborhood
of θ0, the proof of which requires a substantial amount of modifications to the decoupling arguments in Nolan and Pollard
(1987). For the second step, we exploit Spokoiny’s bracketing device technique (cf. Corollary 2.2 in Spokoiny (2012b)) on
M-estimators with differentiable objective functions.
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2.1. A maximal inequality for degenerate U-processes

For fixed dimensions, Sherman (Sherman, 1993, 1994) proved a maximal inequality for degenerate U-processes and
used it to show that, when F is P-Donsker (Dudley, 1999), uniformly over a small neighborhood Θ0 surrounding θ0,

sup
θ∈Θ0

|Γn(θ) − Γ̃n(θ)| = sup
θ∈Θ0

|Unh(·, ·; θ)| = oP(1/n), (2.2)

which, combined with the fact that g(·) is usually a smooth function by integration, is sufficient to guarantee that the
stochastic differentiability condition (cf. Theorem 3.2.16 in van der Vaart and Wellner (1996)) holds. This suffices for
establishing ASN in fixed dimension. However, when we allow the dimension to increase with the sample size, (2.2) is
no longer correct.

To account for the effect of increasing dimension, we establish a new maximal inequality for degenerate U-processes
in increasing dimensions. Theorem 2.1 works out an exact order of the rate of convergence of supθ∈Θ0

|Unh(·, ·; θ)| as Θ0
shrinks to the true point θ0 at different rates rn → 0. It is formulated as two maximal inequalities, corresponding to the
Glivenko–Cantelli and Donsker properties , for a degenerate U-process.

Theorem 2.1. Suppose that F is uniformly bounded by an absolute constant, of VC-dimension νn, and h(·) is defined as in
(1.5). Further recall that we have assumed f (·, ·; θ0) satisfies (2.1). If νn/n → 0, then the following two claims hold.

(i) Let rn and ϵn be two sequences of nonnegative real numbers converging to zero. If

sup
θ∈B(θ0,rn)

Eh2(·, ·; θ) ≤ ϵn,

then there exists a sequence of nonnegative real numbers δn (only depending on ϵn, ν, n) converging to zero such that

P
{

sup
θ∈B(θ0,rn)

|Unh(·, ·; θ)| ≤ δnνn/n
}

= 1 − o(1).

(ii) Let rn := r(νn, pn, n) be a sequence of nonnegative real numbers converging to zero, and ϵ̃n = ϵ(νn, pn, n, rn)
be a sequence of nonnegative real numbers (only depending on νn, pn, n, rn) converging to zero. Denote η̃n =

η(νn, pn, n, rn) =
√
νn/n ∨ ϵ̃n. Suppose

sup
θ∈B(θ0,rn)

Eh2(·, ·; θ) ≤ ϵ̃n.

We then have

E sup
θ∈B(θ0,rn)

|Unh(·, ·; θ)| ≤
C log(1/̃ηn )̃η

1/2
n νn

n
(2.3)

holds for all sufficiently large n.

For deriving Theorem 2.1, one might consider employing the decoupling techniques as introduced in the proofs of
the Main Corollary in Sherman (1994), or Theorem 5.3.7 in de la Pena and Giné (2012). However, since the considered
U-process depends on an increasing number of covariates, the constants in the moment inequalities therein (e.g., C(k, q)
in Sherman (1994)) are no longer finite and are difficult to characterize in increasing dimensions. Instead, we resort to
Nolan and Pollard’s original treatment of degenerate U-processes.

Specifically, denoting

Snf (·, ·; θ) = n(n − 1)Unf (·, ·; θ),

a modification to Theorem 6 in Nolan and Pollard (1987) will give us

E
{

sup
θ∈B(θ0,rn)

|Snh(·, ·; θ)/(nν)|
}

≤ CH
([

E
{

sup
θ∈B(θ0,rn)

U2nh2(·, ·; θ)
}]1/2)

≤ CH
([

sup
θ∈B(θ0,rn)

Eh2(·, ·; θ) + E
{

sup
θ∈B(θ0,rn)

|P2nh1(·; θ)|
}

+ E
{

sup
θ∈B(θ0,rn)

|P2nh2(·, ·; θ)|
}]1/2)

. (2.4)

Here H(x) := x{1 + log(1/x)} for any x ∈ (0,∞), U2n and P2n have been introduced in (1.5), and h1(z, θ) := Eh2(z, ·; θ) +

Eh2(·, z; θ) − 2Eh2(·, ·; θ) and h2(z1, z2; θ) := h2(z1, z2; θ) − Eh2(z1, ·; θ) − Eh2(·, z2; θ) + Eh2(·, ·; θ) are two functions
generated from h(·, ·; θ). We have thus explicitly transformed the analysis of a degenerate U-process to that of a moment
bound, and two empirical processes. Lastly, the bounds on the two empirical processes could be derived using, for example,
Theorem 9.3 in Kosorok (2007).
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2.2. Main results

We are now ready to state the main results in this section. For analyzing the statistical properties of the general
M-estimator θ̂n, three targets are in order: (i) consistency; (ii) rate of convergence; and (iii) Bahadur-type bounds. Of
note, our analysis is under the increasing dimension triangular array setting where the true data generating process P is
allowed to change with the sample size n.

We first establish consistency. This is via the following two assumptions.

Assumption 1. For each specified pn, Θ is a compact subset of Rpn , and there exists an absolute constant r0 > 0 such
that B(θ0, r0) ⊂ Θ and for any positive absolute constant r < r0, there exists another absolute constant ξ0 > 0 depending
on r such that

Γ (θ0) − max
Θ\B(θ0,r)

Γ (θ) ≥ ξ0. (2.5)

Assumption 2. Γ (θ) is a continuous function at any θ ∈ Θ , and f (·, ·; θ) is almost everywhere continuous at θ0.

Assumption 1 is the standard identifiability condition. Since Γ (θ) as a function of θ ∈ Rpn is also to change with n,
it is regulated by a constant ξ0 to eliminate the non-identifiable cases in large n. Assumption 2 enforces certain level of
smoothness on Γ and f . Both are regular, and in particular, verifiable for all the considered examples of rank estimators
using explicit expressions for Γ and f for these estimators. For example, for Han’s MRC, Assumption 1 can be established
using Taylor expansion applied to Γ (θ) = Γ H(θ) = SH(β) − SH(β0) with SH(β) := E{1(Y1 > Y2)1(X⊤

1 β > X⊤

2 β)}.
With Assumptions 1 and 2, we immediately obtain the following theorem, establishing consistency for the studied

M-estimator θ̂n.

Theorem 2.2. Suppose that Assumptions 1–2 hold. If νn/n → 0, then ∥̂θn − θ0∥
P
−→ 0.

It is of interest to point out that consistency is established solely based on an requirement of νn (which also intrinsically
depends on mn, pn), since the uniform consistency of Γn to Γ can be determined solely by the relation between νn and n.
For the four examples of rank correlation estimators (1)-(4), νn = pn so consistency is ensured under Assumptions 1 and
2 as long as the number of parameters pn increases at a slower rate than the sample size n.

For establishing rates of convergence and Bahadur-type bounds, on the other hand, more assumptions are needed. For
each z in Rmn and for each θ ∈ Θ , define

τ (z; θ) = Ef (z, ·; θ) + Ef (·, z; θ) and ζ (z; θ) = τ (z; θ) − Eτ (·; θ).

Here τ (z; θ) corresponds to Γ̃n(θ) in (1.6), and is the key for establishing ASN of θ̃n in (1.7). The following assumption
regulates τ (·; ·).

Assumption 3. For each r ≤ r0, the following conditions hold.

(i) For each z in Rmn , all mixed second partial derivatives of τ (z; θ) with respect to θ exist on B(θ0, r).
(ii) There exist two positive absolute constants cmin, cmax such that 0 < cmin ≤ λmin(−V) ≤ λmax(−V) ≤ cmax, where

2V := E∇2τ (·; θ0).
(iii) There exists a positive constant ρ(r) <

cmin
11cmax

∧ cpr for some absolute constant c > 0, such that ∥Ip −

V−1/2V(θ)V−1/2
∥ ≤ ρ(r) for any θ ∈ B(θ0, r), where 2V(θ) := E∇2τ (·; θ).

(iv) Assume 0 < dmin ≤ λmin(∆) ≤ λmax(∆) ≤ dmax, where ∆ := E∇1τ (·; θ0){∇1τ (·; θ0)}⊤ and dmin, dmax are two
positive absolute constants.

(v) There exist absolute constants ν0 > 0 and ℓ0 > 0 such that, for any θ ∈ B(θ0, r), the following holds:

sup
γ1,γ2∈Spn−1

logE exp
{
λγ⊤

1 ∇2ζ (·; θ)γ2
}

≤
ν20λ

2

2
, for all |λ| ≤ ℓ0.

Assumption 3 is the key assumption in order to establish Bahadur-type bounds for θ̂n, and is posed for the M-estimation
problem (1.6) of loss function Γ̃n(θ) corresponding to the function τ (·). In the following we discuss more about this
assumption. In detail, Assumption 3(i), (ii), and (iv) are regularity conditions to make sure that the studied problem is
well posited, a condition corresponding to the local strong convexity condition in the high dimensional statistics literature
(cf. Section 2.4 in Negahban et al. (2012)), and are verifiable for different methods. Consider, for example, Han’s MRC
estimator θ̂

H
n introduced in Section 1.2 for which τ = τH:

τH(z; θ) := Ef H(z, ·; θ) + Ef H(·, z; θ),

where

f H(z1, z2; θ) := 1(y1 > y2){1(x⊤

1 β > x⊤

2 β) − 1(x⊤

1 β0 > x⊤

2 β0)}.
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Assumption 3(i), (ii), and (iv) then are immediately ensured by Theorem 4 and subsequent discussions in Sherman (1993).
Assumption 3(iii) requires that Eτ (·; θ) is sufficiently smooth in θ, for example, Eτ (·; θ) has continuous and bounded
mixed partial derivatives up to three. Assumption 3(v) requires the existence of exponential moments of the errors. They
correspond to the ‘‘local identifiability condition’’: Assumption (L0), and the ‘‘exponential moment condition’’, Assumption
(ED2), in Spokoiny (2012a, 2013) separately. These conditions are often implied by subgaussian designs. Particularly, in
Theorem 3.1 in Section 3.1, we will verify Assumption 3(iii) and (v) for τH, i.e., Han’s MRC under primitive conditions.

With the above assumptions, statistical properties of θ̂n could then be established as follows.

Theorem 2.3. If (νn ∨ pn)/n → 0 and Assumptions 1–3 hold, we have

∥̂θn − θ0∥
2

= OP

(νn ∨ pn
n

)
.

For the four examples of rank correlation estimators, νn = pn so Theorem 2.3 leads to the minimax optimal rate
(pn/n)1/2 under the condition: pn/n → 0. However, Theorem 2.4 implies that much stronger requirements on pn are
needed to establish Bahadur-type bounds, see Corollaries 3.1–3.4 for details.

Theorem 2.4. Suppose Assumptions 1–3 hold, and there exists a constant ϵn = ϵ(νn, pn, n) depending on νn, pn, n such that,
for any c > 0,

sup
θ∈B{θ0,c

√
(νn∨pn)/n}

Eh2(·, ·; θ) ≤ C̃ϵn,

where C̃ only depends on c. Then, the following two statements hold.

(i) Denote ηn = η(νn, pn, n) =
√
νn/n ∨ ϵn. If ηn = o(1) and {(νn ∨ pn)5/2/n3/2

} ∨ {log(1/ηn)η
1/2
n νn/n} = o(1), we have̂θn − θ0 + V−1Pn∇1τ (·; θ0)

2
= OP

{ (νn ∨ pn)5/2

n3/2 +
log(1/ηn)η

1/2
n νn

n

}
.

(ii) If we further have {(νn ∨ pn)5/2/n1/2
} ∨ {log(1/ηn)η

1/2
n νn} = o(1), then for any γ ∈ Rpn ,

√
nγ⊤ (̂θn − θ0)/(γ⊤V−1∆V−1γ)1/2 ⇒ N(0, 1).

Remark 2.5. In the analysis, pn and νn characterize the behavior of the smoothed estimator θ̃n and the degenerate
U-process {Unh(·, ·; θ); θ ∈ B(θ0, rn)} separately. On the other hand, throughout the above three theorems, the dimension
of data points, mn, is not present. Instead, the impact of mn on estimation and inference has been characterized by pn and
νn, both of which are usually of an order equal to or even greater than mn. It is also noteworthy to point out that our
analysis does allow an arbitrary subset of (mn, pn, νn) to be fixed, and the theory will directly proceed. In particular, when
mn, pn, νn are all invariant with regard to n, we derived the conventional Bahadur representation for the studied class of
M-estimators under the low-dimensional setting, which is a stronger result than asymptotic normality.

We conclude this section with a brief discussion on consistent estimation of the asymptotic covariance matrix in
Theorem 2.4. For this, we are focused on the covariance estimator of a numerical derivative form, used in Pakes and
Pollard (1989), Sherman (1993), and Khan and Tamer (2007).

First, for each z in Rmn and for each θ in Θ , define

τn(z; θ) = Pnf (z, ·; θ) + Pnf (·, z; θ).

Then, we define the numerical derivative of τn(z; θ) as follows:

pni(z; θ) = ε−1
n {τn(z; θ + εnui) − τn(z; θ)},

where εn denotes a sequence of real numbers converging to zero, and ui denotes the unit vector in Rpn with the ith
component equal to one. Finally, we define the estimator of the matrix ∆ as ∆̂ = (̂δij) with

δ̂ij := Pn{pni(·; θ̂n)pnj(·; θ̂n)}.

To estimate the matrix V, we define the following function:

pnij(z; θ) = ε−2
n {τn(z; θ + εn(ui + uj)) − τn(z; θ + εnui) − τn(z; θ + εnuj) + τn(z; θ)}.

Then, we define the estimator of the matrix V as V̂ = (̂vij) with

v̂ij :=
1
2
Pnpnij(·; θ̂n).

Let F̃ = {f (z, ·; θ) + f (·, z; θ) : z ∈ Rm, θ ∈ Θ}, and let ν̃n denote the VC-dimension of F̃ . The following theorem
establishes the consistency of the covariance estimator.
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Theorem 2.6. Suppose that Assumptions 1–3 hold and (̃νn∨νn∨pn)5/2/n1/2
= o(1). If the sequence εn satisfies: εn

√
pn = o(1)

and ε−2
n (̃νn ∨ νn ∨ pn)/

√
n = o(1), then

∥̂V−1∆̂V̂−1
− V−1∆V−1

∥
P
−→ 0.

The increasing dimension set-up reveals that for consistent variance–covariance matrix estimation, the step size in
computing the numerical derivative should depend not only on the sample size but also on the dimensions mn and pn.

3. Asymptotic properties of rank estimators

This section studies the four examples introduced in Introduction. In the sequel, the data points are understood to be
independent and identically drawn from the considered model. Of note, throughout the following four examples, when
the studied model is fixed, our result renders the conventional Bahadur representation for the corresponding estimator
in fixed dimensions (see, for example, Subbotin (2008) for such a bound in fixed dimensions). Hence, we recover the
asymptotic-normality-type theory in the corresponding paper, but under a stronger moment condition in order to take
the impact of increasing dimension into consideration. In addition, it is worthwhile to point out that, for all studied
methods, the dimension of the data points mn and the VC dimensions νn and ν̃n of the studied function classes are all of
the same order as pn, the number of parameters to be estimated. Accordingly, in the following, we can use pn to solely
characterize the impact of dimension on inference.

3.1. Han’s maximum rank correlation estimator

This section studies the generalized regression model (1.2) and Han’s MRC estimator, as have been introduced in
Section 1.2. Let B be a subset of {β ∈ Rpn+1

: β1 = 1}. For any β ∈ B, let β = (1, θ⊤)⊤, where θ ∈ ΘH
⊂ Rpn . For

any vector z = (y, x⊤)⊤, we define ζ H(z; θ) = τH(z; θ) − EτH(·; θ),

∆H
= E∇1τ

H(·; θ0){∇1τ
H(·; θ0)}⊤, and 2VH

= E∇2τ
H(·; θ0).

Write Γ H
n (θ) = SH

n (β) − SH
n (β0) with

SH
n (β) :=

1
n(n − 1)

∑
i̸=j

1(Yi > Yj)1(X⊤

i β > X⊤

j β).

Thus, Han’s MRC estimator of θ0, θ̂
H
n , can be expressed as

θ̂
H
n = argmax

θ∈ΘH
Γ H
n (θ).

To conduct inference on θ0 based on θ̂
H
n , we further define

τH
n (z; θ) = Pnf H(z, ·; θ) + Pnf H(·, z; θ), pH

ni(z; θ) = ε−1
n {τH

n (z; θ + εnui) − τH
n (z; θ)}, and

pH
nij(z; θ) = ε−2

n {τH
n (z; θ + εn(ui + uj)) − τH

n (z; θ + εnui) − τH
n (z; θ + εnuj) + τH

n (z; θ)}.

Then, we define the estimator of the matrix ∆H as ∆̂H
= (̂δHij ) and the estimator of the matrix VH as V̂H

= (̂vHij ), where

δ̂Hij = Pn{pH
ni(·; θ̂

H
n )p

H
nj(·; θ̂

H
n )} and v̂Hij =

1
2
PnpH

nij(·; θ̂
H
n ).

Let X = (X1, X̃
⊤
)⊤, where X̃ denotes the last p components in X . Assume the following assumption holds

Assumption 4. Assume

(i) Assumption 1 holds for ΘH and Γ H(θ).
(ii) The random variables X and ϵ are independent.
(iii) Assume X1 has an everywhere positive Lebesgue density, conditional on X̃ .
(iv) Assumption 3 holds for τH(z; θ) and ζ H(z; θ).

Assumption 5. For some absolute constant C > 0, supi=2,...,p+1 E|Xi|
2

≤ C .

Assumption 6. Let f0(· | x̃) denote the conditional density function of X⊤β0 given X̃ = x̃. Assume f0(· | x̃) ≤ C0 for any
x̃ in the support of X̃ , where C0 > 0 is an absolute constant.
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We then have the following corollary.

Corollary 3.1. We have

(i) Under Assumption 4(i)–(iii), if pn/n = o(1), then ∥̂θHn − θ0∥
P
−→ 0.

(ii) Under Assumption 4, if pn/n = o(1), then

∥̂θ
H
n − θ0∥

2
= OP(pn/n).

(iii) Under Assumptions 4–6, if p2n/n = o(1) and log(n/p2n)p
3/2
n /n5/4

= o(1), we have

∥̂θ
H
n − θ0 + (VH)−1Pn∇1τ

H(·; θ0)∥2
= OP

{
log(n/p2n)p

3/2
n /n5/4}. (3.1)

Furthermore, if log(n/p2n)p
3/2
n /n1/4

= o(1), then for any γ ∈ Rpn ,
√
nγ⊤ (̂θ

H
n − θ0)/{γ⊤(VH)−1∆H(VH)−1γ}

1/2
⇒ N(0, 1).

(iv) Under conditions in (iii), if we further have εn
√
pn = o(1) and ε−2

n pn/
√
n = o(1), then

∥(̂VH)−1∆̂H (̂VH)−1
− (VH)−1∆H(VH)−1

∥
P
−→ 0.

In particular, we could choose ϵn ≍ (pn/n)1/6, which will render a consistent covariance estimator under the same scaling
condition as (iii).

In the following, we discuss more on the assumptions posed for Han’s MRC estimator. Since the estimator takes
pairwise differences as input, without loss of generality, the design is assumed to be zero-mean. First, Assumption 1
can be established using Assumption 3(ii), (iii), and Taylor expansion. Secondly, the conditions in Assumptions 2 and 3(i)
are regular and can be satisfied. Then, Theorem 4 and subsequent discussions in Sherman (1993) ensure Assumption 3(ii)
and (iv) hold. Lastly, we deal with Assumption 3(iii) and (v), which indeed deserve more discussion. In the following, we
give sufficient conditions for guaranteeing Assumption 3(iii) and (v) hold.

More notation is needed. Let f0(· | x̃, y) denote the conditional density function of X1 given X̃ = x̃ and Y = y. Let f0(·)
denote the marginal density function of X⊤β0. Let

κH(y, t) = E{1(y > Y ) − 1(y < Y ) | X⊤β0 = t}, λH(y, t) = κH(y, t)f0(t),

and λH2 (y, t) =
∂

∂t
λH(y, t).

We assume the following conditions on the design as well as the noisy hold.

Condition 1. Suppose X is multivariate subgaussian, i.e., there exists an absolute constant c ′ > 0 such that supγ∈Sp ∥γ⊤X∥ψ2 ≤

c ′, where ∥γ⊤X∥ψ2 := supq≥1 q−1/2(E|γ⊤X |
q)1/q.

Condition 2. (i) Suppose that f0(· | x̃, y) has uniformly bounded derivatives up to order three, i.e., there exists an
absolute constant C ′′ > 0 such that |f (j)0 (· | x̃, y)| ≤ C ′′ (j = 1, 2, 3) for any x̃ and y in the support of X̃ and Y ,
respectively; (ii) lim|t|→∞ f (2)0 (t | x̃, y) = 0 for any x̃ and y; (iii) Universally over the support of Y and any θ ∈ B(θ0, r),∫

|f (3)0 (t − x̃⊤θ | s, x̃)|GX̃ |Y=s( d̃x) ≤ c{1∧c ′
|t|−(1+c′′)

} for some positive absolute constants c, c ′, c ′′, where GX̃ |Y=s(·) represents
the probability measure of X̃ given Y = s.

Condition 3. Suppose that λH2 (y, t) is bounded, i.e., there exists an absolute constant c ′′ > 0 such that |λH2 (y, t)|
≤ c ′′ for any y and t in the support of Y and X⊤β0, respectively.

We then have the following theorem, which states that the above conditions are sufficient ones to ensure Assump-
tion 3(iii) and (v) hold.

Theorem 3.1. Under Conditions 1–3, Assumption 3(iii) and (v) hold in this example.

3.2. Cavanagh and Sherman’s rank estimator

In contrast to Han’s original proposal, Cavanagh and Sherman (1998) proposed estimating β0 in (1.2) using

β̂
C
n = argmax

β:β1=1
SC
n (β),

where

SC
n (β) :=

1
n(n − 1)

∑
i̸=j

M(Yi)1(X⊤

i β > X⊤

j β)
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and one candidate function for M(y) is

M(y) = a1(y < a) + y1(a ≤ y ≤ b) + b1(y > b).

Here a and b are two absolute constants, and hence M(y) is a trimming function for balancing the statistical efficiency
and robustness to outliers. Let β0 = (1, θ⊤

0 )
⊤, and we aim to estimate θ0.

We define the estimator θ̂
C
n and other parameters similarly as in Sections 1.2 and 3.1, with their explicit definitions

relegated to the Appendix A.2.1. Then we have the following corollary.

Corollary 3.2. We have

(i) Under Assumption 7(i)–(iii) in the Appendix A.2.1, if pn/n = o(1), then ∥̂θ
C
n − θ0∥

P
−→ 0.

(ii) Suppose that Assumption 7 holds. If pn/n = o(1), then

∥̂θ
C
n − θ0∥

2
= OP(pn/n).

(iii) Suppose that Assumptions 5–7 hold. If p2n/n = o(1) and log(n/p2n)p
3/2
n /n5/4

= o(1), we have

∥̂θ
C
n − θ0 + (VC)−1Pn∇1τ

C(·; θ0)∥2
= OP

{
log(n/p2n)p

3/2
n /n5/4}.

If further log(n/p2n)p
3/2
n /n1/4

= o(1), then for any γ ∈ Rpn ,
√
nγ⊤ (̂θ

C
n − θ0)/{γ⊤(VC)−1∆C(VC)−1γ}

1/2
⇒ N(0, 1).

(iv) Under conditions in (iii), if we further have εn
√
pn = o(1) and ε−2

n pn/
√
n = o(1), then

∥(̂VC)−1∆̂C (̂VC)−1
− (VC)−1∆C(VC)−1

∥
P
−→ 0.

In particular, we could choose ϵn ≍ (pn/n)1/6, which will render a consistent covariance estimator under the same scaling
condition as (iii).

3.3. Khan and Tamer’s rank estimator for duration models

Consider Khan and Tamer’s setting (Khan and Tamer, 2007), where the data are subject to censoring and the variable
Y is no longer always observed. Use ξ to denote the random censoring variable, which can be arbitrarily correlated with
X . Let R be a binary variable indicating whether Y is uncensored or not. Let V denote a scalar random variable with V = Y
for uncensored observations, and V = ξ otherwise. Consider the following right censored transformation model (Khan
and Tamer, 2007):

T (V ) = min(X⊤β0 + ϵ, ξ ),

R = 1(X⊤β0 + ϵ ≤ ξ ),

where T (·) is assumed to be strictly monotonic. The (pn + 1)-dimensional vector β0 is unknown and is to be estimated.
Khan and Tamer (2007) proposed estimating β0 with β̂

K
n = argmaxβ:β1=1 SK

n (β), where

SK
n (β) :=

1
n(n − 1)

∑
i̸=j

Ri1(Vi < Vj)1(X⊤

i β < X⊤

j β).

Let β0 = (1, θ⊤

0 )
⊤, and we consider estimation of θ0.

We define the estimator θ̂
K
n and other parameters similarly as in Sections 1.2 and 3.1, with their explicit definitions

relegated to Appendix A.2.2. Then we have the following corollary.

Corollary 3.3. We have

(i) Under Assumption 8(i)–(iii) in Appendix A.2.2, if pn/n = o(1), then ∥̂θ
K
n − θ0∥

P
−→ 0.

(ii) Under Assumption 8, if pn/n = o(1), then

∥̂θ
K
n − θ0∥

2
= OP(pn/n).

(iii) Suppose that Assumptions 5–6 and 8 hold. If p2n/n = o(1) and log(n/p2n)p
3/2
n /n5/4

= o(1), we have

∥̂θ
K
n − θ0 + (VK)−1Pn∇1τ

K(·; θ0)∥2
= OP

{
log(n/p2n)p

3/2
n /n5/4}.

If further log(n/p2n)p
3/2
n /n1/4

= o(1), then for any γ ∈ Rpn ,
√
nγ⊤ (̂θ

K
n − θ0)/{γ⊤(VK)−1∆K(VK)−1γ}

1/2
⇒ N(0, 1).
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(iv) Under conditions in (iii), if we further have εn
√
pn = o(1) and ε−2

n pn/
√
n = o(1), then

∥(̂VK)−1∆̂K (̂VK)−1
− (VK)−1∆K(VK)−1

∥
P
−→ 0.

In particular, we could choose ϵn ≍ (pn/n)1/6, which will render a consistent covariance estimator under the same scaling
condition as (iii).

3.4. Abrevaya and Shin’s rank estimator for partially linear index models

Consider Abrevaya and Shin’s partially linear index model (Abrevaya and Shin, 2011):

Y = T (X⊤β0 + η(W ) + ϵ),

where X ∈ Rpn+1, W ∈ R, T (·) is a non-degenerate monotone function, η(·) is a smooth function, and ϵ is a random noisy
independent of (X⊤,W )⊤. Our primary interest is to estimate β0 ∈ Rpn+1. For this, Abrevaya and Shin (2011) proposed
using β̂

A
n = argmaxβ:β1=1 SA

n (β), where

SA
n (β) :=

1
n(n − 1)

∑
i̸=j

1(Yi > Yj)1(X⊤

i β > X⊤

j β)Kb(Wi − Wj).

Here Kb(u) := b−1K (u/b) is a function facilitating pairwise comparison (Honoré and Powell, 2005). It involves a kernel
function K (·) and a bandwidth parameter b. Let β0 = (1, θ⊤

0 )
⊤. Our aim is to estimate θ0.

With the estimator θ̂
A
n and other parameters similarly defined as in Sections 1.2 and 3.1 and put in the Appendix A.2.3,

we have the following corollary.

Corollary 3.4. We have

(i) Under Assumption 9(i)–(vii) in Appendix A.2.3, if pn/n1−2δ
= o(1), then ∥̂θ

A
n − θ0∥

P
−→ 0.

(ii) Under Assumption 9, if pn/n1−δ
→ 0, then

∥̂θ
A
n − θ0∥

2
= OP

( pn
n1−δ ∧

p3/2n

n

)
.

(iii) Under Assumptions 5 and 9–10, as p2n/n
1−δ

= o(1) and log(n1−δ/p2n)p
3/2
n /n(5−5δ)/4

= o(1), we have

∥̂θ
A
n − θ0 + (VA)−1Pn∇1τ

A(·; θ0)∥2
= OP

{
n−δJ

∨ log(n1−δ/p2n)p
3/2
n /n(5−5δ)/4}.

If further log(n1−δ/p2n)p
3/2
n /n(1−5δ)/4

= o(1), then for any γ ∈ Rpn ,
√
nγ⊤ (̂θ

A
n − θ0)/{γ⊤(VA)−1∆A(VA)−1γ}

1/2
⇒ N(0, 1).

(iv) Under conditions in (iii), if we further have εn
√
pn = o(1) and ε−2

n pn/
√
n1−2δ = o(1), then

∥(̂VA)−1∆̂A (̂VA)−1
− (VA)−1∆A(VA)−1

∥
P
−→ 0.

In particular, we could choose ϵn ≍ (pn/n1−2δ)1/6. This will render a consistent covariance estimator under the scaling
condition [p4n/n

1−2δ
∨{log(n1−δ/p2n)}

4p6n/n
1−5δ

] = o(1), which, at various cases, will be the same as the scaling condition
in (iii).

4. Simulation results

This section presents results from a small simulation study to illustrate two main implications of our theory. First for
each fixed n, the normal approximation to the finite sample distribution of the studied rank correlation estimator will
quickly become unreliable as pn grows, suggesting that our theoretical bound is difficult to be improved in a significant
way. Secondly, in estimating the asymptotic covariance based on the covariance estimator of the numerical derivative
form, as n fixed, the tuning parameter that minimizes the Median Absolute Error (MAE) of the estimator will increase
with the dimension pn, echoing our theoretical observation.

In the simulation study, we focus on Han’s MRC estimator of the form (1.3) and the following binary choice model:

Yi = 1(X⊤

i β∗
+ ϵi ≥ 0), i = 1, . . . , n,

where X i ∼ N(0,Σ) with Σjk = 0.5|j−k|, ϵi ∼ N(0, 1), and β∗
= (2, 4, 6, . . . , 2(p + 1))⊤ representing the true regression

coefficient. For each n = 100, 200, 400 and pn = 1, 2, 3, 4, we simulate independent observations {Yi,X i}
n
i=1 from the

above model. Let β∗

0 := β∗/β∗

1 be the normalized regression coefficient. We aim to estimate β∗

0 using Han’s estimator
β̂

H
n , which is implemented using the iterative marginal optimization algorithm proposed by Wang (2007), with the initial

point chosen to be the truth.
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Table 1
Coverage probability under the first projection direction.
n p Nominal coverage probability

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100

1 0.606 0.644 0.692 0.731 0.781 0.822 0.860 0.890 0.914 0.932
2 0.806 0.829 0.844 0.862 0.881 0.895 0.907 0.920 0.930 0.948
3 0.923 0.930 0.938 0.947 0.953 0.957 0.963 0.964 0.970 0.973
4 0.877 0.892 0.905 0.920 0.926 0.939 0.945 0.948 0.956 0.964

200

1 0.518 0.561 0.619 0.672 0.719 0.763 0.809 0.861 0.903 0.939
2 0.598 0.655 0.704 0.754 0.801 0.826 0.863 0.890 0.912 0.938
3 0.702 0.746 0.788 0.820 0.846 0.874 0.893 0.911 0.930 0.953
4 0.852 0.871 0.887 0.902 0.920 0.923 0.934 0.940 0.952 0.960

400

1 0.502 0.552 0.588 0.648 0.699 0.749 0.797 0.857 0.900 0.946
2 0.500 0.555 0.604 0.663 0.724 0.766 0.819 0.858 0.905 0.945
3 0.576 0.627 0.672 0.715 0.765 0.809 0.844 0.882 0.900 0.929
4 0.613 0.672 0.711 0.737 0.782 0.833 0.870 0.890 0.920 0.944

Fig. 1. Plots of the kernel density estimates of the normalized estimates (blue) v.s. N(0, 1) (red) under the first projection direction (n = 100, 200, 400
from top to bottom).

Based on 1000 independent replications and using two-sided normal confidence interval, Tables 1–3 present the
coverage probability as the nominal one varies from 0.5 to 0.95 for three projections of the same directions as
(1, 1, . . . , 1)⊤, (1, 0, . . . , 0)⊤, and (1, 2, . . . , pn)⊤. For calculating the confidence intervals, we used the sample standard
deviation of 1000 replications. We further plot the kernel estimates of the density functions of the normalized three
projected estimates against the density function of N(0, 1) in Figs. 1–3. The normalization is based on the true mean
and the previous simulation-based standard deviation. In computing the kernel density estimates, we used normal kernel
function and the bandwidth based on Silverman’s rule-of-thumb.

Both the tables and figures reveal the same overall pattern that, for each fixed n, as pn increases, the coverage
probability will deviate more from the nominal, and the kernel estimates of the density function of the normalized
estimator itself will deviate more from the standard normal. As observed, the deviation from normal has become very
severe even for very small pn. For example, for pn = 2, we need n to be approximately 400 for achieving satisfactory
coverage probability. This supports the theoretical observations in Theorem 2.4 and Corollary 3.1(iii). We further conduct
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Fig. 2. Plots of the kernel density estimates of the normalized estimates (blue) v.s. N(0, 1) (red) under the second projection direction (n =

100, 200, 400 from top to bottom).

Fig. 3. Plots of the kernel density estimates of the normalized estimates (blue) v.s. N(0, 1) (red) under the third projection direction (n = 100, 200, 400
from top to bottom).
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Table 2
Coverage probability under the second projection direction.
n p Nominal coverage probability

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100

1 0.606 0.644 0.692 0.731 0.781 0.822 0.860 0.890 0.914 0.932
2 0.790 0.820 0.839 0.858 0.875 0.890 0.905 0.914 0.929 0.945
3 0.920 0.928 0.938 0.947 0.952 0.956 0.963 0.965 0.970 0.973
4 0.876 0.890 0.903 0.918 0.926 0.939 0.944 0.949 0.956 0.965

200

1 0.518 0.561 0.619 0.672 0.719 0.763 0.809 0.861 0.903 0.939
2 0.578 0.638 0.691 0.732 0.773 0.810 0.857 0.883 0.909 0.934
3 0.699 0.735 0.770 0.801 0.831 0.869 0.889 0.912 0.929 0.947
4 0.841 0.865 0.883 0.900 0.911 0.919 0.932 0.943 0.952 0.958

400 1 0.502 0.552 0.588 0.648 0.699 0.749 0.797 0.857 0.900 0.946
2 0.519 0.573 0.623 0.661 0.701 0.754 0.810 0.861 0.901 0.947
3 0.568 0.615 0.673 0.717 0.760 0.800 0.837 0.868 0.903 0.929
4 0.592 0.637 0.675 0.732 0.774 0.817 0.856 0.881 0.911 0.937

Table 3
Coverage probability under the third projection direction.
n p Nominal coverage probability

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

100

1 0.606 0.644 0.692 0.731 0.781 0.822 0.860 0.890 0.914 0.932
2 0.804 0.828 0.846 0.861 0.880 0.897 0.907 0.921 0.931 0.948
3 0.923 0.929 0.938 0.947 0.953 0.957 0.963 0.964 0.970 0.974
4 0.877 0.892 0.904 0.920 0.926 0.939 0.945 0.948 0.956 0.964

200

1 0.518 0.561 0.619 0.672 0.719 0.763 0.809 0.861 0.903 0.939
2 0.601 0.658 0.710 0.754 0.799 0.828 0.864 0.895 0.913 0.940
3 0.712 0.749 0.787 0.820 0.843 0.874 0.893 0.913 0.930 0.954
4 0.852 0.870 0.886 0.902 0.919 0.924 0.933 0.940 0.952 0.960

400 1 0.502 0.552 0.588 0.648 0.699 0.749 0.797 0.857 0.900 0.946
2 0.502 0.547 0.602 0.661 0.720 0.771 0.813 0.861 0.908 0.944
3 0.566 0.618 0.672 0.720 0.765 0.808 0.844 0.881 0.902 0.931
4 0.617 0.663 0.708 0.738 0.789 0.835 0.871 0.892 0.920 0.946

Table 4
MAE of the covariance estimator. The results are obtained using 1000 replications.
ϵn n = 100 n = 200 n = 400

p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4

1.1n−1/6 0.476 1.509 2.198 3.705 0.170 0.656 1.208 1.601 0.081 0.267 0.635 1.101
0.9n−1/6 0.468 1.555 2.197 3.786 0.160 0.663 1.269 1.695 0.073 0.275 0.671 1.144
0.7n−1/6 0.494 1.433 2.247 3.870 0.160 0.690 1.257 1.755 0.071 0.303 0.722 1.214
0.5n−1/6 0.521 1.402 2.473 3.802 0.175 0.755 1.334 1.774 0.081 0.339 0.764 1.261
0.3n−1/6 0.503 1.379 2.665 3.867 0.235 0.814 1.445 1.916 0.121 0.408 0.843 1.343
0.1n−1/6 0.657 1.464 2.962 4.762 0.329 0.874 1.452 2.161 0.201 0.475 0.869 1.379

different types of normality tests (Kolmogorov–Smirnov, Lilliefors, Jarque–Bera, Anderson–Darling, Henze–Zirkler) on the
derived projected estimates as well as the original multi-dimensional estimates. They all reject the null hypothesis of
normality except when pn = 1, n = 400.

We then move on to study the estimation accuracy of the asymptotic covariance estimator discussed at the end of
Section 2.2. For this, we focus on the same setup as previously conducted. Table 4 presents the MAE of the asymptotic
covariance estimator for the projection direction {p−1/2

n , . . . , p−1/2
n }

⊤. There, it could be observed that, for each fixed n, the
tuning parameter that attains the smallest MAE will in general become larger as pn increases, supporting our observation
in Theorem 2.6 and Corollary 3.1(iv).

Concluding remarks

This paper provided a first study of asymptotic properties of a general class of estimators defined as minimizers of
possibly discontinuous objective functions of U-process structure allowing for the dimension of the parameter vector
of interest to increase to infinity as the sample size n increases to infinity. Members of this class include important
rank correlation estimators as detailed throughout this paper. Technically we have established a maximal inequality for
degenerate U-processes in increasing dimensions which has played a critical role in deriving our theoretical results. We
have also applied our general theory to the four motivating rank correlation estimators. Using Han’s MRC estimator of
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the form (1.3), we have provided numerical support to our theoretical findings that for a given sample size, the accuracy
of the normal approximation deteriorates quickly as the number of parameters pn increases and that for the variance
estimation, the step size needs to be adjusted with respect to pn.

This paper is focused on the setting that the parameter of interest itself is of an increasing dimension and inference
has to be drawn on it. On the contrary, a growing literature studies the case that the parameter to be inferred is of a fixed
dimension, but allows for a dimension-increasing (but still less than n) nuisance in the model. Substantial developments
have been made along this line. For example, Cattaneo et al. (2018a,b) studied inferring the fixed-dimension linear
component in a partially linear model, and Lei et al. (2018) established asymptotic normality of margins of linear and
robust regression estimators in a simple linear model. Their set-up is fundamentally different from ours due to the
difference of goals.1

We end this section with a brief discussion on further extensions. An immediate extension is on studying ‘‘penalized’’
rank estimators in ultra high dimensional settings where the dimension could be even larger than the sample size.
For this much more challenging setting, to the authors’ knowledge, most literature is still focused on simple structural
statistical models (cf. Zhang and Zhang (2014), Van de Geer et al. (2014), Lee et al. (2016), and Javanmard and Montanari
(2018) among many others). A notable exception is the post-selection inference framework proposed in Belloni et al.
(2014, 2018), where a general set of regularization conditions has been posed for inference validity of Z-estimation. The
authors believe that, combined with our local entropy analysis of the degenerate U-processes and the empirical process
techniques developed by Talagrand and Spokoiny and specialized to rank estimators in this paper, the post-selection
inference framework will prove useful in extending the current study to ultra high dimensional models. However, there
are still many technical gaps, which we believe are fundamental and related to some key challenges in high dimensional
probability in extending the scalar empirical processes to vector and matrix ones if no further smoothing (cf. Han et al.
(2017)) is made. We will leave this for future research.
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Appendix

A.1. Additional notation

For a vector α ∈ Rl, we define |α| = (|α1|, . . . , |αl|)⊤. For two sequences of real numbers an and bn, an ≲ bn means that
an ≤ bn up to a multiplicative constant. We use the symbol an ∼ bn to denote that an ≲ bn and bn ≲ an. In this appendix
we drop the subscript n in mn, νn, pn.

A.2. Notation and assumptions in Section 3

Throughout this section, let X = (X1, X̃
⊤
)⊤, where X̃ denotes the last p components in X .

A.2.1. Notation and assumptions in Section 3.2
The following definitions are similar to those in Section 1.2. We use SC(β) to denote the expected value of SC

n (β), and
SC(β) = E{M(Y1)1(X⊤

1 β > X⊤

2 β)}. Let z = (y, x⊤)⊤. We define

f C(z1, z2; θ) = M(y1){1(x⊤

1 β > x⊤

2 β) − 1(x⊤

1 β0 > x⊤

2 β0)},

τ C(z; θ) = Ef C(z, ·; θ) + Ef C(·, z; θ), ζ C(z; θ) = τ C(z; θ) − Eτ C(·; θ),

∆C
= E∇1τ

C(·; θ0){∇1τ
C(·; θ0)}⊤, and 2VC

= E∇2τ
C(·; θ0).

Write Γ C(θ) for SC(β) − SC(β0) and Γ C
n (θ) for SC

n (β) − SC
n (β0). The estimator θ̂

C
n is defined as

θ̂
C
n = argmax

θ∈ΘC
Γ C
n (θ).

1 We note that our set-up is also fundamentally different from works on ‘‘many moment asymptotics’’ in GMM models such as Han and Phillips
(2006), Newey and Windmeijer (2009), and Caner (2014), where the number of moment conditions increases but the number of parameters in such
models is fixed as the sample size increases.
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To conduct inference on θ0 based on θ̂
C
n , we further define

τ C
n (z; θ) = Pnf C(z, ·; θ) + Pnf C(·, z; θ), pC

ni(z; θ) = ε−1
n {τ C

n (z; θ + εnui) − τ C
n (z; θ)}, and

pC
nij(z; θ) = ε−2

n {τ C
n (z; θ + εn(ui + uj)) − τ C

n (z; θ + εnui) − τ C
n (z; θ + εnuj) + τ C

n (z; θ)}.

Then, we define the estimator of the matrix ∆C as ∆̂C
= (̂δCij ) and the estimator of the matrix VC as V̂C

= (̂vCij ), where

δ̂Cij = Pn{pC
ni(·; θ̂

C
n)p

C
nj(·; θ̂

C
n)}, and v̂Cij =

1
2
PnpC

nij(·; θ̂
C
n).

We then make the following assumptions.

Assumption 7. Assume

(i) Assumption 1 holds for ΘC and Γ C(θ).
(ii) The random variables X and ϵ are independent, and E{M(Y ) | X} depends on X only through X⊤β0.
(iii) X1 has an everywhere positive Lebesgue density, conditional on X̃ .
(iv) Assumption 3 holds for τ C(z; θ) and ζ C(z; θ).

A.2.2. Notation and assumptions in Section 3.3
The following definitions are similar to those in Section 1.2. Let SK(β) denote the expected value of SK

n (β), and
SK(β) = E{R11(V1 < V2)1(X⊤

1 β < X⊤

2 β)}. Let z = (r, v, x⊤)⊤. We define

f K(z1, z2; θ) = r11(v1 < v2){1(x⊤

1 β < x⊤

2 β) − 1(x⊤

1 β0 < x⊤

2 β0)},
τ K(z; θ) = Ef K(z, ·; θ) + Ef K(·, z; θ), ζ K(z; θ) = τ K(z; θ) − Eτ K(·; θ),

∆K
= E∇1τ

K(·; θ0){∇1τ
K(·; θ0)}⊤, and 2VK

= E∇2τ
K(·; θ0).

Write Γ K(θ) for SK(β) − SK(β0) and Γ K
n (θ) for SK

n (β) − SK
n (β0). The estimator θ̂

K
n is defined as

θ̂
K
n = argmax

θ∈ΘK
Γ K
n (θ).

To conduct inference on θ0 based on θ̂
K
n , we further define

τ K
n (z; θ) = Pnf K(z, ·; θ) + Pnf K(·, z; θ), pK

ni(z; θ) = ε−1
n {τ K

n (z; θ + εnui) − τ K
n (z; θ)}, and

pK
nij(z; θ) = ε−2

n {τ K
n (z; θ + εn(ui + uj)) − τ K

n (z; θ + εnui) − τ K
n (z; θ + εnuj) + τ K

n (z; θ)}.

Then, we define the estimator of the matrix ∆K as ∆̂K
= (̂δKij ) and the estimator of the matrix VK as V̂K

= (̂vKij ), where

δ̂Kij = Pn{pK
ni(·; θ̂

K
n)p

K
nj(·; θ̂

K
n)} and v̂Kij =

1
2
PnpK

nij(·; θ̂
K
n).

We then make the following assumptions.

Assumption 8. Assume

(i) Assumption 1 holds for ΘK and Γ K(θ).
(ii) The random variables (ξ,X) and ϵ are independent, and E(ξ | X) depends on X only through X⊤β0.
(iii) X1 has an everywhere positive Lebesgue density, conditional on X̃ .
(iv) Assumption 3 holds for τ K(z; θ) and ζ K(z; θ).

A.2.3. Notation and assumptions in Section 3.4
Let φ(·) denote the density of W . Let z = (y, x⊤, w)⊤. We define

f A(z1, z2; θ) = 1(y1 > y2){1(x⊤

1 β > x⊤

2 β) − 1(x⊤

1 β0 > x⊤

2 β0)}K {(w1 − w2)/b},

m(z1, z2; θ) = 1(y1 > y2)1(x⊤

1 β > x⊤

2 β),
ψ(w1, w2; θ) = E{m(Z1, Z2; θ) − m(Z1, Z2; θ0) | W1 = w1,W2 = w2},

Γ A(θ) = EW {ψ(W ,W ; θ)φ(W )},
τA(z; θ ) = E{m(z, Z2; θ) | W2 = w}φ(w) + E{m(Z1, z; θ) | W1 = w}φ(w),

ζ A(z; θ) = τA(z; θ) − EτA(·; θ), ∆A
= E∇1τ

A(·; θ0){∇1τ
A(·; θ0)}⊤, and 2VA

= E∇2τ
A(·; θ0).

Write Γ A
n (θ) for SA

n (β) − SA
n (β0). The estimator θ̂

A
n is defined as

θ̂
A
n = argmax

θ∈ΘA
Γ A
n (θ).
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Note that EΓ A
n (θ) ̸= Γ A(θ). This is different from the general set-up in Section 2.2. However, by Taylor expansion,

we show that supθ∈ΘA

⏐⏐EΓ A
n (θ) − Γ A(θ)

⏐⏐ is negligible under the assumptions adopted in this section. Then, following the
proof of the general method, we can similarly establish the consistency and asymptotic normality of θ̂

A
n .

To conduct inference on θ0 based on θ̂
A
n , we further define

τA
n (z; θ) = Pnf A(z, ·; θ) + Pnf A(·, z; θ), pA

ni(z; θ) = ε−1
n {τA

n (z; θ + εnui) − τA
n (z; θ)}, and

pA
nij(z; θ) = ε−2

n {τA
n (z; θ + εn(ui + uj)) − τA

n (z; θ + εnui) − τA
n (z; θ + εnuj) + τA

n (z; θ)}.

Then, we define the estimator of the matrix ∆A as ∆̂A
= (̂δAij ) and the estimator of the matrix VA as V̂A

= (̂vAij ), where

δ̂Aij = Pn{pA
ni(·; θ̂

A
n )p

A
nj(·; θ̂

A
n )}, and v̂Aij =

1
2
PnpA

nij(·; θ̂
A
n ).

We make the following assumptions.

Assumption 9. Assume

(i) Assumption 1 holds for ΘA and Γ A(θ);
(ii) The random variables (X,W ) and ϵ are independent.
(iii) X1 has an everywhere positive Lebesgue density, conditional on X̃ and W .
(iv) W is continuously distributed on a compact subset W of R.
(v) The kernel function K (·) satisfies: (1) K (·) is twice continuously differential with compact interval [−C, C] ⊇ W;

(2) K (·) is symmetric about 0 and integrates to 1; (3) for some integer J ≥ 6,
∫
ujK (u) du = 0 with j = 1, . . . , J − 1

and
∫
uJK (u) du is bounded.

(vi) The bandwidth b is defined as b = cn−δ for constants c > 0 and 1
J < δ < 1

5 .
(vii) For any w2, the Jth derivative of ψ(w1, w2; θ) ·φ(w1) with respect to w1 is continuous and bounded for all θ ∈ ΘA.
(viii) Assumption 3 holds for τA(z; θ) and ζ A(z; θ).

Assumption 10. Let f0(· | x̃, w) denote the conditional density function of X⊤β0 given (X̃,W ) = (̃x, w). Assume
f0(· | x̃, w) ≤ C1 for any x̃ and w in the support of X̃ and W , respectively, where C1 is an absolute positive constant.

A.3. Proofs in Section 2

For each θ ∈ Θ , define measures

Snf (·, ·; θ) = n(n − 1)Unf (·, ·; θ)

and

Tnf (·, ·; θ) =

∑
i̸=j

{f (Z2i, Z2j; θ) + f (Z2i, Z2j−1; θ) + f (Z2i−1, Z2j; θ) + f (Z2i−1, Z2j−1; θ)}.

To prove Theorems 2.1–2.4 in Section 2, we need several lemmas. For simplicity, we omit the parameter θ in each
function f (·, ·; θ) ∈ F in the lemmas. Let F denote the envelope function of F for which 0 < EF r < ∞, for any
r ≥ 1. The covering number Nr (ε,P ⊗ P,F, F ) is defined as the smallest cardinality for a subclass F∗ of F such that
minf ∗∈F∗ E|f − f ∗

|
r
≤ εrEF r , for each f ∈ F .

A.3.1. Some auxiliary lemmas

Lemma A.1. Suppose that F is b-uniformly bounded, then the class F2
= {f 2 : f ∈ F} with envelope b2 satisfies

Nr (2ε,P ⊗ P,F2, b2) ≤ Nr (ε,P ⊗ P,F, b).

Proof. Find functions f1, . . . , fm such that

min
i

E|f − fi|r ≤ εrbr , for each f ∈ F .

Then, with the appropriate i,

E|f 2 − f 2i |
r
≤ (2b)rE|f − fi|r ≤ (2b)rεrbr = (2ϵ)r (b2)r .

This implies that Nr (2ε,P ⊗ P,F2, b2) ≤ Nr (ε,P ⊗ P,F, b). □

Lemma A.2. Suppose that F is b-uniformly bounded. Then E supg∈PF |Png − Eg| ≲
√
ν/n, where PF := {EPf (z, ·) : f ∈ F}.
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Proof. With a little abuse of notation, let ϵ1, ϵ2, . . . be the Rademacher sequence, where ϵi ∈ {−1, 1} is symmetric around
0. By the classic symmetrization theorem (cf. Theorem 8.8 in Kosorok, 2007), we have

E sup
g∈PF

|Png − Eg| ≤ EZEϵ sup
g∈PF

⏐⏐⏐1
n

n∑
i=1

ϵig(Z i)
⏐⏐⏐. (A.1)

Next, we try to bound Eϵ supg∈PF |
∑n

i=1 ϵig(z i)/n| for fixed z i. To that end, consider the stochastic process {
∑n

i=1 ϵig(z i)/√
n : g ∈ PF}. It is easy to verify that

∑n
i=1 ϵi{g1(z i) − g2(z i)}/

√
n is sub-gaussian with parameter ∥g1 − g2∥2

L2(Pn)
:=∑n

i=1{g1(z i) − g2(z i)}2/n, where g1, g2 ∈ PF . Consequently, Dudley’s entropy integral, combined with the fact that
supg1,g2∈PF ∥g1 − g2∥L2(Pn) ≤ 2b, implies that

Eϵ sup
g∈PF

⏐⏐⏐1
n

n∑
i=1

ϵig(z i)
⏐⏐⏐ ≤

24
√
n

∫ 2b

0

√
logN2(t/b,Pn,PF, b) dt. (A.2)

By Theorem 9.3 in Kosorok (2007) and Lemma 20 in Nolan and Pollard (1987), there exists a universal constant K such
that N2(t/b,Pn,PF, b) ≤ Kν(16e)ν(b/t)2(ν−1). Substituting this bound into (A.2), we find that there exist constants c0, c1,
only depending on K , b but not on (ν, n), such that

Eϵ sup
g∈PF

⏐⏐⏐1
n

n∑
i=1

ϵig(z i)
⏐⏐⏐ ≤ c0

√
ν

n

{
1 +

∫ 2b

0

√
log(b/t) dt

}
≤ c1

√
ν

n
.

Combining this with (A.1) implies that E supg∈PF |Png − Eg| ≤ c1
√
ν/n. This completes the proof. □

Lemma A.3. Suppose that F is P-degenerate and b-uniformly bounded. Then E supf∈F |Unf | ≲ ν/n.

Proof. First, by the relationship between Sn and Un: Sn = n(n − 1)Un, we just need to show that E supf∈F |Snf /(nν)| is
bounded. Apply Theorem 6 in Nolan and Pollard (1987) to get

E sup
f∈F

|Snf | ≤ CE
{
σn + τnJn

(σn
τn

)}
, (A.3)

where C is a universal constant, σn = supf∈F (Tnf 2)1/2/4, τn = (Tnb2)1/2, and Jn(x) =
∫ x
0 logN2(t,Tn,F, b) dt . By Theorem

9.3 in Kosorok (2007), we have N2(t,Tn,F, 1) ≤ Kν(4e)ν(2/t)2(ν−1), and thus Jn(x) ≤ cH(x)ν for some constant c depending
on K , where H(x) = x{1 + log(1/x)}.

Since F is b-uniformly bounded, it holds that σn/τn ∈ [0, 1/4]. Note also that H(x) is bounded when x ∈ [0, 1].
We immediately have H(σn/τn) is bounded. Additionally, by the definition of Tn, we see that τn = {4n(n − 1)}1/2 ≲ n.
Combining all these points with (A.3) implies that there exists some constant c ′ depending on C, c such that

E supf∈F |Snf |
nv

≤ c ′EH
(σn
τn

)τn
n
< C ′

for some large enough absolute constant C ′. This completes the proof. □

Lemma A.4. If for each ε > 0, (i) logN1(ε,Tn,F, F ) = OP(n), (ii) logN1(ε,Pn⊗P,F, F ) = oP(n), (iii) logN1(ε,P⊗P,F, F ) =

o(n), then supf∈F |Unf − Ef | → 0 almost surely.

The proof of this lemma follows along the same lines as the proof of Theorem 7 in Nolan and Pollard (1987), though
the condition (iii) in this lemma is different from there.

A.3.2. Proof of Theorem 2.1

Proof. (i) It is equivalent to showing that there exists a sequence of nonnegative real numbers δn converging to zero such
that

P
{

sup
θ∈B(θ0,rn)

|Unh(·, ·; θ)| ≥ δnν/n
}

= o(1),

or

P
{

sup
θ∈B(θ0,rn)

|Snh(·, ·; θ)/(nν)| ≥ δn

}
= o(1).

By Chebyshev’s inequality, it suffices to show that

E
{

sup
θ∈B(θ0,rn)

|Snh(·, ·; θ)/(nν)|
}
/δn = o(1).
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We try to bound E{supθ∈B(θ0,rn) |Snh(·, ·; θ)/(nν)|}. Without loss of generality, assume F is uniformly bounded by
b = 1/4. Thus, for any θ ∈ Θ , h(·, ·; θ) ≤ 1, i.e., the class of functions H := {h2(·, ·; θ) : θ ∈ B(θ0, rn)} is 1-uniformly
bounded. Similar to the proof of Lemma A.3, we apply Theorem 6 in Nolan and Pollard (1987) here to get

E
{

sup
θ∈B(θ0,rn)

|Snh(·, ·; θ)/(nν)|
}

≤ C1EH
(

sup
θ∈B(θ0,rn)

{Tnh2(·, ·; θ)}1/2/(2n)
)

≤ C1H
(
E
[

sup
θ∈B(θ0,rn)

{Tnh2(·, ·; θ)}1/2/(2n)
])

= C1H
(
E
{

sup
θ∈B(θ0,rn)

Tnh2(·, ·; θ)/(2n)2
}1/2)

,

(A.4)

where C1 is some constant. The second inequality holds because H(x) is concave in x.
Note that Tnh2(·, ·; θ)/(2n)2 = Tnh2(·, ·; θ)/{2n(2n − 1)} · {2n(2n − 1)}/(2n)2 ≤ U2nh2(·, ·; θ) ≤ 1 and that H(x) is

increasing in (0, 1]. Thus, from (A.4), we additionally have

E
{

sup
θ∈B(θ0,rn)

|Snh(·, ·; θ)/(nν)|
}

≤ C1H
(
E
{

sup
θ∈B(θ0,rn)

U2nh2(·, ·; θ)
}1/2)

≤ C1H
([

E
{

sup
θ∈B(θ0,rn)

U2nh2(·, ·; θ)
}]1/2)

,

(A.5)

where the last inequality holds because x1/2 is concave in x. Now, we need only to consider E{supθ∈B(θ0,rn) U2nh2(·, ·; θ)}.
By a decomposition of U2nh2(·, ·, θ) into a sum of its expected value, plus a smoothly parameterized, zero-mean

empirical process, plus a degenerate U-process of order two, we have

E
{

sup
θ∈B(θ0,rn)

U2nh2(·, ·; θ)
}

≤ sup
θ∈B(θ0,rn)

Eh2(·, ·; θ) + E
{

sup
θ∈B(θ0,rn)

|P2nh1(·; θ)|
}

+ E
{

sup
θ∈B(θ0,rn)

|P2nh2(·, ·; θ)|
}
,

(A.6)

where h1(z, θ) = Eh2(z, ·; θ) + Eh2(·, z; θ) − 2Eh2(·, ·; θ) and h2(z1, z2; θ) = h2(z1, z2; θ) − Eh2(z1, ·; θ) − Eh2(·, z2; θ) +

Eh2(·, ·; θ).
By the condition in (i), it holds that supθ∈B(θ0,rn) Eh

2(·, ·; θ) ≤ ϵn. By Lemmas 16 and 20 in Nolan and Pollard (1987),
and Lemma A.1, we have Nr (ε,Q,H , 1) ≤ Nr (ε/16,Q,F, 1/4)4. Then, following the proof of Lemma A.2, we have
E{supθ∈B(θ0,rn) |P2nh1(·; θ)|} ≤ C2

√
ν/n for some constant C2. Additionally, following the proof of Lemma A.3, we have

E{supθ∈B(θ0,rn) |P2nh2(·, ·; θ)|} ≤ C3ν/n for some constant C3.
Take δn = H1/2((ϵn + C2

√
ν/n + C3ν/n)1/2). If ϵn → 0 and ν/n → 0, then

E
{

sup
θ∈B(θ0,rn)

|Snh(·, ·; θ)/(nν)|
}
/δn ≤ C1H1/2((ϵn + C2

√
ν/n + C3ν/n)1/2) = o(1),

because H(x) → 0 as x → 0. This completes proof of (i).
(ii) The proof is based on (A.4)–(A.6) in the proof of (i). First, by the condition in (ii), it holds that supθ∈B(θ0,rn) Eh

2(·, ·; θ)
≤ ϵ̃n. Then, similar to the proof of (i), E{supθ∈B(θ0,rn) |P2nh1(·; θ)|} ≤ c ′

√
ν/n for some constant c ′, and E{supθ∈B(θ0,rn)

|P2nh2(·, ·; θ)|} ≤ C ′ν/n for some constant C ′. Since η̃n =
√
ν/n ∨ ϵ̃n and ν/n → 0, there exists a constant c ′′ depending

on c ′, C ′ such that

E
{

sup
θ∈B(θ0,rn)

U2nh2(·, ·; θ)
}

≤ c ′′η̃n

holds for sufficiently large n. Combining this with (A.5) implies that

E
{

sup
θ∈B(θ0,rn)

|Snh(·, ·; θ)/(nν)|
}

≤ C ′′ log(1/̃ηn )̃η1/2n

for some constant C ′′. Finally, by the relationship between Un and Sn, we conclude that

E sup
θ∈B(θ0,rn)

|Unh(·, ·; θ)| ≤ C ′′ log(1/̃ηn )̃η1/2n ν/n

holds for sufficiently large n. □

A.3.3. Proof of Theorem 2.2

Proof. The proof is twofold. We first show the uniform convergence of Γn(θ), and then establish the consistency of θ̂n.
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Step 1. By Theorem 9.3 in Kosorok (2007), we have logN1(ε, µ,F, F ) ≲ ν for any ε > 0 and any finite measure µ. If
ν/n → 0, then all the three conditions in Lemma A.4 hold. Apply this lemma here to get that Γn(θ) converges almost
surely to Γ (θ) uniformly in θ ∈ Θ .
Step 2. Let Θ0(r) = B(θ0, r), where r ≤ r0. By Assumption 1, we see that Θ1 := Θ −Θ0(r) is compact. By Assumption 2,
Γ (θ) is continuous. Combining these two pieces yields that maxθ∈Θ1 Γ (θ) exists. Again, by Assumption 1, we know that
Γ (θ0) − maxθ∈Θ1 Γ (θ) ≥ ξ0.

By Step 1, we can find a sufficiently large N such that for all n > N ,

sup
θ∈Θ

|Γn(θ) − Γ (θ)| < ξ0/2

holds almost surely. Combining this with the definition of θ̂n yields that

Γ (θ0) < Γn(θ0) + ξ0/2 ≤ Γn (̂θn) + ξ0/2 < Γ (̂θn) + ξ0.

This implies that θ̂n ̸∈ Θ1, i.e., θ̂n ∈ Θ0(r) for all n > N . Since this is true for any r < r0, we have

∥̂θn − θ0∥ → 0 almost surely,

and hence also in probability. This completes the proof. □

A.3.4. Proof of Theorem 2.3

Proof. The proof is conducted in four steps. Based on the Hoeffding decomposition of Γn(θ), we consider Γ (θ), Png(·; θ)
and Unh(·, ·; θ) separately in the first three steps. We finally obtain the convergence rate of θ̂n in the last step.

Step 1. Fixing θ ∈ B(θ0, r), define

ω(θ) = Eτ (·; θ) − Eτ (·, θ0) − (θ − θ0)⊤V(θ − θ0) = 2Γ (θ) − (θ − θ0)⊤V(θ − θ0). (A.7)

Additionally, expand ω(θ) about θ0 to get

ω(θ) = (θ − θ0)⊤∇1ω(θ′), (A.8)

where θ′ is a point on the line connecting θ0 and θ, and ∇1ω(θ′) = ∇1Eτ (·; θ′)−2V(θ′
−θ0). Expand ∇1Eτ (·; θ′) in ∇1ω(θ′)

about θ0 to get

∇1ω(θ′) = 2V(θ′′)(θ′
− θ0) − 2V(θ′

− θ0) = 2{V(θ′′) − V}(θ′
− θ0)

for θ′′ between θ0 and θ′. By Assumption 3(ii) and (iii), we have

sup
θ′

∈B(θ0,r)
∥∇1ω(θ′)∥ ≤ 2 sup

θ′
∈B(θ0,r)

∥V1/2
{Ip − V−1/2V(θ′′)V−1/2

}V1/2
∥∥θ′

− θ0∥

≤ 2cmaxρ(r)∥θ − θ0∥.

(A.9)

Combining this with (A.7) and (A.8) yields

sup
θ∈B(θ0,r)

⏐⏐Γ (θ) −
1
2
(θ − θ0)⊤V(θ − θ0)

⏐⏐ ≤ cmaxρ(r)∥θ − θ0∥
2. (A.10)

Step 2. Fixing z in Rm and θ in B(θ0, r), define

ψ(z; θ) = τ (z; θ) − τ (z; θ0) − (θ − θ0)⊤∇1τ (z; θ0) − (θ − θ0)⊤V(θ − θ0).

With a little abuse of notation, we still use θ′ to denote some point between θ0 and θ below. Expand ψ(z; θ) about θ0 to get

ψ(z; θ) = (θ − θ0)⊤∇1ψ(z; θ′) = (θ − θ0)⊤{∇1τ (z; θ′) − ∇1τ (z; θ0) − 2V(θ′
− θ0)}.

Note that τ (z; θ′) = ζ (z; θ′) + Eτ (·; θ′). It then follows from the above equation and ∇1Eτ (·; θ0) = 0 that

Pnψ(·; θ) = (θ − θ0)⊤{Pn∇1ζ (·; θ′) − Pn∇1ζ (·; θ0) + ∇1Eτ (·; θ′) − 2V(θ′
− θ0)}

= (θ − θ0)⊤Pn{∇1ζ (·; θ′) − ∇1ζ (·; θ0)} + (θ − θ0)⊤{∇1Eτ (·; θ′) − 2V(θ′
− θ0)}.

By Step 1, we have that

sup
θ∈B(θ0,r)

∥(θ − θ0)⊤{∇1Eτ (·; θ′) − 2V(θ′
− θ0)}∥ ≤ 2cmaxρ(r)∥θ − θ0∥

2. (A.11)

Next, we try to bound supθ∈B(θ0,r) ∥(θ − θ0)⊤Pn{∇1ζ (·; θ′) − ∇1ζ (·; θ0)}∥. Consider the vector process

Λ(θ) =
√
nPn{∇1ζ (·; θ) − ∇1ζ (·; θ0)}.
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According to Assumption 3(v), it holds, for any γ1, γ2 ∈ Sp−1, that

logE exp
{
λγ⊤

1 ∇1Λ(θ)γ2
}

= n logE exp
{
λ

√
n
γ⊤

1 ∇2ζ (·; θ)γ2

}
≤
ν20λ

2

2

for any |λ| ≤ gn with gn =
√
nℓ0. It then follows from Theorem A.3 in Spokoiny (2013) that for any 0 < ε < 1,

P
{

sup
θ∈B(θ0,r)

∥Λ(θ)∥ > 6ν0rdp(ε)
}

≤ ε,

where

dp(ε) =

{√
4p − 2 log ε if 4p − 2 log ε ≤ g2

n ,

g−1
n log ε +

1
2
(4pg−1

n + gn) if 4p − 2 log ε > g2
n .

Thus,

P
{

sup
θ∈B(θ0,r)

⏐⏐(θ − θ0)⊤Pn{∇1ζ (·; θ′) − ∇1ζ (·; θ0)}
⏐⏐ > 6ν0r

√
n
dp(ε)∥θ − θ0∥

}
≤ ε. (A.12)

This, combined with (A.11), implies that

P
{

sup
θ∈B(θ0,r)

∥Pnψ(·; θ)∥ > 2cmaxρ(r)∥θ − θ0∥
2
+

6ν0r
√
n
dp(ε)∥θ − θ0∥

}
≤ ε. (A.13)

Note that τ (z; θ0) = 0 and

g(z; θ) = τ (z; θ ) − τ (z; θ0) − 2Γ (θ)

= (θ − θ0)⊤∇1τ (z; θ0) + ψ(z; θ) − {2Γ (θ) − (θ − θ0)⊤V(θ − θ0)} .

Apply (A.10) and (A.13) to see that

P
{

sup
θ∈B(θ0,r)

⏐⏐Png(·; θ) −
1

√
n
(θ − θ0)⊤W n

⏐⏐ > 4cmaxρ(r)∥θ − θ0∥
2
+

6ν0r
√
n
dp(ε)∥θ − θ0∥

}
≤ ε, (A.14)

where W n =
√
nPn∇1τ (·; θ0).

Step 3. By Assumption 2, f (z1, z2; θ) is continuous at θ0 almost surely. Since F is uniformly bounded, a dominated
convergence argument implies that the same holds true for h(z1, z2; θ). In view of f (z1, z2, θ0) = 0 for all z1, z2, it holds
that h(z1, z2; θ0) = 0. Thus, the boundedness of h and the dominated convergence theorem establish

Eh2(·, ·; θ) → 0 as ∥θ − θ0∥ → 0. (A.15)

Equivalently, there exists a constant α(r) > 0 such that supθ∈B(θ0,r) Eh
2(·, ·; θ) ≤ α(r) and α(r) → 0 as r → 0. By

Theorem 2.1, there exists a sequence of nonnegative real numbers δn (depending on α(r), ν, n) converging to zero as
r → 0 and n → ∞, such that

P
{

sup
θ∈B(θ0,r)

|Unh(·, ·; θ)| > δnν/n
}

≤ ϵ (A.16)

holds for sufficiently large n.

Step 4. The Hoeffding decomposition, combined with (A.10), (A.14), and (A.16) in the above three steps, implies that

P
{

sup
θ∈B(θ0,r)

⏐⏐Γn(θ) −
1
2
(θ − θ0)⊤V(θ − θ0) −

1
√
n
(θ − θ0)⊤W n

⏐⏐ >
5cmaxρ(r)∥θ − θ0∥

2
+

6ν0r
√
n
dp(ε)∥θ − θ0∥ + δn

ν

n

}
≤ 2ε.

(A.17)

In view of W n =
√
nPn∇1τ (·; θ0), it holds that (θ − θ0)⊤W n/{(θ − θ0)⊤∆(θ − θ0)}1/2 ⇒ N(0, 1). This, combined with

Assumption 3(iv), implies that there exists a constant bε depending on dmax such that

P
{
|(θ − θ0)⊤Wn| > bε∥θ − θ0∥

}
≤ ε
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holds for sufficiently large n. Define the set

An,ε =

{
Z : sup

θ∈B(θ0,r)

⏐⏐Γn(θ) −
1
2
(θ − θ0)⊤V(θ − θ0)

⏐⏐ ≤
bε
√
n
∥θ − θ0∥+

5cmaxρ(r)∥θ − θ0∥
2
+

6ν0r
√
n
dp(ε)∥θ − θ0∥ + δn

ν

n

}
,

then P(An,ε) ≥ 1 − 3ε holds for sufficiently large n. The following analysis is on the set An,ε .
By Theorem 2.2, ∥̂θn − θ0∥ → 0 almost surely. Thus, for sufficiently large n, θ̂n ∈ B(θ0, r). This implies that

Γn (̂θn) ≤
1
2
(̂θn − θ0)⊤V(̂θn − θ0) +

bε
√
n
∥̂θn − θ0∥ + 5cmaxρ(r)∥̂θn − θ0∥

2

+
6ν0r
√
n
dp(ε)∥̂θn − θ0∥ + δn

ν

n
.

In view of Γn (̂θn) ≥ Γn(θ0) = 0, it holds that

0 ≤
1
2
(̂θn − θ0)⊤V(̂θn − θ0) +

bε
√
n
∥̂θn − θ0∥ + 5cmaxρ(r)∥̂θn − θ0∥

2
+

6ν0r
√
n
dp(ε)∥̂θn − θ0∥ + δn

ν

n
.

This, combined with Assumption 3(ii) and ρ(r) < cmin
11cmax

, implies that

1
2
κ ∥̂θn − θ0∥

2
≤

bε
√
n
∥̂θn − θ0∥ +

6ν0r
√
n
dp(ε)∥̂θn − θ0∥ + δn

ν

n
, (A.18)

where κ = cmin−10cmaxρ(r) > 0. By the definition of dp(ε) and p/n → 0, there exists a constant cε such that dp(ε) ≤ cε
√
p

for sufficiently large n. Combining this with (A.18) yields that

1
2
κ

(
∥̂θn − θ0∥ −

bε + 6ν0rcε
√
p

κ
√
n

)2
≤

(bε + 6ν0rcε
√
p)2

2κn
+ δn

ν

n
.

Solving the above equation establishes that

∥̂θn − θ0∥ ≤ Cε

√
ν ∨ p
n

holds for sufficiently large n, where Cε is some constant depending only on cmin, cmax, ρ(r), dmax, ε, but not depending on
ν, p, n. Thus,

P
{
∥̂θn − θ0∥ ≤ Cε

√
ν ∨ p
n

}
≥ 1 − 3ε

holds for sufficiently large n. This completes the proof. □

A.3.5. Proof of Theorem 2.4

Proof. The proof is based on the proof of Theorem 2.3. We first define t̂n =
√
n(̂θn − θ0) and t∗

n = −V−1W n. By
Theorem 2.3, for any ε > 0, there exists a constant C ′

ε > 0 such that

P
{
∥̂θn − θ0∥ > C ′

ε

√
ν ∨ p
n

}
≤ ε (A.19)

holds for sufficiently large n. By the definition of W n, W n =
√
nPn∇1τ (·; θ0), it holds that for any γ ∈ Rp,

γ⊤t∗
n/(γ

⊤V−1∆V−1γ)1/2 ⇒ N(0, 1). This, combined with Assumption 3(ii) and (iv), implies that there exists a constant
C ′′
ε such that

P
{
∥t∗

n∥ ≥ C ′′

ε

}
≤ ε (A.20)

holds for sufficiently large n. Thus, by (A.19) and (A.20), there exists a constant c ′
ε depending on C ′

ε, C
′′
ε such that

P
(
A′

n,ε

)
≥ 1 − 2ε (A.21)

holds for sufficiently large n, where A′
n,ε := {Z : θ̂n ∈ B(θ0, rn), t∗

n/
√
n + θ0 ∈ B(θ0, rn)} and rn := c ′

ε

√
(ν ∨ p)/n.

Fix θ ∈ B(θ0, rn). Then following the proofs of Steps 1–2 in Theorem 2.3, we have

sup
θ∈B(θ0,rn)

⏐⏐Γ (θ) −
1
2
(θ − θ0)⊤V(θ − θ0)

⏐⏐ ≤ cmaxρ(rn)∥θ − θ0∥
2, (A.22)
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and

P
{

sup
θ∈B(θ0,rn)

⏐⏐Png(·; θ) −
1

√
n
(θ − θ0)⊤W n

⏐⏐ > 4cmaxρ(rn)∥θ − θ0∥
2
+

6ν0rn
√
n

dp(ε)∥θ − θ0∥

}
≤ ε.

(A.23)

Since F is uniformly bounded and supB(θ0,rn) Eh
2(·, ·; θ) ≤ C̃ϵn, Theorem 2.1(ii) implies that there exists a constant Cε

such that

P
{

sup
θ∈B(θ0,rn)

⏐⏐Unh(·, ·; θ)
⏐⏐ > Cε log(1/ηn)η1/2n

ν

n

}
≤ ε (A.24)

holds for sufficiently large n. This, together with (A.22) and (A.23), implies that

P
{

sup
θ∈B(θ0,rn)

⏐⏐Γn(θ) −
1
2
(θ − θ0)⊤V(θ − θ0) −

1
√
n
(θ − θ0)⊤W n

⏐⏐ > 5cmaxρ(rn)∥θ − θ0∥
2
+

6ν0rn
√
n

dp(ε)∥θ − θ0∥ + Cε log(1/ηn)η1/2n
ν

n

}
≤ 2ε.

(A.25)

In view of ∥θ − θ0∥ ≤ rn, ρ(rn) ≤ prn and dp(ε) ≤ cε
√
p, it holds that

P
{

sup
θ∈B(θ0,rn)

⏐⏐Γn(θ) −
1
2
(θ − θ0)⊤V(θ − θ0) −

1
√
n
(θ − θ0)⊤W n

⏐⏐ > 5cmaxpr3n+

6ν0cεr2n
√
p

√
n

+ Cε log(1/ηn)η1/2n
ν

n

}
≤ 2ε

(A.26)

for sufficiently large n. Define the set

A′′

n,ε =

{
Z : sup

θ∈B(θ0,rn)

⏐⏐Γn(θ) −
1
2
(θ − θ0)⊤V(θ − θ0) −

1
√
n
(θ − θ0)⊤W n

⏐⏐ ≤ φε(ν, p, n)
}
, (A.27)

where

φε(ν, p, n) := 5cmaxpr3n +
6ν0cεr2n

√
p

√
n

+ Cε log(1/ηn)η1/2n
ν

n
.

Then, P(A′′
n,ε) ≥ 1 − 2ε. Additionally, P(A′

n,ε ∩ A′′
n,ε) ≥ 1 − 4ε. The following analysis is on the set A′

n,ε ∩ A′′
n,ε .

By definition, Γn (̂θn) = Γn (̂tn/
√
n+ θ0) ≥ Γn(t∗

n/
√
n+ θ0). Apply the inequality in (A.27) twice, then multiply through

by n, consolidate terms, and use the fact that V is negative definite to get that

0 ≤ −
1
2
(̂tn − t∗

n)
⊤V(̂tn − t∗

n) ≤ 2nφε(ν, p, n). (A.28)

Note that φε(ν, p, n) ≲ (ν ∨ p)5/2/n3/2
+ log(1/ηn)η

1/2
n ν/n. This, combined with (A.28) and Assumption 3(ii), implies that

∥̂tn − t∗

n∥ ≲

{
(ν ∨ p)5/2

n1/2 ∨ log(1/ηn)η1/2n ν

}1/2

.

Recall the definition of t̂n and t∗
n, we immediately have̂θn − θ0 + V−1Pn∇1τ (·; θ0)

2
= OP

{ (ν ∨ p)5/2

n3/2 +
log(1/ηn)η

1/2
n ν

n

}
.

Furthermore, if {(ν ∨ p)5/2/n1/2
} ∨ {log(1/ηn)η

1/2
n ν} → 0, then by Assumption 3(iv) and Slutsky’s Theorem, it holds that

for any γ ∈ Rp, γ ⊤̂tn/{γ⊤V−1∆V−1γ}
1/2

⇒ N(0, 1). This completes the proof. □

A.3.6. Proof of Theorem 2.6

Proof. Note that the function class F is uniformly bounded by an absolute constant. We immediately have that F̃ is also
uniformly bounded by an absolute constant. In addition, Eτn(z; θ) = τ (z; θ). It then follows from Lemma A.2 that

sup
Rm⊗Θ

|τn(z; θ) − τ (z; θ)| = OP
(√
ν̃/n

)
. (A.29)

Since ε−1
n

√
ν̃/n → 0, we just need to consider

δ̃ij := Pn{̃pni(·; θ̂n )̃pnj(·; θ̂n)},
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where

p̃ni(z; θ) := ε−1
n {τ (z; θ + εnui) − τ (z; θ)}.

Expand p̃ni(z; θ̂n) about θ0 to get

p̃ni(z; θ̂n) = p̃ni(z; θ0) + ε−1
n (̂θn − θ0)⊤ {∇1τ (z; θ∗

+ εnui) − ∇1τ (z; θ∗)}  
Rn

,
(A.30)

where θ∗ denotes some point between θ̂n and θ0. Note that τ (z; θ) = ζ (z; θ) + Eτ (·; θ). We can rewrite Rn in the above
equation as follows:

Rn = {∇1ζ (z; θ∗
+ εnui) − ∇1ζ (z; θ∗)}  

Rn1

+ {∇1Eτ (·; θ∗
+ εnui) − ∇1Eτ (·; θ∗)}  

Rn2

.

We discuss Rn1 and Rn2 separately. First, following the calculations in Step 2 of the proof of Theorem 2.3, we have

sup
θ∗

∈B(θ0,rn)
∥Pn{∇1ζ (·; θ∗

+ εnui) − ∇1ζ (·; θ∗)}∥ = OP
(
rn

√
p/n

)
,

where rn :=
√
(ν ∨ p)/n. In view of Rn1 = Pn{∇1ζ (·; θ∗

+ εnui) − ∇1ζ (·; θ∗)}, it then holds that

sup
θ∗

∈B(θ0,rn)
∥Rn1∥ = OP

(
rn

√
p/n

)
. (A.31)

We now turn to consider Rn2. Following similar arguments as in Step 1 of the proof of Theorem 2.3, we have

sup
θ∗

∈B(θ0,rn)
∥Rn2∥ = O

(
rnρ(rn) + εn

)
= O

(
pr3n + εn

)
.

Combining this with (A.31) and (A.30) implies that

p̃ni(z; θ̂n) = p̃ni(z; θ0) + OP
(
ε−1
n rn

)
OP

(
rn

√
p/n + pr3n + εn

)
. (A.32)

Next, we consider p̃ni(·; θ0) = ε−1
n {τ (z; θ0 + εnui) − τ (z; θ0)}. Expand τ (z; θ0 + εnui) − τ (z; θ0) about εn = 0 to get

τ (z; θ0 + εnui) − τ (z; θ0) = εnu⊤

i ∇1τ (z; θ0) + ε2nu
⊤

i ∇2τ (z; θ0 + αεnui)ui, (A.33)

where α ∈ (0, 1). Again using the equality τ (z; θ) = ζ (z; θ) + Eτ (·; θ), we have

u⊤

i ∇2τ (z; θ0 + αεnui)ui = u⊤

i V(θ0 + αεnui)ui  
Tn1

+ u⊤

i ∇2ζ (z; θ0 + αεnui)ui  
Tn2

.
(A.34)

By Assumption 3(ii) and (iii), we have

sup
α∈(0,1)

|Tn1| = u⊤

i {V(θ0 + αεnui) − V}ui + u⊤

i Vui = O(1). (A.35)

By Assumption 3(v), we know that Tn2 is zero-mean subexponential. Thus, by the equivalent definitions of zero-mean
subexponential variables, it holds that

sup
α∈(0,1)

E|Tn2| ≤ sup
α∈(0,1)

(ET 2
n2)

1/2
(A.36)

is bounded. That is, supα∈(0,1) |Tn2| = OP(1). Put (A.33)–(A.36) together. We then have

p̃ni(z; θ0) = u⊤

i ∇1τ (z; θ0) + OP(εn).

This, combined with (A.32), implies that

p̃ni(z; θ̂n) = u⊤

i ∇1τ (z; θ0) + OP
{
ε−1
n

√
ṽ/n + ε−1

n rn(rn
√
p/n + pr3n + εn) + εn

}
.

Additionally, combining this with (A.29) implies that

δ̂ij = Pn{u⊤

i ∇1τ (·; θ0)u⊤

j ∇1τ (·; θ0)} + OP
[
{ε−1

n

√
ṽ/n + ε−1

n rn(rn
√
p/n + pr3n + εn) + εn}

2]
= δij + OP

(
1/

√
n
)
+ OP

[
{εn + ε−1

n (r2n
√
p/n + pr4n +

√
ṽ/n) + rn}2

]
.

Thus,

∥∆̂ − ∆∥ = OP
(
p/

√
n
)
+ OP

[
p{εn + ε−1

n (r2n
√
p/n + pr4n +

√
ṽ/n) + rn}2

]
.

Similarly,

∥̂V − V∥ = OP
(
p/

√
n
)
+ OP

[
p{εn + ε−2

n (r2n
√
p/n + pr4n +

√
ṽ/n) + ε−1

n rn}2
]
.
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By assumption, (̃ν ∨ ν ∨ p)5/2/n1/2
= o(1), εn

√
p = o(1), and ε−2

n (̃ν ∨ ν ∨ p)/
√
n = o(1). It can then be easy to verify

that

∥∆̂ − ∆∥ = oP(1) and ∥̂V − V∥ = oP(1).

This, combined with Assumption 3(ii) and (iv), implies that ∥∆̂∥ = OP(1), ∥̂V∥ = OP(1), and ∥̂V−1
∥ = OP(1). Note that

V̂−1
− V−1

= V̂−1(V − V̂)V−1. Then, we have

∥̂V−1
− V−1

∥ ≤ ∥̂V−1
∥ · ∥V − V̂∥ · ∥V−1

∥ = oP(1).

Note also that

V̂−1∆̂V̂−1
− V−1∆V−1

=(̂V−1
− V−1)(∆̂ − ∆)(̂V−1

− V−1) − V−1(∆ − ∆̂)̂V−1
− V̂−1∆(V−1

− V̂−1)

− (V−1
− V̂−1)∆̂V−1.

Apply the triangle inequality to the above equation to get that

∥̂V−1∆̂V̂−1
− V−1∆V−1

∥ = oP(1).

This completes the proof. □

A.4. Proofs in Section 3

For the example in Section 1.2, we define FH
= {f H(z1, z2; θ) : θ ∈ ΘH

}, where f H(z1, z2; θ) is defined in the main text,
and define hH(z1, z2; θ) = f H(z1, z2; θ) − Ef H(z1, ·; θ) − Ef H(·, z2; θ) + Γ H(θ). For the example in Section 3.2, we define
FC

= {f C(z1, z2; θ) : θ ∈ ΘC
} and hC(z1, z2; θ) = f C(z1, z2; θ) − Ef C(z1, ·; θ) − Ef C(·, z2; θ) + Γ C(θ). For the example in

Section 3.3, we define FK
= {f K(z1, z2; θ) : θ ∈ ΘK

} and hK(z1, z2; θ) = f K(z1, z2; θ)−Ef K(z1, ·; θ)−Ef K(·, z2; θ)+Γ K(θ).
For the example in Section 3.4, we define FA

=
{
f A(z1, z2; θ) : θ ∈ ΘA

}
and hA(z1, z2; θ) = f A(z1, z2; θ) − Ef A(z1, ·; θ) −

Ef A(·, z2; θ) + Ef A(·, ·; θ).

A.4.1. Some additional lemmas

Lemma A.5. Suppose that Condition 1 in the main text holds. Then X̃ − E(X̃ | X⊤β0) is multivariate subgaussian.

Proof. Fix u ∈ Sp−1. Applying the triangle inequality yields that

∥u⊤
{X̃ − E(X̃ | X⊤β0)}∥r ≤ ∥u⊤X̃∥r  

B1

+ ∥u⊤E(X̃ | X⊤β0)∥r  
B2

.

In what follows, we discuss B1 and B2 separately. We first consider B1:

B1 = ∥(0, u⊤)X∥r ≤ sup
v∈Sp

∥v⊤X∥r . (A.37)

We then consider B2:

B2 = {E|E(u⊤X̃
⏐⏐X⊤β0)|

r
}
1
r ≤ [E{E(|u⊤X̃ |

⏐⏐X⊤β0)}
r
]
1
r

≤ {EE(|u⊤X̃ |
r ⏐⏐X⊤β0)}

1
r = ∥u⊤X̃∥r ≤ sup

v∈Sp
∥v⊤X∥r ,

where the second and third inequalities hold because of the convexity of |·|
r for r ≥ 1. This, combined with (A.37) and

Condition 1, implies that

∥u⊤(X̃ − E(X̃ | X⊤β0))∥ψ2 = sup
r≥1

r−1/2E∥u⊤
{X̃ − E(X̃ | X⊤β0)}∥r

≤2 sup
v∈Sp

sup
r≥1

r−1/2E∥v⊤X∥r = 2 sup
v∈Sp

∥v⊤X∥ψ2 ≤ 2c ′′,

which completes the proof. □

Next, we give the following lemma which establishes the upper bound for supθ∈B(θ0,r) E{hH(·, ·; θ)}2.

Lemma A.6. Under Assumptions 5 and 6 in the main text, then for any small r > 0 with B(θ0, r) ⊂ ΘH, supθ∈B(θ0,r)
E{hH(·, ·; θ)}2 ≲

√
p∥θ − θ0∥2.
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Proof. Write H(θ) = E{hH(·, ·; θ)}2. Substitute the equation for hH(z1, z2; θ) into H(θ) and consolidate terms to get that

H(θ) =E{f H(·, ·; θ)}2  
H1(θ)

−E{EPf H(Z1, ·; θ)}2  
H2(θ)

−E{EPf H(·, Z2; θ )}2  
H3(θ)

+2E{EPf H(Z1, ·; θ)EPf H(·, Z2; θ)}  
H4(θ)

− {Γ H(θ)}2.

Fix θ ∈ B(θ0, r). Expand H(θ) about θ0 to get

H(θ) = (θ − θ0)⊤∇1H(θ′),

where θ′ is between θ0 and θ. We wish to bound ∥∇1H(θ′)∥∞. To that end, we discuss Hj(θ) separately for j = 1, . . . , 4.
With a little abuse of notation, we still use θ instead of θ′ below.

We first consider ∇1H1(θ). By the property of exchangeability between integration and derivation with ∇1H1(θ), we
have

∇1H1(θ) = ∇1E{f H(·, ·; θ)}2 = E[∇1EP{f H(Z1, ·; θ)}2] = E{∇1h1(Z1; θ)},

where

h1(z; θ) = EP{f H(z, Z; θ)}2 = E{1(y > Y )1(x⊤β > X⊤β)} + E{1(y > Y )1(x⊤β0 > X⊤β0)}

− 2E{1(y > Y )1(x⊤β > X⊤β)1(x⊤β0 > X⊤β0)}.

Similarly, we can write ∇1H2(θ), ∇1H3(θ) and ∇1H4(θ) respectively as

∇1H2(θ) = E{∇1h2(·; θ)}, ∇1H3(θ) = E{∇1h3(·; θ)}, ∇1H4(θ) = E{∇1h4(·, ·; θ)},

where

h2(z; θ) =[E{1(y > Y )1(x⊤β > X⊤β)}]2 + [E{1(y > Y )1(x⊤β0 > X⊤β0)}]
2

− 2E{1(y > Y )1(x⊤β > X⊤β)} · E{1(y > Y )1(x⊤β0 > X⊤β0)},

h3(z; θ) =[E{1(Y > y)1(X⊤β > x⊤β)}]2 + [E{1(Y > y)1(X⊤β0 > x⊤β0)}]
2

− 2E{1(Y > y)1(X⊤β > x⊤β)} · E{1(Y > y)1(X⊤β0 > x⊤β0)},

and

h4(z1, z2; θ) =E{1(y1 > Y )I(x⊤

1 β > X⊤β)} · E{1(Y > y2)1(X⊤β > x⊤

2 β)}

− E{1(y1 > Y )1(x⊤

1 β > X⊤β)} · E{1(Y > y2)1(X⊤β0 > x⊤

2 β0)}

− E{1(y1 > Y )1(x⊤

1 β0 > X⊤β0)} · E{1(Y > y2)1(X⊤β > x⊤

2 β)}

+ E{1(y1 > Y )1(x⊤

1 β0 > X⊤β0)} · E{1(Y > y2)1(X⊤β0 > x⊤

2 β0)}.

Thus, we can rewrite ∇1H(θ) as

∇1H(θ ) = E{∇1h1(·; θ)} − E{∇1h2(·; θ)} − E{∇1h3(·; θ)} + 2E{∇1h4(·, ·; θ)} − ∇1{Γ
H(θ)}2.

To simplify the expression forms of the functions hj with j = 1, . . . , 4, we introduce the following notations:

ϕ1(z; θ) := E{1(y > Y )1(x⊤β > X⊤β)},

ϕ2(z, θ) := E{1(y > Y )1(x⊤β > X⊤β)1(x⊤β0 > X⊤β0)},

ϕ3(z) := E{1(y > Y )1(x⊤β0 > X⊤β0)},

and

ω1(z; θ) := E{1(Y > y)1(X⊤β > x⊤β)},

ω2(z; θ) := E{1(Y > y)1(X⊤β > x⊤β)1(X⊤β0 > x⊤β0)},

ω3(z) := E{1(Y > y)1(X⊤β0 > x⊤β0)}.

This, combined with that Γ H(θ) = E{ϕ1(·; θ) − ϕ3(·)}, allows us to rewrite ∇1H(θ) as

∇1H(θ) =E∇1{ϕ1(·; θ) − 2ϕ2(·; θ) + ϕ3(·) − ϕ2
1 (·; θ) + 2ϕ1(·; θ)ϕ3(·) − ϕ2

3 (·)

− ω2
1(·; θ) + 2ω2(·; θ)ω3(·) − ω2

3(·) + 2ϕ1(·; θ)ω1(·; θ) − 2ϕ1(·; θ)ω3(·)
− 2ϕ3(·)ω1(·; θ) + 2ϕ3(·)ω3(·)} − 2Γ H(θ)E∇1{ϕ1(·; θ) − ϕ3(·)}.

Since the functions ϕj, ωj are all bounded, we just need to bound ∥E|∇1ϕj|∥∞ and ∥E|∇1ωj|∥∞ for j = 1, 2, 3.
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We first consider E|∇1ϕ1(·; θ)| and rewrite ϕ1(Z; θ) as follows:

ϕ1(Z; θ) =

∫
x⊤β<X⊤β

ρ1(Y , x⊤β0)G( dx),

where ρ1(y, t) = E{1(y > Y ) | X⊤β0 = t}, and G(·) denotes the probability distribution of X .
Let ui denote the unit vector in Rp+1 with the ith component equal to one and let ∇

i
1 denote the ith component of ∇1,

where i = 2, . . . , p + 1. By definition,

∇
i
1ϕ1(Z; β) = lim

ε→0
ε−1

{ϕ1(Z; β + εui) − ϕ1(Z; β)}.

The term in brackets equals∫
x⊤β<X⊤β+ε(Xi−xi)

ρ1(Y , x⊤β0)G( dx) −

∫
x⊤β<X⊤β

ρ1(Y , x⊤β0)G( dx).

Change variables from x = (x1, x̃) to (x⊤β0, x̃), rearrange the terms in the fields of integration to get that∫
x⊤β0<X⊤β−̃x⊤(θ−θ0)+ε(Xi−xi)

ρ1(Y , x⊤β0)G( dx) −

∫
x⊤β0<X⊤β−̃x⊤(θ−θ0)

ρ1(Y , x⊤β0)G( dx)

=

∫ {∫ X⊤β−̃x⊤(θ−θ0)+ε(Xi−xi)

X⊤β−̃x⊤(θ−θ0)
ρ1(Y , t)g0(t | x̃) dt

}
GX̃ ( d̃x),

where GX̃ (·) denotes the distribution of X̃ . The inner integral equals

ε(Xi − xi)ρ1{Y ,X⊤β − x̃⊤(θ − θ0)}g0{X⊤β − x̃⊤(θ − θ0) | x̃} + |Xi − xi|o(|ε|) as ε → 0.

Integrate, then apply the moment condition supi=2,...,p+1 E|Xi| ≤
√
C in Assumption 5 to see that

∇
i
1ϕ1(Z; β) =

∫
(Xi − xi)ρ1{Y ,X⊤β − x̃⊤(θ − θ0)}g0{X⊤β − x̃⊤(θ − θ0) | x̃}GX̃ ( d̃x).

Since |ρ1(y, t)| ≤ 1 and g0(· | x̃) ≤ C0 by Assumption 6, it then holds that

|∇
i
1ϕ1(Z; β)| ≤ C0

∫
|Xi − xi|GX̃ ( d̃x) ≤ C0(|Xi| + E|Xi|).

Thus,

sup
i=2,...,p+1

E|∇
i
1ϕ1(Z; β)| ≤ 2C0 sup

i=2,...,p+1
E|Xi| ≤ 2C0

√
C .

Similarly,

sup
i=2,...,p+1

E|∇
i
1ϕ2(Z; β)| ≤ 2C0 sup

i=2,...,p+1
E|Xi| ≤ 2C0

√
C,

sup
i=2,...,p+1

E|∇
i
1ω1(Z; β)| ≤ 2C0 sup

i=2,...,p+1
E|Xi| ≤ 2C0

√
C,

sup
i=2,...,p+1

E|∇
i
1ω2(Z; β)| ≤ 2C0 sup

i=2,...,p+1
E|Xi| ≤ 2C0

√
C .

Put all results together, and we have that

∥∇1H(θ)∥∞ ≤ C1 sup
i=2,...,p+1

E|Xi| ≤ C1
√
C

for some constant C1 depending only on C0. Then

H(θ) = (θ − θ0)⊤H(θ′) ≤ ∥θ − θ0∥1∥∇H(θ′)∥∞ ≤ C2∥θ − θ0∥1 ≤ C2
√
p∥θ − θ0∥2.

That is, supθ∈B(θ0,r) E{hH(·, ·; θ)}2 ≲
√
p∥θ − θ0∥2. This completes the proof. □

The next three lemmas give the upper bound for supθ∈B(θ0,r) E{hC(·, ·; θ)}2, supθ∈B(θ0,r) E{hK(·, ·; θ)}2, and supθ∈B(θ0,r)
E{hA(·, ·; θ)}2, respectively. Since the proofs of these lemmas are similar to the proof of Lemma A.6, we omit the proofs
for simplicity.

Lemma A.7. Suppose that Assumptions 5–6 in the main text hold. Then for any small r > 0 with B(θ0, r) ⊂ ΘC,
supθ∈B(θ0,r) E{hC(·, ·; θ)}2 ≲

√
p∥θ − θ0∥2.

Lemma A.8. Suppose that Assumptions 5–6 in the main text hold. Then for any small r > 0 with B(θ0, r) ⊂ ΘK,
supθ∈B(θ0,r) E{hK(·, ·; θ)}2 ≲

√
p∥θ − θ0∥2.
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Lemma A.9. Suppose that Assumptions 5 and 10 in the main text hold. Then for any small r > 0 with B(θ0, r) ⊂ ΘA,
supθ∈B(θ0,r) E{hA(·, ·; θ)}2 ≲

√
p∥θ − θ0∥2.

A.4.2. Proof of Corollary 3.1

Proof. Note that FH is uniformly bounded. To prove Corollary 3.1(i) and (ii), it suffices to show that the VC-dimension
of FH is ∼ p by Theorems 2.2 and 2.3.

To see this, define the following function:

g(z1, z2, t; γ , γ1, γ2, δ1, δ2) = γ t + γ1y1 + γ2y2 + δ⊤

1 x + δ⊤

2 x,

and the following function class:

G = {g(z1, z2, t; γ , γ1, γ2, δ1, δ2) : γ , γ1, γ2 ∈ R, δ1, δ2 ∈ Rp+1
}.

Note that G is a (2p + 5)-dimensional vector space of real-valued functions. By Lemma 18 in Pollard (1984) and Lemma
2.4 in Pakes and Pollard (1989), {G ≥ s} and {G > s} are VC-classes of VC-dimensions 2p + 5 for any s ∈ R. We further
have, for any θ ∈ ΘH, β = (1, θ⊤)⊤, and β0 = (1, θ⊤

0 )
⊤,

subgraph{f H(·, ·; θ)} ={(z1, z2, t) ∈ S ⊗ S ⊗ R : t < f H(z1, z2; θ)}

=

{
{y1 − y2 > 0} ∩ {x⊤

1 β − x⊤

2 β > 0} ∩ {x⊤

1 β0 − x⊤

2 β0 > 0}c ∩ {t ≥ 1}c
}

∪

{
{y1 − y2 > 0}c ∩ {t ≥ 0}c

}
∪

{
{y1 − y2 > 0} ∩ {x⊤

1 β − x⊤

2 β > 0}c∩

{x⊤

1 β0 − x⊤

2 β0 > 0} ∩ {t ≥ −1}c
}

=

{
{g1 > 0} ∩ {g2 > 0} ∩ {g3 > 0}c ∩ {g4 ≥ 1}c

}
∪

{
{g1 > 0}c ∩ {g4 ≥ 0}c

}
∪

{
{g1 > 0} ∩ {g2 > 0}c ∩ {g3 > 0} ∩ {g4 ≥ −1}c

}
for g1, . . . , g4 ∈ G . This, combined with Lemma 9.7 in Kosorok (2007), implies that FH is a VC-class of VC-dimension ∼ p.
Then, apply Theorems 2.2 and 2.3 to complete the proof of Corollary 3.1(i) and (ii).

Next, we prove Corollary 3.1(iii). By Lemma A.6, we see that for any c > 0, supθ∈B(θ0,c
√
p/n) E

{hH(·, ·; θ)}2 ≲ p/
√
n if p/n → 0. Connecting this with Theorem 2.4 implies that ϵn ∼ p/

√
n and ηn ∼ p/

√
n. Thus, by

Theorem 2.4, we conclude that if log(n/p2)p3/2/n5/4
→ 0, we have

∥̂θ
H
n − θ0 + (VH)−1Pn∇1τ

H(·; θ0)∥2
= OP

{
log(n/p2)p3/2/n5/4}. (A.38)

In particular, if log(n/p2)p3/2/n1/4
→ 0, then for any γ ∈ Rp,

√
nγ⊤ (̂θ

H
n − θ0)/{γ⊤(VH)−1∆H(VH)−1γ}

1/2
⇒ N(0, 1).

This completes the proof.
To prove Corollary 3.1(iv), we only need to evaluate the order of ν̃H, the VC-dimension of F̃H

:= {f H(z, ·; θ)+f H(·, z; θ) :

z ∈ Rp+1, θ ∈ ΘH
}. Following similar arguments above, we can know that ν̃H is also of order p. Then, the claim in

Corollary 3.1(iv) follows from Theorem 2.6. □

A.4.3. Proof of Corollary 3.2

Proof. Similar to the proof of Corollary 3.1, it can be easy to show that the VC-dimensions of FC and F̃C
:=

{f C(z, ·; θ) + f C(·, z; θ) : z ∈ Rp+1, θ ∈ ΘC
} are both of order p. This, combined with that FC is uniformly bounded,

proves Corollary 3.1(i) and (ii) by Theorems 2.2 and 2.3. Corollary 3.1(iii) follows from Lemma A.7 and Theorem 2.4.
Corollary 3.1(iv) follows from Theorem 2.6. □

A.4.4. Proof of Corollary 3.3

Proof. Similar to the proof of Corollary 3.1, one could show that the VC-dimension of FK and F̃K
:= {f K(z, ·; θ)+f K(·, z; θ) :

z ∈ Rp+1, θ ∈ ΘK
} are both of order p. Then, the proofs of Corollary 3.3(i) and (ii) follow directly from the proof of

Corollary 3.1. Finally, Lemma A.8, together with Theorem 2.4 implies Corollary 3.3(iii). Corollary 3.3(iv) follows from
Theorem 2.6. □
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A.4.5. Proof of Corollary 3.4

Proof. (i) Similar to the proof of Theorem 2.2, the proof is twofold. We first show that Γ A
n (θ) converges in probability to

Γ A(θ) uniformly in θ ∈ ΘA, and then establish the consistency of θ̂
A
n .

Step 1. Since K (·) is continuously differential with compact support by Assumption 9(vi), K (·) is bounded and is also a
function of bounded variation. Thus, K (·) can be written as K (·) = K1(·) − K2(·) with appropriate bounded and monotone
functions K1(·) and K2(·). Let C1 and C2 denote the upper bounds of |K1(·)| and |K2(·)| respectively.

Let FA
1 =

{
1(Y1 > Y2)1(X⊤

1 β > X⊤

2 β)K1{(W1 − W2)/b} : θ ∈ ΘA
}
and FA

2 =
{
1(Y1 > Y2)1(X⊤

1 β > X⊤

2 β)K2{(W1 −

W2)/b} : θ ∈ ΘA
}
. Then, FA

= FA
1 − FA

2 . Similar to the proof of Corollary 3.1, it can be easy to verify that the
VC-dimensions of FA

1 and FA
2 are both ∼ p by considering the class of subgraphs of all functions in FA

1 and FA
2 separately.

By Lemma 16 in Nolan and Pollard (1987), the covering number of FA is bounded through Nr (ε,P ⊗ P,FA, C1 + C2) ≤

Nr (ε/4,P ⊗ P,FA
1 , C1)Nr (ε/4,P ⊗ P,FA

2 , C2). This, combined with Theorem 9.3 in Kosorok (2007), Lemmas A.2, A.4, and
Hoeffding decomposition implies that

sup
θ∈ΘA

⏐⏐Γ A
n (θ) − EΓ A

n (θ)
⏐⏐ = OP

( √
p

b
√
n

)
= OP

(√
p

n1−2δ

)
= oP(1). (A.39)

Next, we try to bound supθ∈ΘA

⏐⏐E{Γ A
n (θ)} − Γ A(θ)

⏐⏐. Note that

EΓ A
n (θ) = E[{m(Z1, Z2; θ) − m(Z1, Z2; θ0)}Kb(W1 − W2)]

= E[E{m(Z1, Z2; θ) − m(Z1, Z2; θ0) | W1,W2}Kb(W1 − W2)]

=
1
b

∫∫
ψ(w1, w2; θ)K

(w1 − w2

b

)
φ(w1)φ(w2) dw1 dw2

=

∫∫
ψ(bu + w2, w2; θ)φ(bu + w2)K (u)φ(w2) du dw2.

(A.40)

A Jth-order Tylor expansion of E{Γ A
n (θ)} with respect to b at 0 and Assumption 9(vi)–(viii) imply that

sup
θ∈ΘA

⏐⏐EΓ A
n (θ) − Γ A(θ)

⏐⏐ ≲ bJ = o(1). (A.41)

This, combined with (A.39) and the triangular inequality, implies that

sup
θ∈ΘA

⏐⏐Γ A
n (θ) − Γ A(θ)

⏐⏐ = oP(1).

Thus, the uniform convergence of Γ A
n (θ) is shown.

Step 2. Following Step 2 in the proof of Theorem 2.2, it can be easy to show that ∥̂θ
A
n − θ0∥

P
−→ 0. This completes proof of

Corollary 3.4(i).
(ii) Similar to the proof of Theorem 2.3, the proof is conducted in four steps. We first define f An (z1, z2; θ) =

f A(z1, z2; θ)/b. Thus, EΓ A
n (θ) = Ef An (·, ·; θ). By a Hoeffding decomposition of Γ A

n (θ), we have

Γ A
n (θ) = EΓ A

n (θ) + PngA
n (·; θ) + UnhA

n (·, ·; θ),

where

gA
n (z; θ) = Ef An (z, ·; θ) + Ef An (·, z; θ) − 2EΓ A

n (θ),

and

hA
n (z1, z2; θ) = f An (z1, z2; θ) − Ef An (z1, ·; θ) − Ef An (·, z2; θ) + EΓ A

n (θ).

The first three steps aim to establish bounds that are similar to (A.10), (A.14) and (A.16), respectively. The last step
establishes the rate of convergence of θ̂

A
n .

Step 1. We first consider EΓ A
n (θ). By (A.39), there exists a constant C > 0 such that

sup
θ∈ΘA

⏐⏐EΓ A
n (θ) − Γ A(θ)

⏐⏐ ≤ CbJ . (A.42)

Fix θ ∈ B(θ0, r) ⊂ ΘA. Similar to Step 1 in the proof of Theorem 2.3, we have

sup
θ∈B(θ0,r)

⏐⏐Γ (θ) −
1
2
(θ − θ0)⊤VA(θ − θ0)

⏐⏐ ≤ cmaxρ(r)∥θ − θ0∥
2. (A.43)

This, combined with (A.42), implies that

sup
θ∈B(θ0,r)

⏐⏐EΓ A
n (θ) −

1
2
(θ − θ0)⊤VA(θ − θ0)

⏐⏐ ≤ cmaxρ(r)∥θ − θ0∥
2
+ CbJ . (A.44)
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Step 2. Similar to (A.40), a change of variables and a Jth-order Tylor expansion imply that

|PngA
n (·; θ) − Pn{τ

A(·; θ) − τA(·; θ0) − 2EΓ A
n (θ)}| ≤ C ′bJ

for some constant C ′ > 0. This, combined with (A.42), implies that

|PngA
n (·; θ) − Pn{τ

A(·; θ) − τA(·; θ0) − 2Γ A(θ)}| ≤ (C + C ′)bJ . (A.45)

Following the proof of Theorem 2.3 in Step 2, we additionally have

P
{

sup
θ∈B(θ0,r)

⏐⏐Pn{τ
A(·; θ) − τA(·; θ0) − 2Γ A(θ)} −

1
√
n
(θ − θ0)⊤WA

n

⏐⏐ > 4cmaxρ(r)∥θ − θ0∥
2
+

6ν0r
√
n
dp(ε)∥θ − θ0∥

}
≤ ε,

where WA
n =

√
nPn∇1τ

A(·; θ0). Combining this with (A.45) implies that

P
{

sup
θ∈B(θ0,r)

⏐⏐PngA
n (·; θ) −

1
√
n
(θ − θ0)⊤WA

n

⏐⏐ > (C + C ′)bJ + 2cmaxρ(r)∥θ − θ0∥
2
+

6ν0r
√
n
dp(ε)∥θ − θ0∥

}
≤ ε,

(A.46)

Step 3. Following the proof of Theorem 2.1(i), one can get

P
{

sup
θ∈B(θ0,r)

|UnhA(·, ·; θ)| > δnp/n
}

≤ ϵ,

where δn is a sequence of nonnegative real numbers converging to zero. Thus,

P
{

sup
θ∈B(θ0,r)

|UnhA
n (·, ·; θ)| > δnp/(bn)

}
≤ ϵ. (A.47)

Step 4. By the Hoeffding decomposition of Γ A
n (θ) and the results in (A.44), (A.46) and (A.47), we have

P
{

sup
θ∈B(θ0,r)

⏐⏐Γ A
n (θ) −

1
2
(θ − θ0)⊤VA(θ − θ0) −

1
√
n
(θ − θ0)⊤WA

n

⏐⏐ > (2C + C ′)bJ+

5cmaxρ(r)∥θ − θ0∥
2
+

6ν0r
√
n
dp(ε)∥θ − θ0∥ + δn

p
bn

}
≤ 2ε.

(A.48)

Then, following the proof of Theorem 2.3 in Step 4, we conclude that there exists a sufficiently large constant C ′
ε > 0 such

that

P
{
∥̂θ

A
n − θ0∥ ≤ C ′

ε

√
p

n1−δ

}
≥ 1 − 3ε (A.49)

holds for sufficiently large n.
Since FA is uniformly bounded and sup

B(θ0,C ′
ε

√
p/n1−δ )

E{hA(·, ·; θ)}2 ≲ p/
√
n1−δ by Lemma A.9, Theorem 2.1(ii) implies

that there exists a constant C ′′
ε such that

P
{

sup
θ∈B(θ0,C ′

ε

√
p/n1−δ )

⏐⏐UnhA(·, ·; θ)
⏐⏐ > C ′′

ε log(n1−δ/p2)p
3
2 /n

5−δ
4

}
≤ ε

holds for sufficiently large n. Thus,

P
{

sup
θ∈B(θ0,C ′

ε

√
p/n1−δ )

⏐⏐UnhA
n (·, ·; θ)

⏐⏐ > C ′′

ε log(n1−δ/p2)p
3
2 /n

5(1−δ)
4

}
≤ ε. (A.50)

In view of δ < 1
5 , it holds that {log(n1−δ/p2)/n

5(1−δ)
4 }/(1/n) → 0 as n → ∞. This, combined with (A.51), implies that

P
{

sup
θ∈B(θ0,C ′

ε

√
p/n1−δ )

⏐⏐UnhA
n (·, ·; θ)

⏐⏐ > C ′′

ε p
3
2 /n

}
≤ ε. (A.51)

Based on similar analyses at the beginning of this step, we conclude that, there exists a sufficiently large constant c ′
ε > 0

such that

P
{
∥̂θ

A
n − θ0∥ ≤ c ′

ε

√
p3/2

n

}
≥ 1 − 6ε
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holds for sufficiently large n. This, combined with (A.49), implies that there exists a sufficiently large constant Cε > 0
such that

P
{
∥̂θ

A
n − θ0∥ ≤ Cε

√
p

n1−δ ∧
p3/2

n

}
≥ 1 − 9ε.

This completes proof of (ii).
(iii) Similar to the proof of Theorem 2.4, we first define t∗

n
A

= −(VA)−1WA
n . Similarly, there exists a constant c ′

ε such that

P
(
A′

n,ε

)
≥ 1 − 2ε (A.52)

holds for sufficiently large n, where A′
n,ε := {Z : θ̂

A
n ∈ B(θ0, rn), t∗

n
A/

√
n + θ0 ∈ B(θ0, rn)} and rn := c ′

ε

√
p/n1−δ .

Fix θ ∈ B(θ0, rn). Then following the proofs of Corollary 3.4(ii) in Step 1–2, we have

sup
θ∈B(θ0,rn)

⏐⏐EΓ A
n (θ) −

1
2
(θ − θ0)⊤VA(θ − θ0)

⏐⏐ ≤ cmaxρ(rn)∥θ − θ0∥
2
+ CbJ , (A.53)

and

P
{

sup
θ∈B(θ0,rn)

⏐⏐PngA
n (·; θ) −

1
√
n
(θ − θ0)⊤WA

n

⏐⏐ > (C + C ′)bJ + 4cmaxρ(rn)∥θ − θ0∥
2
+

6ν0rn
√
n

dp(ε)∥θ − θ0∥

}
≤ ε.

(A.54)

Similar to (A.51), we have

P
{

sup
θ∈B(θ0,rn)

⏐⏐UnhA
n (·, ·; θ)

⏐⏐ > C ′

ε log(n
1−δ/p2)p

3
2 /n

5(1−δ)
4

}
≤ ε. (A.55)

This, together with (A.53) and (A.54), implies that

P
{

sup
θ∈B(θ0,rn)

⏐⏐Γ A
n (θ) −

1
2
(θ − θ0)⊤VA(θ − θ0) −

1
√
n
(θ − θ0)⊤WA

n

⏐⏐ > (2C + C ′)bJ+

5cmaxρ(rn)∥θ − θ0∥
2
+

6ν0rn
√
n

dp(ε)∥θ − θ0∥ + C ′

ε log(n
1−δ/p2)p

3
2 /n

5(1−δ)
4

}
≤ 2ε.

(A.56)

The remaining proofs are straightforward and follow the proof of Theorem 2.4. In conclusion, if log(n1−δ/p2)p3/2/n(5−5δ)/4

→ 0, we have

∥̂θ
A
n − θ0 + (VA)−1Pn∇1τ

A(·; θ0)∥2
= OP

{
n−δJ

∨ log(n1−δ/p2)p3/2/n(5−5δ)/4}.
In addition, if log(n1−δ/p2)p3/2/n(1−5δ)/4

→ 0, then for any γ ∈ Rp,
√
nγ⊤ (̂θ

A
n − θ0)/{γ⊤(VA)−1∆A(VA)−1γ}

1/2
⇒ N(0, 1).

This completes the proof of (iii).
(iv) Note that EτA

n (z; θ) ̸= τA(z; θ). The proof is a little different from that in proving Theorem 2.6. To see this, define
F̃A

= {f A(z, ·; θ) + f A(·, z; θ) : z ∈ Rp+1, θ ∈ ΘA
}. Following the similar arguments in proof of (i), one can show that the

VC-dimension of FA is of order p. It then follows from Lemma A.2 that

sup
Rm⊗ΘA

|τA
n (z; θ) − EτA

n (z; θ)| = OP
{√

p/(b
√
n)

}
= OP

(
p/n1−2δ).

Similar to the derivations in (A.40) and (A.41), we have

sup
Rm⊗ΘA

|EτA
n (z; θ) − τA(z; θ)| = O(bJ ) = O(n−δJ ).

Then, following from the proof of Theorem 2.6, we get that

∥∆̂A
− ∆A

∥ = OP
(
p/

√
n
)
+ OP

[
p{εn + ε−1

n (r2n
√
p/n + pr4n +

√
p/n1−2δ + n−δJ ) + rn}2

]
,

∥̂VA
− VA

∥ = OP
(
p/

√
n
)
+ OP

[
p{εn + ε−2

n (r2n
√
p/n + pr4n +

√
p/n1−2δ + n−δJ ) + ε−1

n rn}2
]
,

where rn =
√
p/n1−δ ∧

√
p3/2/n. By assumption, log(n1−δ/p2)p3/2/n(1−5δ)/4

= o(1), εn
√
p = o(1), and ε−2

n p/
√
n1−2δ = o(1),

one can show that

∥∆̂A
− ∆A

∥ = oP(1), and ∥̂VA
− VA

∥ = oP(1).

The remaining proof follows exactly from that in the proof of Theorem 2.6. □
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A.5. Proof of Theorem 3.1

Proof. We check Assumption 3(iii) and (v) separately under Conditions 1–3.

(iii) The proof proceeds in two steps. We first calculate the third order mixed partial derivatives of EτH(·; ·). Then we
establish the bound of ∥VH(θ) − VH

∥ for any θ ∈ B(θ0, r).
Step 1. Fix z = (x, y)T ∈ Rm and θ ∈ B(θ0, r). Note that

τH(z; θ) =

∫ x⊤β

−∞

∫ y

−∞

g0(t | s; θ)GY ( ds) dt +

∫
∞

x⊤β

∫
∞

y
g0(t | s; θ)GY ( ds) dt + C(θ0),

where GY (·) denotes the marginal distribution of Y and g0(· | s; θ) denotes the conditional density function of X⊤β

given Y = s, C(θ0) is a term that does not depend on θ, and

g0(t | s; θ) =

∫
g0(t | s, x̃; θ)GX̃ |Y=s( d̃x) =

∫
f0(t − x̃⊤θ | s, x̃; θ)GX̃ |Y=s( d̃x).

For simplicity, we consider only the first part of τH(z; θ) and denote

τH
1 (z; θ) =

∫ x⊤β

−∞

∫ y

−∞

g0(t | s; θ)GY ( ds) dt.

After some simple calculations, we have

∂τH
1 (z; θ)
∂θi

= x̃i

{∫ y

−∞

g0(x⊤β | s; θ)GY ( ds) −

∫ x⊤β

−∞

∫ y

−∞

g0,1(t | s; θ)GY ( ds) dt
}
,

where

g0,1(t | s; θ) =

∫
f (1)0 (t − x̃⊤θ | s, x̃)GX̃ |Y=s( d̃x).

Additionally, we have

∂3τH
1 (z; θ)

∂θi∂θj∂θk
= x̃ĩxj̃xk

{∫ y

−∞

g0,2(x⊤β | s; θ)GY ( ds) −

∫ x⊤β

−∞

∫ y

−∞

g0,3(t | s; θ)GY ( ds) dt  
A1(x,y;θ)

}
,

where

g0,m(t | s; θ) =

∫
f (m)
0 (t − x̃⊤θ | s, x̃)GX̃ |Y=s( d̃x), m = 2, 3.

According to Condition 2, we know that A1(x, y; θ) is uniformly upper bounded: |A1(x, y; θ)| ≤ K for some
absolute constant K > 0. We could then similarly define A2(x, y; θ) for the second part and write A(x, y; θ) =

A1(x, y; θ) + A2(x, y; θ).
Step 2. For any γ ∈ Sp−1, we consider γ⊤

{VH(θ) − VH
}γ . Expand γ⊤

{VH(θ) − VH
}γ about θ0 to get

γ⊤
{VH(θ) − VH

}γ =

∑
i,j,k

γiγj(θk − θ0,k)
∂3EτH(·; θ∗)
∂θi∂θj∂θk

= γ⊤E
{
A(X, Y ; θ)X̃⊤

(θ − θ0)X̃
⊤X̃

}
γ .

Then,

sup
γ∈Sp−1

|γ⊤
{VH(θ) − VH

}γ| ≤ 2K
[
E{X̃⊤

(θ − θ0)}2
]1/2{E(γ⊤X̃)4

}1/2
.

By Condition 1, we know that there exists an absolute constant C such that

sup
γ∈Sp−1

|γ⊤
{VH(θ) − VH

}γ| ≤ KC∥θ − θ0∥ ≤ KCr0.

Then, we can choose r0 small enough such that KCr0 ≤ cmin/(11cmax). The first part of Assumption 3(iii) has been
verified.
Next, we try to verify the second part of Assumption 3(iii). According to the results in Step 1, we expand VH

ij (θ)−VH
ij

about θ0 to get that

sup
i,j

|VH
ij (θ) − VH

ij | ≤ cr,
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where c depends only on the absolute constants K and C ′. Then, by the relationship between different matrix norms,
we have that

∥VH(θ) − VH
∥ ≤ ∥VH(θ) − VH

∥1 ≤ p sup
i,j

|VH
ij (θ) − VH

ij (θ)| ≤ cpr.

Finally,

∥Ip − (VH)−1/2VH(θ)(VH)−1/2
∥ ≤ ∥(VH)−1/2

∥∥VH(θ) − VH
∥∥(VH)−1/2

∥ ≤
cpr
cmin

.

This completes the verification of Assumption 3(iii).
(v) We first consider θ = θ0. Since X is multivariate subgaussian by Condition 1, it holds that supi=1,...,p+1 E|Xi|

2
≤ c0.

According to calculations in the proof of Theorem 4 in Sherman (1993), we have

∇2τ
H(Z, θ0) = {X̃ − E(X̃ | X⊤β0)}{X̃ − E(X̃ | X⊤β0)}

⊤λH2 (Y ,X
⊤β0).

For any γ1, γ2 ∈ Sp−1, Lemma A.5 implies that under Conditions 1 and 3, γ⊤

1 {X̃ − E(X̃ | X⊤β0)} and γ⊤

2 {X̃ − E(X̃ |

X⊤β0)}λH2 (Y ,X
⊤β0) are both subgaussian with subgaussian norms 2c ′ and 2c ′c ′′, respectively. Because the product

of two subgaussian random variables is subexponential, γ⊤

1 ∇2τ (Z, θ0)γ2 is subexponential with a subexponential
norm that depends only on c ′ and c ′′. By the definition of subexponential variables and ζ H(z; θ0) = τH(z; θ0) −

E{τH(·; θ0)} = τH(z; θ0) − V, we have

E exp{λγ⊤

1 ∇2ζ
H(·, θ0)γ2} = E exp[λγ⊤

1 {∇2τ
H(·, θ0) − V}γ2]

≤ exp[C0λ
2
∥γ⊤

1 {∇2τ
H(Z, θ0) − V}γ2∥

2
ψ1

]

≤ exp{4C0λ
2
∥γ⊤

1 ∇2τ
H(Z, θ0)γ2∥

2
ψ1

}

≤ exp(ν20λ
2/2), for |λ| ≤ ℓ0,

(A.57)

where ν0 and ℓ0 are constants that depend on constants c0, c ′, c ′′. This shows that Assumption 3(v) holds at θ = θ0.
Note that there are several equivalent definitions for a generic zero-mean subexponential variable U . One of them is
defined as follows: there is a constant c1 > 0 such that E exp(λU) is bounded for all |λ| ≤ c1. This definition implies
that, for the subexponential variable γ⊤

1 ∇2ζ
H(Z, θ0)γ2, there is a constant c2 > 0 such that E exp{λγ⊤

1 ∇2ζ
H(·, θ0)γ2}

is bounded for all |λ| ≤ c2. Because E exp{λγ⊤

1 ∇2ζ
H(·, θ)γ2} is a continuous function in (λ, θ⊤) ∈ [−c2, c2]⊗B(θ0, r),

and in addition that the domain of this function is a compact set, it then holds

sup
|λ|≤c2

sup
θ∈B(θ0,r)

E exp{λγ⊤

1 ∇2ζ
H(·, θ)γ2} < C .

Thus, γ⊤

1 ∇2ζ
H(·, θ)γ2 is subexponential for any θ ∈ B(θ0, r). Similar to (A.57), we can establish the bound in

Assumption 3(v).

This completes the proof. □
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