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1. Introduction
1.1. The general set-up, motivation, and main results

Let Zq,...,Z, € R™ denote a random sample of size n from the probability measure P. Let 7 := {f(-,-;0) : 0 €
® C RP} be a class of real-valued, possibly asymmetric and discontinuous, functions on R™ x R™, This paper studies
the following M-estimator with an objective function of a U-process structure,

-~

_l n
0, := argmax I ,(f) = argmax —— Z f(Zi,Z;; 0). (1.1)
fcO 0cO n(n - ]) i
j=1
Let
0y := argmax I'(#) = argmax El,(0).
0cO (5C]
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This paper aims to establish asymptotic properties of ﬁn as an estimator of @y in situations with large or increasing
dimensions m, — oo and p, — oo (with respect to the sample size n), to which existing results do not apply.

Members of (1.1) include the following notable examples proposed and studied in the current literature in fixed
dimension, i.e., m, = m and p, = p for all n: (1) Han’s maximum rank correlation (MRC) estimator for the generalized
regression model (Han, 1987); (2) Cavanagh and Sherman’s rank estimator for the same model as Han’s (Cavanagh and
Sherman, 1998); (3) Khan and Tamer’s rank estimator for the semiparametric censored duration model (Khan and Tamer,
2007); and (4) Abrevaya and Shin’s rank estimator for the generalized partially linear index model (Abrevaya and Shin,
2011). One common feature of these models is the presence of a linear index of the form x"@, where x represents
covariates of dimension p which is typically large in many economic applications. The linear index structure is introduced
to alleviate the “curse of dimensionality” associated with fully nonparametric models. Although motivated by possibly
large dimension p, properties of 6, in these examples have only been established for fixed p when n approaches infinity
(i.e., p does not change with n). Instead, this paper models the large p case by allowing p to go to infinity as n — oo,
denoted as pj, facilitating an explicit characterization of the effect of dimensionality on inference in these models.

More broadly, for the general set-up (1.1), we allow both m, and p, to go to infinity as n — oo and establish the
following properties of 8,: (i) consistency; (ii) rate of convergence; (iii) normal approximation; and (iv) accuracy of normal
approximation. The last property is also referred to as the “Bahadur-Kiefer representation” or simply the “Bahadur-type
bound” (Bahadur, 1966; Kiefer, 1967; He and Shao, 1996), and is the major focus of this paper. Specifically, in Theorems 2.2,
2.3, and 2.4, under different scaling requirements for n, p,, and v,, where v, characterizes the function complexity of F,
we prove consistency, efficient rate of convergence, and derive Bahadur-type bounds for the general M-estimator 8, of the
form (1.1). To facilitate inference, we construct consistent estimators of the asymptotic covariance matrix of €, similar
to the numerical derivative estimators in Pakes and Pollard (1989), Sherman (1993), and Khan and Tamer (2007). The
increasing dimension set-up in this paper reveals that for consistent variance-covariance matrix estimation, the step size
in computing the numerical derivative should depend not only on the sample size n but also the dimensions m,, and p;,.

To provide further insight on the role of the dimension p,, we apply our general results, Bahadur-type bounds
especially, to the aforementioned rank estimators (1)-(4). Note that for these estimators v, = m,, = p,. Corollaries 3.1-3.4
provide sufficient conditions to guarantee consistency, efficient rate of convergence, and asymptotic normality (ASN) of
the rank correlation estimators in increasing dimension. They demonstrate that, compared to competing alternatives such
as simple linear regression, in terms of estimation, rank estimators are very appealing, maintaining the minimax optimal
(pa/n)'/? rates (Yu, 1997), while enjoying an additional robustness property to outliers and modeling assumptions. With
regard to normal approximation, on the other hand, a much stronger scaling requirement might be needed, and a lower
accuracy in normal approximation is anticipated. This observation also echoes a common belief in robust statistics that
stronger scaling requirement than pfl /n — 0 is needed for normal approximation validity (Jureckova et al., 2012).

All the theoretical results are further backed up by simulation studies. In particular, using Han’s MRC estimator
introduced below, we have demonstrated that for a given sample size, the accuracy of the normal approximation
deteriorates quickly as the number of parameters p, increases, indicating that our theoretical bound is difficult to improve
further. Also, our simulation results suggest that for variance estimation, the step size needs to be adjusted with respect to
Dn. Practically, our results indicate that although the linear index was introduced to alleviate the curse of dimensionality,
one must be cautious in conducting inference using rank estimators when there are many covariates.

1.2. The generalized regression model and Han’s MRC

Han’s MRC in Example (1) is the first rank correlation estimator proposed to estimate the parameter B, in the
generalized regression model:

Y =DoF(X'Bye€), (1.2)

where B, € RP»*1 F(., .)is a strictly increasing function of each of its arguments, and D(-) is a non-degenerate monotone
increasing function of its argument. Important members of the generalized regression model in (1.2) include many widely
known and extensively used econometrics models in diverse areas in empirical microeconomics such as the binary
choice models, the ordered discrete response models, transformation models with unknown transformation functions,
the censored regression models, and proportional and additive hazard models under the independence assumption and
monotonicity constraints.

Han (1987) proposed estimating f, in (1.2) with

~H 1
B = a;g;:gx{m ;l(Yi > Y)L(X] B > X]Tﬂ)]. (1.3)

For model identification, following Sherman (1993), we assume the first component of B is equal to 1, and express f§,
as B, = (1, 03 )T. We consider estimating 6, by 6, := B, _1, the subvector of 8, excluding its first component. We will
use the generalized regression model (1.2) and Han’s MRC @, to illustrate our notation, assumptions, and main results in

Section 2. We defer a rigorous analysis of Han’s estimator including verification of assumptions to Section 3 which also
presents results for the other three rank correlation estimators.
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Empirically, consider estimating the individual demand curve for a durable good such as a refrigerator. Let Y; be
whether the individual i buys a refrigerator and X; be the vector of characteristics of the individual and the refrigerator
included in the model. There are many potential candidates for the components of X; such as personal income, marital
status, the number of children, space of the kitchen, food habits; size of the refrigerator, temperature controls, lighting,
shelves, dairy compartment, chiller, door styles. Assuming a single index form with m, = p,, + 1, this binary choice model
falls into our framework with (1.2). Our increasing dimension set-up allows more characteristics to be included in X;
as the sample size n increases and our results show that even with the single index form, estimation and inference are
possible if p, increases very mildly with n but otherwise are very challenging.

1.3. A brief review of related works and technical challenge

In contrast with the fixed dimension setting, where the model is assumed unchanged as n goes to infinity, the
increasing dimension triangular array setting (Portnoy, 1984; Fan et al., 2015; Chernozhukov et al., 2015, 2017) makes our
analysis different from and more challenging than most existing ones (cf. Theorem 3.2.16 and Example 3.2.22 in van der
Vaart and Wellner (1996), or the main theorem in He and Shao (1996)). Technically, this paper builds on and contributes
to two distinct literatures: the literature on estimation and inference in increasing dimension where existing works
exclude discontinuous loss functions and the literature on rank estimation where existing works focus exclusively on finite
dimensions. As a technical contribution, we establish a maximal inequality, yielding a uniform bound for degenerate
U-processes in increasing dimensions which not only allows us to extend existing results on rank estimation in finite
dimension to increasing dimensions but also establish Bahadur-type bounds. Besides the crucial role played by our new
maximal inequality for degenerate U-processes in this paper, it should prove to be an indispensable tool in nonparametric
and semiparametric econometrics in increasing dimensions where many estimators and test statistics are closely related
to U-processes.

Since Huber’s seminal paper (Huber, 1973), there has been a long history in statistics on evaluating the impact
of parameter dimension on inference. Huber himself raised questions on the scaling limits of (n, p,) for assuring
M-estimation consistency and asymptotic normality in his 1973 paper (Huber, 1973). For addressing them, Portnoy
(1984), Portnoy (1985), Mammen (1989, 1993) studied the linear regression model using smooth M-estimators such as
the ordinary least squares. Their results revealed that, in response to Huber’s question, for the simple linear regression
model, asymptotic normality is usually attainable even when p?/n is large. In contrast, Portnoy (1988) studied maximum
likelihood estimators of generalized linear models, and proved that, for guaranteeing the validity of normal approximation,
the requirement p2/n — 0 is in general unrelaxable. Different from the analysis in large p2/n setting, the techniques
in Portnoy (1988) are applicable to more general cases. For example, focusing on the general likelihood problem with
a differentiable likelihood function, Spokoiny (2012a) has provided a finite-sample analysis of normal approximation
accuracy. Related results have also been developed in He and Shao (2000). As a direct consequence, a set of regularity
conditions could be derived for constructing Bahadur-type bounds, guaranteeing ASN provided some scaling requirements
hold.

Extending existing works allowing for increasing parameter dimension, this paper studies asymptotic properties of 6,
n (1.1), allowing both m, and p, to go to infinity as n — oo. The potential discontinuity and U-process structure of the
objective function I;,(@) prevent results or the proof strategy in the current literature on increasing parameter dimension
from being directly applicable. On the other hand, for (1.1), the increasing dimension set-up in this paper poses technical
challenges to the proof strategy adopted for fixed m, and p, exclusively studied in the current literature. To see this,
recall that the main argument used in the current literature to establish asymptotic properties for estimators of the form
(1.1) for fixed m, and p, follows Sherman (Sherman, 1993, 1994), which relies on the Hoeffding decomposition, a uniform
bound for degenerate U-processes, and the classical M-estimation framework tracing back to Huber’s seminal paper, Huber
(1967). Specifically, for the statistic I,(#) in (1.1), Hoeffding (1948) derived the following well-known expansion now
known as the Hoeffding decomposition:

I3(0) = I"(0) + Pyg(-; 0) + Ush(, - 6), (1.4)
where
8(z; 0) =Ef(z, - 0) + Ef(-, z; 0) — 2I°(0),
h(z1,z5; 0) = f(z1, 22; 0) — Ef (21, 3 0) — Ef(-, 22; 0) + I'(6), (1.5)

Pag(:0) := ) g(Zi)/n, and
i=1

n
Unh(-,:0):= Y h(Zi, Z;: 8)/{n(n — 1)}.
ij=1
Hoeffding (1948) further showed that for fixed m, and p,,
I3(0) ~ I"(0) + Prg(-; 0), (1.6)
— ——

Ta(6)
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where the remainder term U,h(-, -; #), formulated as a degenerate U-statistic, is asymptotically negligible in large samples.
As a result, 6, is asymptotically equivalent to 8, defined below:

0, .= argmax fn(O). (1.7)
0cO
Sherman (Sherman, 1993, 1994) was the first to notice that, by (1.4) and the negligibility of U,h(-, -; #), the U-statistic
formulation has intrinsically helped smooth the loss function in (1.1) from I7(f) to I73(f), and hence renders an
asymptotically normal estimator 6,,, even though the original loss function I';,(#) may not be differentiable.

For increasing dimensions m, and p,, the Hoeffding decomposition of I},(#) takes the same form as in the case
of fixed m, and p,. However existing maximal inequalities or uniform bounds for degenerate U-processes for finite
dimensions crucial to Sherman (Sherman, 1993, 1994) and the classical M-estimation theory for finite dimensions are
inapplicable. In response to the first challenge, this paper develops a maximal inequality, yielding a uniform bound
for degenerate U-processes in increasing dimensions, which allows us to show that under regularity conditions, 8, is
asymptotically equivalent to 6#,. Due to the smoothness of I,(#), we are able to build on and improve arguments used
in the proofs of Spokoiny (2012a) on M-estimators with differentiable objective functions in increasing dimensions to
establish asymptotic properties of 6,,.

1.4. Notation

For a set S, denote its binary Cartesian product as S ® S. For a probability measure P, denote its product measure
as P ® P. For g € [1, co], the Ls;-norm of a vector B is denoted by | B|l4. The L; -induced matrix operator norm of a
matrix A is denoted by ||A]l4. One example is the spectral norm ||A]l,, which represents the maximal singular value of
A. In the sequel, when no confusion is possible, we will omit the subscript in the L;-norm of 8 or A when q = 2. The
minimum and maximum eigenvalues of a real symmetric matrix are denoted by Amin(-) and Amax(-) respectively. Let I,
denote the p x p identity matrix. Let S°~! denote the unit-sphere of R? under || - |. For a twice differentiable real-valued
function (@), let V,7(0) denote the vector of partial derivatives (dt /964, ..., ar/aep)T and V,7(0#) denote the Hessian
matrix of t(@). Let B(6y,17) = {0 € O, |0 — 0y|| < r} denote an open ball of radius r > 0 centered at §, € ©, and let
B0y, 1) =1{0 € O, ||0 — 0g|| <r} denote a closed ball of center 6y and radius r. For two real numbers a and b, we define

aVv b = max(a, b) and a A b = min(a, b). We use % to denote convergence in probability with respect to P, and =
to denote convergence in distribution. For any two real sequences {a,} and {b,}, we write a, = O(b,) if there exists an
absolute positive constant C such that |a,| < C|b,| for any large enough n. We write a,, < b, if both a, = 0(b,) and
b, = O(a,) hold. We write a, = o(b,) if for any absolute positive constant C, we have |a,| < C|b,| for any large enough
n. We write a, = Op(b,) and a, = op(b,) if a, = O(b,) and a, = o(b,,) hold stochastically. We let C, C’, C”, c,c’,c”, ... be
generic absolute positive constants, whose values will vary at different locations.

1.5. Paper organization

The rest of this paper is organized as follows. In Section 2, we introduce general methods for handling M-estimators
of the particular format. In particular, Section 2.1 gives a new U-process bound in increasing dimensions, and Section 2.2
studies M-estimators of the form (1.1), whose loss functions are possibly discontinuous. Section 3 applies the results in
Section 2 to the four motivating rank estimators. Section 4 offers detailed finite-sample studies, illustrating the impact of
dimension on coverage probability and tuning parameter selection in the asymptotic covariance estimation. Concluding
remarks and possible extensions are put in the end of the main text. All proofs are relegated to an Appendix.

2. Asymptotic theory for the M-estimator

Recall that Z1,Z,,...,Z, € R™ is a random sample from P, rendering an empirical measure P,. Let 7 = {f(-, -; 9) :
0 € ® C RP} be a VC-subgraph class of real-valued functions, with v, denoting the VC-dimension of F (see Section 2.6.2
in van der Vaart and Wellner (1996) for explicit definitions of VC-subgraph and VC-dimension of a VC-subgraph class).
In addition, we assume the function class F to be uniformly bounded by an absolute constant. The family of bounded
VC-subgraph classes includes, as subfamilies, those rank estimators proposed in Han (1987), Cavanagh and Sherman
(1998), Khan and Tamer (2007), and Abrevaya and Shin (2011), and suffices for our purpose.

Without loss of generality, we assume that

f(z1,22;600) =0 forall (z1,2;) € R™ @ R™, (2.1)

which can always be arranged by working with f(z1, z»; 8) — f(z1, 22; 6) throughout.

_The derivation of asymptotic properties of 8, can be understood in two steps. First we show _the asymptotic equivalence
of #,, and 6, by proving negligibility of U,h(-, -; #) and then establish asymptotic properties of @,,. Essential to the first step
is an increasing dimension analogue of maximal inequalities for degenerate U-processes in finite dimensions. Because of
increasing dimensions, we need to calculate an exact order of the decaying rate of sup, |U,h(-, -; 8)] in a local neighborhood
of @y, the proof of which requires a substantial amount of modifications to the decoupling arguments in Nolan and Pollard
(1987). For the second step, we exploit Spokoiny’s bracketing device technique (cf. Corollary 2.2 in Spokoiny (2012b)) on
M-estimators with differentiable objective functions.
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2.1. A maximal inequality for degenerate U-processes

For fixed dimensions, Sherman (Sherman, 1993, 1994) proved a maximal inequality for degenerate U-processes and
used it to show that, when F is P-Donsker (Dudley, 1999), uniformly over a small neighborhood ®, surrounding 6,
sup |17(0) — I(0)| = sup |Unh(-, -; @) = op(1/n), (2.2)
0Oy 0Oy
which, combined with the fact that g(-) is usually a smooth function by integration, is sufficient to guarantee that the
stochastic differentiability condition (cf. Theorem 3.2.16 in van der Vaart and Wellner (1996)) holds. This suffices for
establishing ASN in fixed dimension. However, when we allow the dimension to increase with the sample size, (2.2) is
no longer correct.
To account for the effect of increasing dimension, we establish a new maximal inequality for degenerate U-processes
in increasing dimensions. Theorem 2.1 works out an exact order of the rate of convergence of supgce, [Unh(-, -; 8)| as &g
shrinks to the true point 6, at different rates r, — 0. It is formulated as two maximal inequalities, corresponding to the
Glivenko-Cantelli and Donsker properties , for a degenerate U-process.

Theorem 2.1. Suppose that F is uniformly bounded by an absolute constant, of VC-dimension vy, and h(-) is defined as in
(1.5). Further recall that we have assumed f(-, -; 6y) satisfies (2.1). If v,/n — 0, then the following two claims hold.

(i) Let r, and €, be two sequences of nonnegative real numbers converging to zero. If

sup ER(-, - 0) < e,
0eB(8g.1m)

then there exists a sequence of nonnegative real numbers §, (only depending on €,, v, n) converging to zero such that

IP’{ sup  |Unh(-, 5 0)] < 5nvn/n} =1-o0(1).
0cB(0g,n)

(ii) Let 1, = r(vy, pn, n) be a sequence of nonnegative real numbers converging to zero, and €, = e(vn,pn, n,r,)
be a sequence of nonnegative real numbers (only depending on vy, pn, n,r,) converging to zero. Denote 7, =

N(Vn, Dn, N, Tn) = /vn/n V €. Suppose

sup Ehz( . 0) <E.
0<B(0g.mn)

We then have

Clog(1/7,)7i/?
E sup [Ubh(., 5 8) < 080/ M) vn (2.3)

0<B(0.rm) n
holds for all sufficiently large n.

For deriving Theorem 2.1, one might consider employing the decoupling techniques as introduced in the proofs of
the Main Corollary in Sherman (1994), or Theorem 5.3.7 in de la Pena and Giné (2012). However, since the considered
U-process depends on an increasing number of covariates, the constants in the moment inequalities therein (e.g., C(k, q)
in Sherman (1994)) are no longer finite and are difficult to characterize in increasing dimensions. Instead, we resort to
Nolan and Pollard’s original treatment of degenerate U-processes.

Specifically, denoting

Saf (-, 1 0) = n(n — NUS(-, -5 0),

a modification to Theorem 6 in Nolan and Pollard (1987) will give us

1/2
]E{ sup |Syh(, - nv)|}<CH([{ sup  Upnh?(-, - ,0)” )
0cB(6y.mn) 0<B(09.mn)
CH([ sup ER%(., )—HE{ sup |IP>2nh1(';0)|]
0cB(09,mn) 0€B(0g,mn)
1/2
-HE{ sup  |Poh(-, -; |” ) (2.4)
0cB(0y,mn)

Here H(x) := x{1 + log(1/x)} for any x € (0, 00), U, and P,, have been introduced in (1.5), and h;(z, ) := Eh*(z, -; 6) +
Eh?(-, z; @) — 2Eh%(-, -; 0) and hy(z1,22; 0) = h*(z1, z2; 0) — Eh?(z4, -; 0) — Eh?(-, z5; 0) + Eh?(-, -; @) are two functions
generated from h(-, -; ). We have thus explicitly transformed the analysis of a degenerate U-process to that of a moment
bound, and two empirical processes. Lastly, the bounds on the two empirical processes could be derived using, for example,
Theorem 9.3 in Kosorok (2007).



384 Y. Fan, F. Han, W. Li et al. / Journal of Econometrics 214 (2020) 379-412
2.2. Main results

We are now ready to state the main results in this section. For analyzing the statistical properties of the general
M-estimator @, three targets are in order: (i) consistency; (ii) rate of convergence; and (iii) Bahadur-type bounds. Of
note, our analysis is under the increasing dimension triangular array setting where the true data generating process P is
allowed to change with the sample size n.

We first establish consistency. This is via the following two assumptions.

Assumption 1. For each specified p,, ©® is a compact subset of RP, and there exists an absolute constant ro > 0 such
that B(6g, ro) C ©® and for any positive absolute constant r < 1, there exists another absolute constant & > 0 depending
on r such that

I'(6o) — oIaX r0) = &. (2.5)

Assumption 2. ['(0) is a continuous function at any 6 € ©®, and f(-, -; #) is almost everywhere continuous at 6.

Assumption 1 is the standard identifiability condition. Since I'(#) as a function of # € RP" is also to change with n,
it is regulated by a constant &, to eliminate the non-identifiable cases in large n. Assumption 2 enforces certain level of
smoothness on I" and f. Both are regular, and in particular, verifiable for all the considered examples of rank estimators
using explicit expressions for I" and f for these estimators. For example, for Han’s MRC, Assumption 1 can be established
using Taylor expansion applied to I"(8) = I'"(8) = SH(B) — S"(B,) with SH(B) := E{1(Y; > Y2)1(X] B > X, B)}.

With Assumptions 1 and 2, we immediately obtain the following theorem, establishing consistency for the studied
M-estimator 6,,.

Theorem 2.2. Suppose that Assumptions 1-2 hold. If v,/n — 0, then ||5n — 6ol Lo

It is of interest to point out that consistency is established solely based on an requirement of v, (which also intrinsically
depends on my, p,), since the uniform consistency of I, to I" can be determined solely by the relation between v, and n.
For the four examples of rank correlation estimators (1)-(4), v, = p, so consistency is ensured under Assumptions 1 and
2 as long as the number of parameters p, increases at a slower rate than the sample size n.

For establishing rates of convergence and Bahadur-type bounds, on the other hand, more assumptions are needed. For
each z in R™ and for each § € @, define

©(z;0) =Ef(z,-;0)+ Ef(-,z;0) and ¢(z;0) = t(z;0) — Ez(-; ).

Here t(z; @) corresponds to fnw) in (1.6), and is the key for establishing ASN of 5,1 in (1.7). The following assumption
regulates t(-; -).

Assumption 3. For each r < ry, the following conditions hold.

(i) For each z in R™», all mixed second partial derivatives of t(z; @) with respect to @ exist on B(6y, r).
(ii) There exist two positive absolute constants Cpyin, Cmax SUCh that 0 < Cmin < Amin(—V) < Amax(—V) < Cmax, Where
2V := EV,t(-; ).
(iii) There exists a positive constant p(r) < =i A cpr for some absolute constant ¢ > 0, such that I, —

1emax
V-12y(0)V-1/2|| < p(r) for any 6 € B(6y, r), where 2V(#) := EV,1(-; §).
(iv) Assume 0 < dmin < Amin(A) < Amax(A) < dmax, Where A == EVi7(:; 00){V1t(:; 00)}T and dpin, dmax are two
positive absolute constants.
(v) There exist absolute constants vy > 0 and £ > 0 such that, for any 6 € B(,, r), the following holds:
2)\2
T Yo
sup  logEexp {Ay{ Vo¢( 0)y,} < - for all |A| < .

y1.y2€sPn—1

Assumption 3 is the key assumption in order to establish Bahadur-type bounds foran, and is posed for the M-estimation
problem (1.6) of loss function I',(@) corresponding to the function 7(-). In the following we discuss more about this
assumption. In detail, Assumption 3(i), (ii), and (iv) are regularity conditions to make sure that the studied problem is
well posited, a condition corresponding to the local strong convexity condition in the high dimensional statistics literature
(cf. Section 2.4 in Negahban et al. (2012)), and are verifiable for different methods. Consider, for example, Han’s MRC
estimatorar introduced in Section 1.2 for which r = ":

™(z; 0) .= Eff(z, ; ) + Ef"(-, 2 9),
where

(21,22 0) = 1(y1 > y)(1(x] B > X B) — 1(x] By > X, By}
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Assumption 3(i), (ii), and (iv) then are immediately ensured by Theorem 4 and subsequent discussions in Sherman (1993).

Assumption 3(iii) requires that Ez(-; ) is sufficiently smooth in 6, for example, Ez(-; #) has continuous and bounded

mixed partial derivatives up to three. Assumption 3(v) requires the existence of exponential moments of the errors. They

correspond to the “local identifiability condition”: Assumption (£g), and the “exponential moment condition”, Assumption

(ED,), in Spokoiny (2012a, 2013) separately. These conditions are often implied by subgaussian designs. Particularly, in

Theorem 3.1 in Section 3.1, we will verify Assumption BQi) and (v) for ", i.e., Han’s MRC under primitive conditions.
With the above assumptions, statistical properties of 8, could then be established as follows.

Theorem 2.3. If (v, V p,)/n — 0 and Assumptions 1-3 hold, we have
P vV D
18, — Boll* = 0 (=22,

For the four examples of rank correlation estimators, v, = p, so Theorem 2.3 leads to the minimax optimal rate
(pn/m)/? under the condition: p,/n — 0. However, Theorem 2.4 implies that much stronger requirements on p, are
needed to establish Bahadur-type bounds, see Corollaries 3.1-3.4 for details.

Theorem 2.4. Suppose Assumptions 1-3 hold, and there exists a constant €, = €(vy,, pn, n) depending on vy, py, n such that,
forany c > 0,

sup Eh?(-, -; 8) < Cen,
0<B{08y.c/(vnVpn)/n}

where C only depends on c. Then, the following two statements hold.

(i) Denote 1, = 1(Vn, Py 1) = v/Va/NV €. If 11 = 0(1) and {(vy V py)>2/n32} v {log(1/na)na’* v /n} = o(1), we have

(v V D)2 Tog(1/na)na’*vn ]
n3/2 n ’

(i) If we further have {(va v pn)>2/n"/2} v {log(1/n,)ns*va} = 0(1), then for any y € RP,
VyT (6, — 60)/(y VAV 1) 2 = N(O, 1).

[6n — 80+ V'B.Vi (5 8)|* = opi

Remark 2.5. In the analysis, p, and v, characterize the behavior of the smoothed estimator 9, and the degenerate
U-process {Uyh(-, -; 0); 8 € B(0, 1,)} separately. On the other hand, throughout the above three theorems, the dimension
of data points, my, is not present. Instead, the impact of m,, on estimation and inference has been characterized by p, and
vp, both of which are usually of an order equal to or even greater than m,. It is also noteworthy to point out that our
analysis does allow an arbitrary subset of (m,, p,, v,) to be fixed, and the theory will directly proceed. In particular, when
My, Pn, vy are all invariant with regard to n, we derived the conventional Bahadur representation for the studied class of
M-estimators under the low-dimensional setting, which is a stronger result than asymptotic normality.

We conclude this section with a brief discussion on consistent estimation of the asymptotic covariance matrix in
Theorem 2.4. For this, we are focused on the covariance estimator of a numerical derivative form, used in Pakes and
Pollard (1989), Sherman (1993), and Khan and Tamer (2007).

First, for each z in R™ and for each 0 in @, define

w™(z; 0) = Puf(z, -5 0) + Puf (-, 2; 6).
Then, we define the numerical derivative of t,(z; #) as follows:
Pni(; 0) = & ' {Ta(2: 0 + entt;) — Tal(2: 0)},

where ¢, denotes a sequence of real numbers converging to zero, and u; denotes the unit vector in RP" with the ith
component equal to one. Finally, we define the estimator of the matrix A as A = (SU) with

811 = Pu{pni(+; )pnj( n)}
To estimate the matrix V, we define the following function:
pnij(Z; 0) = 8;2{7:11(2; 0+ en(u; + uj)) — Tn(2Z; 0 + enu;) — T(z; 0 + 8n"j) + 1(z; 0)}.

Then, we define the estimator of the matrix V as V= (vy) with

Let F = {f(z,;0)+ f(-,2;0) : z € R™,0 € O}, and let ¥, denote the VC-dimension of F. The following theorem
establishes the consistency of the covariance estimator.
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Theorem 2.6. Suppose that Assumptions 1-3 hold and (V, Vv,V pa )2 /n'/? = 0(1). If the sequence &, satisfies: ey /pn = 0(1)
and &;2(Va V vy V pn)/+/M = 0(1), then

VAV —v'av | 5 o.

The increasing dimension set-up reveals that for consistent variance-covariance matrix estimation, the step size in
computing the numerical derivative should depend not only on the sample size but also on the dimensions m,, and p;,.

3. Asymptotic properties of rank estimators

This section studies the four examples introduced in Introduction. In the sequel, the data points are understood to be
independent and identically drawn from the considered model. Of note, throughout the following four examples, when
the studied model is fixed, our result renders the conventional Bahadur representation for the corresponding estimator
in fixed dimensions (see, for example, Subbotin (2008) for such a bound in fixed dimensions). Hence, we recover the
asymptotic-normality-type theory in the corresponding paper, but under a stronger moment condition in order to take
the impact of increasing dimension into consideration. In addition, it is worthwhile to point out that, for all studied
methods, the dimension of the data points m,, and the VC dimensions v, and v, of the studied function classes are all of
the same order as p,, the number of parameters to be estimated. Accordingly, in the following, we can use p, to solely
characterize the impact of dimension on inference.

3.1. Han’s maximum rank correlation estimator

This section studies the generalized regression model (1.2) and Han’s MRC estimator, as have been introduced in
Section 1.2. Let B be a subset of {8 € RP»*! : 8 = 1}. Forany B € B, let B = (1,0")7, where § € ©" C RP". For
any vector z = (y,x' )", we define £"(z; 8) = "(z; ) — Ex"(-; 6),

AM =EV1T(; 00){(V1T"(1 60)} T, and 2V" = EV,7H(; 6).

Write IM(8) = SH(B) — SH(B,) with

H — g g T T
S8 = o gn(y, > Y)L(X] B > X B).

Thus, Han’s MRC estimator of 00,5:, can be expressed as

0! = argmax I'(6).
feoH

To conduct inference on #, based on 9: we further define
©(2:0) = Pof"(z, - 0) + Puf"(. 2:8). Pli(z:0) = &, '{7;/(z: 0 + enu)) — /(2 0)), and
pi(z: 0) = £,2{y(2: 0 + en(ui + W) — 7,(2: 0 + eqtty) — 7,'(2: 0 + £qwy) + 71 (2: 0)}.

(81

oM
i V' = (v

v'), where

) and the estimator of the matrix V" as i

Then, we define the estimator of the matrix A" as AH =
—~H ~H 1 —~H
8 = Pulpyi(+ 0,)p( 6,0} and B = “Pupl(+ ;).

Let X = (Xl,iT)T, where X denotes the last p components in X. Assume the following assumption holds

Assumption 4. Assume

(i) Assumption 1 holds for ®" and I""(9).

(ii) The random variables X and ¢ are independent. N
(iii) Assume X; has an everywhere positive Lebesgue density, conditional on X.
(iv) Assumption 3 holds for tH(z; 8) and ¢"(z; 6).

Assumption 5. For some absolute constant C > 0, sup;_, _ 1 ElX;|> < C.

Assumption 6. Let fy(- | X) denote the conditional density function of X Tﬂo given X = X. Assume fo(- | ®) < Cp for any
X in the support of X, where Cy > 0 is an absolute constant.
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We then have the following corollary.

Corollary 3.1. We have

(i) Under Assumption 4(i)~(iii), if pn/n = o(1), then B} — 6o| = 0.

(ii) Under Assumption 4, if p,/n = o(1), then
“~H
16, — 6oll> = Oz(pn/n).

(iii) Under Assumptions 4-6, if p2/n = o(1) and log(n/p?)py/ /n5/4 = o(1), we have

n n
“~H _
16, — 60 + (V") "P,V17"(; 60)II* = Oz {log(n/p2)p;/? /n°/*}. (3.1)
Furthermore, if log(n/p2)py/* /n'/4 = o(1), then for any y € RPr,

Vy (8, — 80)/{y (V)T ARV T2 = N(O, 1),
(iv) Under conditions in (iii), if we further have &,./p, = o(1) and g‘zpn/f = o0(1), then
IV TARVH) T — (V)T ARV S o,
In particular, we could choose €, = (p,/n)"/8, which will render a consistent covariance estimator under the same scaling
condition as (iii).

In the following, we discuss more on the assumptions posed for Han’s MRC estimator. Since the estimator takes
pairwise differences as input, without loss of generality, the design is assumed to be zero-mean. First, Assumption 1
can be established using Assumption 3(ii), (iii), and Taylor expansion. Secondly, the conditions in Assumptions 2 and 3(i)
are regular and can be satisfied. Then, Theorem 4 and subsequent discussions in Sherman (1993) ensure Assumption 3(ii)
and (iv) hold. Lastly, we deal with Assumption 3(iii) and (v), which indeed deserve more discussion. In the following, we
give sufficient conditions for guaranteemg Assumption 3(iii) and (v) hold.

More notation is needed. Let fo(- | X, y) denote the conditional density function of X; given X=%andY = y. Let fo(+)
denote the marginal density function of XTﬂO Let

KMy ) =E{1y>Y) -1y < Y) | XTBy=1t}, A"y, t)=«"(y. 0)fo(t).
and ANy, t) = %AH(y, t).

We assume the following conditions on the design as well as the noisy hold.

Condition 1. Suppose X is multivariate subgaussian, i.e., there exists an absolute constant ¢’ > 0 such that SUp,esp |l 7' X| vy <
c', where ||y "Xlly, := sup,-1 ¢~ *(Ely X |")/1.

Condition 2. (i) Suppose that fo(- | X,y) has uniformly bounded derivatives up to order three, i.e., there exists an
absolute constant C” > O such that [fOU( [%,y) < C” (G = 1,2,3) for any X and y in the support of X and Y,
respectlvely, (ii) llm‘tHOOfO (t | ®,y) = 0 for any X and y; (iii) Universally over the support of Y and any 6 € B(6q, 1),
I [f —%X'0]s, x)|Gx|y:$( d%) < c{1Ac|t|" ) for some positive absolute constants c, ¢, ¢”, where Gg\y—s(-) represents
the probability measure of X given' Y =s.

Condition 3. Suppose that AH(y, t) is bounded i.e, there exists an absolute constant ¢” > 0 such that |A;‘(y, t)
< c” for any y and t in the support of Y and X" B, respectively.

We then have the following theorem, which states that the above conditions are sufficient ones to ensure Assump-
tion 3(iii) and (v) hold.
Theorem 3.1. Under Conditions 1-3, Assumption 3(iii) and (v) hold in this example.

3.2, Cavanagh and Sherman’s rank estimator

In contrast to Han’s original proposal, Cavanagh and Sherman (1998) proposed estimating 8, in (1.2) using

B, = argmax sS(8),
B:p1=1
where
sS(B) = ( ZM YOUX[ B > X[ B)
i#]
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and one candidate function for M(y) is
M(y) =al(y < a)+yl(a <y < b)+ bi(y > b).

Here a and b are two absolute constants, and hence M(y) is a trimming function for balancing the statistical efficiency
and robustness to outliers. Let 8, = (1, 00T)T, and we aim to estimate 6.

We define the estimator Eﬁ and other parameters similarly as in Sections 1.2 and 3.1, with their explicit definitions
relegated to the Appendix A.2.1. Then we have the following corollary.

Corollary 3.2. We have

(i) Under Assumption 7(i)-(iii) in the Appendix A.2.1, if pp/n = o(1), then ||5§ — 6|l Lo
(ii) Suppose that Assumption 7 holds. If p,/n = o(1), then

185, — 6oll> = Ox(pa/m).
(iii) Suppose that Assumptions 5-7 hold. If p>/n = o(1) and log(n/p2)py/* /n®/* = o(1), we have
185 = 80 + (V)" PaV17¢(; 80|12 = Os {log(n/pIp3/? /n*/*).
If further log(n/pﬁ)pz/z/nw4 = 0o(1), then for any y € RP»,
Vry (@, — 60)/{y" (V) AT VE) Ty} = N(O, 1),
(iv) Under conditions in (iii), if we further have e,./p, = o(1) and s;zpn/ﬁ = o(1), then
J(VE)TTRS(VE) T — (VO AS(VE) T S 0.
In particular, we could choose €, < (p,/n)"/®, which will render a consistent covariance estimator under the same scaling
condition as (iii).

3.3. Khan and Tamer’s rank estimator for duration models

Consider Khan and Tamer’s setting (Khan and Tamer, 2007), where the data are subject to censoring and the variable
Y is no longer always observed. Use £ to denote the random censoring variable, which can be arbitrarily correlated with
X. Let R be a binary variable indicating whether Y is uncensored or not. Let V denote a scalar random variable withV =Y
for uncensored observations, and V = & otherwise. Consider the following right censored transformation model (Khan
and Tamer, 2007):

T(V) = min(X ' B, + €. §),
R=1(X"By+e <§)
where T(-) is assumed to be strictly monotonic. The (p, 4+ 1)-dimensional vector f, is unknown and is to be estimated.

Khan and Tamer (2007) proposed estimating 8, with /ﬁ‘; = argmaxg.g SK(B), where

1
Sn(B) = ) > Ri(Vi < V)X g < X/ B).

BT
n(n i#j

Let B, = (1, 9J)T, and we consider estimation of 6.

We define the estimatorﬁ': and other parameters similarly as in Sections 1.2 and 3.1, with their explicit definitions
relegated to Appendix A.2.2. Then we have the following corollary.

Corollary 3.3. We have

(i) Under Assumption 8(i)-(iii) in Appendix A.2.2, if p,/n = o(1), then |I§E — 0l )
(ii) Under Assumption 8, if p,/n = o(1), then

18, — 6oll> = Ox(pa/m).
(iii) Suppose that Assumptions 5-6 and 8 hold. If p?/n = o(1) and log(n/pﬁ)pﬁ/z/ns/4 = 0(1), we have
18, — 80 + (V) "B, Vi 7(; 80)I1* = Op {log(n/p})p3/? /n**}.
If further log(n/p2)py/>/n'/* = o(1), then for any y € RPn,
iy @, = 80)/(y" (V)T ANV} 2 = N(O, 1),
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(iv) Under conditions in (iii), if we further have e,./py = o(1) and &,%p,/+/n = o(1), then
PPN _ _ 1, P
IV AWV — (v AV — 0.
In particular, we could choose €, = (p,/n)"/8, which will render a consistent covariance estimator under the same scaling
condition as (iii).

3.4. Abrevaya and Shin’s rank estimator for partially linear index models

Consider Abrevaya and Shin’s partially linear index model (Abrevaya and Shin, 2011):
Y =T(X" By + (W) +e).
where X € R+ W e R, T(-) is a non-degenerate monotone function, 7(-) is a smooth function, and ¢ is a random noisy
independent of (X", W)T. Our primary interest is to estimate 8, € RP"*!, For this, Abrevaya and Shin (2011) proposed
using ﬁ: = argmaxg.g, _; S2(B), where
A — g g T T W
KB = mo s gnm > Y)UX] B > X[ B)Ky(Wi — W)).

Here Kj(u) := b~'K(u/b) is a function facilitating pairwise comparison (Honoré and Powell, 2005). It involves a kernel
function K(-) and a bandwidth parameter b. Let 8, = (1, OOT)T. Our aim is to estimate 6.

With the estimator?: and other parameters similarly defined as in Sections 1.2 and 3.1 and put in the Appendix A.2.3,
we have the following corollary.

Corollary 3.4. We have

(i) Under Assumption 9(i)-(vii) in Appendix A.2.3, if p,/n'=%® = o(1), then ||5: — 6|l )
(ii) Under Assumption 9, if p,/n'~% — 0, then

- p p3/2
18 — 80l1* = 0s (-5 A P).
n-— n

(iii) Under Assumptions 5 and 9-10, as p2/n'~% = o(1) and log(nlf“/pﬁ)pﬁ/z/n(S*SB)/4 = 0(1), we have

18, — 80 + (VA)""PaVie 5 00)I17 = Op{n™ v log(n'~* /p} )py/2 />4
If further log(nl“s/pﬁ)pf{/z/n“"‘s‘”/‘l = 0(1), then for any y € RPn,
iy @, — 00)/tyT (VA AMVA) )2 = NGO, 1),
(iv) Under conditions in (iii), if we further have e,./p, = o(1) and ‘9,1‘2pn/\/an2‘s =o0(1), then

(VAT RAVAYT — ()TN S o,
In particular, we could choose €, < (p,/n'~2%)V/8. This will render a consistent covariance estimator under the scaling
condition [p/n'=23 v {log(n'~? /p2)}*pS/n'%%] = 0(1), which, at various cases, will be the same as the scaling condition
in (iii).

4. Simulation results

This section presents results from a small simulation study to illustrate two main implications of our theory. First for
each fixed n, the normal approximation to the finite sample distribution of the studied rank correlation estimator will
quickly become unreliable as p, grows, suggesting that our theoretical bound is difficult to be improved in a significant
way. Secondly, in estimating the asymptotic covariance based on the covariance estimator of the numerical derivative
form, as n fixed, the tuning parameter that minimizes the Median Absolute Error (MAE) of the estimator will increase
with the dimension p,, echoing our theoretical observation.

In the simulation study, we focus on Han’s MRC estimator of the form (1.3) and the following binary choice model:

Yi=1(X/B +€=>0),i=1,...,n,

where X; ~ N(0, £) with = = 0.5V, ¢ ~ N(0, 1), and * = (2, 4,6,...,2(p + 1)) representing the true regression
coefficient. For each n = 100, 200, 400 and p, = 1, 2, 3, 4, we simulate independent observations {Y;, X;}? ; from the
above model. Let B; := B*/B7 be the normalized regression coefficient. We aim to estimate B using Han's estimator
ﬁ:, which is implemented using the iterative marginal optimization algorithm proposed by Wang (2007), with the initial
point chosen to be the truth.
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Table 1
Coverage probability under the first projection direction.
n p Nominal coverage probability
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
1 0.606 0.644 0.692 0.731 0.781 0.822 0.860 0.890 0914 0.932
100 2 0.806 0.829 0.844 0.862 0.881 0.895 0.907 0.920 0.930 0.948
3 0.923 0.930 0.938 0.947 0.953 0.957 0.963 0.964 0.970 0.973
4 0.877 0.892 0.905 0.920 0.926 0.939 0.945 0.948 0.956 0.964
1 0.518 0.561 0.619 0.672 0.719 0.763 0.809 0.861 0.903 0.939
200 2 0.598 0.655 0.704 0.754 0.801 0.826 0.863 0.890 0.912 0.938
3 0.702 0.746 0.788 0.820 0.846 0.874 0.893 0911 0.930 0.953
4 0.852 0.871 0.887 0.902 0.920 0.923 0.934 0.940 0.952 0.960
1 0.502 0.552 0.588 0.648 0.699 0.749 0.797 0.857 0.900 0.946
400 2 0.500 0.555 0.604 0.663 0.724 0.766 0.819 0.858 0.905 0.945
3 0.576 0.627 0.672 0.715 0.765 0.809 0.844 0.882 0.900 0.929
4 0.613 0.672 0.711 0.737 0.782 0.833 0.870 0.890 0.920 0.944
p=1 p=2
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Fig. 1. Plots of the kernel density estimates of the normalized estimates (blue) v.s. N(0, 1) (red) under the first projection direction (n = 100, 200, 400
from top to bottom).

Based on 1000 independent replications and using two-sided normal confidence interval, Tables 1-3 present the
coverage probability as the nominal one varies from 0.5 to 0.95 for three projections of the same directions as
(1,1,...,1)7,(1,0,...,0)T,and (1,2, ..., p,)". For calculating the confidence intervals, we used the sample standard
deviation of 1000 replications. We further plot the kernel estimates of the density functions of the normalized three
projected estimates against the density function of N(0, 1) in Figs. 1-3. The normalization is based on the true mean
and the previous simulation-based standard deviation. In computing the kernel density estimates, we used normal kernel
function and the bandwidth based on Silverman’s rule-of-thumb.

Both the tables and figures reveal the same overall pattern that, for each fixed n, as p, increases, the coverage
probability will deviate more from the nominal, and the kernel estimates of the density function of the normalized
estimator itself will deviate more from the standard normal. As observed, the deviation from normal has become very
severe even for very small p,. For example, for p, = 2, we need n to be approximately 400 for achieving satisfactory
coverage probability. This supports the theoretical observations in Theorem 2.4 and Corollary 3.1(iii). We further conduct
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Fig. 2. Plots of the kernel density estimates of the normalized estimates

100, 200, 400 from top to bottom).

p=1

p=2

(blue) v.s. N(0, 1) (red) under the second projection direction (n
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Fig. 3. Plots of the kernel density estimates of the normalized estimates (blue) v.s. N(0, 1) (red) under the third projection direction (n = 100, 200, 400
from top to bottom).
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Table 2
Coverage probability under the second projection direction.
n p Nominal coverage probability
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
1 0.606 0.644 0.692 0.731 0.781 0.822 0.860 0.890 0914 0.932
100 2 0.790 0.820 0.839 0.858 0.875 0.890 0.905 0914 0.929 0.945
3 0.920 0.928 0.938 0.947 0.952 0.956 0.963 0.965 0.970 0.973
4 0.876 0.890 0.903 0918 0.926 0.939 0.944 0.949 0.956 0.965
1 0.518 0.561 0.619 0.672 0.719 0.763 0.809 0.861 0.903 0.939
200 2 0.578 0.638 0.691 0.732 0.773 0.810 0.857 0.883 0.909 0.934
3 0.699 0.735 0.770 0.801 0.831 0.869 0.889 0.912 0.929 0.947
4 0.841 0.865 0.883 0.900 0.911 0.919 0.932 0.943 0.952 0.958
400 1 0.502 0.552 0.588 0.648 0.699 0.749 0.797 0.857 0.900 0.946
2 0.519 0.573 0.623 0.661 0.701 0.754 0.810 0.861 0.901 0.947
3 0.568 0.615 0.673 0.717 0.760 0.800 0.837 0.868 0.903 0.929
4 0.592 0.637 0.675 0.732 0.774 0.817 0.856 0.881 0911 0.937
Table 3
Coverage probability under the third projection direction.
n p Nominal coverage probability
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 09 0.95
1 0.606 0.644 0.692 0.731 0.781 0.822 0.860 0.890 0914 0.932
100 2 0.804 0.828 0.846 0.861 0.880 0.897 0.907 0.921 0.931 0.948
3 0.923 0.929 0.938 0.947 0.953 0.957 0.963 0.964 0.970 0.974
4 0.877 0.892 0.904 0.920 0.926 0.939 0.945 0.948 0.956 0.964
1 0.518 0.561 0.619 0.672 0.719 0.763 0.809 0.861 0.903 0.939
200 2 0.601 0.658 0.710 0.754 0.799 0.828 0.864 0.895 0913 0.940
3 0.712 0.749 0.787 0.820 0.843 0.874 0.893 0913 0.930 0.954
4 0.852 0.870 0.886 0.902 0.919 0.924 0.933 0.940 0.952 0.960
400 1 0.502 0.552 0.588 0.648 0.699 0.749 0.797 0.857 0.900 0.946
2 0.502 0.547 0.602 0.661 0.720 0.771 0.813 0.861 0.908 0.944
3 0.566 0.618 0.672 0.720 0.765 0.808 0.844 0.881 0.902 0.931
4 0.617 0.663 0.708 0.738 0.789 0.835 0.871 0.892 0.920 0.946
Table 4
MAE of the covariance estimator. The results are obtained using 1000 replications.
€n n =100 n =200 n = 400
p=1 p=2 p=3 p=4 p=1 p=2 p= p=4 p= p= p= p=4
1.1n71/6 0.476 1.509 2.198 3.705 0.170 0.656 1.208 1.601 0.081 0.267 0.635 1.101
0.9n~1/6 0.468 1.555 2.197 3.786 0.160 0.663 1.269 1.695 0.073 0.275 0.671 1.144
0.7n1/6 0.494 1.433 2.247 3.870 0.160 0.690 1.257 1.755 0.071 0.303 0.722 1.214
0.5n~1/6 0.521 1.402 2.473 3.802 0.175 0.755 1.334 1.774 0.081 0.339 0.764 1.261
0.3n71/6 0.503 1.379 2.665 3.867 0.235 0.814 1.445 1916 0.121 0.408 0.843 1.343
0.1n~ /8 0.657 1.464 2.962 4,762 0.329 0.874 1.452 2.161 0.201 0.475 0.869 1.379

different types of normality tests (Kolmogorov-Smirnov, Lilliefors, Jarque-Bera, Anderson-Darling, Henze-Zirkler) on the
derived projected estimates as well as the original multi-dimensional estimates. They all reject the null hypothesis of
normality except when p, = 1, n = 400.

We then move on to study the estimation accuracy of the asymptotic covariance estimator discussed at the end of
Section 2.2. For this, we focus on the same setup as previously conducted. Table 4 presents the MAE of the asymptotic
covariance estimator for the projection direction {p, v S Pn v 2}T. There, it could be observed that, for each fixed n, the
tuning parameter that attains the smallest MAE will in general become larger as p, increases, supporting our observation
in Theorem 2.6 and Corollary 3.1(iv).

Concluding remarks

This paper provided a first study of asymptotic properties of a general class of estimators defined as minimizers of
possibly discontinuous objective functions of U-process structure allowing for the dimension of the parameter vector
of interest to increase to infinity as the sample size n increases to infinity. Members of this class include important
rank correlation estimators as detailed throughout this paper. Technically we have established a maximal inequality for
degenerate U-processes in increasing dimensions which has played a critical role in deriving our theoretical results. We
have also applied our general theory to the four motivating rank correlation estimators. Using Han’s MRC estimator of
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the form (1.3), we have provided numerical support to our theoretical findings that for a given sample size, the accuracy
of the normal approximation deteriorates quickly as the number of parameters p, increases and that for the variance
estimation, the step size needs to be adjusted with respect to py.

This paper is focused on the setting that the parameter of interest itself is of an increasing dimension and inference
has to be drawn on it. On the contrary, a growing literature studies the case that the parameter to be inferred is of a fixed
dimension, but allows for a dimension-increasing (but still less than n) nuisance in the model. Substantial developments
have been made along this line. For example, Cattaneo et al. (2018a,b) studied inferring the fixed-dimension linear
component in a partially linear model, and Lei et al. (2018) established asymptotic normality of margins of linear and
robust regression estimators in a simple linear model. Their set-up is fundamentally different from ours due to the
difference of goals.!

We end this section with a brief discussion on further extensions. An immediate extension is on studying “penalized”
rank estimators in ultra high dimensional settings where the dimension could be even larger than the sample size.
For this much more challenging setting, to the authors’ knowledge, most literature is still focused on simple structural
statistical models (cf. Zhang and Zhang (2014), Van de Geer et al. (2014), Lee et al. (2016), and Javanmard and Montanari
(2018) among many others). A notable exception is the post-selection inference framework proposed in Belloni et al.
(2014, 2018), where a general set of regularization conditions has been posed for inference validity of Z-estimation. The
authors believe that, combined with our local entropy analysis of the degenerate U-processes and the empirical process
techniques developed by Talagrand and Spokoiny and specialized to rank estimators in this paper, the post-selection
inference framework will prove useful in extending the current study to ultra high dimensional models. However, there
are still many technical gaps, which we believe are fundamental and related to some key challenges in high dimensional
probability in extending the scalar empirical processes to vector and matrix ones if no further smoothing (cf. Han et al.
(2017)) is made. We will leave this for future research.
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Appendix

A.1. Additional notation

For a vector a € R!, we define |o| = (|ee1], ..., |e|)"
a, < b, up to a multiplicative constant. We use the symbol a, ~ b, to denote that a, < b, and b, < a,. In this appendix
we drop the subscript n in my, vy, py.

. For two sequences of real numbers a, and by, a, < b, means that

~

A.2. Notation and assumptions in Section 3

Throughout this section, let X = (Xj, )N(T)T, where X denotes the last p components in X.

A.2.1. Notation and assumptions in Section 3.2
The following definitions are similar to those in Section 1.2. We use S¢(8) to denote the expected value of S¢(B), and
SS(B) = E{M(Y)1(X] B > X, B)}. Let z = (y,x")". We define

[€(z1,22; 0) = ML B > %, B) — 1(x] By > %, Bo)),
©%(z; 0) = Ef(z, 5 0) + Ef (-, 2;0), ¢“(z;0) = t°(z;0) — Ez°(+; 0),
A° =EVi7(; 00){V1T(:; 60)} T, and 2V© = EV,7°(+; 6p).
Write I"¢(8) for S°(B) — S¢(B,) and I;°(8) for SS(B) — SE(By)- The estimator@ﬁ is defined as
52 = argmax I'°().

0coC

1 We note that our set-up is also fundamentally different from works on “many moment asymptotics” in GMM models such as Han and Phillips
(2006), Newey and Windmeijer (2009), and Caner (2014), where the number of moment conditions increases but the number of parameters in such
models is fixed as the sample size increases.
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To conduct inference on 6, based on 5(,1: we further define
19(2:0) = Pof (2, 0) + Pof (-, 2;0), pii(z; 0) = &, {15(z; 0 + equy) — 7(2; )}, and
Pr(2: 0) = £,2{(2: 0 + en(tti + 1)) — 7.0(2; 0 + £nthi) — T5(2: 0 + e0tt)) + 7. (2: 0)}.

Then, we define the estimator of the matrix A€ as A® = (’(S\UC.) and the estimator of the matrix V¢ as V¢ = (v§), where
~c -~ 1 ~c
8% = Pa{pS( 0,)05( 0,)), and T = SPupS(+16,).

2
We then make the following assumptions.

Assumption 7. Assume

(i) Assumption 1 holds for ®¢ and I"°().

(ii) The random variables X and e are independent, and E{M(Y) | X} depends on X only through X Tﬂo.
(iii) X; has an everywhere positive Lebesgue density, conditional on X.

(iv) Assumption 3 holds for ¢(z; 8) and ¢(z; 9).

A.2.2. Notation and assumptions in Section 3.3
The following definitions are similar to those in Section 1.2. Let S¥(B) denote the expected value of SX(B), and
SK(B) = E(R1(V; < Vu)1(X{ B < X, B)}. Let z = (r, v, x")". We define
FN(21,22;0) = 1oy < v){I(R] B < %] B) — 1(x] By < %; o)),
©(2: 0) = Bf(z, - 0) + Ef“(-. 2:0), ¢"(z;0) = "(z: 0) — E7“(-; 0),
A =EViTh(; 00){V1T(; 60)} . and 2VE = EV,t(; 6p).
Write I'%(8) for S¥(B) — S¥(B,) and I'X(6) for SX(B) — SK(By)- The estimator@': is defined as
K
0, = argmax I'1(0).
oK
To conduct inference on #, based on gﬁ we further define
1(2;0) = Puf (2, 5 ) + Pof (-, 2: 0), pi(2;0) = &, {1 (2; 0 + eqi) — 75(2; 0)}, and
(2 0) = £,2{T(2: 0 + en(tti + 1)) — TX(2; 0 + £atti) — T4(2: 0 + e01t)) + (2 0)}.

G

) and the estimator of the matrix V¥ as VK = (2%), where

Then, we define the estimator of the matrix AX as AX = ;

~K ~ 1 ~K
8 = Pu{p%(5 0,1 6,)} and D = S PaPl(: 6,).

We then make the following assumptions.

Assumption 8. Assume

(i) Assumption 1 holds for ®X and I'(9).

(ii) The random variables (&, X) and € are independent, and E(§ | X) depends on X only through XTBO.
(iii) X; has an everywhere positive Lebesgue density, conditional on X.
(iv) Assumption 3 holds for t%(z; 8) and ¢%(z; ).

A.2.3. Notation and assumptions in Section 3.4
Let ¢(-) denote the density of W. Let z = (y, ", w)". We define

fAz1,22:0) = 1(y1 > y2){1(x] B > x; B) — 1(X{ By > X; Bo)}K{(w1 — w2)/b},

m(zy,22;0) = 1(y1 > y2)1(x{ B > X, B),

Y(wi, wo; 0) = B{mM(Z1, Zy; 0) — m(Z1,Z3; 00) | W1 = wq, Wa = wa},

rA(0) = Ew{y(W, W; 0)p(W)},

™(2:0) = E{m(z, Z3: 0) | W5 = w}p(w) + E{m(Z1,z: 0) | Wy = w}g(w),

tA(z;0) = T4(z; 0) —Et(50), A" =EVi7"(;; 0){V17"(:1 6p)}7, and 2VA = EV,7°(:; o).
Write I;A(0) for SA(B) — SA(By)- The estimator@? is defined as

0 = argmax I'A(6).
fecOA
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Note that EFA(8) # I'(0). This is different from the general set-up in Section 2.2. However, by Taylor expansion,
we show that supgcga |IEFHA(0) — FA(0)] is negligible under the assumptions adopted in this section. Then, following the

proof of the general method, we can similarly establish the consistency and asymptotic normality of 5:
To conduct inference on 6y based on 5: we further define
T(2:0) = PufA(z, 1 0) + PofA(, 2: 0), Pji(z: 0) = &, ' {1(2: 0 + qwi) — 7, (2; 0)}, and
pﬁij(z; 0) = e, {1 (2; 0 + en(wi + u)) — TN (2 0 + eqti) — T2 0 + ) + T(2; 0)).

Then, we define the estimator of the matrix A* as A* = ('55‘) and the estimator of the matrix VA as VA = (), where

~ —~A ~A 1 ~A
85 = Palpuls 0,)py(5 0D}, and B = Puply(-5 0,).
We make the following assumptions.

Assumption 9. Assume

i) Assumption 1 holds for ®* and I'(0);
(ii) The random variables (X, W) and ¢ are independent.

)
) -
(iii) X7 has an everywhere positive Lebesgue density, conditional on X and W.

(iv) W is continuously distributed on a compact subset W of R.

(v) The kernel function K(-) satisfies: (1) K(-) is twice continuously differential with compact interval [—C, C] 2> W;
(2) K(-) is symmetric about 0 and integrates to 1; (3) for some integer | > 6, fu’K(u)du =0withj=1,...,]—1
and [ W/K(u)du is bounded.

(vi) The bandwidth b is defined as b = cn—? for constants ¢ > 0 and ]1 <8<4.

(vii) For any w, the Jth derivative of (w1, wy; ) - ¢(w;) with respect to wy is continuous and bounded for all § € GA.
(viii) Assumption 3 holds for TA(z; #) and ¢%(z; 0).

Assumption 10. Let fo(- | X, w) denote the conditional density function of XT,BO given ()N( ,W) = (X, w). Assume
fo(- | ®, w) < C; for any ¥ and w in the support of X and W, respectively, where C; is an absolute positive constant.

A.3. Proofs in Section 2

For each 6 € ®, define measures
Snf(, -3 0) = n(n — NUf(-, -; 0)
and

Tof (-, 5 0) = Z{f(zzi, Zy; 0) 4 f(Z2i, Zyj—1; 0) + f(Z2i—1, Zj; 0) + [(Z2i-1, Z3j—1; 0)).
i#j
To prove Theorems 2.1-2.4 in Section 2, we need several lemmas. For simplicity, we omit the parameter 6 in each
function f(-,-;0) € F in the lemmas. Let F denote the envelope function of F for which 0 < EF" < oo, for any
r > 1. The covering number N;(e,P ® P, F, F) is defined as the smallest cardinality for a subclass 7* of F such that
mingc 7+ E|f — f*|" < &"EF', for each f € F.

A.3.1. Some auxiliary lemmas

Lemma A.1. Suppose that F is b-uniformly bounded, then the class 7> = {f> : f e F} with envelope b* satisfies
N.(2¢,PQP, 72, b*) < N,(¢,PQ P, F, b).

Proof. Find functions fi, ..., f;, such that

miinE[f —fill <&'b", foreachf e F.
Then, with the appropriate i,

Elf* - f2I" < 2b)Elf — fil" < (2b)e'b" = (2¢) (b*).
This implies that N,(2¢, P @ P, 72, b?>) < N(¢, PQ P, F, b). O

Lemma A.2. Suppose that F is b-uniformly bounded. Then E supgcp» |Png — Eg| < 4/v/n, where PF := {Epf(z,-) : f € F}.
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Proof. With a little abuse of notation, let €, €5, ... be the Rademacher sequence, where ¢; € {—1, 1} is symmetric around
0. By the classic symmetrization theorem (cf. Theorem 8.8 in Kosorok, 2007), we have

1 n
E sup |P,g — Eg| < EzE, sup |- E eig(Zf)‘. (A1)
n

gEPF gerrF 1=

Next, we try to bound E. supgcpr |Z:’=1 €;g(z;)/n| for fixed z;. To that end, consider the stochastic process {Z?:1 €ig(z)/
J/n i g € PF} It is easy to verify that Z;‘:l €i{g1(zi) — 22(z;)}/+/n is sub-gaussian with parameter ||g; — g2||fz(Pn) =
Z?:l{gﬂzi) — g(z)}*/n, where g, g, € PF. Consequently, Dudley’s entropy integral, combined with the fact that
SUPg, gyerr 181 — &2ll,(pa) < 2D, implies that

1 ¢ 24 (¥
5 sup | ;e,g(z,)’ < Jﬁ/o J10gNa(t /b, By, BF, b) dt. (A2)

By Theorem 9.3 in Kosorok (2007) and Lemma 20 in Nolan and Pollard (1987), there exists a universal constant K such
that Ny(t/b, P, PF, b) < Kv(16e)"(b/t)?"~1. Substituting this bound into (A.2), we find that there exist constants co, c;,
only depending on K, b but not on (v, n), such that

n

2b
E. sup %Zeig(z,-)’ < co\/g{l +/ \/log(b/t)dt} < cl\/g.
0

gePF i1

Combining this with (A.1) implies that E sup,p~ [Prg — Eg| < ¢14/v/n. This completes the proof. O
Lemma A.3. Suppose that F is P-degenerate and b-uniformly bounded. Then E sup. » [Uyf| < v/n.

Proof. First, by the relationship between S, and U,: S, = n(n — 1)Uy, we just need to show that E sup;. » [Suf /(nv)| is
bounded. Apply Theorem 6 in Nolan and Pollard (1987) to get

Esup [Suf] < cza{an + () } (A3)
feF Tn
where C is a universal constant, o, = supy. »(Tnf?)"/?/4, 7, = (T,b?)"/?, and Ju(x) = f(f log Ny(t, T,, F, b)dt. By Theorem
9.3 in Kosorok (2007), we have Ny(t, T, F, 1) < Kv(4e)"(2/t)**~1, and thus J,(x) < cH(x)v for some constant ¢ depending
on K, where H(x) = x{1 + log(1/x)}.

Since F is b-uniformly bounded, it holds that o,/7, € [0, 1/4]. Note also that H(x) is bounded when x € [0, 1].
We immediately have H(o,/t,) is bounded. Additionally, by the definition of T,, we see that 7, = {4n(n — 1)}/ < n.
Combining all these points with (A.3) implies that there exists some constant ¢’ depending on C, ¢ such that

IESupfe]—' |Snf|
nv

< c/lEH(ﬁ)E <
1,/ n

for some large enough absolute constant C’. This completes the proof. O
Lemma A4. Ifforeache > 0, (i) logNy(e, Ty, F, F) = Op(n), (ii) log N1(&, P,®P, F, F) = op(n), (iii) log N1 (e, PQP, F, F) =
o(n), then supfc z |Unf — Ef| — 0 almost surely.

The proof of this lemma follows along the same lines as the proof of Theorem 7 in Nolan and Pollard (1987), though
the condition (iii) in this lemma is different from there.

A.3.2. Proof of Theorem 2.1

Proof. (i) It is equivalent to showing that there exists a sequence of nonnegative real numbers §, converging to zero such
that

JP’{ sup  [Unh(-, - 0)| = SnV/n} =o(1),
0cB(0g.mn)
or
P{ sup  [Sph(-, -5 8)/(nv)| > Sn} =o(1).
0cB(0g.mn)
By Chebyshev’s inequality, it suffices to show that

B sup I8uhC 5 8)/mv)l} /8 = (1),
0cB(0g.mm)
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We try to bound E{supycgg, ) [Snh(-, -; 8)/(nv)|}. Without loss of generality, assume F is uniformly bounded by
b = 1/4. Thus, for any 6 € ©, h(-, -;8) < 1, i.e., the class of functions s# = {h?*(-,-;0) : 0 € B(y, 1,)} is 1-uniformly
bounded. Similar to the proof of Lemma A.3, we apply Theorem 6 in Nolan and Pollard (1987) here to get

Bl sup [SihC )/l = cimH( sup (TR, 0} /2m)
6€B(09,rn) 0cB(0g.rm)

< Q”(E[(,Eé(‘ip,mm”hz(" 5 0)'2/(2n)] ) (A4)

1/2
=aH(E] s T oyen?] ),
0€B(0g,mn)

where C; is some constant. The second inequality holds because H(x) is concave in x.
Note that T,h%(, -; 0)/(2n)? = T,h?(-, -; 8)/{2n(2n — 1)} - {2n(2n — 1)}/(2n)> < Uyh(-,-;0) < 1 and that H(x) is
increasing in (0, 1]. Thus, from (A.4), we additionally have

1/2
E{ sup [SahC s 0)/m)l} = CH(E] sup wam( )] )
0cB(0g.1m) 0cB(0g.1m)

1/2
sclH([E[ sup mnhzc,-;o)}] )
0cB(0g.mn)

(A5)

where the last inequality holds because x'/? is concave in x. Now, we need only to consider E{supger,,r) Uynh?(-, 5 0)).
By a decomposition of U,,h?(-, -,0) into a sum of its expected value, plus a smoothly parameterized, zero-mean
empirical process, plus a degenerate U-process of order two, we have

Bl sup Uph(.i0)) = sup EW(.:0)+E| sup [Paihi(:0)]]
0<B(0g.1m) 0<B(09.1m) 6<B(69.1m)

+E[ sup [Pauha(-, 1001,
0<B(0g,mn)

(AG)

whzere hi(z, 0) = Eh%(z, -; 0) + Eh?(-, z; 0) — 2Eh%(-, -; 0) and hy(24, z; 0) = h%(21, z2; 0) — Eh%(z4, -; 0) — ER?(-, 25; 0) +
Eh(-, -; 0).

By the condition in (i), it holds that SUP()eE(()O,rn)EhZ(', -;0) < €,. By Lemmas 16 and 20 in Nolan and Pollard (1987),
and Lemma A.1, we have N,(e,Q, s#,1) < N.(¢/16,Q, F, 1/4)*. Then, following the proof of Lemma A.2, we have
E{supgeggy.ry) IP2nf1(; )1} < C;4/v/n for some constant C,. Additionally, following the proof of Lemma A.3, we have
E{supgegg,.ry) IP2nha2(:, - 0)|} < Gv/n for some constant Cs.

Take 8, = H'/?((en + Co/v/n + C3v/n)/?). If ¢, — 0 and v/n — 0, then

B sup 18 0)/m)l} /8 < CHY((en + Go/v/n + Cov/m)'2) = o( 1)
0cB(09.mn)

because H(x) — 0 as x — 0. This completes proof of (i).

(ii) The proof is based on (A.4)-(A.6) in the proof of (i). First, by the condition in (ii), it holds that supy.g, r,) ER%(-, -; 0)
< €. Then, similar to the proof of (i), E{supgegg, ry) [Pnh1(:; O} < ¢’\/v/n for some constant ¢/, and E{SuPpeB@y.r)
|Pyha(-, -5 )]} < C'v/n for some constant C’. Since 7, = /v/n V€, and v/n — 0, there exists a constant ¢” depending
on ¢/, C’' such that

Bl sup Unh(,8)] =W,
0cB(0g.mn)
holds for sufficiently large n. Combining this with (A.5) implies that
E{ sup [S.h(-, < 8)/(mv)]| < C”log(1/7n iy
0cB(0g.mn)
for some constant C”. Finally, by the relationship between U,, and S,, we conclude that
E sup |Uqh(., -5 0)| < C"log(1/5,)n, *v/n
0cB(0g.mn)
holds for sufficiently large n. O
A.3.3. Proof of Theorem 2.2

Proof. The proof is twofold. We first show the uniform convergence of I3,(0), and then establish the consistency of 6,1.
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Step 1. By Theorem 9.3 in Kosorok (2007), we have log Nq(e, u, 7, F) < v for any ¢ > 0 and any finite measure p. If
v/n — 0, then all the three conditions in Lemma A.4 hold. Apply this lemma here to get that I7,(#) converges almost
surely to I'(@) uniformly in § € ©.
Step 2. Let ©y(r) = B(#y, r), where r < ry. By Assumption 1, we see that ®; := ® — O(r) is compact. By Assumption 2,
I'(0) is continuous. Combining these two pieces yields that maxgce, I'(0) exists. Again, by Assumption 1, we know that
I'(6) — maxgpeo, 1'(0) > éo.

By Step 1, we can find a sufficiently large N such that for all n > N,

sup [I7(0) — I'(0)] < §0/2
0coO

holds almost surely. Combining this with the definition of ’07,1 yields that
I'(80) < In(80) + £0/2 < Tn(81) + £0/2 < T'(62) + &o.

This implies that 3,1 & 04, i.e.,b\n € Og(r) for all n > N. Since this is true for any r < rg, we have
||§n — 6p|| > 0 almost surely,

and hence also in probability. This completes the proof. O

A.3.4. Proof of Theorem 2.3

Proof. The proof is conducted in four steps. Based on the Hoeffding decomposition of I3,(@), we consider I"(6), P,g(-; 9)
and U,h(-, -; 0) separately in the first three steps. We finally obtain the convergence rate of 8, in the last step.

Step 1. Fixing 0 € B(0,, r), define

w(0) =Et(-;0) — Et(-, 00) — (0 — 05) V(0 — 0y) = 21" (8) — (0 — 6,) " V(6 — 0,). (A7)
Additionally, expand w(#) about 6, to get
w(8) = (6 — 8o)' Viw(0), (A.8)

where ' is a point on the line connecting 8y and 0, and Viw(0') = V1Et(-; ') —2V(0' — 6,). Expand V Ez(-; 8') in V 0(8')
about 6, to get

View(0') = 2V(0")(0 — 6) — 2V(6" — 6p) = 2{V(") — V}(6' — b))
for @ between 6, and €'. By Assumption 3(ii) and (iii), we have

sup  [[Viw(@)] <2 sup [[VVZ{I, — V2V(0" )2V 167 — 6
0'cB(6y.1) 60'cB(8).1) (A.9)
< 2Cmaxp(r)]10 — o]l

Combining this with (A.7) and (A.8) yields
sup |1°(6) — 50— 00)7VI0 — 00)] = Craep 110 — . (A10)
0<B(6g.1)
Step 2. Fixing z in R™ and 6 in B(8,, r), define
¥(2;0) = t(2;0) — 7(2; 60) — (0 — 00)" V17(2; 6p) — (0 — 65)" V(0 — ).
With a little abuse of notation, we still use @’ to denote some point between 8, and 8 below. Expand v(z; #) about 6, to get
Y(2;0)= (0 —00)"Viy(2;0') = (0 — 00) " (V1(2; 0') — V1(2; 6p) — 2V(0' — )}
Note that 7(z; 0') = ¢(z; ') + Ez(-; @'). It then follows from the above equation and V;Ez(-; §y) = 0 that
Py (-5 8) = (8 — 00) ' {Pa V1L (; 0') — Pa Vil (-5 B0) + VAET(-; 6') — 2V(0' — 6p)}
= (0 — 00) Pa{V1L(:; 0) — V1Z(+5 00)} + (0 — 60) {V1ET(:; 0') — 2V(0' — Bo)}.
By Step 1, we have that

sup [0 — 60){V1Ez(-; 6') — 2V(6' — 80)} | < 2Cmaxo(r)]|0 — o]|*. (A11)
0cB(0.1)

Next, we try to bound supgcgg, ) I1(6 — 00) " Pu{V1Z(; ') — V12(+; 6p)}||. Consider the vector process
A(0) = /0P {V1£(-; 0) — ViZ(-: )}
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According to Assumption 3(v), it holds, for any y,, y, € P71, that
VA

A
logEexp {Ay{ V1A(8)y,} = nlogEexp {ﬁyTVz§(~; 0)72} ==

for any |A| < g, with g, = +/nf. It then follows from Theorem A.3 in Spokoiny (2013) that for any 0 < ¢ < 1,

P{ sup (| A(O)]| > GvOrdp(S)} <e,

0<B(0o.1)
where
J4p —2loge if 4p — 2loge < g2,
d = 1
(&) g 'loge + 5(4pgn’1 +g) ifdp—2loge > g2.
Thus,
T , 61)07'
Py sup |(0—00) Pa{ViZ(:0') = Vis(+; 00)}| > —=dy()[10 — boll { <. (A12)
0cB(6y.1) NG
This, combined with (A.11), implies that
2 6\)0T
Py sup [[Par(-; )l > 2cmaxp(r)I10 — Ool|” + —=dp(e)lI0 — boll ¢ < &. (A13)
0<B(0g.1) \/ﬁ

Note that 7(z; 6p) = 0 and
8(z;0) = 1(z;0) — t(z; 00) — 21'(0)
=(0—60)" Vit(2; 60) + V(2: 6) — {2I(0) — (0 — 00) "V(0 — )} .
Apply (A.10) and (A.13) to see that
P{ Sup [Pag(-: 0) — —=(6 — B0) Wa| > Acmaxp(r)16 — Bol1? + 22 dy(e)]0 — 00||} <, (A14)
0<B(0g,7) \/ﬁ \/ﬁ
where W, = /nP,V z(-; ).

Step 3. By Assumption 2, f(z1, z2; #) is continuous at 6, almost surely. Since F is uniformly bounded, a dominated
convergence argument implies that the same holds true for h(z1, z5; 6). In view of f(z, 25, 8p) = 0 for all z4, z,, it holds
that h(zq, z3; 6p) = 0. Thus, the boundedness of h and the dominated convergence theorem establish

Eh?(-,:0) — 0 as |0 — 6] — 0. (A.15)

Equivalently, there exists a constant a(r) > 0 such that supycgq, r) Eh*(-,;0) < a(r) and a(r) - 0asr — 0. By
Theorem 2.1, there exists a sequence of nonnegative real numbers §, (depending on «(r), v, n) converging to zero as
r — 0 and n — oo, such that

IP{ sup |Uyh(-, -; 0)] > (Snv/n} <e (A.16)
0cB(6,1)
holds for sufficiently large n.

Step 4. The Hoeffding decomposition, combined with (A.10), (A.14), and (A.16) in the above three steps, implies that

1 1
Pl s |0 50007V~ 00~ 0 00w, >
0B (60,1 Vi (A17)
6vor v
Senapl1)10 — 12 + 4610 — ol + 5y | 2.

In view of W, = /nP,V;7(-; fp), it holds that (8 — 6y)" W, /{(0 — 6,)" A(0 — 6,)}'/> = N(0, 1). This, combined with
Assumption 3(iv), implies that there exists a constant b, depending on d,x such that

P{I(0 — 60) W] > b.[|0 — 6|} <&
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holds for sufficiently large n. Define the set

An.s:{Z: sup | I;(6) —*(9 00) V(0 — 6o)| < 7”0 Ooll+
0<B(0g.1)

g

6
5Cmax 0 (118 — B0 1% + - dy(e)[16 — Bl + Su— |
Jn n

then P(A, ) > 1 — 3¢ holds for sufficiently large n. The following analysis is on_the set Aj ..
By Theorem 2.2, ||0 — 6|l — 0 almost surely. Thus, for sufficiently large n, 0 € B(#y, r). This implies that

7% 16 — Boll + 5¢max 0110, — o]
61)01’

o~ v
+ de(g)”on — 6ol + SnH-

In view of I},(8,) > I(6o) = 0, it holds that

(8,) 55@ — 00)"V(0, — 8o) +

1~ —~ b, ~ ~ 6vor —~ v
=< 5(011 - 00)Tv(0n —00) + ﬁ”an — 0ol + 5cmaxo(r)10; — 00”2 + Tde(g)”an — 0ol + 511;-
This, combined with Assumption 3(ii) and p(r) < 15;“;;)(, implies that
1 ~ 6vor ~ v
S <lib — 60l)* < 7 GoE)1B = ol + 8 (A.18)

where K = Cin— 10cmaxp(r) > 0. By the definition of d,(¢) and p/n — 0, there exists a constant ¢, such that dy(¢) < c./p
for sufficiently large n. Combining this with (A.18) yields that

bs + GVOrCE\/ﬁ>2 < (bF + 6V0rC5\/13)2
k/n -

Solving the above equation establishes that

Vv
+8n7

S (16 — 0ll - - -

~ VVDp
0 — 6ol < Ce

holds for sufficiently large n, where C, is some constant depending only on Cnin, Cmax, 2(7), dmax, & but not depending on
v, p, n. Thus,

—~ Vv
P{non—aonscg,/”n”}zl—zs

holds for sufficiently large n. This completes the proof. O

A.3.5. Proof of Theorem 2.4

Proof. The proof is based on the proof of Theorem 2.3. We first define t, = ﬁ(@n — @) and tf = -V 'W,. By
Theorem 2.3, for any ¢ > 0, there exists a constant C, > 0 such that

P{uﬁn — 6] > c;,/#} <e (A19)

holds for sufficiently large n. By the definition of W,, W, = ./nP,V t(:;6), it holds that for any y € R?,
y t:/(yTV1AV-1y)/2 = N(0, 1). This, combined with Assumption 3(ii) and (iv), implies that there exists a constant
C/ such that

Pl = ¢/} <e (A-20)

holds for sufficiently large n. Thus, by (A.19) and (A.20), there exists a constant c, depending on C/, C such that

&’ €
P(A;,) > 1-2¢ (A21)

holds for sufficiently large n, where 4], := {Z : 79\ € BB, 1), t://n+ 0y € B0y, 1)} and 1y := c./(v V p)/n.
Fix 0 € B(8y, r;). Then following the proofs of Steps 1-2 in Theorem 2.3, we have

sup |I'(0) — 5(9 —00) V(6 — 60)| < cmaxo(ra)l16 — 6o, (A22)
0cB(0g.mn)
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and

1
P { sup ’Png('§ 0) — 7(0 - OO)TWn’ > ACmax ()]0 — 00”2+

0B (00, 1m) Vn (A23)
GUOTn

i

Since F is uniformly bounded and supgq, ,) Eh%(-, -; 0) < Een, Theorem 2.1(ii) implies that there exists a constant C;
such that

dp(£)110 — ol }S €.

P{ sup |Uyh(-, 5 0)| > C. lOgU/ﬂn)ﬂ,]/Zv} <¢ (A.24)
0cB(69,mn) n

holds for sufficiently large n. This, together with (A.22) and (A.23), implies that

1 1
p{ sup | 1(8) — (8 — 05)TV(6 — ) — ——
0cB(60.1m) 2 Vn

6vgr; %
J”ﬁ“ dy(e)10 — ol + C. 1og(1/nn)n3,/25 }5 2.
In view of [|§ — 0yl < 1, p(rn) < pry and dy(e) < c./p, it holds that

(0— 00)Twn| > 5Cmax ()0 — 00”2+
(A.25)

1 1
P { sup  |I(0) — =(6—600) V(0 — 6g) — —(6 — 6p) ' Wp| > Scmaxpro+
0cB(60.mn) 2 Jn

6vC.12 v
0875«/5 +C, log(l/nn)nﬁ/zﬁ }5 2¢

T

(A.26)

for sufficiently large n. Define the set

Al = {Z :osup |I3(0)— =(6—60) V(6 — 6o) — L

1
& -5 (0_0 )Twn =< ¢€(v! D, n)}» A.27
" 0cB(0y.1m) 2 Jn ’ | ( )

where

6voc.r2 /P v
(v, p, 1) = SCmaxPT,; + L,:\f + C. log(1/m)n /.

7

Then, P(A;,) > 1 — 2e. Additionally, P(A} . N A} ) > 1 — 4e. The following analysis is on the set A, , N Aj ..

By definition, I5,(60,) = Fn(?n/ﬁ+ 0o) > Iy(t://n+ 6y). Apply the inequality in (A.27) twice, then multiply through
by n, consolidate terms, and use the fact that V is negative definite to get that

1 ~ ~
0<—>(t - t)"V(t, — t3) < 2n¢.(v, p, n). (A.28)

Note that ¢.(v, p, n) < (v V p)*2/n3/2 + log(1/na)ns’*v/n. This, combined with (A.28) and Assumption 3(ii), implies that

vV p)pP/?

R ( 1/2
||tn—t:||s{ i Vlog(1/mn, oy

Recall the definition of £, and t*, we immediately have

_o {(vvp)5/2 log(l/nn)n,‘/zv]
Il BETP n ’

Furthermore, if {(v v p)*/2/n'/?} v {log(1/n,)ny/*v} — 0, then by Assumption 3(iv) and Slutsky’s Theorem, it holds that
forany y € R?, yTt,/{y "V 'AV~1p}1/2 = N(0, 1). This completes the proof. O

”@1 — 00+ VB, ViT(; 00)”2

A.3.6. Proof of Theorem 2.6

Proof. Note that the function class F is uniformly bounded by an absolute constant. We immediately have that F is also
uniformly bounded by an absolute constant. In addition, Et,(z; ) = t(z; 0). It then follows from Lemma A.2 that

sup |1a(z; 0) — t(2; 0)| = Op(/V/n). (A.29)

RM®6O

Since ¢, 14/V/n — 0, we just need to consider

~ o~

(Sij = Pn{ﬁni('? 0n)5nj(‘;§n)}y
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where
Pui(z; 0) == &, ' {z(2; 0 + entty) — 7(2: 0)}.
Expand Pri(z; 0,) about 6y to get
Bri(z: B) = Bui(z: 00) + £ (B — 00)T {Vi7(z: 0" + eqtty) — Vi7(2: 67)}.

Rn

(A.30)

where 0* denotes some point between 5,1 and 6. Note that 7(z; §) = ¢(z; 8) + Ez(-; #). We can rewrite R, in the above
equation as follows:

Ro = {V1¢(z: 0" + enti) — V14(2; 0°)} + {ViET(; 0" + enti) — ViET(:; 67)} .

Rnq Rnz

We discuss R,; and Ry, separately. First, following the calculations in Step 2 of the proof of Theorem 2.3, we have

sup  IBa{Vag(; 0% + entti) — Vi (-5 0}l = Op(ray/p/n),

0*eB(80.m)

where r, ;= /(v v p)/n. In view of Ry; = P, {V1Z(:; 0% + equ;) — V1£(+; 07)}, it then holds that
sup  [IRu1ll = Oz (ray/p/n). (A.31)

0*€B(09,mm)
We now turn to consider R;;. Following similar arguments as in Step 1 of the proof of Theorem 2.3, we have

sup  [IRuzll = O(rap(ra) + &n) = O(pry + &n).

0*cB(0g,n)
Combining this with (A.31) and (A.30) implies that
ﬁni(Z;an) = 5ni(2; 0o) + O]p(&‘;ll’n)O]p(Tn\/ p/n+ Prs + gn)- (A.32)

Next, we consider Ppi(+; 60) = &, {(2; o + entti) — T(2; 60)}. Expand 7(z; 0p + eqti;) — 7(2; o) about &, = 0 to get
©(2; 0 + entti) — T(z; 00) = eqtt] Vi1(z; 0) + e2u Vot(z; 0 + aenu)u;, (A.33)
where o € (0, 1). Again using the equality t(z; 0) = ¢(z; 0) + Ez(-; #), we have

u Vyt(z; 00 + e = u V(0o + aequu; +u] Vo2 (2; 00 + aequ)u; . (A34)

Tm T2
By Assumption 3(ii) and (iii), we have

sup Tt | = u] {V(6 + oventt;) — Viu; + u Vi, = 0(1). (A35)
ae(0,1

By Assumption 3(v), we know that T, is zero-mean subexponential. Thus, by the equivalent definitions of zero-mean
subexponential variables, it holds that

sup E|T,p| < sup (ET3)"? (A36)
ae(0,1) ae(0,1)

is bounded. That is, sup, (g 1y |Tn2| = Op(1). Put (A.33)-(A.36) together. We then have
Bui(2; 00) = u{ V11(2; 80) + Os(en).
This, combined with (A.32), implies that
Pui(2; 0,) = 4] Vy7(z; ) + Op{e, 'V/O/n+ & ' ra(ray/p/n + P} + &) + €0}
Additionally, combining this with (A.29) implies that
B = Pl Vit(; 00)u Vit (s 00)) + Op[{ey '/ + & '1a(ruy/p/ + Pri + £0) + €a)?]
= 8 + 0p(1/+/n) + Ox[{en + & (r7y/p/n + pryi + /) + 1}?].
Thus,
1A — Al = 0¢(p/+/n) + Oz [plen + &, '(ray/p/n + pry + /v/m) + ra}?].
Similarly,

IV — V|| = Og(p/~/n) + O [plen + &, 2(r2/p/n + pri + /o/n) + e ']
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By assumption, (V Vv v Vv p)*/2/n'/? = o(1), ex/p = 0(1), and &, *(V vV v V p)/4/n = o(1). It can then be easy to verify
that

IA — Al =o0g(1) and |V — V| = o0p(1).

This, combined w1th Assumptlon 3(ii) and (iv), implies that |A| = Op(1), ||’\7|| = 0p(1), and ||’\7*1|| = Op(1). Note that
Vv =V- - V) 1. Then, we have

V"=V < IV IV =V VT = os(1).
Note also that
VAV —vlav!
=V ' -V A-a)WV' -V H-Vvia-—AV ' -V'iaVv -V
— (v =V hHav.
Apply the triangle inequality to the above equation to get that
VAV ! — VAV | = op(1).

This completes the proof. O

A.4. Proofs in Section 3

For the example in Section 1.2, we define 7" = {f"(z1, z5; ) : 8 € ®"}, where f"(z;, z,; 0) is defined in the main text,
and define h"(z1, z5; 0) = fM(z1, z5; 0) — Eff(z4, -; 0) — Effi(, z5; 8) + I'"(8). For the example in Section 3.2, we define
F€ = {f(z1,25;0) : 6 € ©®C} and h®(z1, z3; 0) =fC(zl,zz; 0) — Ef%(z4, -; 0) — Ef°(-, z; 0) + I"°(9). For the example in
Section 3.3, we define F* = {fX(z1,22; 0) : 8 € ®%} and h¥(z1, z3; 0) = (21, z5; 0) — Ef (241, -; 0) — Ef (-, z3; 0) + T¥(0).
For the example in Section 3.4, we define 7 = {fA 21,22;0):0 ¢ @A} and hA(z4, z2; 0) = fA(z1, 22; 0) — EfA(z1, ; 0) —
EfA(-, z2; 0) + EfA(-, -5 0).

A.4.1. Some additional lemmas
Lemma A.5. Suppose that Condition 1 in the main text holds. Then X — IE(X | XTﬂO) is multivariate subgaussian.

Proof. Fix u € SP~!. Applying the triangle inequality yields that

lu™ (X — EX | X Bo)HIr < [lu" X[, + [u"EX | X Byl -
R Y ——
By By
In what follows, we discuss B; and B, separately. We first consider By:

By = (0, u")X|l; <supllv'X]. (A.37)
vesP

We then consider B,:
~ 1 ~ 1
= (E[Eu"X|X By)}7 < [E(E |"TX||XTﬁ0)r 17
< {EE(Ju'X|"|XT o)} 7 = [u"X], < sup "X,
IS

where the second and third inequalities hold because of the convexity of |-|” for r > 1. This, combined with (A.37) and
Condition 1, implies that

lu"(X —EX | X" Bo))lly, =supr—”2E||uT{x —E(X | X" Bo)}lr
<2supsupr 2E|v"X|, = 2 sup v Xlly, <2c”,
vesSP r>1
which completes the proof. O

Next, we give the following lemma which establishes the upper bound for supycz, r) E{h"(-, -; 8))2.

Lemma A.6. Under Assumptions 5 and 6 in the main text, then for any small r > 0 with B(8y,r) C 6", SUPgcB(9y.r)
E{R"(-, -; ))* < /P16 — 6oll2.
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Proof. Write H(0) = E{h"(-, -; #)}%. Substitute the equation for h"(z;, z,; ) into H(#) and consolidate terms to get that
H(0) =E{f"(-, -; ) — E{Eef"(Z1, -; )} — E{Eef"(-, Zy; 0)Y +2 E{Bef"(Z1, - O)ERf"(-, Z5; )}

H1(6) H(0) H(®) Ha(0)
— (o).

Fix 0 € B(6y, r). Expand H(6) about 6, to get

H(8) = (6 — 60)" V1H(9)),
where ' is between 6, and #. We wish to bound ||V1H(8')||c. To that end, we discuss H;() separately forj =1, ..., 4.
With a little abuse of notation, we still use # instead of §' below.

We first consider V{H;(@). By the property of exchangeability between integration and derivation with V{H(9), we
have

ViH(0) = ViE(f(-, 5 0))> = E[V1Ep{f"(Z1. -: 0)Y°] = E{V1h1(Z1; 0)},
where
hi(z; 0) = Ep{f"(2. Z; 0)Y = E{1(y > V)1(x" B > X" B)} + E{1(y > Y)1(x" By > X" By)}
—2E{1(y > V)1(x"B > X" B)1(x" By, > X B,)}.
Similarly, we can write V{H,(0), V1H3(0) and V{H4(0) respectively as
ViHy(0) = E{V1hy(-; 0)}, V1H3(0) = E{Vih3(-; 0)}, ViH4(0) = E{Vih4(-, -; 0)},
where
hy(z; 0) =[E{1(y > Y)1(x" B > X" B)})* + [Ef1
—2E{1(y > Y)1(x" B > X" B)} - E{1
hs(z; 0) =[E{1(Y > y)u(X "B > x" B)})* + [Ef1
—2E{1(Y > y)1(X B > x" B)} - E{1

y > Y& By > X' By}
y > Y)(x" By > X' By)}.
Y > y)u(X "By > &7 Bo)}1?
Y > }’)ﬂ(XTﬂO > XTﬂo)},

— o~

and
ha(z1,22; 0) =E{1(y1 > V)I(*{ B > X" B)} - E{1(Y > y2)1(X B > ¥, B)}
—E{1(y1 > Y)U(x] B > XTB)} - E{1(Y > y,)1(X "By > X; By)}
—E{1(y1 > Y)1(x{ By > X Bo)} - E{1(Y > y2)1(X B > x; B))
+E{1(y1 > Y)L(x{ By > X Bo)} - E{L(Y > y2)1(X T By > x; By)}-
Thus, we can rewrite V{H(0) as
ViH(0) = E{Vih1(-; 0)} — E{Vihy(+; 0)} — E{V1hs(-; )} 4+ 2E{V1ha(-, -; )} — Vo{T"(0)}*.
To simplify the expression forms of the functions h; with j =1, ..., 4, we introduce the following notations:
¢i(z; 0) =E{1(y > Y)1(x" B > X B)},
0:(2,0) = E{1(y > Y)1(x" B > X" B)u(x" By > X Bo)}.
p3(2) = E{1(y > Y)1(x" By > X By)},
and
»1(z; ) = E{1(Y > y)1(X B > x" B)},
wa(2;0) =E{1(Y > y)I(X B > x" B)L(X By > X By)},
w3(z) == E{1(Y > y)1(X By > &' By)}.

This, combined with that I'H(0) = E{¢p:(-; ) — @3(-)}, allows us to rewrite V{H(0) as
ViH(0) =EV1{p1(+; 8) — 2¢5(+; 0) + @3(-) — 97 (- 0) + 2¢1(+; 0)g3(-) — ¢3(-)
— @3(5 0) + 2w5(+; O)ws(-) — @3(-) + 2¢1(+; Qw1 (5 8) — 2¢1(-; O)ws(+)
= 2¢3(")1(; 0) + 203(-)w3(-)} — 2 (OEV1{p1(-; 0) — @3(-)}.

Since the functions ¢j, w; are all bounded, we just need to bound [|E|V1¢j|ll« and [|E|Viwjll|« for j =1, 2, 3.
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We first consider E|V1¢4(+; 6)| and rewrite ¢1(Z; ) as follows:
nZ 0= [ (T o),
xTB<XTB

where p1(y,t) = E{1(y > Y) | XT/}O = t}, and G(-) denotes the probability distribution of X.
Let u; denote the unit vector in RP*! with the ith component equal to one and let V; denote the ith component of Vj,
where i = 2, ..., p + 1. By definition,

Vigi(Z; B) = !i%e”{rm(l; B + sw) — ¢1(Z; B)}.

The term in brackets equals

pr(Y., X7 Bo)G( dx) — / (Y. &7 Bo)G( dx).

/:;T B<XT B+e(Xi—x;) xTB<XTB

Change variables from x = (x;, %) to (¥" B, X), rearrange the terms in the fields of integration to get that

pi(Y. %7 Bo)G( dx) — / (Y. %7 By)G dx)

xT Bo<XT %" (6—6p)

XT BT (0—00)+e(Xi—x;)
=f / p1(Y, t)go(t | X)dt ¢ Gx(dX),
X

/x% <XTB—%T (0—00)+e(Xi—x;)

TB-%"(0-00)
where Gx(-) denotes the distribution of X. The inner integral equals

e(Xi — x)p1{Y, X B —%T(0 — 00)}go{X B —X"(0 — 60) | X} + |X; — xilo(|e]) as e — 0.
VieZ: B) = f Xi — %) {Y,XTB —X" (6 — 00)}go{X "B — X" (0 — 0o) | X}Gx(dR).
Since |p1(y, t)] < 1 and go(- | ) < Co by Assumption 6, it then holds that

Vign(Z: B)] < Co/ X — x/Gx( dR) < ColIXi] + EIXi]).

Thus,
sup  E|Vigi(Z; B) <2Co sup EIXi| < 2GV/C.
i=2,...,p+1 i=2,...,p+1

Similarly,
sup E[Vigy(Z; B)l <2Co sup EIXi| <2GV/C,
i=2,...,p+1 i=2,...,p+1
sup E|Viwi(Z; B)l <2Co sup EIXi| <2GV/C,
i=2,...,p+1 i=2,...,p+1
sup E|Vie(Z; B) <2Co sup E[X| <2Cv/C.
i=2,....p+1 i=2,....,p+1

Put all results together, and we have that

IViH@®)l < Ci sup E|Xi| < GV/C
i=2,...,p+1

for some constant C; depending only on C,. Then
H(0) = (8 — 00) "H(8') < 116 — 6ol | VH( )l o < G210 — Boll1 < Co/P1I6 — B2
That is, supgcg(g,,r) E{h"(-, ; 0)}* < /DIl0 — 6g ). This completes the proof. O
The next three lemmas give the upper bound for supy.z, ) E{h°(-, -; 0))%, SUPye (6,1 ELR (-, - 0)}2, and SUPgcB(8.r)

E{h*(-, -; 8)}?, respectively. Since the proofs of these lemmas are similar to the proof of Lemma A.6, we omit the proofs
for simplicity.

Lemma A.7. Suppose that Assumptions 5-6 in the main text hold. Then for any small r > 0 with B(6y,1r) C ©OF,
SUPpez(,.r) ELREC 5 0)F < /D110 — Bo 2.

Lemma A.8. Suppose that Assumptions 5-6 in the main text hold. Then for any small r > 0 with B(y,1r) C O,
SUPpcz(g,r) EL (-, 5 0)F < /PIIO — Bo 2.
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Lemma A.9. Suppose that Assumptions 5 and 10 in the main text hold. Then for any small r > 0 with B(6y, 1) C ©*,
SUPgcz(9, 1) ELHA(-, 3 )12 < /D110 — 6ol

A.4.2. Proof of Corollary 3.1

Proof. Note that " is uniformly bounded. To prove Corollary 3.1(i) and (ii), it suffices to show that the VC-dimension
of 7" is ~ p by Theorems 2.2 and 2.3.
To see this, define the following function:

821,22, 6V, Y1, V2,81, 82) = yt +yiyi + vy + 8 X + 8, ,
and the following function class:
¢ =1{8(21,22, ;. 1. 12.81,82) 1 ¥, y1, v2 € R, 81, 8 € RPT).

Note that ¢ is a (2p + 5)-dimensional vector space of real-valued functions. By Lemma 18 in Pollard (1984) and Lemma
2.4 in Pakes and Pollard (1989), {# > s} and {¢ > s} are VC-classes of VC-dimensions 2p + 5 for any s € R. We further
have, for any 8 € ©", 8 =(1,0")", and B, = (1,6,)",

subgraph{f"(, -; 0)} ={(z1,22,t) e S® SR : t < f(z1,2,; 0)}
=1 —y2 > 04N (x[B— x> 0N (x] By — x] By > 0} N ¢ = 1¥]
U{n—ve = orniezoefu | n—y. > 01N B2 B> 0
(x] By — %1 By > O} N (£ = ~1)° |
=& > 01N 1e > 01 e > 01 N (e = 117} U fe > 01N (e = 0]
Ufter > 01N (e > 0" N igs > 0) N (ge = —11°)

for g1, ..., 84 € . This, combined with Lemma 9.7 in Kosorok (2007), implies that F™ is a VC-class of VC-dimension ~ p.
Then, apply Theorems 2.2 and 2.3 to complete the proof of Corollary 3.1(i) and (ii).

Next, we prove Corollary 3.1(iii). By Lemma A.G, we see that for any ¢ > 0, supgcg, c./p7m E
{h"(-,; 0)}> < p//n if p/n — 0. Connecting this with Theorem 2.4 implies that €, ~ p/+/n and n, ~ p/+/n. Thus, by
Theorem 2.4, we conclude that if log(n/p?)p*?/n°/4 — 0, we have

8 — 60 + (V") "B, Vi 8)2 = Op {log(n/p?)p*/? /n%/4). (A.38)
In particular, if log(n/p?)p>/?/n'/4 — 0, then for any y € RP,
Yy (8, — 00)/{y T (V') ARV Ty} 2 = N(O, 1),

This completes the proof.

To prove Corollary 3.1(iv), we only need to evaluate the order of 7", the VC-dimension of 7" := {f"(z, -; 0)+f"(-,z; 0) :
z € RP*! # € ©M). Following similar arguments above, we can know that D" is also of order p. Then, the claim in
Corollary 3.1(iv) follows from Theorem 2.6. O

A.4.3. Proof of Corollary 3.2

Proof. Similar to the proof of Corollary 3.1, it can be easy to show that the VC-dimensions of ¢ and F¢ :=
{fz, ;0)+ f°(-,z;0) : z € RP*1, 6 € OF} are both of order p. This, combined with that € is uniformly bounded,
proves Corollary 3.1(i) and (ii) by Theorems 2.2 and 2.3. Corollary 3.1(iii) follows from Lemma A.7 and Theorem 2.4.
Corollary 3.1(iv) follows from Theorem 2.6. O

A.4.4. Proof of Corollary 3.3

Proof. Similar to the proof of Corollary 3.1, one could show that the VC-dimension of X and FX := {fX(z, -; 0)+fX(-, z; 0) :
z € RP*1 @ € O} are both of order p. Then, the proofs of Corollary 3.3(i) and (ii) follow directly from the proof of
Corollary 3.1. Finally, Lemma A.8, together with Theorem 2.4 implies Corollary 3.3(iii). Corollary 3.3(iv) follows from
Theorem 2.6. O
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A.4.5. Proof of Corollary 3.4

Proof. (i) Similar to the proof of Theorem 2.2, the proof is twofold. We first show that I7(9) converges in probability to

I'A(0) uniformly in # € @4, and then establish the consistency of@j.

Step 1. Since K(-) is continuously differential with compact support by Assumption 9(vi), K(-) is bounded and is also a
function of bounded variation. Thus, K(-) can be written as K(-) = K;(-) — K3(-) with appropriate bounded and monotone
functions K;(-) and K5(-). Let C; and C, denote the upper bounds of |K;(-)| and |Ky(-)| respectively.

Let 71 = {1(Y1 > Y2)u(X{ B > X5 B)Ki{(W; — W2)/b} : 6 € ©*} and 7 = {1(Y1 > Y2)1(X | B > X; B)Kx{(W; —
W,)/b} : @ € ©*}. Then, 74 = Fp — 72 Similar to the proof of Corollary 3.1, it can be easy to verify that the
VC-dimensions of 77 and F3 are both ~ p by considering the class of subgraphs of all functions in F7* and F5' separately.
By Lemma 16 in Nolan and Pollard (1987), the covering number of 7* is bounded through N,(¢, P ® P, F*, C; + () <
N:(e/4,P QP, 7, Ci)N:(¢/4, P ® P, 72, C;). This, combined with Theorem 9.3 in Kosorok (2007), Lemmas A.2, A4, and
Hoeffding decomposition implies that

A Argy| — VP b\ _
sup [10) ~ EL0)] = o]p(bﬁ) = 0,/ =55 ) = ox(1). (A.39)

Next, we try to bound supyga |IE{F”A(0)} - I"A(O)‘. Note that
ELN0) = E[{m(Z1, Z5; 0) — m(Z1, Z; 60)}Kp(W1 — W5)]
= E[E{m(Z1,Z3; 0) — m(Z1, Z3; 0p) | W1, W} Kp(W1 — W>)]

1 _
= / f U, s O (2w Yooz duy oy (A40)

= // Y(bu 4+ wa, wy; 0)p(bu + w2)K(u)p(w;) du dw,.
A Jth-order Tylor expansion of E{IA(8)} with respect to b at 0 and Assumption 9(vi)-(viii) imply that
sup [EFN0) — I(6)| < b = o(1). (A.41)
oA
This, combined with (A.39) and the triangular inequality, implies that

sup |I7(0) — I'(6)| = op(1).

0cOA
Thus, the uniform convergence of I;*(9) is shown.
Step 2. Following Step 2 in the proof of Theorem 2.2, it can be easy to show that ||5: — Ol % 0. This completes proof of
Corollary 3.4(i).

(ii) Similar to the proof of Theorem 2.3, the proof is conducted in four steps. We first define f(z1,22;0) =
fA(z1,22; 0)/b. Thus, ELA(0) = Ef2(-, -; 8). By a Hoeffding decomposition of I'A(6), we have

LN0) = ELNO) + Pagp(-; 0) + Unh(-, 5 6),
where
gn(z; 0) = Ef,\(z, - 0) + Ef,\(-, z; 0) — 2ET,\(6),
and
(21, 22; ) = f;\(21, 25; 0) — Bf (21, - 0) — Bf(-, 22; ) + EL(0).
The first three steps aim to establish bounds that are similar to (A.10), (A.14) and (A.16), respectively. The last step
establishes the rate of convergence of 5:
Step 1. We first consider EIA(6). By (A.39), there exists a constant C > 0 such that
sup [EFN0) — ()| < cb. (A.42)
oA
Fix 6 € B(6y, r) C ©*. Similar to Step 1 in the proof of Theorem 2.3, we have
sup |I(0) — %(0 — 00) VA — 00)| < Cmaxp(1)]10 — 6o (A43)
0B(0o.7)
This, combined with (A.42), implies that

sup |[EI(6)

1
- 50— 00) VA0 — 00)| < cmaxp(r)II0 — 0ol + CI. (A44)
0<B(0g.7)
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Step 2. Similar to (A.40), a change of variables and a Jth-order Tylor expansion imply that
[Pagp(-; 0) — Po{r"(:; ) — T(:; 6p) — 2ET(0)}] < C'Y
for some constant C’ > 0. This, combined with (A.42), implies that
Pagp(; 0) — Paft?(; 8) — T4(; 80) — 2IA(0)} < (C +C')b. (A.45)
Following the proof of Theorem 2.3 in Step 2, we additionally have
1
P i sup  |Po{t”(:; 0) — TA(: 80) — 2IA(0)} — —=(0 — 00) ' W}| > 4cmaxp(r)I|0 — o°+
0cB(6o.1) Jn
Gl)or
de(e?)ll‘9 — bl }S e,
where W% = /nP,V;74(-; 6). Combining this with (A.45) implies that
1
P : sup |Pagp(0) — —

(0 — 00) W3 | > (C+ C)W + 2cmaxp(r)I10 — ]*+
0cB(6o.1) NG

6 (A.46)
VoI’
—d,(&)]|0 — 6, <e,
Step 3. Following the proof of Theorem 2.1(i), one can get
P{ sup |Uph®(-, - 0)] > SnP/n} <e,
0cB(0.1)
where §, is a sequence of nonnegative real numbers converging to zero. Thus,
lP’{ sup  |Unhy(-, - 0)] > 5np/(bn)} <e. (A47)
0cB(0g.1)
Step 4. By the Hoeffding decomposition of I’A() and the results in (A.44), (A.46) and (A.47), we have

1 1
P { sup | I(0) — =(6— 60) 'VAO — 0g) — —(0 — 6p) ' Wj| > (2C + C')P +
0cB(0g,r) 2 \/ﬁ

5Cmaxo ()10 — 00”2 +

] (A.48)
Vol

—d
NG

Then, following the proof of Theorem 2.3 in Step 4, we conclude that there exists a sufficiently large constant C, > 0 such

that
]P’{ ||§f1‘ — 6|l < C;,/%l >1-—3¢ (A.49)

holds for sufficiently large n.
. A s . A a2 T ) i
Since F* is uniformly bounded and SuPE(oo,ch) E{h"(-, -; 0)}* < p/~/n'=° by Lemma A.9, Theorem 2.1(ii) implies
that there exists a constant C/ such that

(£)118 — B0 + 8, }5 2e.
bn

Pl sup UG 0)] > log(nl—‘s/pz)pi/n*} <e
0eB(09,Ci~/p/n179)
holds for sufficiently large n. Thus,
Bl sup UG, 50| > CC log(n' = ptpi/n “} <e. (A50)

0B(09,Ch/p/n1—3)
5(1-8)

In view of § < 1, it holds that {log(n'~*/p?)/n~% }/(1/n) — 0 as n — oo. This, combined with (A.51), implies that

P sup UG - 0)] > c;/pi/n} <e. (A51)
0cB(0g.Cin/p/n1—%)

Based on similar analyses at the beginning of this step, we conclude that, there exists a sufficiently large constant ¢, > 0
such that

3/2
P{nﬁ’; — 6|l < Cé\/pT} >1-66
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holds for sufficiently large n. This, combined with (A.49), implies that there exists a sufficiently large constant C, > 0
such that

3/2
P{n?ﬁ—oon <G ﬂAp} >1- 9.
n- n

This completes proof of (ii).
(iii) Similar to the proof of Theorem 2.4, we first define t:* = —(VA)~'W?. Similarly, there exists a constant ¢/ such that

P(A4,,) > 1-2¢ (A.52)

holds for sufficiently large n, where A; , = {Z :3’: € B(0y, 1), t*A /M + 8o € B(8o, 1)} and 1, := cly/p/n'—2.
Fix @ € B(6y, ry). Then following the proofs of Corollary 3. 4(11) in Step 1-2, we have

sup  [ELN6) — %(0 —00) VA6 — 60)| < cmaxo(ra)[10 — o> + CV/, (A53)
0cB(00.1m)
and
P { sup  [Pogp(0) — Lo 00) W}| > (C+ C)W + 4dcmaxo(ra) |0 — 601+
0<B(0o.m) v (A54)
2 (e)10 — o] }
Similar to (A.51), we have
]P{ sup  |Upha(-, -5 8)] > C.log(n'~* /p? )p2/n5“4 8)} <s. (A.55)
0<B(00.m)
This, together with (A.53) and (A.54), implies that
P { sup [0) = 50— 00)TVA0 — 00) — (0~ 0 W3] > (2 + W+
0<B(60,n) ) n L (A.56)
5Cmax0(Tn) 1)/05 dy(£)]10 — Boll + C. log(n' = /p*)p? /" 5" }5 26.

The remaining proofs are straightforward and follow the proof of Theorem 2.4. In conclusion, if log(n'=% /p?)p3/? /n>—58)/4
— 0, we have

18, — 80 + (VA) "B, Vit 00112 = 05 {n v log(n'~* /p*)p*/2 /n5~39/4 ]
In addition, if log(n'~% /p?)p3/2 /n(1=3%/4 . 0, then for any y € RP,
VT (0 — 00)/(y (V)T AAVA) )2 = N(O, 1).

This completes the proof of (iii).

(iv) Note that Et/\(z; 8) # t(z; 9). The proof is a little different from that in proving Theorem 2.6. To see this, define
FA={fNz, :0)+f"(.z;0) : z € RP*! 9 € ©*}. Following the similar arguments in proof of (i), one can show that the
VC-dimension of F* is of order p. It then follows from Lemma A.2 that

sup |17(z; 0) — Et/\(z; 0)| = Op{/p/(bv/n)} = Op(p/n'~%).

RMQOA
Similar to the derivations in (A.40) and (A.41), we have

sup |Et(z; 0) — t(z; 0)| = O ) = o(n~?).
RM@OA

Then, following from the proof of Theorem 2.6, we get that
1A% — AR = 0p(p//n) + Op[plen + & '(riy/p/n + pryf +/p/n1=2 + 1) 4 107
VA = VA = 0p(p//n) + Oc[plen + e *(ray/p/n + prf 4+ Vp/n1=2 + n7%) e )],
where r, = /p/n'=% A \/p3/2/n. By assumption, log(n'~? /p?)p*/2 /n1-59/4 = o(1), £,./p = o(1), and &, >p/~/n1=25 = o(1),

one can show that
1A% — A% = 0p(1), and [[V* — VA| = o5(1).

The remaining proof follows exactly from that in the proof of Theorem 2.6. O
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A.5. Proof of Theorem 3.1

Proof. We check Assumption 3(iii) and (v) separately under Conditions 1-3.

(iii) The proof proceeds in two steps. We first calculate the third order mixed partial derivatives of Er"(-; -). Then we
establish the bound of ||[VH(@) — V"|| for any 8 € B(6y, ).
Step 1. Fix z = (x,y)T € R™ and @ € B(fy, r). Note that

xTﬂ y o0 00
t(z:0) = / f Zo(t | 's; 0)Gy(ds)dt +/ / go(t | s; 0)Gy(ds)dt + C(6o),
—00 J—o0 xTgJy

where Gy(-) denotes the marginal distribution of Y and gy(- | s; #) denotes the conditional density function of X' 8
given Y = s, C(y) is a term that does not depend on 6, and

gt | 5:0) = f golt | 5.7 0)Gsy(0F) = f folt — 0 | 5.% 0)Ggy_y( 0R).

For simplicity, we consider only the first part of z(z; 8) and denote

xTB py
TIH(Z; 0) = / / go(t | s; 0)Gy(ds)dt.

After some simple calculations, we have

Hio. XTﬂ
w :%{fy (' B|s; B)Gy(ds)—f /y 8o.1(t | s; 0)Gy(ds) dt},

where

goa(t | 5:60) = / O~ %76 5.8)Ggy_( 0F).

Additionally, we have

Pz [ X8y
hanag XX X ; 0)Gy(ds) — t|s;0)Gy(ds)dt ¢,
36;06;96, ""‘f"k{ / B2 B 15 0)Gy(ds) /_ N / st |5:0)Gy(ds)

Aq(x.y;0)

where
font 15:0)= [ F7(¢=F015. 0G5, (), m=2.3.

According to Condition 2, we know that Ai(x,y; @) is uniformly upper bounded: |A;(x,y;0)] < K for some
absolute constant K > 0. We could then similarly define A,(x,y; @) for the second part and write A(x,y; 6) =
Ai(x,y; 0) + Ax(x, y; 0).

Step 2. For any y € SP~!, we consider y" {V"(8) — V"'}y. Expand »" {V"(8) — V"'}y about 6, to get

PETH(; 6%)

)NT
36,060,060,

Y VO) = VHYy =D (B — fo) =y EJAX.Y: 0K (0 — 8,)X 'X}y.
ij.k
Then,

sup [y {V"(0) — VM)y| < 2K[EIX (0 — 00)12] *{E(yTX)*} 2.

yesp—1
By Condition 1, we know that there exists an absolute constant C such that

sup |y {V¥(8) — V"}y| < KCl1 — o]l < KCro.
yesp—1
Then, we can choose ry small enough such that KCrg < Cmin/(11cmax)- The first part of Assumption 3(iii) has been
verified.
Next, we try to verify the second part of Assumption 3(iii). According to the results in Step 1, we expand Vg(()) —V:;
about 6y to get that

sup [V;;(8) — Vij| < cr,
)
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where ¢ depends only on the absolute constants K and C’. Then, by the relationship between different matrix norms,
we have that

IVH(6) — V|| < [[V"(8) — V"||s < psup |V}(8) — V;(6)] < cpr.
L]

Finally,
cpr

min

[T, — (VY 2UR @) V)2 < vV Vo) — v v ) <

This completes the verification of Assumption 3(iii).
(v) We first consider § = 6. Since X is multivariate subgaussian by Condition 1, it holds that sup;,_; .1 E|Xi|?> < co.
According to calculations in the proof of Theorem 4 in Sherman (1993), we have

Voth(Z, 80) = (X —EX | X" Bo)HX — E(X | XTBo)} TAS(Y, X By).

For any y,, ¥, € SP~!, Lemma A.5 implies that under Conditions 1 and 3, yf{i - IE()N( | XTBO)} and sz {i - E(i |
XTﬁO)}AQ(Y, XTﬂO) are both subgaussian with subgaussian norms 2¢’ and 2c’c”, respectively. Because the product
of two subgaussian random variables is subexponential, yIVzr(Z , 00)y, is subexponential with a subexponential
norm that depends only on ¢’ and c”. By the definition of subexponential variables and ¢"(z; 8y) = t"(z; 6,) —
E{t"(-; 8)} = t"(2z; ) — V, we have

Eexp{iy{ V2¢"(-, 00)y,} = Eexp[iy{ {V2th(-, 6p) — V}p,]

< explCoA® |y {Vat"(Z, 60) — Vip, I3, ] A57)
< exp{4Cor’ | y{ V2t™(Z. 60)p, 115} '
< exp(vgr?/2), for |A] < Lo,

where vy and ¢, are constants that depend on constants cg, ¢/, ¢”. This shows that Assumption 3(v) holds at 8 = 6.
Note that there are several equivalent definitions for a generic zero-mean subexponential variable U. One of them is
defined as follows: there is a constant ¢; > 0 such that E exp(AU) is bounded for all |A| < cy. This definition implies
that, for the subexponential variable y1T VoZH(Z, 09)ys, there is a constant ¢; > 0 such that E exp{k;ﬁT Vo, 00)y,}
is bounded for all |A| < c,. Because E exp{AyIVzg”(-, #)y,} is a continuous function in (X, 0") € [—c2, 21®B(0o, 1),
and in addition that the domain of this function is a compact set, it then holds

sup sup Eexp{iy Voc'(., 0)y,} < C.
[Al=c2 9€B(8g.r)

Thus, yIVng(-, 0)y, is subexponential for any @ € B(fy, r). Similar to (A.57), we can establish the bound in
Assumption 3(v).

This completes the proof. O
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