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Abstract
The goal of this paper is to obtain expectation bounds for the deviation of large sam-
ple autocovariance matrices from their means under weak data dependence. While the
accuracy of covariance matrix estimation corresponding to independent data has been
well understood, much less is known in the case of dependent data. We make a step
toward filling this gap and establish deviation bounds that depend only on the param-
eters controlling the “intrinsic dimension” of the data up to some logarithmic terms.
Our results have immediate impacts on high-dimensional time-series analysis, and we
apply them to high-dimensional linear VAR(d) model, vector-valued ARCH model,
and amodel used in Banna et al. (RandomMatrices TheoryAppl 5(2):1650006, 2016).
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1 Introduction

Consider a sequence of p-dimensionalmean-zero randomvectors {Y t }t∈Z and a size-n
fraction {Y i }ni=1 of it. This paper aims to establishmoment bounds for the spectral norm
deviation of lag-m autocovariances of {Y i }ni=1, ̂�m := (n − m)−1∑n−m

i=1 Y iY T
i+m ,

from their mean values.
A first result at the origin of such problems concerns product measures, withm = 0

and {Y i }ni=1 independent and identically distributed (i.i.d.). For this, Rudelson [26]
derived a bound on E‖̂�0 − Ê�0‖, where ‖ · ‖ represents the spectral norm for
matrices. The technique is based on symmetrization, and the derivedmaximal inequal-
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ity is a consequence of a concentration inequality on a “symmetrized” version of
p × p symmetric and deterministic matrices, A1, . . . ,An (cf. [24]). That is, for any
x ≥ 0,

P

(∥

∥

∥

n
∑

i=1

εiAi

∥

∥

∥ ≥ x
)

≤ 2p exp{−x2/(2σ 2)}, σ 2 :=
∥

∥

∥

n
∑

i=1

A2
i

∥

∥

∥, (1.1)

where {εi }ni=1 are independent and taking values {−1, 1} with equal probability.
The applicability of this technique then hinges on the assumption that the data are
i.i.d..

Later, [8,19,21,28,30,33], among many others, derived different types of deviation
bounds for ̂�0 under different distributional assumptions. For example, [19] and [8]
showed that, for such {Y i }ni=1 that are sub-Gaussian and i.i.d.,

E‖̂�0 − �0‖ ≤ C‖�0‖
{
√

r(�0) log(ep)

n
+ r(�0) log(ep)

n

}

. (1.2)

Here, C > 0 is a universal constant, �0 := EY1Y T
1 , and r(�0) := Tr(�0)/‖�0‖

is termed the “effective rank” [33] where Tr(X) := ∑p
i=1 Xi,i for any real p × p

matrix X.
Statistically speaking, Eq. (1.2) is of rich implications. For example, combining

(1.2) with Davis–Kahan inequality [11] suggests that the principal component analysis
(PCA), a core statistical method whose aim is to recover the leading eigenvectors of
�0, could still produce consistent estimators even if the dimension p is much larger
than the sample size n, as long as the “intrinsic dimension” of the data, quantified
by r(�0), is small enough. See Sect. 1 in [14] for more discussions on the statistical
performance of PCA in high dimensions.

The main goal of this paper is to give extensions of the deviation inequality (1.2)
to large autocovariance matrices, where the matrices are constructed from a high-
dimensional structural time series. Examples of such time series include linear vector
autoregressive model of lag d (VAR(d)), vector-valued autoregressive conditionally
heteroscedastic (ARCH) model, and a model used in [3]. The main result is shown
in Theorem 2.1 and is nonasymptotic in its nature. This result will have important
consequences in a high-dimensional time-series analysis. For example, it immediately
yields a new analysis for estimating large covariance matrix [10], a new proof of
consistency for Brillinger’s PCA in the frequency domain (cf. Chapter 9 in [7]), and
we envision that it could facilitate a new proof of consistency for the PCA procedure
proposed in [9].

The rest of the paper is organized as follows. Section 2 characterizes the set-
tings and gives the main concentration inequality for large autocovariance matrices.
In Sect. 3, we present applications of our results to some specific time-series
models. Proofs of the main results are given in Sect. 4, with more relegated to
“Appendix.”

123



Journal of Theoretical Probability (2020) 33:1445–1492 1447

2 Main Results

Wefirst introduce the notation that will be used in this paper.Without further specifica-
tion,we use bold, italic lowercase alphabets to denote vectors, e.g., u = (u1, · · · , u p)

T

as a p-dimensional real vector and ‖u‖2 as its vector L2 norm.We use bold, uppercase
alphabets to denote matrices, e.g., X = (Xi, j ) as a p × p real matrix and Ip as the
p × p identity matrix. Throughout the paper, let c, c′,C,C ′,C ′′ be generic universal
positive constants, whose actual values may vary at different locations. For any two
sequences of positive numbers {an}, {bn}, we denote an = O(bn) if there exists an
universal constant C such that an ≤ Cbn for all n large enough. We write an � bn if
both an = O(bn) and bn = O(an) hold.

Consider a time series {Y t }t∈Z of p-dimensional real entries Y t ∈ R
p with R,Z

denoting the sets of real and integer numbers, respectively. In the sequel, the considered
time series does not need to be stationary nor centered, and we are focused on a size-n
fraction of it. Without loss of generality, we denote this fraction to be {Y i }ni=1.

As described in “Introduction” section, the case of independent {Y i }ni=1 has been
discussed in depth in recent years. We are interested here in the time-series setting,
and our main emphasis will be to describe nontrivial but easy to verify cases for which
Inequality (1.2) still holds. The following four assumptions are accordingly made,
with the notations that

S
p−1 := {x ∈ R

p : ‖x‖2 = 1}, S̄
p−1 := {x ∈ R

p : |x1| = · · · = |xp| = 1},

and

‖X‖L(p) := (E|X |p)1/p, ‖X‖ψ2 := inf{k ∈ (0,∞) : E[exp{(|X |/k)2} − 1] ≤ 1}

for any random variable X .

(A1) Define

κ1 := sup
t∈Z

sup
u∈Sp−1

‖uTY t‖ψ2 < ∞, κ∗ := sup
t∈Z

sup
v∈S̄p−1

‖vTY t‖ψ2 < ∞.

Note that κ1 is the supremum taken over vectors in the unit hypersphere, while
κ∗ is the supremum taken over vectors in the discrete hypercube.

(A2) Assume that there exist some constants γ1, γ2, ε > 0 such that for any integer
j , there exists a sequence of random vectors {˜Y t }t> j which is independent of
σ({Y t }t≤ j ), identically distributed as {Y t }t> j , and for any integer k ≥ j + 1,

‖‖Y k −˜Y k‖2‖L(1+ε) ≤ γ1κ1 exp{−γ2(k − j − 1)}.

(A3) Assume that there exist some constants γ3, γ4, ε > 0 such that for any integer
j , there exists a sequence of random vectors {˜Y t }t> j which is independent of
σ({Y t }t≤ j ), identically distributed as {Y t }t> j , and for any integer k ≥ j + 1,

sup
u∈Sp−1

‖(Y k −˜Y k)
T u‖L(1+ε) ≤ γ3κ1 exp{−γ4(k − j − 1)}.
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(A4) Assume there exists an universal constant c > 0 such that, for all t ∈ Z and for
all u ∈ R

p, ‖uTY t‖2ψ2
≤ cE(uTY t )

2 .

Two observations are in order. We first define a generalized “effective rank” as
follows:

r∗ := κ2∗/κ2
1 .

It is easy to see the close relationship between r∗ and the effective rank highlighted
in (1.2). As Y t ∼ N (0,�0), κ2

1 and κ2∗ scale at the same orders of ‖�0‖ and Tr(�0),
and the same observation applies to all sub-Gaussian distributions with the additional
condition (A4), which is identical to Assumption 1 in [19]. As a matter of fact, r∗
could be considered as a natural generalized version of r(�0)without these additional
assumptions and is used in our main theorem.

Secondly, we note that Assumptions (A2) and (A3) are characterizing the intrinsic
coupling property of the sequence. In practice, such couples can be constructed from
time to time. Consider, for example, the following causal shift model,

Y t = Ht (ξt , ξt−1, ξt−2, . . .),

where {ξt }t∈Z consists of independent elements with values in a measurable space X
and Ht : XZ

+ → R
p is a vector-valued function. Then, it is natural to consider

˜Y t = Ht (ξt , . . . ξ j+1,˜ξ j ,˜ξ j−1, . . .)

for an independent copy {˜ξt }t∈Z of {ξt }t∈Z.
The following is the main result of this paper.

Theorem 2.1 (Proof in Sect. 4.1) Let {Y t }t∈Z be a sequence of random vectors sat-
isfying Assumptions (A1)–(A3) and recall r∗ = κ2∗/κ2

1 . Assume γ1 = O(
√
r∗) and

γ3 = O(1). Then, for any integer n ≥ 2 and 0 ≤ m ≤ n − 1, we have

E‖̂�m − Ê�m‖ ≤ Cκ2
1

{
√

r∗ log ep
n − m

+ r∗ log ep(log np)3

n − m

}

(2.1)

for some constant C only depending on ε,m, γ2, γ4. If in addition, {Y t }t∈Z is a second-
order stationary sequence of mean-zero random vectors and Assumption (A4) holds,
then

E‖̂�m − Ê�m‖ ≤ C ′‖�0‖
{
√

r(�0) log ep

n − m
+ r(�0) log ep(log np)3

n − m

}

for some constant C ′ only depending on ε, c,m, γ2, γ4.

Wefirst comment on the temporal correlatedness conditions, Assumptions (A2) and
(A3) .We note that they correspond exactly to the δ-measure of dependence introduced
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in Chapter 3 of [12], for the sequence {Y t }t∈Z and {uTY t }t∈Z, respectively. In addition,
as will be seen soon, our measure of dependence is also very related to the τ -measure
introduced in [13]. In particular, ours is usually stronger than, but as ε → 0 reduces
to, the τ -measure. Lastly, our conditions are also quite connected to the functional
dependence measure in [34], on which many moment inequalities in real space have
been established (cf. [18,35]). However, it is still unclear whether a similar matrix
Bernstein inequality could be developed under Weibiao Wu’s functional dependence
condition.

Secondly, we note that one is ready to verify that Inequality (2.1) gives the exact
control of the deviation from themean.Actually, Inequality (2.1) is nearly a strict exten-
sion of the results in Lounici [19] and Bunea and Xiao [8] to weak data dependence
up to some logarithmic terms. This extension is achieved by applying Theorem 4.3,
a concentration inequality for a sequence of weakly dependent random matrices.
Theorem 4.3 is an extension of the Bernstein-type inequality for real-valued weakly
dependent random variables derived in [23] to dependent random matrices and is a
slight extension of the Bernstein-type inequality for a sequence of β-mixing random
matrices derived in [3]. In some applications, especially those in high dimensions,
verifying the weak dependence condition in Theorem 4.3 is more straightforward
than verifying the β-mixing condition in Theorem 1 in [3]. The details of the weak
dependence condition are introduced in Sect. 4.1, and Theorem 4.3 is proved in
“Appendix.”

Admittedly, it is still unclear whether Inequality (2.1) could be further improved
under the given conditions. Recently, in a remarkable series of papers [15–17],
Koltchinskii and Lounici showed that, for sub-Gaussian independent data, the extra
multiplicative p term on the right-hand side of Inequality (2.1) could be further
removed. The proof rests on Talagrand’s majorizing measures [29] and a correspond-
ingmaximal inequality due toMendelson [20]. In themost general case, to the authors’
knowledge, it is still unknownwhether Talagrand’s approach could be extent toweakly
dependent data, although we conjecture that, under stronger temporal dependence
(e.g., geometrically φ-mixing) conditions, it is possible to recover Koltchinskii and
Lounici’s result without resorting to the matrix Bernstein inequality in the proof of
Theorem 2.1.

Nevertheless, we make a first step toward eliminating these logarithmic terms via
the following theorem. It shows, when assuming a Gaussian sequence is observed, one
could further tighten the upper bound in Inequality (2.1) by removing all logarithm
factors. The obtained bound is thus tight in view of Theorem 2 in [19] and Theorem
4 in [15].

Theorem 2.2 (Proof in Sect. 4.2) Let {Y t }t∈Z be a stationary mean-zero Gaussian
sequence that satisfies Assumptions (A2)–(A3) with γ1 = O(

√
r(�0)), γ3 = O(1),

and ε > 1. Then, for any integer n ≥ 2 and 0 ≤ m ≤ n − 1,

E‖̂�m − �m‖ ≤ C‖�0‖
(
√

r(�0)

n − m
+ r(�0)

n − m

)

for some constant C > 0 only depending on ε,m, γ2, γ4.
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In a related track of studies, [2,21,28,30], among many others, explored the optimal
scaling requirement in approximating a large covariance matrix for heavy-tailed data.
For instance, for i.i.d. data and as�0 is identity, Bai andYin [2] showed that ‖̂�0−�0‖
will converge to zero in probability as long as p/n → 0 and fourth moments exist.
Some recent developments further strengthen the moment requirement. These results
cannot be compared to ours. In particular, our analysis is focused on characterizing
the role of “effective rank,” a term of strong meanings in statistical implications and
a feature that cannot be captured using these alternative procedures.

3 Applications

In this section, we examine the validity of Assumptions (A1)–(A4) in Sect. 2 under
three models, a stable VAR(d) model, a model proposed by Banna et al. [3], and an
ARCH-typemodel. One shall be aware of examples that are of VAR(d) or ARCH-type
structures but are not α- or β-mixing (cf. [1]).

We first consider such {Y t }t∈Z that is a random sequence generated from VAR(d)
model, i.e.,

Y t = A1Y t−1 + · · · + AdY t−d + Et ,

where {Et }t∈Z is a sequence of independent vectors such that for all t ∈ Z and u ∈ R
p,

‖uT Et‖ψ2 ≤ c′‖uT Et‖L(2) for some universal constant c′ > 0. In addition, assume
supt∈Z supu∈Sp−1 ‖uT Et‖ψ2 < D1 for some universal positive constant D1 < ∞,
‖Ak‖ ≤ ak < 1 for all 1 ≤ k ≤ d, and

∑d
k=1 ak < 1, where {ak}dk=1, d are some

universal constants.
Under these conditions, we have the following theorem.

Theorem 3.1 (Proof in Sect. 4.4) The above {Y t }t∈Z satisfies Assumptions (A1)–(A4)
with

γ1 = C(κ∗/κ1)(‖Ā‖/ρ1)K , γ2 = log(ρ−1
1 ), γ3 = C ′d(‖Ā‖/ρ1)K , γ4 = log(ρ−1

1 ).

Here, we denote

Ā :=

⎡

⎢

⎢

⎣

a1 a2 . . . ad−1 ad
1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0

⎤

⎥

⎥

⎦

,

ρ1 is a universal constant such that ρ(Ā) < ρ1 < 1 whose existence is guaranteed
by the assumption that

∑d
k=1 ak < 1 (cf. Lemma 4.10 in Sect. 4), K is some constant

only depending on ρ1, and C,C ′ > 0 are some constants only depending on ε.

We secondly consider the following time-series generation scheme whose corre-
sponding matrix version has been considered by Banna et al. [3]. In detail, let {Y t }t∈Z
be a random sequence generated by
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Y t = Wt Et ,

where {Et }t∈Z is a sequence of independent random vectors independent of {Wt }t∈Z
such that for all t ∈ Z and u ∈ R

p, ‖uT Et‖ψ2 ≤ c′‖uT Et‖L(2) for some universal
constant c′ > 0. In addition, we assume

sup
t∈Z

sup
u∈Sp−1

‖uT Et‖ψ2 ≤ κ ′
1 and sup

t∈Z
sup

v∈S̄p−1

‖vT Et‖ψ2 ≤ κ ′∗

for some constants 0 < κ ′
1, κ

′∗ < ∞, {Wt }t∈Z is a sequence of uniformly bounded
τ -mixing random variables such that maxt∈Z |Wt | ≤ κW , and

τ(k; {Wt }t∈Z, | · |) ≤ κWγ5 exp{−γ6(k − 1)}

for some constants 0 < γ5, γ6, κW < ∞ (see “Appendix Sect. A.1” for a detailed
introduction to the τ -mixing random variables).

Theorem 3.2 (Proof in Sect. 4.4) The above {Y t }t∈Z satisfies Assumptions (A1)–(A4)
with

γ1 = Cκ ′∗κWγ
1

1+ε

5 /κ1, γ2 = γ6/(1 + ε), γ3 = C ′κ ′
1κWγ

1
1+ε

5 /κ1, γ4 = γ6/(1 + ε)

for some constants C,C ′ > 0 only depending on ε.

Lastly, we consider an vector-valued ARCH model with {Y t }t∈Z being a random
sequence generated by

Y t = AY t−1 + H(Y t−1)Et ,

where H : Rp → R
p×p is a matrix-valued function and {Et }t∈Z is a sequence of

independent random vectors such that

sup
t∈Z

sup
u∈Sp−1

‖uT Et‖ψ2 ≤ κ ′
1 and sup

t∈Z
sup

v∈S̄p−1

‖vT Et‖ψ2 ≤ κ ′∗

for some constants 0 < κ ′
1, κ

′∗ < ∞. Assume further that ‖A‖ ≤ a1 and the function
H(·) satisfies

sup
u,v∈Rp

‖H(u) − H(v)‖ ≤ a2
κ ′∗

‖u − v‖2

for some universal constant a1 < 1, a2 > 0 such that a1 + a2 < 1.

Theorem 3.3 (Proof in Sect. 4.4) If the above {Y t }t∈Z satisfies Assumption (A1), it
satisfies Assumptions (A2), (A3) with

γ1=Cκ∗/κ1, γ2 = − log(a1 + a2), γ3 = C ′ max(κ∗κ ′
1/κ1κ

′∗, 1), γ4= log(a1 + a2)
−1
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for some constants C,C ′ > 0 only depending on ε. If we further assume the above
{Y t }t∈Z to be a stationary sequence and supu∈Rp ‖H(u)‖ < D2 for some universal
constant D2 < ∞, then {Y t }t∈Z satisfies Assumption (A1).

4 Proofs

4.1 Proof of Theorem 2.1

Proof of Theorem 2.1 Theproof dependsmainly on the following tail probability bound
of deviation of the sample covariance from its mean. 
�

Proposition 4.1 (Proof in Sect. 4.1) Let {Y t }t∈Z be a sequence of random vectors
satisfying (A1)–(A3). For any integer n ≥ 2, integer 0 ≤ m ≤ n − 2 and real number
0 < δ ≤ 1, define

Mδ := C max
{(κ∗

κ1

)2
log

n − m

δ
,
(κ∗

κ1

)2
,
2κ∗γ1

κ1

}

.

Then, for any x ≥ 0,

P

[

‖̂�m − Ê�m‖ ≥ κ2
1 {x + √

δ/(n − m)}
]

≤ 2p exp

{

− C ′(n − m)2x2

A1(n − m) + A2M2
δ + A3(n − m)xMδ

}

+ δ,

with

A1 := {κ∗γ1/κ1 + (κ∗/κ1)2(γ3 + 2m + 1) + 2m + 1}
1 − exp{−min( 5+ε

6ε+10γ2, γ4)}
, A2 := 4532

γ2
,

A3 := 2 log(n − m)

log 2
max

{

1, 8m + 48 log (n − m)p

γ2

}

for some constants C,C ′ > 0 only depending on ε.

Without loss of generality, let m = 0. Taking x =
√

r∗ log ep
n t , δ = x−γ for some

γ > 1, γ1 = O(
√
r∗), and γ3 = O(1) in Proposition 4.1, we obtain

P

(

‖̂�0 − Ê�0‖ ≥ C1κ
2
1

√

r∗ log ep
n

t

)

≤ 2p exp

⎡

⎢

⎢

⎢

⎣

−
C2(log ep)t/

{

log

(
√

r∗ log ep
n t

)}2

1 + r∗(log n)2

n +
√

r∗ log ep
n t(log np)3

⎤

⎥

⎥

⎥

⎦

+ x−γ

for some constants C1,C2 > 0 only depending on ε, γ2, γ4.
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If 1 + r∗(log n)2

n ≥ r∗ log ep(log np)6
n , we have

E‖̂�0 − Ê�0‖2
(

C1κ
2
1

√

r∗ log ep
n

)2 ≤ 1 + r∗(log n)2

n

+
∫

{1+ r∗(log n)2
n }2

r∗ log ep(log np)6
n

1+ r∗(log n)2
n

2p exp

⎡

⎢

⎢

⎢

⎣

−
C2(log ep)t/

{

log

(
√

r∗ log ep
n t

)}2

1 + r∗(log n)2

n

⎤

⎥

⎥

⎥

⎦

dt

+
∫ ∞

{1+ r∗(log n)2
n }2

r∗ log ep(log np)6
n

2p exp

⎡

⎢

⎢

⎢

⎣

−
C2(log ep)

√
t/

{

log

(
√

r∗ log ep
n t

)}2

√

r∗ log ep(log np)6
n

⎤

⎥

⎥

⎥

⎦

dt

≤ C3

(

1 + r∗(log n)2

n
+ r∗ log ep(log np)6

n

)

.

This gives that

E‖̂�0 − Ê�0‖2 ≤ C4κ
4
1

{

r∗ log ep
n

+ r2∗ (log ep)2(log np)6

n2

}

.

On the other hand, if 1 + r∗(log n)2

n ≤ r∗ log ep(log np)6
n ,

E‖̂�0 − Ê�0‖2
(

C1κ
2
1

√

r∗ log ep
n

)2 ≤ r∗ log ep(log np)6

n

+
∫ ∞

r∗ log ep(log np)6
n

2p exp

⎡

⎢

⎢

⎢

⎣

−
C2(log ep)

√
t/

{

log

(
√

r∗ log ep
n t

)}2

√

r∗ log ep(log np)6
n

⎤

⎥

⎥

⎥

⎦

dt

≤ C5
r∗ log ep(log np)6

n
.

This renders

E‖̂�0 − Ê�0‖2 ≤ C5κ
4
1

{

r2∗ (log ep)2(log np)6

n2

}

.

Combining two cases gives us the final result by using the simple fact that E‖̂�0 −
Ê�0‖ ≤ (E‖̂�0−Ê�0‖2) 1

2 . This completes the proof of the first part of Theorem 2.1.
Notice that under Assumptions (A1), (A4), zero-mean, and second-order stationar-

ity, we have κ2
1 � ‖�0‖ and κ2∗ � Tr(�0). Thus, plugging in the first part of Theorem

2.1 finishes the proof. 
�
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NowweproveProposition4.1 underAssumptions (A1)–(A3). In the proof, the cases
for covariance and autocovariance matrices are treated separately. In the following, we
give a roadmap. The proof of Proposition 4.1 is based on combining a Bernstein-type
inequality for the almost surely (a.s.) bounded matrices and a truncation method. The
probability bound for the a.s. bounded part (a.k.a., the truncated part) of the random
matrix is obtained by employing a Bernstein-type inequality for τ -mixing random
matrices, which is presented in Theorem 4.3, and some related lemmas (Lemmas 4.4
and 4.5), whose proofs are presented later. The tail part of the random matrix is
controlled under the sub-Gaussian Assumption (A1), which uses Lemma 4.2.

In more detail, given a sequence of random vectors {Y t }t∈Z, denote Xt := Y tY T
t

for all t ∈ Z. Then, for any constant M > 0, we introduce the following “truncated”
version of Xt :

XM
t := M ∧ ‖Xt‖

‖Xt‖ Xt ,

where a ∧ b := min(a, b) for any two real numbers a, b.
For any integer m > 0, we denote Z(m)

t := Y tY T
t+m for all t ∈ Z. For the sake of

clarification, the superscript “(m)” is dropped when no confusion is possible. Then,
the truncated version is

ZM
t := M ∧ ‖Zt‖

‖Zt‖ Zt

for any M > 0.
We further define the “variances” for {XM

i }ni=1 and {ZM
i }n−m

i=1 as

ν2XM := sup
K⊆{1,...,n}

1

card (K )
λmax

{

E

(

∑

i∈K
XM
i − EXM

i

)2}

,

ν2ZM := sup
K⊆{1,...,n−m}

1

card (K )

∥

∥

∥

∥

E

(

∑

i∈K
ZM
i − EZM

i

)2∥
∥

∥

∥

.

Here, λmax(X) and λmin(X) denote the largest and smallest eigenvalues of X, respec-
tively.

Proof of Proposition 4.1 We first assume κ1 = 1. We consider two cases.
Case I When m = 0, {Xt }t∈Z is a sequence of symmetric random matrices. We have,

P

{

1

n

∥

∥

∥

∥

n
∑

i=1

(Xi − EXi )

∥

∥

∥

∥

≥ x

}

= P

{

1

n

∥

∥

∥

∥

n
∑

i=1

(Xi − XM
i + XM

i − EXM
i + EXM

i − EXi )

∥

∥

∥

∥

≥ x

}

≤ P

{

1

n

∥

∥

∥

∥

n
∑

i=1

(XM
i − EXM

i + EXM
i − EXi )

∥

∥

∥

∥

+ 1

n

∥

∥

∥

∥

n
∑

i=1

(Xi − XM
i )

∥

∥

∥

∥

≥ x

}
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≤ P

{∥

∥

∥

∥

n
∑

i=1

(XM
i − EXM

i + EXM
i − EXi )

∥

∥

∥

∥

≥ nx

}

+ P

{∥

∥

∥

∥

n
∑

i=1

(Xi − XM
i )

∥

∥

∥

∥

> 0

}

≤ P

{∥

∥

∥

∥

n
∑

i=1

(XM
i − EXM

i )

∥

∥

∥

∥

≥ nx −
n
∑

i=1

‖EXM
i − EXi‖

}

+
n
∑

i=1

P(Xi �= XM
i )

≤ P

[

λmax

{ n
∑

i=1

(XM
i − EXM

i )

}

≥ nx −
n
∑

i=1

‖EXM
i − EXi‖

]

+ P

[

λmin

{ n
∑

i=1

(XM
i − EXM

i )

}

≤ −nx +
n
∑

i=1

‖EXM
i − EXi‖

]

+
n
∑

i=1

P(Xi �= XM
i ).

(4.1)

We first show that the difference in expectation between the “truncated” XMδ
t and

original one Xt can be controlled with the chosen truncation level Mδ . For this, we
need the following lemma. 
�
Lemma 4.2 (Proof in Sect. 4.3) Let {Y t }t∈Z be a sequence of p-dimensional random
vectors under Assumption (A1). Then, for all t ∈ Z and for all x ≥ 0,

P{‖Y t‖22 ≥ 2κ2∗ + 8κ2∗ (x + √
x)} ≤ exp(−Cx)

for some arbitrary constant C > 0.

By applying Lemma 4.2, we obtain that for all i ∈ {1, . . . , n},

‖EXMδ

i − EXi‖ =
∥

∥

∥

∥

E

(

1 − Mδ

‖Xi‖
)

Xi1{‖Xi‖>Mδ}
∥

∥

∥

∥

≤ sup
u,v∈Sp−1

E|uTXiv|1{‖Xi‖>Mδ}

≤ sup
u,v∈Sp−1

{E(uTY iY T
i v)2} 1

2 {P(‖Xi‖ > Mδ)} 1
2

≤√δ/n,

where the last line is followed by Assumption (A1), Lemma 4.2, and the chosen Mδ .
The second step heavily depends on a Bernstein-type inequality for τ -mixing

random matrices. The theorem slightly extends the main theorem of [3] in which
the random matrix sequence is assumed to be β-mixing. Its proof is relegated to
“Appendix.”

Theorem 4.3 (Proof in Appendix)Consider a sequence of real, mean-zero, symmetric
p × p random matrices {Xt }t∈Z with ‖Xt‖ ≤ M for some positive constant M. In
addition, assume that this sequence is τ -mixing (see, “Appendix Sect. A.1” for a
detailed introduction to the τ -mixing coefficient) with geometric decay, i.e.,

τ(k; {Xt }t∈Z, ‖ · ‖) ≤ Mψ1 exp{−ψ2(k − 1)}
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for some constants ψ1, ψ2 > 0. Denote ˜ψ1 := max{p−1, ψ1}. Then, for any x ≥ 0
and any integer n ≥ 2, we have

P

{

λmax

( n
∑

i=1

Xi

)

≥ x

}

≤ p exp

{

− x2

8(152nν2 + 602M2/ψ2) + 2xM˜ψ(˜ψ1, ψ2, n, p)

}

,

where

ν2 := sup
K⊆{1,...,n}

1

card(K )
λmax

{

E

(

∑

i∈K
Xi

)2}

and ˜ψ(˜ψ1, ψ2, n, p)

:= log n

log 2
max

{

1,
8 log(˜ψ1n6 p)

ψ2

}

.

In order to apply Theorem 4.3, we need the following two lemmas. Lemma 4.4 is to
show that the sequence of “truncated” matrices {XM

t } under Assumptions (A1)–(A2)
is a τ -mixing random sequence with geometric decay. Lemma 4.5 calculates the upper
bound for ν2 term in Theorem 4.3 for {XM

t }t∈Z.

Lemma 4.4 (Proof in Sect. 4.3) Let {Y t }t∈Z be a sequence of random vectors under
Assumptions (A1), (A2). Then, {XM

t }t∈Z, {XM
t − EXM

t }t∈Z, {ZM
t }t∈Z, and {ZM

t −
EZM

t }t∈Z are all τ -mixing random sequences. Moreover,

τ(k; {XM
t }t∈Z, ‖ · ‖) ≤ Cγ1κ1κ∗ exp{−γ2(k − 1)},

τ (k; {XM
t − EXM

t }t∈Z, ‖ · ‖) ≤ Cγ1κ1κ∗ exp{−γ2(k − 1)},
τ (k; {ZM

t }t∈Z, ‖ · ‖) ≤ C ′ exp{γ2 min(k,m)}max(γ1κ1κ∗, κ2∗ ) exp{−γ2(k − 1)},
τ (k; {ZM

t − EZM
t }t∈Z, ‖ · ‖) ≤ C ′ exp{γ2 min(k,m)}max(γ1κ1κ∗, κ2∗ ) exp{−γ2(k − 1)}

for k ≥ 1 and some constants C,C ′ > 0 only depending on ε.

Lemma 4.5 (Proof in Sect. 4.3) Let {Y t }t∈Z be a sequence of random vectors under
Assumptions (A1)–(A3). Take M ≥ Cγ1κ1κ∗ for some constant C > 0 only depending
on ε. Then, we obtain

ν2XM ≤ C ′ κ2
1 {κ2

1 + κ1κ∗γ1 + κ2∗ (γ3 + 2)}
1 − exp{−min( 5+ε

6ε+10γ2, γ4)}
,

ν2ZM ≤ C ′′ κ2
1 {(2m + 1)κ2

1 + κ1κ∗γ1 + κ2∗ (γ3 + 2m + 2)}
1 − exp{−min( 5+ε

6ε+10γ2, γ4)}

for some constants C ′,C ′′ > 0 only depending on ε.
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Therefore, by applying Theorems 4.3, Lemmas 4.4 and 4.5 with the chosen Mδ ,
we obtain for any x > 0,

P

[

λmax

{

1

n

n
∑

i=1

(XMδ

i − EXMδ

i )

}

≥ x + √

δ/n

]

≤ p exp

(

− n2x2

A1n + A2M
2
δ + A3nxMδ

)

,

(4.2)

where

A1 := C{κ∗γ1 + κ2∗ (γ3 + 2) + 1}
1 − exp{−min( 5+ε

6ε+10γ2, γ4)}
, A2 := 4532

γ2
, and A3 := 2 log n

log 2
max

{

1,
48 log(np)

γ2

}

for some constant C > 0 only depending on ε.
Similarly, notice that λmin(

∑n
j=1X

Mδ

j ) = λmax(−∑n
j=1X

Mδ

j ). Hence, the same
argument renders the same upper bound

P

[

λmin

{

1

n

n
∑

i=1

(XMδ

i − EXMδ

i )

}

≤ −(x + √

δ/n)

]

≤ p exp

(

− n2x2

A1n + A2M
2
δ + A3nxMδ

)

(4.3)

with the same constants as above.
For the last term of (4.1), with the choice of Mδ and Lemma 4.2, we obtain

n
∑

i=1

P(Xi �= XMδ

i ) =
n
∑

i=1

P(‖Xi‖ > Mδ) ≤ δ. (4.4)

Combining (4.2), (4.3), and (4.4), we obtain

P(‖̂�0 − Ê�0‖ ≥ x + √

δ/n) ≤ 2p exp

(

− n2x2

A1n + A2M2
δ + A3nxMδ

)

+ δ

with the constants A1, A2, A3 defined above.
Case II Now we consider the case when 0 < m ≤ n − 2. Since Zt := Y tY T

t+m is not
symmetric for all t ∈ Z, by applying matrix dilation (see [31], Sect. 2.1.16 for more
details), we define the symmetric version of ZM

t as

Z
M
t :=

[

0 ZM
t

(ZM
t )T 0

]

.

Observe that λmax(Z
M
t ) = ‖ZM

t ‖ = ‖ZM
t ‖. By Lemma 4.4, {ZM

t }t∈Z and {ZM
t −

EZ
M
t }t∈Z are also sequences of τ -mixing random matrices. Define

ν2
Z
M := sup

K⊆{1,...,n−m}
1

card (K )
λmax

{

E

(

∑

i∈K
Z
M
i − EZ

M
i

)2}

.
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Notice that ν2
Z
M and ν2

ZM have the same upper bound since spectral norm of block

diagonal matrix is less than or equal to the spectral norm of each block.

Now we apply similar arguments in Case I to {Zt }t∈Z and {ZM
t }t∈Z.

P

{

1

n − m

∥

∥

∥

∥

n−m
∑

i=1

(Zi − EZi )

∥

∥

∥

∥

≥ x

}

≤ P

[

λmax

{ n−m
∑

i=1

(Z
M
i − EZ

M
i )

}

≥ (n − m)x −
n−m
∑

i=1

‖EZi − EZ
M
i ‖

]

+
n−m
∑

i=1

P

(

Zi �= ZM
i

)

.

The rest is straightforward by using Theorem 4.3 and Lemmas 4.2–4.5, and we thus
finish the rest of the proof.

Lastly, we consider κ1 �= 1. Notice that for any sequence {Y t }t∈Z satisfying
Assumptions (A1)–(A3), the sequence {Y t/κ1}t∈Zwill satisfyAssumptions (A1) auto-
matically and Assumptions (A2), (A3) with κ1 = 1. Hence, applying the above to
{Y t/κ1}t∈Z renders the results. This completes the proof of Proposition 4.1. 
�

4.2 Proof of Theorem 2.2

Proof The proof of Theorem 2.2 consists of two cases.
Case I When m = 0, we first state a more general result of Gaussian process. Propo-
sition 4.6 considers a general Gaussian process without further assumptions on the
covariance and autocovariance matrices. The proof modifies that of Theorem 5.1 in
[32] with dependence among observations taken into account. 
�
Proposition 4.6 (Proof in Sect. 4.2) Let {Y t }t∈Z be a stationary sequence of mean-
zero Gaussian random vectors with autocovariance matrices �m for 0 ≤ m ≤ n − 1.
Then,

E‖̂�0−�0‖ ≤2

n

{

2
(

‖�0‖∗ + 2
n−1
∑

m=1

‖�m‖∗
)

+
√

√

√

√2n‖�0‖
(

‖�0‖∗ + 2
n−1
∑

m=1

‖�m‖∗
)

+
√

√

√

√2n
(

‖�0‖ + 2
n−1
∑

m=1

‖�m‖
)

Tr(�0)

}

,

where ‖ · ‖∗ is the matrix nuclear norm.

The rest of the proof is to show the geometric decay of spectral norm and nuclear
norm of autocovariance matrices under Assumptions (A2), (A3) in order to apply
Proposition 4.6. It is obvious that κ2

1 � ‖�0‖ and κ2∗ � Tr(�0) when the process is a
centered stationary Gaussian process. We first prove the geometric decay of spectral
norm of autocovariance matrices. For any 0 ≤ m ≤ n − 1 and any integer j , by
Assumption (A3), there exists ˜Y1+m that is identically distributed as Y1+m , indepen-
dent of Y1, and
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sup
u∈Sp−1

‖(Y1+m −˜Y1+m)T u‖L(1+ε) ≤ γ3
√‖�0‖ exp{−γ4(m − 1)}.

Therefore,

‖�m‖ =‖EY1Y T
1+m‖

=‖EY1(Y1+m −˜Y1+m +˜Y1+m)T ‖
=‖EY1(Y1+m −˜Y1+m)T ‖
≤ sup

u,v∈Sp−1
|EuTY1(Y1+m −˜Y1+m)T v|

≤C‖�0‖ exp{−γ4(m − 1)},
where the last inequality is followed by Assumption (A3) and γ3 = O(1) for some
constant C > 0 only depending on ε, γ3.

Similarly, by Assumption (A2), there exists ˜Y1+m that is identically distributed as
Y1+m , independent of Y1, and

‖‖Y1+m −˜Y1+m‖2‖L(1+ε) ≤ γ1
√‖�0‖ exp{−γ2(m − 1)}.

Then,

‖�m‖∗ =
√

Tr(�T
m�m)

=
√

Tr{E(Y1+m −˜Y1+m)Y T
1 EY1(Y1+m −˜Y1+m)T }

≤
√

Tr{E(Y1+m −˜Y1+m)Y T
1 Y1(Y1+m −˜Y1+m)T }

=
√

Tr{EY T
1 Y1(Y1+m −˜Y1+m)(Y1+m −˜Y1+m)T }

=
√

E‖Y1‖22‖Y1+m −˜Y1+m‖22
≤ ‖‖Y1‖2‖L( 1+ε

ε
)‖‖Y1+m −˜Y1+m‖2‖L(1+ε)

≤ C Tr(�0) exp{−γ2(m − 1)},

where the third line is followed by the fact that E(Y1+m − ˜Y1+m)Y T
1 EY1(Y1+m −

˜Y1+m)T � EY T
1 Y1(Y1+m − ˜Y1+m)(Y1+m − ˜Y1+m)T (“�” is the Loewner par-

tial order of Hermitian matrices), and both matrices are positive semi-definite,
and the last line by Assumption (A2) and γ1 = O(

√
r(�0)). Indeed, for any

u ∈ R
p, E{uT (Y1+m − ˜Y1+m)}2(Y T

1 Y1) = ∑p
j=1 E{uT (Y1+m − ˜Y1+m)}2Y2

1, j

and E{uT (Y1+m − ˜Y1+m)}Y T
1 EY1(Y1+m − ˜Y1+m)T u = ∑p

j=1[E{uT (Y1+m −
˜Y1+m)Y1, j }]2. The result follows.
Case II When m > 0, we denote Ȳ i := (Y T

i Y T
i+m)T for 1 ≤ i ≤ n −m. It is obvious

that {Ȳ i } is a centered stationary Gaussian process satisfying Assumptions (A2), (A3).

Denote �̄0 := EȲ i Ȳ
T
i and notice that �m is the off-diagonal block submatrix of �̄0.

By Case I and the fact that spectral norm of submatrix is bounded above by that of the
full matrix, we obtain
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E‖̂�m − �m‖ ≤ C‖�̄0‖
(
√

r(�0)

n − m
+ r(�0)

n − m

)

.

Notice that ‖�0‖ ≤ ‖�̄0‖ ≤ ‖�0‖ + ‖�m‖ ≤ 2‖�0‖ since �0 − �m is positive
semi-definite. This completes the proof. 
�
Proof of Proposition 4.6 The proof heavily depends on the following observation.
Denote Y := (Y1 . . .Yn) and let ˜Y be an independent copy of Y. Then,

E‖̂�0 − �0‖ ≤ 2

n
E‖Y˜YT ‖.

This is same as Lemma 5.2 in [32] by noticing that the result holds without indepen-
dence assumption.

Now we state the following two core lemmas used to complete the proof. 
�
Lemma 4.7 (Proof in Sect. 4.3) We have

E‖̂�0 − �0‖ ≤ 2
√
2

n

⎧

⎨

⎩

E‖Y‖ ·
√

√

√

√Tr
(

�0 + 2
n−1
∑

d=1

˜�d

)

+
√

√

√

√2
(

‖�0‖ + 2
n−1
∑

d=1

‖�d‖
)

· √n Tr(�0)

⎫

⎬

⎭

,

where ˜�d := (Ud�dUT
d + Vd�dVT

d )/2. Here, Ud ,Vd and �d are left singular
vectors, right singular vectors, and singular values of �d for all 1 ≤ d ≤ n − 1,
respectively.

Lemma 4.8 (Proof in Sect. 4.3) We have

E‖Y‖ ≤
√

√

√

√2 Tr

(

�0 + 2
n−1
∑

d=1

˜�d

)

+ √

2n‖�0‖,

where ˜�d for all 1 ≤ d ≤ n − 1 are defined in Lemma 4.7.

The proof of Proposition 4.6 completes by combining Lemmas 4.7 and 4.8. 
�

4.3 Proofs of Auxiliary Lemmas

Proof of Lemma 4.2 By Lemma A.2 in [8], we have E‖Y t‖2k2 ≤ (2k)kκ2k∗ for t ∈ Z.
Hence,

‖‖Y t‖22 − E‖Y t‖22‖ψ1 ≤ 2‖‖Y t‖22‖ψ1 ≤ 4‖‖Y t‖2‖2ψ2
≤ 8κ2∗ .

Thus, by property of sub-exponential random variable and Chernoff inequality, we
have for any x ≥ 0,

P(‖Y t‖22 − E‖Y t‖22 ≥ x) ≤ exp
{

− C min
( x2

64κ4∗
,

x

8κ2∗

)}

,
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for some arbitrary constant C > 0. Obviously, we have for all x ≥ 0,

P{‖Y t‖22 ≥ 2κ2∗ + 8κ2∗ (x + √
x)} ≤ exp(−Cx)

for some arbitrary constant C > 0. This completes the proof. 
�

Proof of Lemma 4.4 We first show that {Xt }t∈Z is a sequence of τ -mixing random
vectors with geometric decay. Under Assumption (A2) (without loss of generality,
take j = 0), there exists a sequence of random vectors {˜Y t }t>0 which is independent
of σ({Y t }t≤0), identically distributed as {Y t }t>0, and for any integer t ≥ 1,

‖‖Y t −˜Y t‖2‖L(1+ε) ≤ γ1κ1 exp{−γ2(t − 1)}

for some constant ε > 0. Then, for any m ≥ 0,

E‖Y tYT
t+m −˜Y t˜Y

T
t+m‖

= E‖Y tYT
t+m − Y t˜Y

T
t+m + Y t˜Y

T
t+m −˜Y t˜Y

T
t+m‖

≤ E‖Y t (Y t+m −˜Y t+m)T ‖ + E‖(Y t −˜Y t )˜Y
T
t+m‖

≤ ‖‖Y t‖2‖L( 1+ε
ε

)
‖‖Y t+m −˜Y t+m‖2‖L(1+ε) + ‖‖Y t+m‖2‖L( 1+ε

ε
)
‖‖Y t −˜Y t‖2‖L(1+ε)

≤ Cγ1κ1κ∗ exp{−γ2(t − 1)},

where the fourth line is followed by Hölder’s inequality and the fact that

sup
t∈Z

‖‖Y t‖2‖L(α) ≤ sup
t∈Z

sup
u∈S̄p−1

‖uTY t‖L(α) ≤ sup
t∈Z

sup
u∈S̄p−1

√
α‖uTY t‖ψ2 ≤ √

ακ∗

for any α ≥ 1. Here, C > 0 is some constant only depending on ε.

Now define ˜Xt := ˜Y t˜Y
T
t for any integer t > 0. It is obvious that {˜Xt }t>0 is inde-

pendent of {Xt }t≤0 and identically distributed as {Xt }t>0. By applying Lemma A.1,
for any indices 0 < k ≤ t1 < · · · < t�, we obtain

τ {σ({Xt }t≤0), (Xt1 , . . . ,Xt� ); ‖ · ‖} ≤
�
∑

i=1

E‖Xti −˜Xti ‖ ≤ Cγ1κ1κ∗� exp{−γ2(k − 1)}.

By definition of τ -mixing coefficient, this yields

τ(k; {Xt }t∈Z, ‖ · ‖) ≤ Cγ1κ1κ∗ exp{−γ2(k − 1)}

for some constant C > 0 only depending on ε.
Now we proceed to prove τ -mixing properties for the “truncated version.” The

following lemma is needed. 
�
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Lemma 4.9 (Proof in Sect. 4.3) Let u1, u2, v1, v2 ∈ R
p for p ≥ 1 with unit length

under �2-norm and σu ≥ 0. Then, the function

f (σv) = ‖σvv1v
T
2 − σuu1uT2 ‖

is nondecreasing in the range σv ∈ [σu,∞]. In particular, for any M ≥ 0 such that
M ≤ σu, M ≤ σv , we have

‖Mv1v
T
2 − Mu1uT2 ‖ ≤ ‖σvv1v

T
2 − σuu1uT2 ‖.

Now consider three cases.

(1) When ‖Xt‖ ≤ M and ‖˜Xt‖ ≤ M , ‖XM
t −˜XM

t ‖ = ‖Xt −˜Xt‖.
(2) When ‖Xt‖ ≤ M and ‖˜Xt‖ > M , we have

XM
t = Xt = ‖Y t‖22

Y t

‖Y t‖2
Y T
t

‖Y t‖2 and ˜XM
t = M

˜Y t

‖˜Y t‖2
˜Y
T
t

‖˜Y t‖2
.

Since Y t‖Y t‖2 ,
˜Y t

‖˜Y t‖2 have unit length and ‖Y t‖22 ≤ M < ‖˜Y t‖22, we have ‖XM
t −

˜XM
t ‖ ≤ ‖Xt −˜Xt‖ by Lemma 4.9. By symmetry, the same argument also applies

to the case where ‖Xt‖ > M and ‖˜Xt‖ ≤ M .

(3) When ‖Xt‖ > M and ‖˜Xt‖ > M , we have XM
t = M Y t‖Y t‖2

YT
t‖Y t‖2 and ˜XM

t =
M

˜Y t
‖˜Y t‖2

˜YT
t

‖˜Y t‖2 . Again by Lemma 4.9, we have ‖XM
t −˜XM

t ‖ ≤ ‖Xt −˜Xt‖.
By combining three cases, ‖XM

t − ˜XM
t ‖ ≤ ‖Xt − ˜Xt‖ always holds, and hence,

E‖XM
t − ˜XM

t ‖ ≤ E‖Xt − ˜Xt‖ for any t ≥ 1. Hence, for any indices 0 < k ≤
t1 < · · · < t�, by Lemma A.1, we have

τ {σ({XM
t }t≤0), (XM

t1 , . . . ,XM
t� ); ‖ · ‖} ≤ Cγ1κ1κ∗� exp{−γ2(k − 1)}

for some constant C > 0 only depending on ε. By definition of τ -mixing coeffi-
cient, this yields

τ(k; {XM
t }t∈Z, ‖ · ‖) ≤ Cγ1κ1κ∗ exp{−γ2(k − 1)}

for some constant C > 0 only depending on ε. Notice that E‖XM
t − EXM

t −
(˜XM

t − E˜XM
t )‖ = E‖XM

t − ˜XM
t ‖ since E˜XM

t = EXM
t for any t ≥ 1. The

τ -mixing property stated above applies to {XM
t − EXM

t } directly.
Similar arguments apply to {ZM

t }t∈Z and {ZM
t −EZM

t }t∈Z, so we omit the details.
This completes the proof. 
�
Proof of Lemma 4.5 The proof consists of two steps.
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Step I We first provide an upper bound for ν2X. Without loss of generality, we only
consider ‖E(X0−EX0)(Xk −EXk)‖ for k ≥ 0. Under Assumptions (A2)–(A3), there
exists ˜Y k where ˜Y k is independent of σ({Y t }t≤0), identically distributed as Y k , and

‖‖Y k −˜Y k‖2‖L(1+ε) ≤ γ1κ1 exp{−γ2(k − 1)},
‖(Y k −˜Y k)

T u‖L(1+ε) ≤ γ3κ1 exp{−γ4(k − 1)}

for constants γ1, γ2, γ3, γ4 > 0 in Assumptions (A2)–(A3).
For k = 0, we have

‖EX0X0 − EX0EX0‖ ≤ C(κ4
1 + κ2

1κ2∗ )

by Assumption (A1) for some universal constant C > 0. For k > 0, we obtain

‖EX0Xk − EX0EXk‖ =‖EX0Xk − EX0˜Xk‖
=‖EX0(Xk −˜Xk)‖
= sup

u,v∈Sp−1
E|uTY0Y T

0 (Y kY T
k −˜Y k˜Y

T
k )v|

≤ sup
u,v∈Sp−1

E|uTY0Y T
0 Y k(Y T

k −˜Y
T
k )v + uTY0Y T

0 (Y k −˜Y k)˜Y
T
k v|

≤ sup
u,v∈Sp−1

{

E|Y T
0 Y k | 3(1+ε)

2ε

} 2ε
3(1+ε) ‖uTY0‖L(

3(1+ε)
ε

)
‖(Y k −˜Y k)

T v‖L(1+ε)

+ {E|uTY0˜Y
T
k v| 3(1+ε)

2ε } 2ε
3(1+ε) ‖‖Y0‖2‖L(

3(1+ε)
ε

)
‖‖Y k −˜Y k‖2‖L(1+ε)

≤Cκ2
1κ∗(κ∗γ3 + κ1γ1) exp{−min(γ2, γ4)(k − 1)},

where the first line is followed by EXk = E˜Xk , fifth line by Hölder’s inequality, and
sixth line by Assumptions (A1)–(A3) for some constant C > 0 only depending on ε.

Hence, for any K ⊆ {1, . . . , n},

1

card (K )
λmax

{

E

(

∑

i∈K
Xi − EXi

)2}

≤ 1

card (K )

∥

∥

∥

∥

∑

i, j∈K
E(Xi − EXi )(X j − EX j )

∥

∥

∥

∥

≤ 1

card (K )

∑

i, j∈K
‖E(Xi − EXi )(X j − EX j )‖

≤ C
[

κ41 + κ21κ2∗ + κ21κ∗(κ∗γ3 + κ1γ1)

card (K )

∑

i, j∈K ,i �= j

exp{−min(γ2, γ4)(|i − j | − 1)}
]

≤ C
[κ21 {κ21 + κ1κ∗γ1 + κ2∗ (γ3 + 1)}

1 − exp(−min{γ2, γ4})
]

.
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Step IIWe first bound ν2
XM . By definition, we have

∥

∥

∥

∥

E

(

∑

i∈K
XM
i − EXM

i

)2∥
∥

∥

∥

=
∥

∥

∥

∥

∑

i, j∈K
E(XM

i − EXM
i )(XM

j − EXM
j )

∥

∥

∥

∥

=
∥

∥

∥

∥

∑

i, j∈K
(EXM

i XM
j − EXM

i EXM
j )

∥

∥

∥

∥

.

Without loss of generality, we consider ‖EXM
0 XM

k −EXM
0 EXM

k ‖ for k ≥ 0. Let˜XM
k be

defined as in the proof of Lemma 4.4. Then,˜XM
k is independent of˜XM

0 and distributed
as XM

k . Hence,

‖EXM
0 XM

k − EXM
0 EXM

k ‖ = ‖EXM
0 XM

k − EXM
0 E˜XM

k ‖.
Then, we could rewrite

‖EXM
0 XM

k − EXM
0 E˜XM

k ‖ =‖EX0Xkζ0ζk − EX0˜Xkζ0˜ζk‖
=‖EX0(Xk −˜Xk)ζ0ζk + EX0˜Xkζ0(ζk −˜ζk)‖,

where ζi = M∧‖Xi‖‖Xi‖ , ˜ζi = M∧‖˜Xi‖
‖˜Xi‖ . Since ζ0, ζk are bounded by 1, we have

‖EX0(Xk −˜Xk)ζ0ζk‖ = sup
u,v∈Sp−1

E|uTX0(Xk −˜Xk)ζ0ζkv|

≤ sup
u,v∈Sp−1

E|uTX0(Xk −˜Xk)v|

= ‖EX0(Xk −˜Xk)‖
≤ Cκ2

1 (κ1κ∗γ1 + κ2∗γ3) exp{−min(γ2, γ4)(k − 1)},

where the last inequality is from result in Step I for some constant C > 0 only
depending on ε.

On the other hand, by applying Hölder’s inequality, we have

‖EX0˜Xkζ0(ζk −˜ζk)‖ = sup
u,v∈Sp−1

E|uTX0˜Xkv||ζk −˜ζk |

≤ sup
u,v∈Sp−1

{E|uTY0Y T
0
˜Y k˜Y

T
k v| 5(1+ε)

4ε } 4ε
5(1+ε) {E|ζk −˜ζk |

5(1+ε)
5+ε } 5+ε

5(1+ε) .

Hence, for any u, v ∈ S
p−1,

{E|uTY0Y T
0
˜Y k˜Y

T
k v| 5(1+ε)

4ε } 4ε
5(1+ε)

≤ ‖uTY0‖L(
5(1+ε)

ε
)
‖uT˜Y k‖L(

5(1+ε)
ε

)
‖‖Y0‖2‖L(

5(1+ε)
ε

)
‖‖˜Y k‖2‖L(

5(1+ε)
ε

)

≤ Cκ2
1κ2∗ ,
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where the first line is followed by Hölder’s inequality and the last line by Assump-
tion (A1) for some constant C > 0 only depending on ε.

Next, we need to bound ‖ζk −˜ζk‖L(
5(1+ε)
5+ε

)
. For the sake of presentation clearness,

we denote ak := ‖Xk‖ and ãk := ‖˜Xk‖ and rewrite

‖ζk −˜ζk‖L(
5(1+ε)
5+ε

)

=
∥

∥

∥

∥

M

∣

∣

∣

∣

1

ak
− 1

ãk

∣

∣

∣

∣

1{ak>M ,̃ak>M} +
(

1 − M

ak

)

1{ak>M ,̃ak≤M} +
(

1 − M

ãk

)

1{ak≤M ,̃ak>M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

≤
∥

∥

∥

∥

M

∣

∣

∣

∣

1

ak
− 1

ãk

∣

∣

∣

∣

1{ak>M ,̃ak>M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

+
∥

∥

∥

∥

(

1 − M

ak

)

1{ak>M ,̃ak≤M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

+
∥

∥

∥

∥

(

1 − M

ãk

)

1{ak≤M ,̃ak>M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

, (4.5)

where the last inequality is followed by the fact that ‖ · ‖L(
5(1+ε)
5+ε

)
is a norm for ε > 0.

For the first term, we have

∥

∥

∥

∥

M

∣

∣

∣

∣

1

ak
− 1

ãk

∣

∣

∣

∣

1{ak>M ,̃ak>M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

=
∥

∥

∥

∥

M

∣

∣

∣

∣

ãk − ak
akãk

∣

∣

∣

∣

1{ak>M ,̃ak>M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

≤ 1

M
{E|̃ak − ak |

5(1+ε)
5+ε } 5+ε

5(1+ε)

≤ 1

M
{E‖Xk −˜Xk‖

5(1+ε)
5+ε } 5+ε

5(1+ε)

≤ Cγ1κ1κ∗ exp{−γ2(k − 1)}/M,

where the last inequality is followed by Lemma 4.4 for some constant C > 0 only
depending on ε. With the chosen M ≥ Cγ1κ1κ∗, we have

∥

∥

∥

∥

M

∣

∣

∣

∣

1

ak
− 1

ãk

∣

∣

∣

∣

1{ak>M ,̃ak>M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

≤ exp{−γ2(k − 1)}.

For the second term, taking any εk > 0, we have

∥

∥

∥

∥

(

1 − M

ak

)

1{ak>M ,̃ak≤M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

=
∥

∥

∥

∥

(

1 − M

M + εk

)

1{M<ak≤M+εk ,̃ak≤M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

+
∥

∥

∥

∥

(

1 − M

ak

)

1{ak>M+εk ,̃ak≤M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

≤ εk

M
+
∥

∥

∥

∥

1{ak>M+εk ,̃ak≤M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

≤ εk

M
+ {P(|ak − ãk | > εk)}

5+ε
5(1+ε) .
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By Markov inequality and Lemma 4.4, we have

P(|ak − ãk | > εk) ≤ E‖Xk −˜Xk‖
εk

≤ Cγ1κ1κ∗ exp{−γ2(k − 1)}
εk

for some constant C > 0 only depending on ε. Taking εk = Cγ1κ1κ∗ exp{− 5+ε
6ε+10γ2

(k − 1)}, we obtain
∥

∥

∥

∥

(

1 − M

ak

)

1{ak>M ,̃ak≤M}
∥

∥

∥

∥

L(
5(1+ε)
5+ε

)

≤ 2 exp

{

− 5 + ε

6ε + 10
γ2(k − 1)

}

.

The third term follows by symmetry. Putting together, we have for k > 0,

‖ζk −˜ζk‖L(
5(1+ε)
5+ε

)
≤ C exp

{

− 5 + ε

6ε + 10
γ2(k − 1)

}

,

‖EX0˜Xkζ0(ζk −˜ζk)‖ ≤ Cκ2
1κ2∗ exp

{

− 5 + ε

6ε + 10
γ2(k − 1)

}

,

‖EXM
0 XM

k − EXM
0 E˜XM

k ‖ ≤ Cκ2
1 {κ1κ∗γ1 + κ2∗ (γ3 + 1)} exp

{

− min
( 5 + ε

6ε + 10
γ2, γ4

)

(k − 1)

}

for some constant C > 0 only depending on ε. Hence, for any K ⊆ {1, . . . , n},

1

card (K )
λmax

{

E

(

∑

i∈K
XM
i − EXM

i

)2}

≤ 1

card (K )

∥

∥

∥

∥

∑

i, j∈K
E(XM

i − EXM
i )(XM

j − EXM
j )

∥

∥

∥

∥

≤ 1

card (K )

∑

i, j∈K
‖E(XM

i − EXM
i )(XM

j − EXM
j )‖

≤ C
[

κ4
1 + κ2∗κ2

1 + κ2
1 {κ1κ∗γ1 + κ2∗ (γ3 + 1)}}

card(K )
∑

i, j∈K ,i �= j

exp
{

− min
( 5 + ε

6ε + 10
γ2, γ4

)

(|i − j | − 1)
}]

≤ C
κ2
1 {κ2

1 + κ1κ∗γ1 + κ2∗ (γ3 + 2)}
1 − exp{−min( 5+ε

6ε+10γ2, γ4)}

for some constant C > 0 only depending on ε.
Similar arguments apply to ν2ZM , so we omit the details. This completes the proof.


�
Proof of Lemma 4.9 Fix u1, u2, v1, v2 ∈ R

p with unit length andσu ≥ 0. For anyσv ≥
σu , we perform singular value decomposition for matrixX(σv) := σuu1uT2 −σvv1v

T
2 .
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According to Eq. (8) in [6], the nonzero singular values ofX(σv) are identical to those
of

S(σv) =
[

σu − σvuT1 v1v
T
2 u2 −σvuT1 v1‖v2 − u2uT2 v2‖2

σvuT2 v2‖v1 − u1uT1 v1‖2 σ 2
v ‖v1 − u1uT1 v1‖2‖v2 − u2uT2 v2‖2

]

.

For simplicity, denote w = uT1 v1v
T
2 u2, ṽ1 = v1 − u1uT1 v1, ũ1 = v2 − u2uT2 v2.

Hence, S(σv) could be rewritten as

S(σv) =
[

σu − σvw −σvuT1 v1‖̃v2‖2
σvuT2 v2‖̃v1‖2 σ 2

v ‖̃v1‖2‖̃v2‖2
]

.

Using the calculation on Page 86 in [5], ‖S(σv)‖ = Q(σv) + R(σv), where

Q(σv) :=
√

(σu − σvw + σv ‖̃v1‖2‖̃v2‖2)2 + σ 2
v (uT1 v1‖̃v2‖2 + uT2 v2‖̃v1‖2)2/2,

R(σv) :=
√

(σu − σvw − σv ‖̃v1‖2‖̃v2‖2)2 + σ 2
v (uT1 v1‖̃v2‖2 − uT2 v2‖̃v1‖2)2/2.

We are left to show that both Q and R are nondecreasing functions of σv ∈ [σu,∞].
By differentiating Q, R with respect to σv , we obtain

dQ

dσv

= cQ(σv)[σu(‖̃v1‖2‖̃v2‖2 − w)

+ σv{w2 + ‖̃v1‖22‖̃v2‖22 + (uT1 v1)
2‖̃v2‖22 + (uT2 v2)

2‖̃v1‖22}],
dR

dσv

= cQ(σv)[−σu(‖̃v1‖2‖̃v2‖2 + w)

+ σv{w2 + ‖̃v1‖22‖̃v2‖22 + (uT1 v1)
2‖̃v2‖22 + (uT2 v2)

2‖̃v1‖22}]

for some nonnegative constants cQ(σv), cR(σv).
By simple algebra, we havew2+‖̃v1‖22‖̃v2‖22+(uT1 v1)

2‖̃v2‖22+(uT2 v2)
2‖̃v1‖22 = 1

so that

dQ

dσv

= cQ(σv)[σu(‖̃v1‖2‖̃v2‖2 − w) + σv].

Moreover, since u1, u2, v1, v2 ∈ R
p are all length 1, we have |w| ≤ 1 by Cauchy–

Schwartz. Hence, by the fact that σv ≥ σu ≥ 0, we have dQ
dσv

≥ 0. On the other

hand, denote a := uT1 v1 and b := uT2 v2 and again by Cauchy–Schwartz we have
|a| ≤ 1, |b| ≤ 1. In addition, we have

‖̃v1‖2 =
√

(v1 − u1uT1 v1)T (v1 − u1uT1 v1)

=
√

vT1 v1 − vT1 u1u
T
1 v1 − vT1 u1u

T
1 v1 + vT1 u1u

T
1 u1u

T
1 v1

=
√

1 − a2.
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Similarly, we have ‖̃v2‖2 = √
1 − b2. Then

dR

dσv

= cQ(σv){σv − σu(‖̃v1‖2‖̃v2‖2 + w)}
≥ cQ(σv)σu(1 − ‖̃v1‖2‖̃v2‖2 − w)

≥ cQ(σv)σu(1 −
√

(1 − a2)(1 − b2) − ab).

Since (1− ab)2 ≥ (1− a2)(1− b2) and |ab| ≤ 1, we obtain dR
dσv

≥ 0. Therefore, we
have shown that ‖S(σv)‖ = Q(σv) + R(σv) is a nondecreasing function with respect
to σv .

Obviously ‖Mv1v
T
2 − Mu1uT2 ‖ ≤ ‖σuv1vT2 − σuu1uT2 ‖ since 0 < M ≤ σu .

Applying the monotonicity property proved above, we have ‖σuv1vT2 − σuu1uT2 ‖ ≤
‖σuv1vT2 − σvu1uT2 ‖. This completes the proof. 
�
Proof of Lemma 4.7 By the observation in the proof of Proposition 4.6, we have

E‖̂�0 − �0‖ ≤ 2

n
E‖Y˜YT ‖ = 2

n
E

⎛

⎝ sup
u,v∈Sp−1

n
∑

k=1

uT Yk˜Y
T
k v

⎞

⎠ := 2

n
E

(

sup
u,v∈Sp−1

Wu,v

)

.

Now consider

(Wu,v − Wu′,v′ )2 =
(

n
∑

k=1

uTY k˜Y
T
k v −

n
∑

k=1

u′TY k˜Y
T
k v′

)2

=
(

n
∑

k=1

uTY k˜Y
T
k v −

n
∑

k=1

u′TY k˜Y
T
k v +

n
∑

k=1

u′TY k˜Y
T
k v −

n
∑

k=1

u′TY k˜Y
T
k v′

)2

=
(

n
∑

k=1

(u − u′)TY k˜Y
T
k v +

n
∑

k=1

u′TY k˜Y
T
k (v − v′)

)2

≤ 2

(

n
∑

k=1

(u − u′)TY k˜Y
T
k v

)2

+ 2

(

n
∑

k=1

u′TY k˜Y
T
k (v − v′)

)2

= 2
n−1
∑

d=0

∑

| j−k|=d

(u − u′)TY j · (u − u′)TY k · vT˜Y j · vT˜Y k

+ 2
n−1
∑

d=0

∑

| j−k|=d

u′TY j · u′TY k · (v − v′)T˜Y j · (v − v′)T˜Y k .

Now denote the conditional expectation E
˜Y := E(·|˜Y). Then,

E
˜Y(Wu,v − Wu′,v′)2

≤ 2(u − u′)T�0(u − u′)
n
∑

j=1

vT˜Y j˜Y
T
j v
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+ 2
n−1
∑

d=1

(u − u′)T (�d + �T
d )(u − u′)

∑

( j−k)=d

vT˜Y j · vT˜Yk

+ 2
n
∑

j,k=1

u′T�| j−k|u′ · (v − v′)T˜Y j · (v − v′)T˜Yk

≤ 2(u − u′)T
⎛

⎝�0 + 2
n−1
∑

d=1

˜�d

⎞

⎠ (u − u′)
n
∑

j=1

vT˜Y j˜Y
T
j v

+ 2

⎛

⎝‖�0‖ + 2
n−1
∑

d=1

‖�d‖
⎞

⎠

n
∑

j=1

(v − v′)T˜Y j˜Y
T
j (v − v′)

≤ 2‖
⎛

⎝�0 + 2
n−1
∑

d=1

˜�d

⎞

⎠

1
2

(u − u′)‖2‖˜Y‖2 + 2

⎛

⎝‖�0‖ + 2
n−1
∑

d=1

‖�d‖
⎞

⎠ ‖(v − v′)T˜Y‖2,

where the second inequality is followed by defining˜�d := (Ud�dUT
d +Vd�dVT

d )/2.
HereUd ,Vd and�d are left singular vectors, right singular vectors, and singular values
of �d for all 1 ≤ d ≤ n − 1, respectively. Note that ˜�d are symmetric and positive
semi-definite for all d and hence so are �0 + 2

∑n−1
d=1

˜�d .
Define the following Gaussian process:

Yu,v := √
2‖˜Y‖uT

(

�0 + 2
n−1
∑

d=1

˜�d

)
1
2

g + √
2

(

‖�0‖ + 2
n−1
∑

d=1

‖�d‖
)

1
2

vT˜Yg′,

where g and g′ are independent standard Gaussian random vectors in R
p and R

n ,
respectively. Thus, by previous inequality, we have

E
˜Y(Wu,v − Wu′,v′)2 ≤ E

˜Y(Yu,v − Yu′,v′)2.

Hence, by Slepian–Fernique inequality [27], we have

E
˜Y sup

u,v∈Sp−1
Wu,v

≤ E
˜Y sup

u,v∈Sp−1
Yu,v

= √
2‖˜Y‖ · E sup

u∈Sp−1
uT

(

�0 + 2
n−1
∑

d=1

˜�d

)
1
2

g + √
2

(

‖�0‖ + 2
n−1
∑

d=1

‖�d‖
)

1
2

· E
˜Y sup

v∈Sp−1
vT˜Yg′

≤ √
2‖˜Y‖ · E‖

(

�0 + 2
n−1
∑

d=1

˜�d

)
1
2

g‖ + √
2

(

‖�0‖ + 2
n−1
∑

d=1

‖�d‖
)

1
2

· E
˜Y‖˜Yg′‖

≤ √
2‖˜Y‖ ·

√

√

√

√Tr

(

�0 + 2
n−1
∑

d=1

˜�d

)

+ √
2

(

‖�0‖ + 2
n−1
∑

d=1

‖�d‖
)

1
2

·
√

Tr(˜Y˜YT ).
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Taking expectation with respect to˜Y and using the fact that˜Y is an independent copy
of Y, we obtain

E sup
u,v∈Sp−1

Wu,v ≤ √
2E‖Y‖ ·

√

√

√

√Tr

(

�0 + 2
n−1
∑

d=1

˜�d

)

+ √
2

√

√

√

√‖�0‖ + 2
n−1
∑

d=1

‖�d‖ · √n Tr(�0).

This completes the proof of Lemma 4.7. 
�
Proof of Lemma 4.8 Define Wu,v := uTYv. Then,

E(Wu,v − Wu′,v′ )2 = E(uTYv − u′TYv′)2

≤ 2E((u − u′)TYv)2 + 2E(u′TY(v − v′))2

= 2
∑

i, j

(u − u′)T�|i− j |(u − u′)viv j + 2
∑

i, j

u′T�|i− j |u′(vi − v
′
i )(v j − v

′
j ).

In addition, define

�L :=

⎡

⎢

⎢

⎣

�0 �1 · · · �n−1

�T
1 �0 · · · �n−2

· · · · · · · · · · · ·
�T

n−1 �T
n−2 · · · �0

⎤

⎥

⎥

⎦

, �L,u :=

⎡

⎢

⎢

⎣

uT 0 · · · 0
0 uT · · · 0
· · · · · · · · · · · ·
0 0 · · · uT

⎤

⎥

⎥

⎦

�L

⎡

⎢

⎢

⎣

u 0 · · · 0
0 u · · · 0
· · · · · · · · · · · ·
0 0 · · · u

⎤

⎥

⎥

⎦

,

�◦
u := (uT�0u)1n1Tn , �� := ‖�0‖1n1Tn .

Since �L is a positive semi-definite matrix, we have

�L,u � �◦
u � ��

for all u ∈ S
p−1, where “�” is the Loewner partial order of Hermitian matrices.

Hence,

E(Wu,v − Wu′,v′)2 ≤ 2‖
⎛

⎝�0 + 2
n−1
∑

d=1

˜�d

⎞

⎠

1
2

(u − u′)‖2 + 2‖�0‖(v − v′)T 1n1Tn (v − v′).

Then, define the following Gaussian process:

Yu,v := √
2uT

(

�0 + 2
n−1
∑

d=1

˜�d

)
1
2

g + √
2‖�0‖ 1

2 vT g′,

where g ∈ R
p, g′ ∈ R

n are independent Gaussian random vectors with mean 0 and
covariance matrices Ip and 1n1Tn , respectively. Thus, by previous inequality, we have

E(Wu,v − Wu′,v′)2 ≤ E(Yu,v − Yu′,v′)2.
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Hence, by Slepian–Fernique inequality, we have

E sup
u,v∈Sp−1

Wu,v ≤ E sup
u,v∈Sp−1

Yu,v

= √
2E sup

u∈Sp−1
uT

(

�0 + 2
n−1
∑

d=1

˜�d

)
1
2

g + √
2‖�0‖ 1

2 · E sup
v∈Sp−1

vT g′

≤ √
2E‖

(

�0 + 2
n−1
∑

d=1

˜�d

)
1
2

g‖ + √
2‖�0‖ 1

2 · E‖g′‖

≤ √
2

√

√

√

√Tr

(

�0 + 2
n−1
∑

d=1

˜�d

)

+ √
2‖�0‖ 1

2 · √
n.

This completes the proof of Lemma 4.8. 
�

4.4 Proof of Results in Section 3

Proof of Theorem 3.1 We first examine Assumptions (A1) and (A4) . First of all, we
will study VAR(1) model, i.e., Y t = AY t−1 + Et . Notice that for VAR(1), we could
rewrite the original sequence as a moving-average model, i.e., Y t = ∑∞

j=0 A
j Et− j .

For any u ∈ R
p, we have

‖uTY t‖ψ2 =
∥

∥

∥

∞
∑

j=0

uTA j Et− j

∥

∥

∥

ψ2

≤ C

⎛

⎝

∞
∑

j=0

‖uTA j Et− j‖2ψ2

⎞

⎠

1
2

≤ Cc′
⎛

⎝

∞
∑

j=0

‖uTA j Et− j‖2L(2)

⎞

⎠

1
2

= Cc′‖uTY t‖L(2)

for some universal constantC > 0. Here, the second line and last equality are followed
by the fact that {Et }t∈Z is a sequence of independent random vector and the third line
by the moment assumption on {Et }t∈Z. Since Y t−1 is a stable process when ‖A‖ < 1,
‖uTY t‖ψ2 ≤ Cc′‖uTY t‖L(2) < ∞ for all u ∈ R

p.
Denote Ȳ t := (Y T

t . . .Y T
t−d)

T and Ēt := (ET
t 0T . . . 0T )T . For {Y t }t∈Z generated

from aVAR(d) model, {Ȳ t }t∈Z is a VAR(1) process, i.e., Ȳ t = Ā · Ȳ t−1+ Ēt . Thus, by
previous argument, taking any v ∈ R

p(d+1) where only the first p digits are nonzero
and denoting v′ ∈ R

p to be first-p part of v, we have ‖v′TY t‖ψ2 = ‖vT Ȳ t‖ψ2 ≤
C‖vT Ȳ t‖L(2) = C‖v′T Ȳ t‖L(2) < ∞ for some constant C > 0 only depending on
c′ where the last inequality is followed by the fact that {Y t } is a stable process (see
Lemma 4.10). Assumptions (A1) and (A4) are verified.
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Then, we examine Assumption (A2). Without loss of generality, take j = 0 in
Assumption (A2). Let {˜Y t }0t=1−d be a sequence of random vectors independent of
{Y t }t≤0 and identically distributed as {Y t }0t=1−d . Define ˜Y t = A1˜Y t−1 + · · · +
Ad˜Y t−d + Et for every t > 0. It is obvious that {˜Y t }t>0 is independent of {˜Y t }t≤0
and identically distributed as {Y t }t>0. Moreover, for any t ≥ 1, we have

‖‖Y t −˜Y t‖2‖L(1+ε) = {E‖A1Y t−1 + · · · + AdY t−d + Et

− (A1˜Y t−1 + · · · + Ad˜Y t−d + Et )‖1+ε
2 } 1

1+ε

≤ {E‖A1(Y t−1 −˜Y t−1) + · · · + Ad(Y t−d −˜Y t−d)‖1+ε
2 } 1

1+ε

≤
d
∑

k=1

ak{E‖Y t−k −˜Y t−k‖1+ε
2 } 1

1+ε ,

where the third line is followed by ‖ · ‖L(1+ε) is a norm for ε > 0. Denoting φt =
‖‖Y t − ˜Y t‖2‖L(1+ε), we have φt ≤ ∑d

k=1 akφt−k . Let v be the unit vector with 1 at
first position and 0 elsewhere. Then, by iteration, we have

vT (φt , . . . , φt−d+1)
T ≤ vT Āt (φ0, . . . , φ1−d)

T ≤ ‖Āt‖‖(φ0, . . . , φ1−d)
T ‖2.

Note that φt = Cκ∗ for t ≤ 0 by Assumption (A1) for some constant C > 0 only
depending on ε. By the following lemma which provides sufficient and necessary
conditions for matrix Ā to have spectral radius strictly less than 1, we could choose
some arbitrary ρ1 such that ρ(Ā) < ρ1 < 1. 
�
Lemma 4.10 For Ā defined above, ρ(Ā) < 1 if and only if

∑d
k=1 ak < 1, where ρ(Ā)

is the spectral radius of Ā.

Proof of Lemma 4.10 The result is well known and here we include a proof merely for
completeness. First of all, we prove the sufficient condition. A key observation is that
the characteristic equation det(Ā − λId) = 0 for matrix Ā is

f (λ) = λd − a1λ
d−1 − · · · − ad−1λ

1 − ad = 0.

Assume
∑d

j=1 a j ≥ 1. We obtain f (1) = 1 − ∑d
j=1 a j ≤ 0 and f (∞) = ∞. By

continuity of f (λ), there exists at least one root whose modulus is greater than or
equal to 1. This contradicts with the fact that ρ(Ā) is strictly less than 1.

Secondly, we prove the necessary condition. Suppose there exists a root z ∈ C (the
set of complex numbers) of f (λ) such that |z| ≥ 1. Here |z| is the modulus of z. Then

|z|d = |a1zd−1 + · · · + ad−1z
1 + ad | ≤ a1|z|d−1 + · · · + ad−1|z|1 + ad .

Since |z| ≥ 1, we have |z|k ≤ |z|d for 0 ≤ k ≤ d−1. Hence, |z|d ≤ (a1+· · ·+ad)|z|d
implies a1 + · · · + ad ≥ 1. This contradicts the fact that

∑d
j=1 a j is strictly less than

1. This completes the proof. 
�
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By Gelfand’s formula, there exists a K > 0, such that for all t ≥ K , ‖Āt‖ < ρt
1.

For t < K , we have

φt ≤ 2dκ∗
(‖Ā‖

ρ1

)K

ρt
1.

For t ≥ K , we have φt ≤ Cdκ∗ρt
1 for some constant C > 0 only depending on ε.

Taking γ1 = Cd(κ∗/κ1)(‖Ā‖/ρ1)K for some constant C > 0 only depending on ε

and γ2 = log(ρ−1
1 ) verifies Assumption (A2).

Lastly, we verify Assumption (A3). Following the same construction as in verifying
Assumption (A2), we have for any u ∈ S

p−1,

‖(Y t −˜Y t )
T u‖L(1+ε)

= (E|{A1Y t−1 + · · · + AdY t−d + Et − (A1˜Y t−1 + · · · + Ad˜Y t−d + Et )}T u|1+ε)
1

1+ε

≤ (E|{A1Y t−1 + · · · + AdY t−d − (A1˜Y t−1 + · · · + Ad˜Y t−d )}T u|1+ε)
1

1+ε

≤
d
∑

k=1

ak{E|(Y t−k −˜Y t−k)
T uk |1+ε} 1

1+ε ,

for uk := Aku/‖Aku‖2, k ∈ {1, . . . , d}. The result follows as we follow the same
arguments to verify Assumption (A2). This completes the proof of Theorem 3.1. 
�
Proof of Theorem 3.2 First of all, we verify Assumptions (A1) and (A4) . It is triv-
ial that Assumptions (A1) and (A4) are satisfied if Wt = 0 almost surely for
all t ∈ Z. If Wt �= 0 almost surely, then for all u ∈ R

p, ‖uTY t‖ψ2 ≤
‖Wt‖L(∞)‖uT Et‖ψ2 ≤ c′κW‖uT Et‖L(2) ≤ c′ κW

inf t∈Z ‖Wt‖L(2)
‖uTY t‖L(2) < ∞. This

verifies Assumptions (A1) and (A4) .
For Assumption (A2), without loss of generality, take j = 0. Since {Wt }t∈Z is

a sequence of uniformly bounded τ -mixing random variables, we may find {˜Wt }t>0
which is independent of {Wt }t≤0, identically distributed as {Wt }t>0, and for any t ≥ 1,

E|˜Wt − Wt | ≤ κWγ5 exp{−γ6(t − 1)}.

Define ˜Y t := ˜Wt Et for all t ≥ 1. It is obvious that {˜Y t }t>0 is independent of {Y t }t≤0
and identically distributed as {Y t }t>0. Moreover, for any integer t ≥ 1,

‖‖Y t −˜Y t‖2‖L(1+ε) ≤ (E‖Wt Et − ˜Wt Et‖1+ε
2 )

1
1+ε

≤ (E|Wt − ˜Wt | · |Wt − ˜Wt |1+ε)1+ε(E‖Et‖1+ε
2 )

1
1+ε

≤ Cκ ′∗κWγ
1

1+ε

5 exp
{

− 1

1 + ε
γ6(t − 1)

}

for some constant C > 0 only depending on ε. Taking γ1 = Cκ ′∗κWγ
1

1+ε

5 /κ1 and
γ2 = 1

1+ε
γ6 verifies Assumption (A2).
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For Assumption (A3), without loss of generality, take j = 0. Let {˜Y t }t>0 be the
same construction as above. For any integer t ≥ 1,

sup
u∈Sp−1

‖(Y t −˜Y t )
T u‖L(1+ε) = sup

u∈Sp−1
{E|(Wt Et − ˜Wt Et )

T u|1+ε} 1
1+ε

= (E|Wt − ˜Wt |1+ε)
1

1+ε sup
u∈Sp−1

(E|ET
t u|1+ε)

1
1+ε

≤ Cκ ′
1κWγ

1
ε

5 exp
{

− 1

1 + ε
γ6(t − 1)

}

for some constant C > 0 only depending on ε. Taking γ3 = Cκ ′
1κWγ

1
1+ε

5 /κ1 and
γ4 = 1

1+ε
γ6 verifies Assumption (A2). This completes the proof of Theorem 3.2. 
�

Proof of Theorem 3.3 We first verify Assumptions (A2) and (A3) . Without loss of
generality, take j = 0 in Assumption (A2). Let˜Y0 be a random vector independent of
{Y t }t≤0 and identically distributed as Y0. Define˜Y t = A˜Y t−1+H(˜Y t−1)Et for every
t ≥ 1. It is obvious that {˜Y t }t>0 is independent of {Y t }t≤0 and identically distributed
as {Y t }t>0. We obtain for any t ≥ 1,

‖‖Y t −˜Y t‖2‖L(1+ε) = [E‖AY t−1 + H(Y t−1)Et − {A˜Y t−1 + H(˜Y t−1)Et }‖1+ε
2 ] 1

1+ε

≤ [E‖AY t−1 − A˜Y t−1 + {H(Y t−1) − H(˜Y t−1)}Et‖1+ε
2 ] 1

1+ε

≤ (a1 + a2)‖‖Y t−1 −˜Y t−1‖2‖L(1+ε).

By iteration, we obtain

‖‖Y t −˜Y t‖2‖L(1+ε) ≤ (a1 + a2)
t (E‖Y0 −˜Y0‖1+ε

2 )
1

1+ε ≤ Cκ∗(a1 + a2)
t

for some constant C > 0 only depending on ε. Taking γ1 = Cκ∗/κ1 and γ2 =
− log(a1 + a2) verifies Assumption (A2).

For Assumption (A3), following the construction above, we have for any u ∈ S
p−1

and t ≥ 1,

‖(Y t −˜Y t )
T u‖L(1+ε) = [E|{AY t−1 + H(Y t−1)Et − (A˜Y t−1 + H(˜Y t−1)Et )}T u|1+ε ] 1

1+ε

≤ [E|{AY t−1 − A˜Y t−1 + (H(Y t−1) − H(Y t−1))Et }T u|1+ε ] 1
1+ε

≤ a1‖(Y t−1 −˜Y t−1)
T v‖L(1+ε) + a2

κ ′
1

κ ′∗
‖‖Y t−1 −˜Y t−1‖2‖L(1+ε),

where v := Au/‖Au‖2 ∈ S
p−1. By iteration, we obtain

‖(Y t −˜Y t )
T u‖L(1+ε) ≤ C

{

κ1a
t
1 + 2κ∗

κ ′
1

κ ′∗
a2

t−1
∑

�=0

a�
1(a1 + a2)

t−1−�

}
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≤ C(a1 + a2)
t max

(

κ∗
κ ′
1

κ ′∗
, κ1

)

for some constant C > 0 only depending on ε. Taking γ3 = C max(
κ∗κ ′

1
κ1κ ′∗

, 1) and
γ4 = − log(a1 + a2) verifies Assumption (A3).

By further assuming that {Y t } is a stationary process and H(·) is uniformly bounded,
we have that for all t ∈ Z, supu∈Sp−1 ‖uTY t‖ψ2 ≤ ‖A‖ supu∈Sp−1 ‖uTY t−1‖ψ2 +
D2 supv∈Sp−1 ‖vT Et‖. By stationarity, this renders κ1 = supu∈Sp−1 ‖uTY t‖ψ2 ≤

1
1−‖A‖ D2κ

′
1 < ∞. Similar argument applies to κ∗. This verifies Assumption (A1)

under additional assumptions and completes the proof of Theorem 3.3. 
�

Appendix

A Proof of Theorem 4.3

In this “Appendix,” we present the proof of Theorem 4.3, which slightly extends the
Bernstein-type inequality proven by Banna et al. [3] in which the random matrix
sequence is assumed to be β-mixing. The proof is largely identical to theirs, and we
include it here mainly for completeness.

In the following, τk is abbreviation of τ(k) for k ≥ 1. If a matrix X is positive
semi-definite, denote it as X � 0. For any x > 0, we define h(x) = x−2(ex − x − 1).
Denote the floor, ceiling, and integer parts of a real number x by �x�, �x�, and [x].
For any two real numbers a, b, denote a ∨ b := max{a, b}. Denote the exponential
of matrix X as exp(X) = Ip + ∑∞

q=1X
q/q!. Letting σ1 and σ2 be two sigma fields,

denote σ1 ∨ σ2 to be the smallest sigma field that contains σ1 and σ2 as sub-sigma
fields.

A roadmap of this “Appendix” is as follows. Section A.1 formally introduces the
concept of τ -mixing coefficient. Section A.2 previews the proof of Theorem 4.3 and
indicates some major differences from the proofs in [3]. Section A.3 contains the
construction of Cantor-like set which is essential for decoupling dependent matrices.
Section A.4 develops a major decoupling lemma for τ -mixing random matrices and
will be used in Sect. A.6 to prove Lemma A.4. Then Sect. A.5 finishes the proof of
Theorem 4.3.

A.1 Introduction to �-Mixing Random Sequence

This section introduces the τ -mixing coefficient. Consider (�,F ,P) to be a prob-
ability space, X an L1-integrable random variable taking value in a Polish space
(X , ‖ · ‖X ), and A a sigma algebra of F . The τ -measure of dependence between X
and A is defined to be

τ(A, X; ‖ · ‖X ) =
∥

∥

∥ sup
g∈�(‖·‖X )

{

∫

g(x)PX |A(dx) −
∫

g(x)PX (dx)
}∥

∥

∥

L(1)
,
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where PX is the distribution of X , PX |A is the conditional distribution of X given A,
and �(‖ · ‖X ) stands for the set of 1-Lipschitz functions from X to R with respect to
the norm ‖ · ‖X .

The following two lemmas from [13] and [12] characterize the intrinsic “coupling
property” of τ -measure of dependence, which will be heavily exploited in the deriva-
tion of our results.

Lemma A.1 (Lemma 3 in [13]) Let (�,F ,P) be a probability space, X be an inte-
grable random variable with values in a Banach space (X , ‖ · ‖X ) and A a sigma
algebra of F . If Y is a random variable distributed as X and independent of A,
then

τ(A, X; ‖ · ‖X ) ≤ E‖X − Y‖X .

Lemma A.2 (Lemma 5.3 in [12]) Let (�,F ,P) be a probability space, A be a sigma
algebra of F , and X be a random variable with values in a Polish space (X , ‖ · ‖X ).
Assume that

∫ ‖x − x0‖XPX (dx) is finite for any x0 ∈ X . Assume that there exists
a random variable U uniformly distributed over [0, 1], independent of the sigma
algebra generated by X and A. Then, there exists a random variable ˜X, measurable
with respect to A ∨ σ(X) ∨ σ(U ), independent of A and distributed as X, such that

τ(A, X; ‖ · ‖X ) = E‖X − ˜X‖X .

Let {X j } j∈J be a set ofX -valued randomvariableswith index set J of finite cardinality.
Then, define

τ(A, {X j ∈ X } j∈J ; ‖ · ‖X ) =
∥

∥

∥ sup
g∈�(‖·‖′

X )

{

∫

g(x)P{X j } j∈J |A(dx) −
∫

g(x)P{X j } j∈J (dx)
}∥

∥

∥

L(1)
,

whereP{X j } j∈J is the distribution of {X j } j∈J ,P{X j } j∈J |A is the conditional distribution
of {X j } j∈J given A, and �(‖ · ‖′

X ) stands for the set of 1-Lipschitz functions from
X × · · · × X
︸ ︷︷ ︸

card(J )

to R with respect to the norm ‖x‖′
X := ∑

j∈J ‖x j‖X induced by ‖ · ‖X

for any x = (x1, . . . , xJ ) ∈ X card(J ).
Using these concepts, for a sequence of temporally dependent data {Xt }t∈Z, we are

ready to define measure of temporal correlation strength as follows,

τ(k; {Xt }t∈Z, ‖ · ‖X )

:= sup
i>0

max
1≤�≤i

1

�
sup{τ {σ(Xa−∞), {X j1 , . . . , X j�}; ‖ · ‖X }, a + k ≤ j1 < · · · < j�},

where the inner supremum is taken over all a ∈ Z and all �-tuples ( j1, . . . , j�). {Xt }t∈Z
is said to be τ -mixing if τ(k; {Xt }t∈Z, ‖ · ‖X ) converges to zero as k → ∞. In [12],
the authors gave numerous examples of random sequences that are τ -mixing.
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A.2 Overview of Proof of Theorem 4.3

The proof of Theorem 4.3 follows largely the proof of Theorem 1 in [3]. Section A.3
reviews the Cantor-like set construction developed and used in [22] and [3]. Lemma
A.3 is a slight extension of Lemma 8 in [3]. The major difference is that the 0–1 func-
tion used to quantify the distance between two random matrices under β-mixing by
Berbee’s decoupling lemma [4] is replaced by an absolute distance function, which is
used under τ -mixing by Lemma A.1 [13]. Proofs of Lemma A.4 and the rest of Theo-
rem 4.3 follow largely the proofs of Proposition 7 and Theorem 1 in [3] respectively,
though with more algebras involved.

A.3 Construction of Cantor-Like Set

We follow [3] to construct the Cantor-like set KB for {1, . . . , B}. Let δ = log 2
2 log B and

�B = sup{k ∈ Z
+ : Bδ(1−δ)k−1

2k
≥ 2}. We abbreviate � := �B . Let n0 = B and for

j ∈ {1, . . . , �},

n j =
⌈ B(1 − δ) j

2 j

⌉

and d j−1 = n j−1 − 2n j .

We start from the set {1, . . . , B} and divide the set into three disjoint subsets I 11 , J 10 , I 21
so that card(I 11 ) = card(I 21 ) = n1 and card(J 10 ) = d0. Specifically,

I 11 = {1, . . . , n1}, J 10 = {n1 + 1, . . . , n1 + d0}, I 21 = {n1 + d0 + 1, . . . , 2n1 + d0},

where B = 2n1 + d0. Then, we divide I 11 , I 21 with J 10 unchanged. I 11 is divided into
three disjoint subsets I 12 , J 11 , I 22 in the same way as the previous step with card(I 12 ) =
card(I 22 ) = n2 and card(J 11 ) = d1. We obtain

I 12 = {1, . . . , n2}, J 11 = {n2 + 1, . . . , n2 + d1}, I 22 = {n2 + d1 + 1, . . . , 2n2 + d1},

where n1 = 2n2 + d1. Similarly, I 21 is divided into I 32 , J 21 , I 42 with card(I 32 ) =
card(I 42 ) = n2 and card(J 21 ) = d1. We obtain

I 32 = {2n2 + d0 + d1 + 1, . . . , 3n2 + d0 + d1}, J 21 = {3n2 + d0 + d1 + 1, . . . , 3n2 + d0 + 2d1},
I 42 = {3n2 + d0 + 2d1 + 1, . . . , 4n2 + d0 + 2d1},

where B = 4n2 + d0 + 2d1.
Suppose we iterate this process for k times (k ∈ {1, . . . , �}) with intervals I ik , i ∈

{1, . . . , 2k}. For each I ik , we divide it into three disjoint subsets I 2i−1
k+1 , J ik , I

2i
k+1 so

that card(I 2i−1
k+1 ) = card(I 2ik+1) = nk+1 and card(J ik ) = dk . More specifically, if

I ik = {aik, . . . , bik}, then
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I 2i−1
k+1 = {aik, . . . , aik + nk+1 − 1}, J ik = {aik + nk+1, . . . , a

i
k + nk+1 + dk − 1},

I 2ik+1 = {aik + nk+1 + dk, . . . , a
i
k + 2nk+1 + dk − 1}.

After � steps, we obtain 2� disjoint subsets I i�, i ∈ {1, . . . , 2�} with card(I i�) = n�.
Then, the Cantor-like set is defined as

KB =
2�
⋃

i=1

I i�,

and for each level k ∈ {0, . . . , �} and each j ∈ {1, . . . , 2k}, define

K j
k =

j2�−k
⋃

i=( j−1)2�−k+1

I i�.

Some properties derived from this construction are given by Banna et al. [3]:

1. δ ≤ 1
2 and � ≤ log B

log 2 ;

2. d j ≥ Bδ(1−δ) j

2 j+1 and n� ≤ B(1−δ)�

2�−1 ;

3. Each I i�, i ∈ {1, . . . , 2�} contains n� consecutive integers, and for any i ∈
{1, . . . , 2�−1}, I 2i−1

� and I 2i� are spaced by d�−1 integers;
4. card(KB) ≥ B

2 ;

5. For each k ∈ {0, . . . , �} and each j ∈ {1, . . . , 2k}, card(K j
k ) = 2�−kn�. For each

j ∈ {1, . . . , 2k−1}, K 2 j−1
k and K 2 j

k are spaced by dk−1 integers;

6. K 1
0 = KB and K j

� = I j� for j ∈ {1, . . . , 2�}.

A.4 A Decoupling Lemma for �-Mixing RandomMatrices

This section introduces the key tool to decouple τ -mixing random matrices using
Cantor-like set constructed in Sect. A.3. With some abuse of notation, within this sec-
tion let’s use {X j } j∈{1,...,n} to denote a generic sequence of p × p symmetric random
matrices. Assume E(X j ) = 0 and ‖X j‖ ≤ M for some positive constant M and for
all j ≥ 1. For a collection of index sets Hk

1 , k ∈ {1, . . . , d}, we assume that their car-
dinalities are equal and even. Denote {X j } j∈Hk

1
to be the set of matrices whose indices

are in Hk
1 . Assume {X j } j∈H1

1
, . . . , {X j } j∈Hd

1
are mutually independent, while within

each block Hk
1 the matrices are possibly dependent. For each k, decompose Hk

1 into
two disjoint sets H2k−1

2 and H2k
2 with equal size, containing the first and second half

of Hk
1 , respectively. In addition, we denote τ0 := τ {σ({X j } j∈H2k−1

2
), {X j } j∈H2k

2
; ‖·‖}

for some constant τ0 ≥ 0 and for all k ∈ {1, . . . , d}. For a given ε > 0, we achieve
the following decoupling lemma.
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Lemma A.3 We obtain for any ε > 0,

E Tr exp

⎛

⎜

⎝t
d
∑

k=1

∑

j∈Hk
1

X j

⎞

⎟

⎠

≤
d
∑

i=0

(

d

i

)

(1 + L1 + L2)
d−i (L1)

i
E Tr exp

⎧

⎪

⎨

⎪

⎩

(−1)i t

⎛

⎜

⎝

2d
∑

k=1

∑

j∈Hk
2

˜X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

,

E Tr exp

⎛

⎜

⎝−t
d
∑

k=1

∑

j∈Hk
1

X j

⎞

⎟

⎠

≤
d
∑

i=0

(

d

i

)

(1 + L1 + L2)
d−i (L1)

i
E Tr exp

⎧

⎪

⎨

⎪

⎩

(−1)i+1t

⎛

⎜

⎝

2d
∑

k=1

∑

j∈Hk
2

˜X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

,

where

L1 := ptε exp(tε), L2 := exp{card(H1
1 )tM}τ0/ε,

and {˜X j } j∈Hk
2
, k ∈ {1, . . . , 2d}, are mutually independent and have the same distri-

butions as {X j } j∈Hk
2
, k ∈ {1, . . . , 2d}.

Proof We prove this lemma by induction. For any k ∈ {1, . . . , d}, we have Hk
1 =

H2k−1
2 ∪ H2k

2 and hence
∑

j∈Hk
1
X j = ∑

j∈H2k−1
2

X j + ∑

j∈H2k
2
X j .

By Lemma A.2, for each k ∈ {1, . . . , d}, we could find a sequence of random
matrices {˜X j } j∈H2k

2
and an independent uniformly distributed random variable Uk on

[0, 1] such that

1. {˜X j } j∈H2k
2

is measurable with respect to the sigma field σ({X j } j∈H2k−1
2

) ∨
σ({X j } j∈H2k

2
) ∨ σ(Uk);

2. {˜X j } j∈H2k
2

is independent of σ({X j } j∈H2k−1
2

);

3. {˜X j } j∈H2k
2

has the same distribution as {X j } j∈H2k
2
;

4. P(‖∑ j∈H2k
2
X j − ∑

j∈H2k
2
˜X j‖> εk) ≤ E(‖∑ j∈H2k

2
X j − ∑

j∈H2k
2
˜X j‖)/εk ≤

τ0/εk by Markov’s inequality and the fact that τ0 = ∑

j∈H2k
2
E(‖X j −˜X j‖).

To make notation easier to follow, we set equal value to εk for k ∈ {1, . . . , d} and
denote it as ε. Moreover, we denote the event �k = {‖∑ j∈H2k

2
˜X j −∑

j∈H2k
2
X j‖≤ ε}

for k ∈ {1, . . . , d}.
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For the base case, k = 1.

E Tr exp

⎛

⎜

⎝t
d
∑

k=1

∑

j∈Hk
1

X j

⎞

⎟

⎠= E

⎧

⎪

⎨

⎪

⎩

1�1 Tr exp

⎛

⎜

⎝t
d
∑

k=1

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

︸ ︷︷ ︸

I

+E

⎧

⎪

⎨

⎪

⎩

1(�1)c Tr exp

⎛

⎜

⎝t
d
∑

k=1

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

︸ ︷︷ ︸

I I

.

Notice the definitions of terms I and I I therein.
We have

I = E

⎡

⎢

⎣1�1 Tr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎦

≤ ETr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

+ E

⎛

⎜

⎝1�1

⎡

⎢

⎣Tr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

−Tr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎦

⎞

⎟

⎠ .

By linearity of expectation and the facts that Tr(X) ≤ p‖X‖ and ‖exp(X)−exp(Y)‖ ≤
‖X − Y‖ exp(‖X − Y‖) exp(‖Y‖), we obtain

E

⎛

⎜

⎝1�1

⎡

⎢

⎣Tr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

−Tr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎦

⎞

⎟

⎠

≤ E

⎡

⎢

⎣1�1 p

∥

∥

∥

∥

∥

∥

∥

exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

− exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

∥

∥

∥

∥

∥

∥

∥

⎤

⎥

⎦
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≤ E

⎡

⎢

⎣1�1 p

∥

∥

∥

∥

∥

∥

∥

t
∑

j∈H2
2

(X j −˜X j )

∥

∥

∥

∥

∥

∥

∥

exp

⎧

⎪

⎨

⎪

⎩

∥

∥

∥

∥

∥

∥

∥

t
∑

j∈H2
2

(X j −˜X j )

∥

∥

∥

∥

∥

∥

∥

⎫

⎪

⎬

⎪

⎭

exp

⎧

⎪

⎨

⎪

⎩

∥

∥

∥

∥

∥

∥

∥

t

⎛

⎜

⎝

∑

j∈H1
2

X j

+
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

∥

∥

∥

∥

∥

∥

∥

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎦ .

By spectral mapping theorem, for a symmetric matrix X with ‖X‖ ≤ M , we
have exp(‖X‖) ≤ ‖exp(X)‖ ∨ ‖exp(−X)‖ ≤ ‖exp(X)‖ + ‖exp(−X)‖. Moreover,
since exp(X) is always positive definite for any matrix X and ‖X‖ ≤ Tr(X) for
any positive definite symmetric matrix X, we obtain ‖exp(X)‖ ≤ Tr exp(X) and
‖exp(−X)‖ ≤ Tr exp(−X). In addition, since we have ‖∑ j∈H2

2
(X j − ˜X j )‖ ≤ ε on

�1, we could further bound the inequality above by

E

⎡

⎢

⎣1�1 ptε exp(tε)

∥

∥

∥

∥

∥

∥

∥

exp

⎧

⎪

⎨

⎪

⎩

t
(
∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

)

⎫

⎪

⎬

⎪

⎭

∥

∥

∥

∥

∥

∥

∥

⎤

⎥

⎦

≤ ptε exp(tε)

⎡

⎢

⎣ETr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

+ETr exp

⎧

⎪

⎨

⎪

⎩

−t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎦ .

Putting together, we reach

I ≤{1 + ptε exp(tε)}ETr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

+ ptε exp(tε)ETr exp

⎧

⎪

⎨

⎪

⎩

−t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

. (A.1)

We then aim at I I . For this, the proof largely follows the same argument as in [3].
Omitting the details, we obtain

I I ≤ exp{card(H1
1 )tM}(τ0/ε)ETr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H2
1

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈H1
k

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

(A.2)
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Denote L1 := ptε exp(tε) and L2 := exp{card(H1
1 )tM}τ0/ε. Combining (A.1)

and (A.2) yields

ETr exp

⎛

⎜

⎝t
d
∑

k=1

∑

j∈Hk
1

X j

⎞

⎟

⎠

≤ (1 + L1 + L2)ETr exp

⎧

⎪

⎨

⎪

⎩

t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

+ L1ETr exp

⎧

⎪

⎨

⎪

⎩

−t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

=
1
∑

i=0

(

1

i

)

(1 + L1 + L2)
1−i (L1)

i
ETr exp

⎧

⎪

⎨

⎪

⎩

(−1)i t

⎛

⎜

⎝

∑

j∈H1
2

X j +
∑

j∈H2
2

˜X j +
d
∑

k=2

∑

j∈Hk
1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

This finishes the base case.
The induction steps are followed similarly and we omit the details. By iterating d

times, we arrive at the following inequality:

ETr exp

⎛

⎜

⎝
t

d
∑

k=1

∑

j∈Hk
1

X j

⎞

⎟

⎠

≤
d
∑

i=0

(

d

i

)

(1 + L1 + L2)
d−i (L1)

i
ETr exp

⎧

⎪

⎨

⎪

⎩

(−1)i t

⎛

⎜

⎝

d
∑

k=1

∑

j∈H2k−1
2

X j +
d
∑

k=1

∑

j∈H2k
2

˜X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

,

(A.3)

where {X j } j∈H2k−1
2

, k ∈ {1, . . . , d} and {˜X j } j∈H2k
2

, k ∈ {1, . . . , d} aremutually inde-

pendent. In addition, they have the same distributions as {X j } j∈H2k−1
2

, k ∈ {1, . . . , d}
and {X j } j∈H2k

2
, k ∈ {1, . . . , d}, respectively. For the sake of simplicity and clar-

ity, we add an upper tilde to the matrices with indices in H2k−1
2 , k ∈ {1, . . . , d}, i.e.,

{˜X j } j∈H2k−1
2

is identically distributed as {X j } j∈H2k−1
2

for k ∈ {1, . . . , d}. Hence, (A.3)
could be rewritten as

ETr exp

⎛

⎜

⎝t
d
∑

k=1

∑

j∈Hk
1

X j

⎞

⎟

⎠ ≤
d
∑

i=0

(

d

i

)

(1 + L1 + L2)
d−i (L1)

i
ETr exp

⎧

⎪

⎨

⎪

⎩

(−1)i t

⎛

⎜

⎝

2d
∑

k=1

∑

j∈Hk
2

˜X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

,

where {˜X j } j∈Hk
2
, k ∈ {1, . . . , 2d} are mutually independent and their distributions

are the same as {X j } j∈Hk
2
, k ∈ {1, . . . , 2d}.
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By changing X to −X, we immediately get the following bound:

ETr exp

⎛

⎜

⎝−t
d
∑
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∑

j∈Hk
1

X j

⎞

⎟

⎠

≤
d
∑

i=0

(

d

i

)

(1 + L1 + L2)
d−i (L1)

i
ETr exp

⎧

⎪

⎨

⎪

⎩

(−1)i+1t

⎛

⎜

⎝

2d
∑

k=1

∑

j∈Hk
2

˜X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

This completes the proof of Lemma A.3. 
�

A.5 Proof of Theorem 4.3

Proof Without loss of generality, let ψ1 = ˜ψ1.
Case I First of all, we consider M = 1.
Step I (Summation decomposition) Let B0 = n and U(0)

j = X j for j ∈ {1, . . . , n}.
Let KB0 be the Cantor-like set from {1, . . . , B0} by construction of Sect. A.3, Kc

B0
=

{1, . . . , B0} \ KB0 , and B1 = card(Kc
B0

). Then, define

U(1)
j = Xi j , where i j ∈ Kc

B0 = {i1, . . . , iB1}.

For each i ≥ 1, let KBi be constructed from {1, . . . , Bi } by the same Cantor-like set
construction. Denote Kc

Bi
= {1, . . . , Bi } \ KBi and Bi+1 = card(Kc

Bi
). Then

U(i+1)
j = U(i)

k j
, where k j ∈ Kc

Bi = {k1, . . . , kBi+1}.

We stop the process when there is a smallest L such that BL ≤ 2. Then, we have for
i ≤ L − 1, Bi ≤ n2−i because each Cantor-like set KBi+1 has cardinality greater than
Bi/2. Also notice that L ≤ [log n/ log 2].

For i ∈ {0, . . . , L − 1}, denote

Si =
∑

j∈KBi

U(i)
j and SL =

∑

j∈KBcL−1

U(L)
j .

Then, we observe

n
∑

j=1

X j =
L
∑

i=0

Si .

Step II (Bounding Laplacian transform) This step hinges on the following
lemma, which provides an upper bound for the Laplace transform of sum of a
sequence of random matrices which are τ -mixing with geometric decay, i.e., τ(k) ≤
ψ1 exp{−ψ2(k − 1)} for all k ≥ 1 for some constants ψ1, ψ2 > 0. 
�
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Lemma A.4 (Proof in Sect. A.6)For a sequence of p× p matrices {Xi }, i ∈ {1, . . . , B}
satisfying conditions in Theorem 4.3 with M = 1 and ψ1 ≥ p−1, there exists a subset
KB ⊆ {1, . . . , B} such that for 0 < t ≤ min{1, ψ2

8 log(ψ1B6 p)
},

logE Tr exp

(

t
∑

j∈KB

X j

)

≤ log p + 4h(4)Bt2ν2

+ 151
[

1 + exp
{ 1√

p
exp

(

− ψ2

64t

)}] t2

ψ2
exp

(

− ψ2

64t

)

.

For each Si , i ∈ {0, . . . , L − 1}, by applying Lemma A.4 with B = Bi , we have
for any positive t satisfying 0 < t ≤ min{1, ψ2

8 log{ψ1(n2−i )6 p} },

logETr exp(tSi ) ≤ log p + t2(C12
−i n + C2,i ),

where C1 := 4h(4)ν2,C2,i := 302 · 2 6i
8 /ψ2n

6
8 .

Denote

˜f (ψ1, ψ2, i) := min
{

1,
ψ2

8 log{ψ1(n2−i )6 p}
}

.

For any 0 < t ≤ ˜f (ψ1, ψ2, i), we obtain

logETr exp(tSi ) ≤ log p + t2(C12−i n + C2,i )

1 − t/˜f (ψ1, ψ2, i)
≤ log p + t2{C

1
2
1 (2−i n)

1
2 + C

1
2
2,i }2

1 − t/˜f (ψ1, ψ2, i)
.

For SL , since BL ≤ 2, for 0 < t ≤ 1,

logETr exp(tSL) ≤ log p + t2h(2t)λmax{E(S2L)} ≤ log p + 2t2ν2

1 − t
.

Denote σi := C
1
2
1 (2−i n)

1
2 + C

1
2
2,i , σL := √

2ν, κi := 1/˜f (ψ1, ψ2, i), and κL :=
1.

Summing up, we have

L
∑

i=0

σi =
L−1
∑

i=0

{C
1
2
1 (2−i n)

1
2 + C

1
2
2,i } + √

2ν ≤ 15
√
nν + 60

√

1/ψ2,

L
∑

i=0

κi ≤ log n

log 2
max

{

1,
8 log(ψ1n6 p)

ψ2

}

:= ˜ψ(ψ1, ψ2, n, p).
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Hence, by Lemma 3 in [22], for 0 < t ≤ {˜ψ(ψ1, ψ2, n, p)}−1, we have

logETr exp

⎛

⎝t
n
∑

j=1

X j

⎞

⎠ ≤ log p + t2
(

15
√
nν + 60

√
1/ψ2

)2

1 − t˜ψ(ψ1, ψ2, n, p)
.

Step III (Matrix Chernoff bound) Lastly by matrix Chernoff bound, we obtain

P

⎧

⎨

⎩

λmax

⎛

⎝

n
∑

j=1

X j

⎞

⎠ ≥ x

⎫

⎬

⎭

≤ p exp

{

− x2

8(152nν2 + 602/ψ2) + 2x˜ψ(ψ1, ψ2, n, p)

}

.

Case II We consider general M > 0. It is obvious that if {Xt }t∈Z is a sequence
of τ -mixing random matrices such that τ(k; {Xt }t∈Z, ‖ · ‖) ≤ Mψ1 exp{−ψ2(k −
1)}, then {Xi/M}i∈Z is also a sequence of τ -mixing random matrices such that
τ(k; {Xt/M}t∈Z, ‖ · ‖) ≤ ψ1 exp{−ψ2(k − 1)} and ‖Xt/M‖ ≤ 1. Then applying
the result of Case I to {Xi/M}i∈Z, we obtain

P

⎧

⎨

⎩

λmax

⎛

⎝

n
∑

j=1

X j/M

⎞

⎠ ≥ x

⎫

⎬

⎭

≤ p exp

{

− x2

8(152nν2M + 602/ψ2) + 2x˜ψ(ψ1, ψ2, n, p)

}

,

where ν2M := supK⊆{1,...,n} 1
card(K )

λmax

{

E

(

∑

i∈K Xi/M

)2}

= ν2/M2 for ν2

defined in Theorem 4.3. Thus,

P

⎧

⎨

⎩

λmax

⎛

⎝

n
∑

j=1

X j

⎞

⎠ ≥ x

⎫

⎬

⎭

≤ p exp

{

− x2

8(152nν2 + 602M2/ψ2) + 2xM˜ψ(ψ1, ψ2, n, p)

}

.

This completes the proof of Theorem 4.3. 
�

A.6 The Proof of Lemma A.4

Proof Let KB be constructed as in Sect. A.3 for any arbitrary B ≥ 2 and M = 1.

Case I If 0 < t ≤ 4/B, by Lemma 4 in [3], we have

ETr exp

⎛

⎝t
∑

i∈KB

Xi

⎞

⎠ ≤ p exp

⎡

⎢

⎣t2h

⎧

⎨

⎩

tλmax

⎛

⎝

∑

i∈KB

Xi

⎞

⎠

⎫

⎬

⎭

λmax

⎧

⎪

⎨

⎪

⎩

E

⎛

⎝

∑

i∈KB

Xi

⎞

⎠

2
⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎦ .

By Weyl’s inequality, λmax(
∑

i∈KB
Xi ) ≤ B since card(KB) ≤ B, and by definition

of ν2 in Theorem 4.3, we have λmax{E(
∑

i∈KB
Xi )

2} ≤ Bν2. Therefore, we obtain
h{tλmax(

∑

i∈KB
Xi )} ≤ h(t B) ≤ h(4) and
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ETr exp
(

t
∑

i∈KB

Xi

)

≤ p exp{t2h(4)Bν2}. (A.4)

Case II Now we consider the case where 4/B < t ≤ min{1, ψ2
8 log(ψ1B6 p)

}.
Step I Let J be a chosen integer from {0, . . . , �B} whose actual value will be deter-
mined later. We will use the same notation to denote Cantor-like sets as in Sect. A.3.
By Lemma A.3 and similar induction argument as in [3], we obtain

ETr exp

⎛

⎜

⎝
t
∑

j∈K 1
0

X j

⎞

⎟

⎠
≤

20
∑

i1=0

· · ·
2J−1
∑

i J=0

⎡

⎢

⎣

(

J
∏

k=1

Ak,ik

)

ETr exp

⎧

⎪

⎨

⎪

⎩

(−1)
∑J

k=1 ik t

⎛

⎜

⎝

2J
∑

i ′=1

∑

j∈Ki ′
J

˜X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎦
,

(A.5)

where {˜X j } j∈Ki ′
J
for i ′ ∈ {1, · · · , 2J } are mutually independent and have the same

distributions as {X j } j∈Ki ′
J
for i ′ ∈ {1, · · · , 2J }, and

Ak,ik :=
(

2k−1

ik

)

(1 + Lk,1 + Lk,2)
2k−1−ik (Lk,1)

ik ,

εk := (2pt)−
1
2 {2�−kn� exp(t2

�−k+1n�)τdk−1+1} 1
2 ,

Lk,1 := (pt/2)
1
2 exp(tεk){2�−kn� exp(t2

�−k+1n�)τdk−1+1} 1
2 ,

Lk,2 := (2pt)
1
2 exp(tεk){2�−kn� exp(t2

�−k+1n�)τdk−1+1} 1
2 ,

Step II Now we choose J as follows:

J = inf

{

k ∈ {0, . . . , �} : B(1 − δ)k

2k
≤ min

{ψ2

8t2
, B

}

}

.

We first bound ETr exp{t(
2J
∑

i ′=1

∑

j∈Ki ′
J

˜X j )} and ETr exp{−t(
2J
∑

i ′=1

∑

j∈Ki ′
J

˜X j )}.
From (A.5), we obtain 2J sets of {˜X j } that aremutually independent. Tomake notation
less cluttered, we will remove the upper tilde from ˜X j for all j . Denote the number
of matrices in each set Ki

J to be q := 2�−J n�. For each set Ki
J , i ∈ {1, . . . , 2J }, we

divide it into consecutive sets with cardinality q̃ and potentially a residual term if q is
not divisible by q̃ . More specifically, we have 2q̃ ≤ q and mq ,̃q := [q/2q̃]. The value
q̃ will be determined later.

Then, each set Ki
J contains 2mq ,̃q numbers of sets with cardinality q̃ and one set

with cardinality less than 2q̃ . For each Ki
J , i ∈ {1, . . . , 2J }, denote these consecutive

sets described above by Qi
k, k ∈ {1, . . . , 2mq ,̃q + 1}. Given these notation, we could

rewrite the bound in the following:
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ETr exp

⎛

⎜

⎝t
2J
∑

i=1

∑

j∈Ki
J

X j

⎞

⎟

⎠

= ETr exp

⎛

⎜

⎝
t

2J
∑

i=1

2mq ,̃q+1
∑

k=1

∑

j∈Qi
k

X j

⎞

⎟

⎠
= ETr exp

⎛

⎜

⎝
t

2J
∑

i=1

mq ,̃q
∑

k=1

∑

j∈Qi
2k

X j + t
2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

X j

⎞

⎟

⎠
.

Since Tr exp(·) is convex (cf. Proposition 2 in [25]), by Jensen’s inequality, we have

ETr exp

⎛

⎜

⎝t
2J
∑

i=1

∑

j∈Ki
J

X j

⎞

⎟

⎠ ≤ 1

2
ETr exp

⎛

⎜

⎝2t
2J
∑

i=1

mq ,̃q
∑

k=1

∑

j∈Qi
2k

X j

⎞

⎟

⎠

+ 1

2
ETr exp

⎛

⎜

⎝2t
2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

X j

⎞

⎟

⎠ .

Since the number of odd index sets is always equal to or one more than that of the even

index sets, the upper bound of 1
2ETr exp

(

2t
∑2J

i=1
∑mq ,̃q

k=1

∑

j∈Qi
2k
X j

)

will always be

less than or equal to that of 1
2ETr exp

(

2t
∑2J

i=1
∑mq ,̃q+1

k=1

∑

j∈Qi
2k−1

X j

)

. Hence, we

only need to provide an upper bound for ETr exp
(

2t
∑2J

i=1
∑mq ,̃q+1

k=1

∑

j∈Qi
2k−1

X j

)

.

Our goal is then to replace all {X j } j∈Qi
2k−1

in the last inequality by mutually inde-

pendent copies {˜X j } j∈Qi
2k−1

with same distributions for k ∈ {1, . . . , 2mq ,̃q + 1}, i ∈
{1, . . . , 2J }. Again we will proceed by induction. We first show

ETr exp

⎛

⎜

⎝2t
2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

X j

⎞

⎟

⎠

≤
1
∑

i1=0

˜Ai1ETr exp

⎧

⎪

⎨

⎪

⎩

(−1)i12t

⎛

⎜

⎝

mq ,̃q+1
∑

k=1

∑

j∈Q1
2k−1

˜X j +
2J
∑

i=2

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

,

where the constants ˜Ai1 will be specified later. For each {X j } j∈Q1
2k−1

, k ∈
{1, . . . ,mq ,̃q + 1}, we could find a sequence of {˜X j } j∈Q1

2k−1
, k ∈ {1, . . . ,mq ,̃q + 1}

that are mutually independent with each other. More specifically, let {˜X j } j∈Q1
1

=
{X j } j∈Q1

1
. By applying Lemma A.2 on {˜X j } j∈Q1

1
and {X j } j∈Q1

3
with a chosen ε̃ > 0,

we may find a sequence of random matrices {˜X j } j∈Q1
3
such that for each j0 ∈ Q1

3, we
have
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1. ˜X j0 is measurable with respect to σ({˜X j } j∈Q1
1
) ∨ σ(X j0) ∨ σ(˜U 1

j0
);

2. ˜X j0 is independent of σ({˜X j } j∈Q1
1
);

3. ˜X j0 has the same distribution as X j0 ;
4. P(‖ ˜X j0 − X j0 ‖≥ ε̃) ≤ E(‖ ˜X j0 − X j0 ‖)/̃ε ≤ τq̃+1/̃ε by Markov’s inequality.

For each j0 ∈ Q1
3, ˜U

1
j0
is independent with {˜X j } j∈Q1

1
and X j0 . In addition, since there

are at least q̃ number of matrices between {˜X j } j∈Q1
1
and X j0 by our construction,

we have τ {σ({˜X j } j∈Q1
1
),X j0; ‖ · ‖} ≤ τq̃+1. Note that {˜X j } j∈Q1

3
is independent with

{˜X j } j∈Q1
1
but not mutually independent within the set Q1

3.
Following the induction steps similar to the previous step and without redundancy,

we obtain

ETr exp

⎛

⎜

⎝2t
2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

X j

⎞

⎟

⎠

≤
1
∑

i1=0

˜Ai1ETr exp

⎧

⎪

⎨

⎪

⎩

(−1)i12t

⎛

⎜

⎝

mq ,̃q+1
∑

k=1

∑

j∈Q1
2k−1

˜X j +
2J
∑

i=2

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

X j

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

,

where

ε̃ := (4pt)−
1
2 {exp(2tq)τq̃+1} 1

2 ,

˜L1 := 1

2
(4pt)

1
2 q exp(2tq ε̃){exp(2tq)τq̃+1} 1

2 ,

˜L2 := (4pt)
1
2 q{exp(2tq)τq̃+1} 1

2 ,

˜Ai1 :=
(

1

i1

)

(1 + ˜L1 + ˜L2)
1−i1(˜L1)

i1 .

This completes the base case.
Iterating the above calculation, we arrive at the following bound:

ETr exp

⎛

⎜

⎝
2t

2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

X j

⎞

⎟

⎠

≤
1
∑

i1=0

· · ·
1
∑

i2J =0

⎛

⎝

2J
∏

r=1

˜Air

⎞

⎠ETr exp

⎧

⎪

⎨

⎪

⎩

(−1)
∑2J

r=1 ir 2t
2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

˜X j

⎫

⎪

⎬

⎪

⎭

,

(A.6)

where {˜X j } j∈Qi
2k−1

for (i, k) ∈ {1, . . . , 2J } × {1, . . . ,mq ,̃q + 1} are mutually

independent and identically distributed as {X j } j∈Qi
2k−1

for (i, k) ∈ {1, . . . , 2J } ×
{1, . . . ,mq ,̃q + 1}, and
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ε̃ := (4pt)−
1
2 {exp(2tq)τq̃+1} 1

2 ,

˜L1 := 1

2
(4pt)

1
2 q exp(2tq ε̃){exp(2tq)τq̃+1} 1

2 ,

˜L2 := (4pt)
1
2 q{exp(2tq)τq̃+1} 1

2 ,

˜Air :=
(

1

ir

)

(1 + ˜L1 + ˜L2)
1−ir (˜L1)

ir .

Let q̃ := [2/t] ∧ [q/2]. {˜X j } j∈Qi
2k−1

for (i, k) ∈ {1, . . . , 2J } × {1, . . . ,mq ,̃q + 1}
are mutually independent with mean 0 and 2J

∑mq̃,q+1
k=1 card(Qi

2k−1) ≤ B. Moreover,
by Weyl’s inequality, for (i, k) ∈ {1, . . . , 2J } × {1, . . . ,mq ,̃q + 1}, we have

2λmax

⎛

⎜

⎝

∑

j∈Qi
2k−1

˜X j

⎞

⎟

⎠ ≤ 2q̃ ≤ 4

t
.

By Lemma 4 in [3], we obtain

ETr exp

⎛

⎜

⎝2t
2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

˜X j

⎞

⎟

⎠ ≤ p exp{4h(4)Bt2ν2}, (A.7)

ETr exp

⎛

⎜

⎝−2t
2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

˜X j

⎞

⎟

⎠ ≤ p exp{4h(4)Bt2ν2}. (A.8)

Plugging (A.7) and (A.8) into (A.6) and using the fact that
1
∑

ir=0

˜Air = 1+2˜L1+˜L2,

we obtain

ETr exp

⎛

⎜

⎝2t
2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

X j

⎞

⎟

⎠ ≤ (1 + 2˜L1 + ˜L2)
2J p exp{4h(4)Bt2ν2}.

(A.9)

By replacing X by −X, we obtain

ETr exp

⎛

⎜

⎝−2t
2J
∑

i=1

mq ,̃q+1
∑

k=1

∑

j∈Qi
2k−1

X j

⎞

⎟

⎠ ≤ (1 + 2˜L1 + ˜L2)
2J p exp{4h(4)Bt2ν2}.

(A.10)
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Combining (A.5) with (A.9) and (A.10), we get

ETr exp

⎛

⎝t
∑

j∈KB

X j

⎞

⎠ ≤
20
∑

i1=0

· · ·
2J−1
∑

i J=0

[(

J
∏

k=1

Ak,ik

)

(1 + 2˜L1 + ˜L2)
2J p exp{4h(4)Bt2ν2}

]

=
{

J
∏

k=1

(1 + 2Lk,1 + Lk,2)
2k−1

}

(1 + 2˜L1 + ˜L2)
2J p exp{4h(4)Bt2ν2},

(A.11)

where the last equality is followed by
∑2k−1

ik=1 Ak,ik = (1 + 2Lk,1 + Lk,2)
2k−1

.
By using log(1 + x) ≤ x for x ≥ 0, we have

logETr exp

⎛

⎝t
∑

j∈KB

X j

⎞

⎠ ≤
J
∑

k=1

2k−1(2Lk,1 + Lk,2) + 2J (2˜L1 + ˜L2) + log[p exp{4h(4)Bt2ν2}].

(A.12)

For simplicity, we denote I =
J
∑

k=1
2k−1(2Lk,1+Lk,2), I I = 2J (2˜L1+˜L2) in (A.12).

Step III Following calculations similar to [3], we obtain

I ≤ 32
√
2

log 2

[

1 + exp

{

1√
2p

exp

(

− ψ2

16t

)}]

t2

ψ2
exp

(

− ψ2

32t

)

. (A.13)

and

I I ≤ 128

[

1 + exp

{

1√
p
exp

(

− ψ2

32t

)}]

t2

ψ2
exp

(

− ψ2

64t

)

. (A.14)

Hence, by combining (A.4), (A.12), (A.13) and (A.14), we obtain for 0 < t ≤
min{1, ψ2

8 log(ψ1B6 p)
},

logETr exp

⎛

⎝t
∑

j∈KB

X j

⎞

⎠

≤ log p + 4h(4)Bt2ν2 + 151

[

1 + exp

{

1√
p
exp

(

− ψ2

64t

)}]

t2

ψ2
exp

(

− ψ2

64t

)

.

This completes the proof of Lemma A.4. 
�
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