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Abstract

The goal of this paper is to obtain expectation bounds for the deviation of large sam-
ple autocovariance matrices from their means under weak data dependence. While the
accuracy of covariance matrix estimation corresponding to independent data has been
well understood, much less is known in the case of dependent data. We make a step
toward filling this gap and establish deviation bounds that depend only on the param-
eters controlling the “intrinsic dimension” of the data up to some logarithmic terms.
Our results have immediate impacts on high-dimensional time-series analysis, and we
apply them to high-dimensional linear VAR(d) model, vector-valued ARCH model,
and a model used in Banna et al. (Random Matrices Theory Appl 5(2):1650006, 2016).
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1 Introduction

Consider a sequence of p-dimensional mean-zero random vectors {Y,};c7 and a size-n
fraction {¥;}!"_, ofit. This paper aims to establish moment bounds for the spectral norm
deviation of lag-m autocovariances of {Y;}!_,, S = (n—m)~! YUY YiT+m,
from their mean values.

A first result at the origin of such problems concerns product measures, withm = 0
and {Y;}7_, independent and identically distributed (i.i.d.). For this, Rudelson [26]
derived a bound on E|| fo — Efo I, where || - || represents the spectral norm for
matrices. The technique is based on symmetrization, and the derived maximal inequal-
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ity is a consequence of a concentration inequality on a “symmetrized” version of
p X p symmetric and deterministic matrices, Ay, ..., A, (cf. [24]). That is, for any
x =0,

) (1.1)

n
(| Sen
i=1

n
> x) = 2pexp(—x?/Qo2), o® = | Y A7
i=1

where {¢;}!_| are independent and taking values {—1, 1} with equal probability.
The applicability of this technique then hinges on the assumption that the data are
iid..

Later, [8,19,21,28,30,33], among many others, derived different types of deviation
bounds for X under different distributional assumptions. For example, [19] and [8]

showed that, for such {Y; }?:1 that are sub-Gaussian and i.i.d.,

~ Yo)l Yol
Ellzo—EOIISCIIEOII{\/r( 0 ogter) | X ")n"g(e”)}. (1.2)

Here, C > 0 is a universal constant, Xo := EY Y7, and r(Z¢) := Tr(Zo)/[| X0l
is termed the “effective rank” [33] where Tr(X) := Z?:l X; ; for any real p x p
matrix X.

Statistically speaking, Eq. (1.2) is of rich implications. For example, combining
(1.2) with Davis—Kahan inequality [11] suggests that the principal component analysis
(PCA), a core statistical method whose aim is to recover the leading eigenvectors of
¥, could still produce consistent estimators even if the dimension p is much larger
than the sample size n, as long as the “intrinsic dimension” of the data, quantified
by r(Xo), is small enough. See Sect. 1 in [14] for more discussions on the statistical
performance of PCA in high dimensions.

The main goal of this paper is to give extensions of the deviation inequality (1.2)
to large autocovariance matrices, where the matrices are constructed from a high-
dimensional structural time series. Examples of such time series include linear vector
autoregressive model of lag d (VAR(d)), vector-valued autoregressive conditionally
heteroscedastic (ARCH) model, and a model used in [3]. The main result is shown
in Theorem 2.1 and is nonasymptotic in its nature. This result will have important
consequences in a high-dimensional time-series analysis. For example, it immediately
yields a new analysis for estimating large covariance matrix [10], a new proof of
consistency for Brillinger’s PCA in the frequency domain (cf. Chapter 9 in [7]), and
we envision that it could facilitate a new proof of consistency for the PCA procedure
proposed in [9].

The rest of the paper is organized as follows. Section 2 characterizes the set-
tings and gives the main concentration inequality for large autocovariance matrices.
In Sect. 3, we present applications of our results to some specific time-series
models. Proofs of the main results are given in Sect. 4, with more relegated to
“Appendix.”
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2 Main Results

We first introduce the notation that will be used in this paper. Without further specifica-
tion, we use bold, italic lowercase alphabets to denote vectors, e.g.,u = (u1, -+ , u p)T
as a p-dimensional real vector and || u||» as its vector L, norm. We use bold, uppercase
alphabets to denote matrices, e.g., X = (X; ;) as a p x p real matrix and I, as the
p X p identity matrix. Throughout the paper, let ¢, ¢/, C, C’, C” be generic universal
positive constants, whose actual values may vary at different locations. For any two
sequences of positive numbers {a,}, {b,}, we denote a,, = O(by) if there exists an
universal constant C such that @, < Cb, for all n large enough. We write a,, < b, if
both a,, = O(b,) and b,, = O (a,) hold.

Consider a time series {Y;},c7 of p-dimensional real entries Y, € R? with R, Z
denoting the sets of real and integer numbers, respectively. In the sequel, the considered
time series does not need to be stationary nor centered, and we are focused on a size-n
fraction of it. Without loss of generality, we denote this fraction to be {Y; };’zl .

As described in “Introduction” section, the case of independent {Y;}7_, has been
discussed in depth in recent years. We are interested here in the time-series setting,
and our main emphasis will be to describe nontrivial but easy to verify cases for which
Inequality (1.2) still holds. The following four assumptions are accordingly made,
with the notations that

SPli=x eR? i xla=1}, SPli={x eRP:|xq|=-- = |x,| =1},
and
IXllzep = EIXIPYP, | X]ly, := inf{k € (0, 00) : E[exp{(IX|/k)*} — 1] < 1}

for any random variable X.
(A1) Define

T T
ky:=sup sup |lu" Y [ly, <00, Kky:=sup sup [[v" Y|y, < oo.
teZ yeSr—! teZ peSp-1

Note that « is the supremum taken over vectors in the unit hypersphere, while
k4 1s the supremum taken over vectors in the discrete hypercube.

(A2) Assume that there exist some constants yi, 2, € > 0 such that for any integer
J, there exists a sequence of random vectors {?t}» ;j which is independent of
o ({Y};<;), identically distributed as {Y;};- ;, and for any integer k > j + 1,

Y e = Yill2llLate) < vikiexp{—ya(k — j — D}
(A3) Assume that there exist some constants 3, y4, €> 0 such that for any integer

J» there exists a sequence of random vectors {Y,},~ ; which is independent of
o ({Y;}i<;), identically distributed as {Y,},~ ;, and for any integer k > j + 1,

sup [|[(Yx — Yo ull(se) < yakr exp{—yatk — j — 1)}

ueSp-1
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(A4) Assume there exists an universal constant ¢ > 0 such that, for all € Z and for
allu e R?, |u”Y, ||f,/2 <cEw’Y,)?.

Two observations are in order. We first define a generalized “effective rank” as
follows:

. 2,2
Ty 1=Ky /K.

It is easy to see the close relationship between r, and the effective rank highlighted
in (1.2). AsY; ~ N(0, Xy), K12 and Kf scale at the same orders of || X¢|| and Tr(Xg),
and the same observation applies to all sub-Gaussian distributions with the additional
condition (A4), which is identical to Assumption 1 in [19]. As a matter of fact, r,
could be considered as a natural generalized version of r(X() without these additional
assumptions and is used in our main theorem.

Secondly, we note that Assumptions (A2) and (A3) are characterizing the intrinsic
coupling property of the sequence. In practice, such couples can be constructed from
time to time. Consider, for example, the following causal shift model,

Yt = Hl(étv ‘§171’EI727 .- -),

where {&;};c7 consists of independent elements with values in a measurable space X
and H; : X Z* _, RP is a vector-valued function. Then, it is natural to consider

Y, =HiE, .. .&41. 6. 8j-1,..)

for an independent copy {%},ez of {&}iez.
The following is the main result of this paper.

Theorem 2.1 (Proof in Sect. 4.1) Let {Y,};cz be a sequence of random vectors sat-
isfying Assumptions (A1)—(A3) and recall r* = Kf//c]z. Assume y1 = O(V/r*) and
y3 = O(1). Then, for any integern > 2 and 0 <m <n — 1, we have

- - 1 1 1 3
E|E, —EX,| < Ck} {,/’* 08P | Ix og ep(lognp) } .1
n—m n—m

for some constant C only depending on €, m, y», ya. If in addition, {Y ; };c7 is a second-
order stationary sequence of mean-zero random vectors and Assumption (A4) holds,

then
5 S [r(Zo)logep  r(Zo)logep(lognp)?
ElZn — EXy| EC/”E()H{ gep + gepllognp
n—m n—m

for some constant C' only depending on €, c, m, y, y4.

We first comment on the temporal correlatedness conditions, Assumptions (A2) and
(A3) . We note that they correspond exactly to the §-measure of dependence introduced
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in Chapter 3 of [12], for the sequence {Y},c7 and Wl ez, respectively. In addition,
as will be seen soon, our measure of dependence is also very related to the T-measure
introduced in [13]. In particular, ours is usually stronger than, but as ¢ — 0 reduces
to, the r-measure. Lastly, our conditions are also quite connected to the functional
dependence measure in [34], on which many moment inequalities in real space have
been established (cf. [18,35]). However, it is still unclear whether a similar matrix
Bernstein inequality could be developed under Weibiao Wu’s functional dependence
condition.

Secondly, we note that one is ready to verify that Inequality (2.1) gives the exact
control of the deviation from the mean. Actually, Inequality (2.1) is nearly a strict exten-
sion of the results in Lounici [19] and Bunea and Xiao [8] to weak data dependence
up to some logarithmic terms. This extension is achieved by applying Theorem 4.3,
a concentration inequality for a sequence of weakly dependent random matrices.
Theorem 4.3 is an extension of the Bernstein-type inequality for real-valued weakly
dependent random variables derived in [23] to dependent random matrices and is a
slight extension of the Bernstein-type inequality for a sequence of S-mixing random
matrices derived in [3]. In some applications, especially those in high dimensions,
verifying the weak dependence condition in Theorem 4.3 is more straightforward
than verifying the f-mixing condition in Theorem 1 in [3]. The details of the weak
dependence condition are introduced in Sect. 4.1, and Theorem 4.3 is proved in
“Appendix.”

Admittedly, it is still unclear whether Inequality (2.1) could be further improved
under the given conditions. Recently, in a remarkable series of papers [15-17],
Koltchinskii and Lounici showed that, for sub-Gaussian independent data, the extra
multiplicative p term on the right-hand side of Inequality (2.1) could be further
removed. The proof rests on Talagrand’s majorizing measures [29] and a correspond-
ing maximal inequality due to Mendelson [20]. In the most general case, to the authors’
knowledge, it is still unknown whether Talagrand’s approach could be extent to weakly
dependent data, although we conjecture that, under stronger temporal dependence
(e.g., geometrically ¢-mixing) conditions, it is possible to recover Koltchinskii and
Lounici’s result without resorting to the matrix Bernstein inequality in the proof of
Theorem 2.1.

Nevertheless, we make a first step toward eliminating these logarithmic terms via
the following theorem. It shows, when assuming a Gaussian sequence is observed, one
could further tighten the upper bound in Inequality (2.1) by removing all logarithm
factors. The obtained bound is thus tight in view of Theorem 2 in [19] and Theorem
4in [15].

Theorem 2.2 (Proof in Sect. 4.2) Let {Y,},;c7 be a stationary mean-zero Gaussian
sequence that satisfies Assumptions (A2)—(A3) with y1 = O(W/r(Xo)), y3 = 0(1),
and € > 1. Then, for any integern > 2and ) <m <n — 1,

< r(Xo)  r(XZo)
ElZm — Zunll SCHEOH( +—)
n—m n—m

for some constant C > 0 only depending on €, m, y2, ya.
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In arelated track of studies, [2,21,28,30], among many others, explored the optimal
scaling requirement in approximating a large covariance matrix for heavy-tailed data.
For instance, fori.i.d. data and as X is identity, Bai and Yin [2] showed that || fo —Xoll
will converge to zero in probability as long as p/n — 0 and fourth moments exist.
Some recent developments further strengthen the moment requirement. These results
cannot be compared to ours. In particular, our analysis is focused on characterizing
the role of “effective rank,” a term of strong meanings in statistical implications and
a feature that cannot be captured using these alternative procedures.

3 Applications

In this section, we examine the validity of Assumptions (A1)—(A4) in Sect. 2 under
three models, a stable VAR(d) model, a model proposed by Banna et al. [3], and an
ARCH-type model. One shall be aware of examples that are of VAR(d) or ARCH-type
structures but are not «- or B-mixing (cf. [1]).

We first consider such {Y,},c7 that is a random sequence generated from VAR(d)
model, i.e.,

Yl = AIYzfl + - +AdYt7d + Et:

where {E,};c7 is a sequence of independent vectors such that forallz € Zandu € R?,
||uTE tlhy, < c ||uTE tllL2) for some universal constant ¢’ > 0. In addition, assume
SUp; <7, SUP, csp—1 ||uTE,||1/,2 < Dg for some universal positive constant D| < oo,
ALl < ax < 1foralll < k < d, and ZZ=1ak < 1, where {ak}zzl,d are some
universal constants.

Under these conditions, we have the following theorem.

Theorem 3.1 (Proof in Sect. 4.4) The above {Y,},c7 satisfies Assumptions (A1)—(A4)
with

n = Cle/ik)IAN/ o)X, v = Tog(or "), y3 = C'd(IAIl/p1) X, ya = log(p ).

Here, we denote

ay ap ag—1 a4
A= 1 0 0 0 ’
0 O 1 0

p1 is a universal constant such that p(A) < p; < 1 whose existence is guaranteed
by the assumption that Zzzl ar < 1 (cf. Lemma 4.10 in Sect. 4), K is some constant
only depending on p1, and C, C' > 0 are some constants only depending on e.

We secondly consider the following time-series generation scheme whose corre-
sponding matrix version has been considered by Banna et al. [3]. In detail, let {Y;};c7
be a random sequence generated by
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Y, =WE,

where {E;};c7 is a sequence of independent random vectors independent of {W;};c7
such that for all r € Z and u € R”, ||uTEt||1/,2 < |uTE, |2 for some universal
constant ¢’ > 0. In addition, we assume

T T
sup sup |lu' E;lly, <k; and sup sup |[[v' Elly, <k,
teZ ueSr—1 teZ yeSpr-1

for some constants 0 < «7, k, < 00, {W;};ez is a sequence of uniformly bounded
T-mixing random variables such that max,c7 |W;| < kw, and

T(k; {(Wikiez, | - 1) < kwysexp{—ye(k — 1)}

for some constants 0 < ys5, v6, kw < 00 (see “Appendix Sect. A.1” for a detailed
introduction to the t-mixing random variables).

Theorem 3.2 (Proof in Sect. 4.4) The above {Y;},c7 satisfies Assumptions (A1)—(A4)
with

v1 = Ciikwys /i1, v2 = vs/(1 +€), y3 = C'ijkwys /i1, va = vs/(1 + €)
for some constants C, C' > 0 only depending on €.

Lastly, we consider an vector-valued ARCH model with {Y;};c7 being a random
sequence generated by

Y =AY, 1+ HY,_)E;,

where H : R? — RP*? is a matrix-valued function and {E,};c7 is a sequence of
independent random vectors such that

teZ yeSr-! teZ yeSr-1

sup sup [lulE,|ly, <«] and sup sup [[v? E;lly, <«

for some constants 0 < «7, k, < co. Assume further that ||A|| < a; and the function
H () satisfies

as
sup [|H(u) — H)| =< ;Ilu P

u,veR? *
for some universal constant a; < 1, ap > O such thata; + ap < 1.

Theorem 3.3 (Proof in Sect. 4.4) If the above {Y};cz satisfies Assumption (A1), it
satisfies Assumptions (A2), (A3) with

yi=Cis/K1, y2 = —log(aj + a2), y3 = C' max(ksk| /k1kL, 1), ya=log(a) + az)~"
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for some constants C, C' > 0 only depending on €. If we further assume the above
{Y:}iez to be a stationary sequence and sup,cgp ||1H )| < Dy for some universal
constant Dy < oo, then {Y;};c7, satisfies Assumption (Al).

4 Proofs
4.1 Proof of Theorem 2.1

Proof of Theorem 2.1 The proof depends mainly on the following tail probability bound
of deviation of the sample covariance from its mean. O

Proposition 4.1 (Proof in Sect. 4.1) Let {Y,},c7 be a sequence of random vectors
satisfying (A1)—(A3). For any integer n > 2, integer 0 < m < n — 2 and real number
0 < § <1, define

n—m (/(*)2 2/(*}/1}

K\ 2
M;s = Cmax{(—) log
1) K1 K1

K1

Then, for any x > 0,

P[IZ0 — ESnll 2 kfx + 5/ —m))]

C'(n — m)%x?
<2pexpj} — 5 3,
Ai(n —m) + Ao My + Az(n — m)xMs
with
4 L/ + (ke /K1) (3 4+ 2m + 1) + 2m + 1} 4532
1 .= N 5 2 .=,
1 — exp{—min(g 5572, v4)) v
21 — 481 -
A3 = Mmax 1’8m+M
log2 V2

for some constants C, C' > 0 only depending on €.

Without loss of generality, let m = 0. Taking x = ,/ r*lo#t, 8 = x~7 for some
y > 1, y1 = O(/rx), and y3 = O(1) in Proposition 4.1, we obtain

2
fo(l 1/ {log [/ 2ctoger
L , [riTogep 2(logep) /{0g< n -
P20 —EXoll > Cikjy/ ———1 | <2pexp| — . +x77
n l_i_r*(longn) + /’*l"’lge”t(lognpﬁ

for some constants C1, C» > 0 only depending on €, y», y4.
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If1 + r*(longn)2 > 74 log ep(log np)®

. , we have

EIZo —EZo|?
Zo oll <14

2
n
(cwty22)
rx(logn 2 2
I il Ca(logep)t/ {log( /%,)}

rx logep(log np)ﬁ
/ . 2 2[7 exXp dr
(logn): 2
14 xtog °ng" 1 r*(lor;gn)

ry(logn)?

2
00 Ca(logep)/t/ {10g (\/@)}

+ w 2[7 P 7y log ep(log np)® de
rx logep(lognp)® e
< (1 N ry(logn)? n Iy logep(lognp)6> .
n n
This gives that
=~ s 0 4 [ r«logep rf(log ep)2(log np)°
EZo —EXoll” < Cak) + 5 .
n n
On the other hand, if 1 + =102 m?® _ relogep(lognp)®
] n = ) .
E||Zo — EZo|? I log ep(log np)®
<C1K2‘/r*l°g€[7>2 a n
1 n
2
Ca(logep)/i/ {log (\/Ipr) }
dr

0
+/] oan6 2pexp | —
w /r*logeprilognp)b

r4 log ep(log np)®
s .
n

<cC

This renders

2 2 6
& = ry (logep)~(lognp)
E|Zo — EXoll* < Cskf { . 5 :

n

Combining two cases gives us the final result by using the simple fact that IE||§0 —
Efo I < (E| fo — Efo 1% 3 . This completes the proof of the first part of Theorem 2.1.

Notice that under Assumptions (A1), (A4), zero-mean, and second-order stationar-
ity, we have Klz = | 2ol and k2 =< Tr(Xo). Thus, plugging in the first part of Theorem
2.1 finishes the proof. O
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Now we prove Proposition 4.1 under Assumptions (A1)—(A3). In the proof, the cases
for covariance and autocovariance matrices are treated separately. In the following, we
give a roadmap. The proof of Proposition 4.1 is based on combining a Bernstein-type
inequality for the almost surely (a.s.) bounded matrices and a truncation method. The
probability bound for the a.s. bounded part (a.k.a., the truncated part) of the random
matrix is obtained by employing a Bernstein-type inequality for r-mixing random
matrices, which is presented in Theorem 4.3, and some related lemmas (Lemmas 4.4
and 4.5), whose proofs are presented later. The tail part of the random matrix is
controlled under the sub-Gaussian Assumption (A1), which uses Lemma 4.2.

In more detail, given a sequence of random vectors {Y,};c7, denote X; := YthT
for all t € Z. Then, for any constant M > 0, we introduce the following “truncated”
version of X;:

o MAIX

= X;,
! X

where a A b := min(a, b) for any two real numbers a, b.

For any integer m > 0, we denote me) = Y,Y!,, forallt € Z. For the sake of

clarification, the superscript “(m)” is dropped when no confusion is possible. Then,
the truncated version is

. MAINZ
=4
! I1Z ||
forany M > 0.
We further define the “variances” for {XM}"_, and {ZM}!~}" as
V2, = sup ;)\ E ZXM — EXM 2
XM - Kg{]’m’n} Card (K) max 1 1 )

ieK

1 2
2 M M
Voy = su ——||E E 7" —EZ: .
e Kg{],...I,)nfm} card (K) H (ieK ! ' )

Here, Amax (X) and Amin (X) denote the largest and smallest eigenvalues of X, respec-
tively.

Proof of Proposition 4.1 We first assume k| = 1. We consider two cases.
Case  When m = 0, {X,};c7 is a sequence of symmetric random matrices. We have,

1 n
]P){f > (Xi —EX)) Zx}
n i=1
1 n
:p{g > X = XM+ X —EXY + EXY - EX;) Zx}
i=1
1 n 1 n
5]1){; ;(X,M—IEX?”—HEXIM —EX)) +;‘ X}:(Xi —X,M)H Zx}
= i=
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n n
<P XM —EX) + EX} - EX)) an}+]P’{ > X =X >0}
i=1 i=1
n n n
<P Y XM —EXM)| = nx = |EXY —IEXill} +Y PX; XM
i=1

i=1 i=1

— n n
<P Amax{ >oxM - IEX,?”)} >nx -y |EXY - Exin]

i=1

i=1
n n n
+ P[Amm{ > oM - ]EX,M)} < —nx+ ) |EX}Y - IEXiII} +Y PX; £ X,
i=1

i=1 i=1

4.1

We first show that the difference in expectation between the “truncated” X;M % and

original one X; can be controlled with the chosen truncation level Ms. For this, we
need the following lemma. O

Lemma 4.2 (Proofin Sect. 4.3) Let {Y,};c7 be a sequence of p-dimensional random
vectors under Assumption (A1). Then, for all t € 7 and for all x > 0,

PUIY I3 = 265 + 8k (x + v2)) < exp(—Cx)
for some arbitrary constant C > 0.

By applying Lemma 4.2, we obtain that for all i € {1, ..., n},

M
IEX;" —EX;| =HE(1 - m)xil{nxinws}
1

T
= sup Elu Xiv[ljx;|>ms)
u,veSr-1

< sup {E@'Y,YT0)2}2(P(IX;| > Ms))z

u,veSp-1

<Vd/n,

where the last line is followed by Assumption (A1), Lemma 4.2, and the chosen M.

The second step heavily depends on a Bernstein-type inequality for 7-mixing
random matrices. The theorem slightly extends the main theorem of [3] in which
the random matrix sequence is assumed to be B-mixing. Its proof is relegated to
“Appendix.”

Theorem 4.3 (Proof in Appendix) Consider a sequence of real, mean-zero, symmetric
p X p random matrices {X;}icz with | X;|| < M for some positive constant M. In
addition, assume that this sequence is t-mixing (see, “Appendix Sect. A.1” for a
detailed introduction to the T-mixing coefficient) with geometric decay, i.e.,

T(k; {Xihiez, |- 1) = My exp{—va(k — 1)}
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for some constants 1, Yo > 0. Denote Jl := max{p~', ¥1}. Then, for any x > 0
and any integer n > 2, we have

P{)»max<ixi)2x}§pexp{_ i }

= 8(152nv2 + 602M2 /yrp) + 2x MY (1, Y2, 1, p)
where

2

1 2 o
Vo= su —A E X and 3 (F1. Y. 1. p)
Kg{l,?,.,n} card(K) max{ (1621; z) } AU p

logn 8log(1n°p)
= max {1, ——=¢.
log2 )

In order to apply Theorem 4.3, we need the following two lemmas. Lemma 4.4 is to
show that the sequence of “truncated” matrices {Xf"[ } under Assumptions (A1)—(A2)

is a T-mixing random sequence with geometric decay. Lemma 4.5 calculates the upper
bound for v? term in Theorem 4.3 for {Xf” ez

Lemma 4.4 (Proof in Sect. 4.3) Let {Y,};cz be a sequence of random vectors under
Assumptions (A1), (A2). Then, {(XM},cz, (XM — EXM},cy, (ZM},cz, and {ZM —
EZ{VI }iez are all T-mixing random sequences. Moreover,

Tk (XMhez. || 1) < Cyikikiexp{—ya(k — D},

Tk (X —EX"}iez. || - 1) < Cyikikg exp{—ya(k — 1)},

T(k; {ZM}rez, || - 1) < C exply> min(k, m)} max(yi&1ks, k2) exp{—y2(k — 1)},

t(ki {ZY —EZM}icz. || - II) < C' exp{y> min(k, m)} max(yix1&+, k) exp{—y2(k — 1)}

for k > 1 and some constants C, C' > 0 only depending on €.

Lemma 4.5 (Proof in Sect. 4.3) Let {Y,};c7 be a sequence of random vectors under

Assumptions (A1)—(A3). Take M > Cy\k1k4 for some constant C > 0 only depending
on €. Then, we obtain

ki + kikayt + k2 (v3 +2))
1 — exp{—min(Z572. ya)}
2 C//K%{(Zm + Dt + kit + k2 (3 +2m +2))

M = .
z 1 — exp{— mln(%)@, v4)}

vgw < C’

v

for some constants C', C" > 0 only depending on €.
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Therefore, by applying Theorems 4.3, Lemmas 4.4 and 4.5 with the chosen Ms,
we obtain for any x > 0,

1 & M M n2x2
P| A - ) X" —EX; ‘5)}2x+ Bn]f ex (— ),
[ max{n Z ! ! / pexp Ain + AaM? + Aznx Mg
i=1 S 3

“4.2)

where
C 2 2)+1 4532 21 481
Ar = {K*yl+x.*(y35j L+ , Ayi= ——, and A3 := OgnmaX{l,M}
1 — exp{—min(gZ 572, va)} 72 log2 72

for some constant C > 0 only depending on €.
Similarly, notice that )»m-m(z;le Xj%) = Amax(— Z?:l Xj%). Hence, the same
argument renders the same upper bound

n 2.2
P[xmm{% Y- EXIMS)} <G+ \/6/n>] < pexp ( - i )

P A1n+A2M52 + AznxM;s

4.3)
with the same constants as above.
For the last term of (4.1), with the choice of Mz and Lemma 4.2, we obtain
n n
Y PX; £ X)) =Y PXi] > Ms) < 8. (4.4)
i=1 i=1
Combining (4.2), (4.3), and (4.4), we obtain
~ ~ n2x2
P(|Zo —EXo|| = x ++/8/n) <2pexp| — +4
(%o ol Vé/n) <2p p( A1n+A2M52+A3ana>

with the constants Ay, A,, A3z defined above.

Case II Now we consider the case when 0 < m < n — 2. Since Z, := Y, Y[, is not
symmetric for all ¢ € Z, by applying matrix dilation (see [31], Sect. 2.1.16 for more
details), we define the symmetric version of Zf” as

M _[ 0 y2d
;= (Zi]W)T 0 .

Observe that Amax(Zi') = |Z)' | = |ZM|. By Lemma 4.4, {Z. ez and {Z" —

=M .. .
EZ, };cz are also sequences of T-mixing random matrices. Define

1 M )
2
2 . S - A E 7. —EZ. .
Vam Kgl)_t.l_l,)n_m} card (K) max{ <§ ' ' ) }
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Notice that v2,, and V%M have the same upper bound since spectral norm of block
diagonal matrix is less than or equal to the spectral norm of each block.

Now we apply similar arguments in Case I to {Z;};c7 and {Zfl}lez.

1
Pl > x}
n—m
n—m

< ]P’[Amax{ nin(il.M - EZM)} >(n—mx Y [EZ — EZ,.MH] +’§P(Zi £ Z,M).
i=1 i=1

i=1

n—m
> (Zi —ELy)
i=1

The rest is straightforward by using Theorem 4.3 and Lemmas 4.2—4.5, and we thus
finish the rest of the proof.

Lastly, we consider k1 # 1. Notice that for any sequence {Y,};c7 satisfying
Assumptions (A1)—(A3), the sequence {Y;/k1 };cz Will satisfy Assumptions (A1) auto-
matically and Assumptions (A2), (A3) with k; = 1. Hence, applying the above to
{Y;/Kk1}iez renders the results. This completes the proof of Proposition 4.1. O

4.2 Proof of Theorem 2.2

Proof The proof of Theorem 2.2 consists of two cases.

Case I When m = 0, we first state a more general result of Gaussian process. Propo-
sition 4.6 considers a general Gaussian process without further assumptions on the
covariance and autocovariance matrices. The proof modifies that of Theorem 5.1 in
[32] with dependence among observations taken into account. O

Proposition 4.6 (Proof in Sect. 4.2) Let {Y;};cz be a stationary sequence of mean-
zero Gaussian random vectors with autocovariance matrices X, for 0 <m <n — 1.
Then,

n—1 n—1

~ 2
EJlZ0—Zol 52{2(uzou*+22nzmn*)+ 20 Zoll (120l +2 Y IZnls)

m=1 m=1

n—1
- 2n(||>:o||+2Z||zm||)Tr<zo)},

m=1
where || - ||« is the matrix nuclear norm.

The rest of the proof is to show the geometric decay of spectral norm and nuclear
norm of autocovariance matrices under Assumptions (A2), (A3) in order to apply
Proposition 4.6. It is obvious that K12 = || o]l and /cf = Tr(Xo) when the process is a
centered stationary Gaussian process. We first prove the geometric decay of spectral
norm of autocovariance matrices. For any 0 < m < n — 1 and any integer j, by
Assumption (A3), there exists Y |4, that is identically distributed as Y 14,,, indepen-
dent of Y1, and
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sup [1(Y 14m — Y1) Tl (1) < 3V 1 Z0ll expl—ya(m — 1)}.

ueSr—1
Therefore,
IZmll =IEY 1 YT,
=IEY (Y 14m — Yiem + Yien) |
=|EY {(Yim —Yita) |
< sup [Eu'Y {(Yipm —Yipm) 0|

u,veSp-!

=ClZoll exp{—ya(m — D)},

where the last inequality is followed by Assumption (A3) and y3 = O(1) for some
constant C > 0 only depending on €, y3.

Similarly, by Assumption (A2), there exists Y 1+m that is identically distributed as
Y 1 4+m, independent of Y, and

Y 14m = Yigmll2llzate < v1v/11Zoll exp{—y2(m — 1)},

IZmlle =/ Tr(E Em)
= THEW 11— Pren) YTEY 1 (Y 14 — V1))
< JTHEW 1y = Vi) YTV (F i — T 1))
= JTHEY Y (V11— Fran) ¥ i — T 1))

= VEIY 1 131Y 1o — T
< MY 1l ey 1Y 1 = F im0y
= CTr(Xo) exp{—y2(m — D},

Then,

where the third line is followed by the fact that E(Y1+m — Y1+m)Y EY{(Yi4m —
Yiem)T < EYTY1(Yi4m — Yigm) YV igm — Yigm)T (“<7 is the Loewner par-
tial order of Hermman matrices), and both matrices are positive semi-definite,
and the last line by Assumptlon (A2) and y; = O(m )). Indeed, for any
u € R, B! (Vien — Yipn)POTYD) = X0 B’ (Vign — Vip)PYE
and E{u Yi4m — Y1+m)}Y1 EY1(Y14m — Y1+m) u = Zle[E{uT(YH-m -
Y 11m)Y 1,112 The result follows.

Case Il When m > 0, we denote I_’i = (YT
that {Y;} is a centered stationary Gaussian process satisfying Assumptions (A2), (A3).
Denote X := EY; I_’l-T and notice that X, is the off-diagonal block submatrix of ¥o.

By Case I and the fact that spectral norm of submatrix is bounded above by that of the
full matrix, we obtain

l+m)T for1 <i <n—m.ltis obvious
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~ - r(x r(X
E||>:m—>:m||scnzo||( n(_°)+ ( °)>.

n—m
Notice that [|Zol| < [|Zoll < [IZoll + IZm]l < 2[Zoll since g — X,, is positive
semi-definite. This completes the proof. O

Proof of Proposition 4.6 The proof heavily depends on the following observation.
Denote Y := (Y...Y,) and let Y be an independent copy of Y. Then,

- 2 or
Ell%o = Zoll = ZEIYY].

This is same as Lemma 5.2 in [32] by noticing that the result holds without indepen-
dence assumption.
Now we state the following two core lemmas used to complete the proof. O

Lemma 4.7 (Proof in Sect. 4.3) We have

n—l n—1
2150 - ol < 22 lEnYn J T (Zo+2) %4) + J 2(Ioll +2 ) I%all) - VaTr(Zo) ¢

n d=1 d=1

where fd = (UdAdUg + VdAdVg)/Z Here, Uy, Vg and Ay are left singular
vectors, right singular vectors, and singular values of X4 forall1 < d <n — 1,
respectively.

Lemma 4.8 (Proof in Sect. 4.3) We have

n—1

E[Y] < 2Tr(zo+zZEd>+ 2%,
d=1

where id forall1 <d <n — 1 are defined in Lemma 4.7.

The proof of Proposition 4.6 completes by combining Lemmas 4.7 and 4.8. O

4.3 Proofs of Auxiliary Lemmas

Proof of Lemma 4.2 By Lemma A.2 in [8], we have E||Y,||%k < (2k)k/<fk fort € 7Z.
Hence,

Y03 = ENY 30y, < 200Y 130y, < 411 D203, < 8ic2.

Thus, by property of sub-exponential random variable and Chernoff inequality, we
have for any x > 0,

2
. X X
PAYAIE=EIViI5 2 0 < exp | = Cmin (o g5 )

* *
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for some arbitrary constant C > 0. Obviously, we have for all x > 0,

PUIY 15 = 27 + 8F (x + /X)) < exp(—Cx)
for some arbitrary constant C > 0. This completes the proof. O
Proof of Lemma 4.4 We first show that {X;},c7 is a sequence of 7-mixing random
vectors with geometric decay. Under Assumption (A2) (without loss of generality,

take j = 0), there exists a sequence of random vectors {Y,};~o which is independent
of 0 ({Y}:<0), identically distributed as {Y,},~0, and for any integer ¢ > 1,

MY: = Y:ll2llLa+e) < vik1exp{—y2(t — 1)}
for some constant € > 0. Then, for any m > 0,
S T
ENYiY{yy =YYl
ST ST S =T
= ]E”YTYtT—i-m VY Y Yy =Y Yl
S 5 T
SEIY (Yigm —Yium) | +EIY, = Y)Y,

< ¥ ellal ey 1Y tm = FramllalLaare) + Y cmliall e 1Y e = Fol2ll e

< Cyjkikxexp{—y2(t — D},

where the fourth line is followed by Holder’s inequality and the fact that

sup 1Y ¢ll2ll L) < sup sup [lu’ ¥/llL@ <sup sup alu'Y,|ly, < Vo,

teZ teZ yeSr—1 teZ yeSr—1
for any o > 1. Here, C > 0 is some constant only depending on €.
S S ST . . . S ..
Now define X; := Y,;Y, for any integer ¢+ > 0. It is obvious that {X;};-¢ is inde-

pendent of {X;};<o and identically distributed as {X;};~o. By applying Lemma A.1,
for any indices 0 < k <t} < --- < ty, we obtain

o (Xihi=0), Ky, . Xo)i 1l - ZEIIXz X, |l < Cyreikeat exp{—ya(k — D).

By definition of T-mixing coefficient, this yields

t(k; {Xiliez, | - ) = Cyikiis exp{—y2(k — D}

for some constant C > 0 only depending on €.
Now we proceed to prove t-mixing properties for the “truncated version.” The
following lemma is needed. O

@ Springer



1462 Journal of Theoretical Probability (2020) 33:1445-1492

Lemma 4.9 (Proof in Sect. 4.3) Letuy, uz, vy, vy € R? for p > 1 with unit length
under €y-norm and o, > 0. Then, the function

f(oy) = loyv1vd — o,uiul|

is nondecreasing in the range o, € [0y, 00). In particular, for any M > 0 such that
M <o,, M <o, we have

T T
IMviv] — Muul || < |loyviv] — oyuiul ||

Now consider three cases.

(1) When [[X;|| < M and [IX;[| < M, X} — XM || = X, — X/]I.
(2) When || X;|| < M and ||X;| > M, we have

Y, ¥’ < Y, ¥/
XM =X, = ||Y,[3— L and XM =M
1Y ll2 1Y ¢ll2 1Y ll2 (1Y ll2
Y
Since HYttHZ ”Y ” —-'— have unit length and ||Y,||2 M < ||Yt ||2, we have ||XM

XM I <IX;— Xl [ by Lemma 4.9. By symmetry, the same argument also applies
to the case where | X;|| > M and ||X;| < M.

~ T
(3) When || X;|| > M and | X;| > M, we have X = M”;’T”zm and X
¥, ¥

. Again by Lemma 4.9, we have XM — XM|| < X, — X/|.
DA ATS

By combining three cases, ||XM XM < IX; — X,|| always holds, and hence,
E|XM — XM || < E|X, — X;|| for any # > 1. Hence, for any indices 0 < k <
H <---<ty, by Lemma A.1, we have

tlo((XMh<0). XYL XD 1) < Okt exp{=ya(k — 1))

for some constant C > 0 only depending on €. By definition of 7-mixing coeffi-
cient, this yields

Tk XMYiez, |- 1) < Cyicing exp{—ya(k — 1)}

for some constant C > 0 only depending on €. Notice that E[| X} — EX}M —
XM _ EXM)|| = E|XM — XM since EX” = EXM for any r > 1. The
T-mixing property stated above apphes to {XM EXM} directly.

Similar arguments apply to {ZM},cz and {ZM — EZM},c, so we omit the details.
This completes the proof. O

Proof of Lemma 4.5 The proof consists of two steps.
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Step I We first provide an upper bound for v,zi. Without loss of generality, we only
consider [ E(Xo —EXo) (Xx —EXy)|| fork > 0. Under Assumptions (A2)—(A3), there
exists Y where Y is independent of o ({Y;};<0), identically distributed as Y, and

Y — Yil2llLare < yicrexpi—yatk — 1)},
(Y — ?k)Tu”L(H-e) < y3k1 exp{—ys(k — 1)}

for constants y1, y2, ¥3, y4 > 0 in Assumptions (A2)—(A3).
For k = 0, we have

IEXoXo — EXoEXo|l < C(kf 4 «k2)
by Assumption (A1) for some universal constant C > 0. For £ > 0, we obtain

IEXoXx — EXoEXy || =[IEXoXx — EXoX«|

= EXo(Xk — X0l
= sup Elu/Yo¥§(vi¥] — Vi¥)ol
u,veSr-!
< sup Ep’Yo¥Iy, (¥ — ¥ o +u’vo¥I (v, — Y)¥, v|
u,veSr-!
2e
3(146) | Fire ~
= swp [EYEYATE T 1 Yol sz |0k = PO vl
u,veSr—! €

To ST 30+e 2 ~
+ {Elu” Yo¥, v 2 159 [ ¥oll2ll , 3ato, MYk = Yill2llLave

€

<Ckiry (ke y3 + K1y1) exp{—min(y2, y4) (k — D)},

where the first line is followed by EX; = EX;, fifth line by Holder’s inequality, and
sixth line by Assumptions (A1)—(A3) for some constant C > 0 only depending on €.
Hence, forany K C {1, ..., n},

1 2
card (K) km“h(% e EX’) }

<1 > EX; - EX)(X; — EX))
~ card (K) 5ok ! A J

1
= ad@® 'Z IEX; — EX;)(X; — EX )

i,jeK

2
K2k (kexy3 + K171) . o
< et +ape2 + TEZE AL 57 expl—min(ra, ya) (i — | - D]
card (K) . .
i,jeK,i#]
k2K + kpkesyr + k2 (r3 + D)
SC[ 1 * ]

I — exp(—min{y2, y4})
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Step ITWe first bound v)Z( w - By definition, we have

2
HE(ZX{” - JEX,M)

ieK

Z EX}) — EX})(x¥ —EX%H
i,jekK

Z EXM XY — EXMEX) H
i,jeK

Without loss of generality, we consider ||IEXM XM —EXMEXM|| fork > 0.Let XM be
defined as in the proof of Lemma 4.4. Then, X is 1ndependent of XM and dlstrlbuted
as XM Hence,

IEXG'XY — EX)'EXY|| = |EX)/X}! — EXY'EXY ).
Then, we could rewrite

IEXY XY — EXYEXY || = EXoXeotk — EXoXelolk |
=EXo(Xx — Xp)¢0& + EXoXklo(&k — 2o,

where ¢; = M”A)ﬁ il Zl = M?)ﬁ il Since Zo, &k are bounded by 1, we have
IEXo(Xe — Xo)totkll = sup  Elu" Xo(Xk — Xp)osiv]
u,veSr-1
< sup Elu XX — Xl
u,veSr-1

= |EXo(Xx — Xp)|
< Ci(erkyyr + K2y3) exp{— min(ya, ya) (k — 1)},

where the last inequality is from result in Step I for some constant C > 0 only
depending on €.
On the other hand, by applying Holder’s inequality, we have

IEXoXkC0 (e — ool =  sup  Elu! XoXyv!|g — Gl
u,veSr—1
5+€

< sup (Bl Yo¥IT, V1 o) % 5050 (Eg — 5 Se )sisa

u,veSr-!

Hence, forany u, v € sr—1,

{]EluTYOYOYkka| }5<1+e>

< u” YoIIL(5<1€+e>)||u Yk”L(S(l:re))||||Y()||2||L(5<l:r€))||||Yk||2||L(5(1€+e))

< Ciclzicf,
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where the first line is followed by Holder’s inequality and the last line by Assump-
tion (A1) for some constant C > 0 only depending on €.
Next, we need to bound ||k — &kl , (30t For the sake of presentation clearness,
5+€

we denote a; = || Xy|| and a; := ||)~(k|| and rewrite

gk — Sk ||L(5(51++:>)
‘ 1

M M
l[ak>M.5k>M} +1- ; 1(!1/<>M,5/<SM] +11- a l{dkSMv5k>M)

L(S(jl_:r:))
1 1 M
< |\M|— = l{ak>M.z~zk>M} + - — l{ak>M,Ek§M}
ay ay L(S(Slr:)) ay L(S(SII:))
M
+ H (1 - T)l(aka,Ek>M} ’ (45)
aj L(S(SI:—:))

where the last inequality is followed by the fact that || - s is anorm for € > 0.

I
For the first term, we have

1

~_k l{uk>M,5k>M} l{ak>M ar>M)

L(3g0) ’ aydy RIS
LB — o 525
J— ay — dg 5+e +€
M

IA

S+e

CEIX - K )
M k k

Cyikiksexp{=y2(k — D}/ M,

IA

IA

where the last inequality is followed by Lemma 4.4 for some constant C > 0 only
depending on €. With the chosen M > Cy k1K, we have

|

For the second term, taking any €; > 0, we have

M
I — — g >ma =m)
ag

H( M+ e >1{M<akSM+5kﬁkSM]

1
a l{ak>Mﬁk>M}

— = <exp{—nr2(k — 1)}.
L(S(SIJ:—:))

LCSE)

+ (1 M 1 a
L(5(1+6)) a@ {ax>M+ep ar <M}

< X L Pla - @l > Ek)}S““)
L(34xe 1+e>) M

LS

= M + Hl{ak>M+ek ax<M}
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By Markov inequality and Lemma 4.4, we have

EXe - Xell _ Coikiics exp{=pa(k — 1))
€k - €k

P(lay — ax| > ex) <

for some constant C > 0 only depending on €. Taking €, = Cyjkkx exp{—ézﬁm
(k — 1)}, we obtain

H ( >l{ak>M ax<M}

The third term follows by symmetry. Putting together, we have for k > 0,

< Vz(k—l)}-

§2exp{_6e+10

LD

~ 5+
I8k = Gell  (s+0) = Cexp{ e+ lo)’z(k )},

~ ~ 5+4¢€
EXoX - < Ci? - k=D,
IEX0Xk 20 (s — &)l < Cxik, exp{ 66+10y2( )}

> . 5+¢€
IEXG XY — EX'EXY || < Crflicicays + k7 (v3 + 1) exp { — min ( 2, 7/4)(k - 1)}

6e + 10
for some constant C > 0 only depending on €. Hence, for any K C {1, ..., n},
1 M M ?
————Amax 1 E X — EX:
card (K) mdx{ <§ ! ’) }
1
< — EXM — EXM)(XY — EXY
= D) Z (X! 10.¢ 19
i,jeK
< EX} - EXH X} — EXY
= () Z I1E( )( )l
2
4 2 2 K1{K1K*V1+K (y3+ D}
< Cuf +uied + card(K)
. 5+¢€
2 eXp{_mm<6 +10V2”’4)(|’_J|_1)}]
i, jeK,i#]j
< CKZ{K% + Kkiksyt + k2(y3 +2))

1 — exp{— min(2+512. y4)}

for some constant C > 0 only depending on €.

Similar arguments apply to v% w» S0 we omit the details. This completes the proof.
O

Proofof Lemma 4.9 Fixui, u;, vi, vo € R? withunitlength and o, > 0. For any o, >
oy, we perform singular value decomposition for matrix X (o) := o,u1 uzT — oy v2T .

@ Springer



Journal of Theoretical Probability (2020) 33:1445-1492 1467

According to Eq. (8) in [6], the nonzero singular values of X(o,) are identical to those
of

S _ oy — oyl viviuy —oyul vy |lva — uul vy
(op) = T _ T 2 _ T _ T ’
oylty V2l|v) —wuy vz opllvy — wiug vill2llva — uau; v2l2

For simplicity, denote w = ulTvlvauz, v = v — ululTv1, u, = vy — u2u2Tv2.

Hence, S(o,) could be rewritten as

Oy = oW _Uvulrvl||§2||2i|
ol v2||T1ll2 o (9111212112

S(oy) = [

Using the calculation on Page 86 in [5], ||S(oy)|| = Q(oy) + R(oy), where

Q(oy) = \/(Uu — ouw + 01 1121192112)% + o2 (] v1[B2ll2 + uj v2][¥112)?/2,

R(oy) := \/(Gu —oyw — 0y V1 121192112)% + 02! v 212 — ud w2 |[T1112)2/2.

We are left to show that both Q and R are nondecreasing functions of o, € [0, o].
By differentiating Q, R with respect to o,,, we obtain

do I
do, = cg(op)lou([vill2][v2]l2 — w)
+ op{w? + 11319203 + @l v)?19203 + @3 v2)? 19111311,
dR ~ ~
o = co(o)[—o, (V1210202 + w)
Oy

2 4 21512 T \21 12 T 20 112
+ ou{w” + V1131102117 + (g v) 702115 + (w3 v2)7[[V1]5}]

for some nonnegative constants cg(oy), cgr(0y).
By simple algebra, we have w?+ |71 131213+ (@] v1) 2|02 113+ @] v2)*|[7 15 = 1
so that

= co(o)ou([V1]2][V2]l2 — w) + oy ].
doy,

Moreover, since u1, us, vi, v € R? are all length 1, we have |w| < 1 by Cauchy-

Schwartz. Hence, by the fact that 0, > o, > 0, we have % > 0. On the other
hand, denote a := ulTvl and b = u2T v, and again by Cauchy—Schwartz we have

la] <1, |b| < 1. In addition, we have

Bl = 01 —wial o) @1 —wiul vy)

= \/I)lTl)l — vlTululTvl — vlTululTvl + vlTululTululTvl

=+1—-a2.
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Similarly, we have ||92]2 = +/1 — b2. Then

dR

doy,

co(o){oy — o, (V11121102112 + w)}

= co(ov)ou(1 — [[v1 121022 — w)

> cg(0)ou(l = V(1 —a?)(1 — b?) — ab).

Since (1 —ab)? > (1 —a®)(1 — b?) and |ab| < 1, we obtaln > 0. Therefore, we
have shown that ||S(o,)| = Q(oy) + R(oy) is a nondecreasmg function with respect
to oy.

Obviously ||Mv1v2 Mulu I < ||auv1v2T — auu1u2T|| since 0 < M < og,.
Applying the monotonicity property proved above, we have |0, v va - auuluzT | <
||0uv1v2T — GvuluzT I. This completes the proof. O

Proof of Lemma 4.7 By the observation in the proof of Proposition 4.6, we have

N

~ 2 ~ 2 ~T 2
E|Zo — Zogll < ZEIYY!T ) = ZE sup Z uTYkYk v|:=-E < sup W,“,) .
n u,veSP—1 | - \u,vesr—!

Now consider

2

(Wuo — Wur ) <ZMTYkkaZu YkY v)
2
<ZuTYkka—Zu Ykka—i—Zu Ykka—Zu YkY,Zv’)

2
(Z(u —u)Ty, Y, U+Zu V¥, (v—v ))

k=1
2 n 2
(Z(u - u’)TYk?,fv) +2 (Z WYY (- v’))
k=1 k=1
.
=2)" Y @-u)'Y; @w-u)'Y 'YV
d=0|j—k|=d
n—1
+23 0 3 Wy WY = 0)TY 0 =) Y

d=0 | j—k|=d
Now denote the conditional expectation E¢ := E(-DNZ). Then,

E?(Wu,v - Wu’yv’)2

n
<2(u — u/)TZO(u —u) Z vT?jf’;v
j=1
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n—1
+2) @w—-u)' Eg+zH@—-u) Y WY TY
d=1 (j—k)=d

n
+2 Z u’TZU_k‘u/ (v — v/)Tl7j (v — v/)T?k

Jok=1
n—1
<2w-u)T |2o+2) %, (ufu)ZvTYijTrv
d=1 j=1
n—1 T
+2 1ol +2) IZ4l Z(v—v)TY Y-
d=1 j=1
1
n—1 2 n—1
<20 (Zo+2) %0 | @—-u)IPIVIE+2 (1ol +2 ) IZall | I — )T Y%,
d=1 d=1

where the second inequality is followed by defining 4 := (UsAqU? +V,A4V7) /2.
Here Uy, V4 and Ay are left singular vectors, right singular vectors, and singular values
of ¥y forall 1 <d < n — 1, respectively. Note that Zd are symmetric and positive
semi-definite for all d and hence so are X + 2 j_

Define the following Gaussian process:

1 1
n—1 2 n—1 2
Yuo = V2 ¥’ (zo +2) zd> g+v2 <||zo|| +2) ] ||zd||> oY/,
d=1 d=1

where g and g’ are independent standard Gaussian random vectors in R?” and R”,
respectively. Thus, by previous inequality, we have

E?(Wu,v - Wu’,v’)2 =< ]E?(Yu,v - Yu’,v’)z-
Hence, by Slepian—Fernique inequality [27], we have

Ey sup Wiy

u,veSp-1

<Eg sup VYuy

u,veSP1

1 1
n—1 2 n—1 2
=V2IY|l-E sup u” (zo+zzid) g+f(|zo||+22||zd|) By sup v'Y¢'

ueSr-1 d=1 veSp-1

1 1
n—1 2 n—1 2
< V21Vl - Bl (szzzd) g|+ﬁ<nzo|+22nzdn) ‘Egl¥e'l

d=1 d=1

n—1 n—1 %
<V21¥Y] - J Tr (zo +2)° )Ed) +2 (|>:0|| +2)° ||):d|) -/ Tr(YYT).
d=1 d=1
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Taking expectation with respect to Y and using the fact that Y isan independent copy
of Y, we obtain

n—1 n—1
E sup Wi, <V2E[Y]- Tr(zo+222d>+ﬁ I1Zoll +2) " IZall - Vn Tr(Zo).
d=1 d=1

u,veSP-1
This completes the proof of Lemma 4.7. O
Proof of Lemma 4.8 Define W, , := uTYv. Then,
E(Wuy — Wi ) = E@’ Yo —u'"YV')?

< 2E((u — ) Yv)? + 2E@ T Y (v — v'))?
= ZZ(u —u)TE i —uyviv; + ZZu/TE”_ﬂu'(vi —v)(v; — v/j).

i ij
In addition, define
o o X u’ 0 .. 0 u 0 --- 0
T o
e el TR B £ IO
LA LA ¥ 0 0 - u’ 0 0 - u

¥ = w! Tow)1,1L,  XT°:=||Zol1,1].
Since X1, is a positive semi-definite matrix, we have
Tru=xX, =xX°

for all u € SP~!, where “<” is the Loewner partial order of Hermitian matrices.
Hence,

1
n—1 2
E(Wup = Wy o)? <21 Zo+2)  Zq | @—u)I* +21Zol — ) 1,17 (v - v).
d=1

Then, define the following Gaussian process:

D=

n—1
~ 1
Yuo :=2u" (zo + 2Z>:d) g +V2|Zoll2v" g,

d=1

where g € R?, g’ € R" are independent Gaussian random vectors with mean 0 and
covariance matrices I, and 1, 17, respectively. Thus, by previous inequality, we have

IE(‘/Vu,v - VVu/,u’)2 < ]E(Yu,v - Yu’,v’)z-
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Hence, by Slepian—Fernique inequality, we have

E sup Wy <E sup Yu,

u,veSp-! u,veSr-!

n—1 2
= V2E sup u” [Zo+2) %4) g+V2IZ0lZ-E sup v'g’
ueSpr-1 d=1 veSr-!

n—1 2
~ 1
< V2E| (zo +2) :zd) gl +V21Zoll2 -Ellg’l

d=1

n—1
<2 |Tr <Eo+22§d> +\/§||Eo||% R
d=1

This completes the proof of Lemma 4.8. O

4.4 Proof of Results in Section 3

Proof of Theorem 3.1 We first examine Assumptions (A1) and (A4) . First of all, we
will study VAR(1) model, i.e., Y; = AY,_; + E;. Notice that for VAR(1), we could
rewrite the original sequence as a moving-average model, i.e., Y; = Z?OZO AJE,_ j
For any u € R”, we have

oo
1Yl = | D uTATE,|
) V2

1

o0 2
j 2
=C | X lu"ATE I,
j=0
1
o0 2
<cd Z lu” A/ Et—j”i(z) =Cu"Y e
j=0

for some universal constant C > 0. Here, the second line and last equality are followed
by the fact that { E;};<7 is a sequence of independent random vector and the third line
by the moment assumption on {E,},c7. Since Y,_1 is a stable process when ||A|| < 1,
lulYlly, < C|ulY,|lLo) < oo forallu € RP.

Denote ¥, := (Y ...¥" )T and E, := (ET 0T ...07)T . For {Y,},cz, generated
from a VAR(d) model, {Y;},e7 is a VAR(1) process, i.e., Y, = A-Y,_; + E;. Thus, by
previous argument, taking any v € R”@*D where only the first p digits are nonzero
and denoting v € R? to be first-p part of v, we have |[v¥,||y, = ||vTI_/,||,/,2 <
ClvTY, L@ = ClvTY,||L@) < oo for some constant C > O only depending on
¢’ where the last inequality is followed by the fact that {¥,} is a stable process (see
Lemma 4.10). Assumptions (A1) and (A4) are verified.
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Then, we examine Assumption (A2). Without loss of generality, take j = 0 in
Assumption (A2). Let {Y,}?: |_q be a sequence of random vectors independent of

{Y};<o and identically distributed as {Yt}?=17d' Define 17, = A117,_1 + -+
Ad?,,d + E; for every t > 0. It is obvious that {17}}»0 is independent of {17,},50
and identically distributed as {Y,};~¢. Moreover, for any # > 1, we have
Y = Yil2llLare = EIAY, o+ + AgY i + E,
~ ~ 1
—AY o+ + A g+ BTy
~ ~ 1
<(EIAI(Y o1 =Y o)+ + Aa(¥—g = ¥ )y T} e

d
~ nl
<Y alBIY, = ¥, )Y,
k=1
where the third line is followed by || - || (1+¢) is @ norm for € > 0. Denoting ¢; =

my, — 17, 21l L(1+€), we have ¢, < Zzzl ar¢:—k. Let v be the unit vector with 1 at
first position and O elsewhere. Then, by iteration, we have

V(@ p—ar)T <0 A (o, i) < Ao, - -+ p1—a) T (2

Note that ¢, = Ck, for t < 0 by Assumption (A1) for some constant C > 0 only
depending on €. By the following lemma which provides sufficient and necessary
conditions for matrix A to have spectral radius strictly less than 1, we could choose
some arbitrary pj such that p(A) < p < 1. O

Lemma 4.10 For A defined above, p(A) <1 if and only ifZZ:l ay < 1, where p(A)
is the spectral radius of A.

Proof of Lemma 4.10 The result is well known and here we include a proof merely for
completeness. First of all, we prove the sufficient condition. A key observation is that
the characteristic equation det(A — Al;) = O for matrix A is

foy=r"—ap? - —gu_ —ag=0.

Assume Z?:l aj > 1. We obtain f(1) =1 — Z‘;:l aj < 0and f(co0) = oo. By
continuity of f (%), there exists at least one root whose modulus is greater than or
equal to 1. This contradicts with the fact that p(A) is strictly less than 1.

Secondly, we prove the necessary condition. Suppose there exists a root z € C (the

set of complex numbers) of f (1) such that |z] > 1. Here |z| is the modulus of z. Then

d 1

2l = laz o tagiz +ad <@l +aglz)t + ag.
Since |z| > 1, wehave |z[F < |z|? for0 < k < d—1.Hence, |z|? < (a1+---+aq)|z|?
implies a; + - - - + a4 > 1. This contradicts the fact that Z?:l aj is strictly less than

1. This completes the proof. O
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By Gelfand’s formula, there exists a K > 0, such that for all t > K, AT < pi.
Fort < K, we have

IAINY
¢ < 2| — | p1-
P1

Fort > K, we have ¢, < Cdk, ,0{ for some constant C > 0 only depending on €.
Taking y; = Cd(ks/k1)(|A]l/p1)X for some constant C > 0 only depending on €
and y> = log(p; 1) verifies Assumption (A2).

Lastly, we verify Assumption (A3). Following the same construction as in verifying
Assumption (A2), we have for any u € S” -1

1Y =YD ullL14e)
1

= EHAIY 1+ +AY g+ Er— A Y+ +AY, g+ EpY a6

~ ~ 1
< EHAY 1+ +AgY g — A Yo+ AGY ) ) T T

d
< Y GBIV g — ¥y Ty ) e,
k=1
for uy = Aru/||Arull2, k € {1,...,d}. The result follows as we follow the same

arguments to verify Assumption (A2). This completes the proof of Theorem 3.1. O

Proof of Theorem 3.2 First of all, we verify Assumptions (A1) and (A4) . It is triv-
ial that Assumptions (Al) and (A4) are satisfied if W; = 0 almost surely for
all r € Z. If W, # 0 almost surely, then for all u € R?, ||uTY,||1/,2 <
IWelliLeo lu” Eqlly, < kwlu” EllLe) < lu" Y|l < oo. This
verifies Assumptions (A1) and (A4) .

For Assumption (A2), without loss of generality, take j = 0. Since {W,},c7 is
a sequence of uniformly bounded r-mixing random variables, we may find {(Wihi=0
which is independent of { W, };<¢, identically distributed as {W;};~.0, and forany ¢ > 1,

C/ Kw
inf; ez [WillL)

E|W, — W,| < kwys expl—ye(t — 1)}.

Define 17, = VT’,EI for all + > 1. It is obvious that {?,}Do is independent of {Y;};<o
and identically distributed as {Y;};~o. Moreover, for any integer ¢ > 1,
S ~ ne
HY: = Yil2llLare < EIWE, — WE, |37
~ ~ ne
< EIW, — Wil - W, — W, |"F) B E, | 1) T

ys(t = 1)

1
< Crikwys

exp | - e

1

for some constant C > 0 only depending on €. Taking y; = CK;KW)/SHE /k1 and
Yy = 11?)/6 verifies Assumption (A2).
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For Assumption (A3), without loss of generality, take j = 0. Let {?r}»o be the
same construction as above. For any integer ¢ > 1,

~ ~ 1
sup (Y, —Y) ullgre) = sup {E(W,E, — W,E;) u|' €)1+

ueSpr—1 ueSpr—1
= (B|W, — W,|"*) T sup (E|ETu|'+)me
ueSr—1
/ 1 1
<C € ex { — tr—1 }
< CkikwYs exp 1+6V6( )

~
for some constant C > 0 only depending on €. Taking y3 = Ckkwys ¢ /i1 and

Va = 11?)/6 verifies Assumption (A2). This completes the proof of Theorem 32. 0O

Proof of Theorem 3.3 We first verify Assumptions (A2) and (A3) . Without loss of
generality, take j = 0 in Assumption (A2). Let Yo be a random vector independent of
{Y}1<0 and identically dlstrlbuted as Y. Define Y, AY, 1+H (Y, 1) E; for every
t > 1. It is obvious that {Y,}l>0 is independent of {Y;};<o and identically distributed
as {Y;};~o. We obtain for any ¢ > 1,

~ 1
MY: = Y:ll2llLa+e = [EAY ;1 + HY 1) E; — (AY, |+ HY,_ 1)Ez}||1+€]1+f
< [E|AY, | —AY,_ + {H(Y,—1) — HY,_ 1)}Et||1+6]'+f
< (a1 +a)llll¥;—1 — Yt—1||2||L(l+e)-

By iteration, we obtain

1
My, — Yt||2||L(l+e) < (a1 + a)" (E|Yo — Yo||1+€)‘+f < Ckslar + a)'

for some constant C > 0 only depending on €. Taking y; = Cky/k1 and y» =
—log(a; + ap) verifies Assumption (A2).

For Assumption (A3), following the construction above, we have for any u € SP~!
andtr > 1,

~ ~ ~ 1
1Y =YD T ullp(14e) = [EHAY 1 + HY,—)E; — (AY —1 + H(Y,—)Ep)} u|' €T

< [E{AY,_| — A¥,_| + (H(Y,_|) — H(Y,_ ) E\Tu|*€] T

!
~ K ~
<al|¥i-1— Yz—l)TUIIL(1+e) +a27}ll Y1 = Yi—1l20lL(1+e)s
*

where v := Au/||Au||> € SP~!. By iteration, we obtain
o

ST I —1-

10V =YD ullae < C i) +2—ar ) aj(ar +ay)' ™'

* =0
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/
K

< C(aj + a»)" max (K*—}, /q>
K

*

for some constant C > 0 only depending on €. Taking y3 = C max(%, 1) and
y4 = —log(aj + ap) verifies Assumption (A3).

By further assuming that { Y} is a stationary process and H () is uniformly bounded,
we have that for all t € Z, sup,cgp1 lu? Y lly, < |Allsupyesri lu? Y, —1lly, +
D3 sup,,csp-1 |vT E,|. By stationarity, this renders x| = SUP, csp—1 IIuTY,||w2 <
szxi < oo. Similar argument applies to x. This verifies Assumption (A1)

under additional assumptions and completes the proof of Theorem 3.3. O

Appendix
A Proof of Theorem 4.3

In this “Appendix,” we present the proof of Theorem 4.3, which slightly extends the
Bernstein-type inequality proven by Banna et al. [3] in which the random matrix
sequence is assumed to be B-mixing. The proof is largely identical to theirs, and we
include it here mainly for completeness.

In the following, t; is abbreviation of t(k) for k > 1. If a matrix X is positive
semi-definite, denote it as X > 0. For any x > 0, we define h(x) = x’z(ex —x—1).
Denote the floor, ceiling, and integer parts of a real number x by |x], [x], and [x].
For any two real numbers a, b, denote a Vv b := max{a, b}. Denote the exponential
of matrix X as exp(X) =1, + Zf;ozl X7 /q!. Letting o1 and o> be two sigma fields,
denote o1 V 03 to be the smallest sigma field that contains o7 and o, as sub-sigma
fields.

A roadmap of this “Appendix” is as follows. Section A.1 formally introduces the
concept of T-mixing coefficient. Section A.2 previews the proof of Theorem 4.3 and
indicates some major differences from the proofs in [3]. Section A.3 contains the
construction of Cantor-like set which is essential for decoupling dependent matrices.
Section A.4 develops a major decoupling lemma for 7-mixing random matrices and
will be used in Sect. A.6 to prove Lemma A.4. Then Sect. A.5 finishes the proof of
Theorem 4.3.

A.1 Introduction to 7-Mixing Random Sequence

This section introduces the t-mixing coefficient. Consider (€2, F, P) to be a prob-
ability space, X an Lj-integrable random variable taking value in a Polish space
(X, |l - llx), and A a sigma algebra of F. The t-measure of dependence between X
and A is defined to be

A X ) = |

sp | [ oPxaco - [ georxanl], .

geA(l-llx)
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where Py is the distribution of X, IPx) 4 is the conditional distribution of X given A,
and A(]| - || x) stands for the set of 1-Lipschitz functions from X to R with respect to
the norm || - || y.

The following two lemmas from [13] and [12] characterize the intrinsic “coupling
property” of t-measure of dependence, which will be heavily exploited in the deriva-
tion of our results.

LemmaA.1 (Lemma 3 in [13]) Let (2, F, P) be a probability space, X be an inte-
grable random variable with values in a Banach space (X, || - ||x) and A a sigma
algebra of F. If Y is a random variable distributed as X and independent of A,
then

T(A X - o) =EIX = Yllx.

LemmaA.2 (Lemma 5.3 in [12]) Let (2, F, P) be a probability space, A be a sigma
algebra of F, and X be a random variable with values in a Polish space (X, || - || x)-
Assume that f lx — xollxPx (dx) is finite for any xo € X. Assume that there exists
a random variable U uniformly distributed over [0, 1], independent of the sigma
algebra generated by X and A. Then, there exists a random variable X, measurable
with respect to AV o (X) V o (U), independent of A and distributed as X, such that

(A X |- ) =EIX — X| v

Let{X};es beasetof X-valued random variables withindex set J of finite cardinality.
Then, define

(A X € X)jess - lla) =

sup | [ P40 — [ g0, @)

geA(llly) Ly’
where Pyx ), is the distribution of {X ;} je s, P(x )., 1.4 Is the conditional distribution
of {X;}jes given A, and A(]| - ||’y) stands for the set of 1-Lipschitz functions from
A x .-+ x X to R with respect to the norm || x|’y := ZjeJ llxjll x induced by || - || x
card(J)

forany x = (x1, ..., xy) € xeard/),

Using these concepts, for a sequence of temporally dependent data { X, },c7, we are
ready to define measure of temporal correlation strength as follows,

(ks {(Xe}iezo Il - )

1 : .
:=sup max —sup{t{o (X2 ), {Xj,.... X} - llabia+k < ji < <je},
i~0lst<i £
where the inner supremum is taken overall a € Z and all £-tuples (j1, ..., je). {Xi}iez
is said to be T-mixing if 7 (k; {X;}sez, || - || &) converges to zero as k — oo. In [12],

the authors gave numerous examples of random sequences that are T-mixing.
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A.2 Overview of Proof of Theorem 4.3

The proof of Theorem 4.3 follows largely the proof of Theorem 1 in [3]. Section A.3
reviews the Cantor-like set construction developed and used in [22] and [3]. Lemma
A.3 is a slight extension of Lemma 8 in [3]. The major difference is that the 0—1 func-
tion used to quantify the distance between two random matrices under S-mixing by
Berbee’s decoupling lemma [4] is replaced by an absolute distance function, which is
used under 7-mixing by Lemma A.1 [13]. Proofs of Lemma A.4 and the rest of Theo-
rem 4.3 follow largely the proofs of Proposition 7 and Theorem 1 in [3] respectively,
though with more algebras involved.

A.3 Construction of Cantor-Like Set

log2

2log B
k—1

L = suplk € Z7T : % > 2}. We abbreviate ¢ := £p. Let ng = B and for

jell, ..., ¢},

We follow [3] to construct the Cantor-like set Kg for {1, ..., B}. Let§ = and

njz(w

2 —| and dj71=l’lj71—2i’lj.

We start from the set {1, . . ., B} and divide the set into three disjoint subsets / 11 , JO1 i 12
so that Card(Ill) = Card(Ilz) =n and card(J(}) = dy. Specifically,

=, ,m), Ji={ni+1,....n1+do}, I} ={n1+do+1,...,2n1 +do},

where B = 2n + do. Then, we divide I, I with J] unchanged. /] is divided into
three disjoint subsets 7., Jll, 122 in the same way as the previous step with card(lzl) =

card(]zz) = ny and card(]ll) = d;. We obtain
L={l,....m), Jl={m+1,....mo+d}, B={ny+d +1,...,2n, +dy},

where ny = 2n, + d,. Similarly, I{ is divided into 15, J}, I3 with card(]) =
card(If) = np and card(le) = dy. We obtain

12?):{2”2+d0+dl+1,~-~,3n2+d0+d|}, J12={3n2+d0+d1+1,44.,3n2+d0+2d|},
Iy = {3ny +do+2dy + 1,...,4ny + do + 2d;},

where B = 4n, + doy + 2d;.

Suppose we iterate this process for k times (k € {1, ..., ¢}) with intervals I,i, i€
{1, ..., 2k}. For each I, we divide it into three disjoint subsets Ikz_'gl, J,ﬁ, Ikzil SO

that card([kzill) = card([kzil) = ng4+1 and card(J,i) = di. More specifically, if
I, ={aj, ..., b}, then
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5 . . . . .
Ik_’H =A{ag,....ap +nkp1 — 1}, Jp ={ap +ngpr, .. ap +nggr +de — 13,

Ikzil = {a} +ng1 +dy, ..., al +2np +di — 1),

After £ steps, we obtain 2t disjoint subsets Ilie {1, ..., 2‘5} with card(lzi) = ny.
Then, the Cantor-like set is defined as

2(
kg =1
i=1
and for each level k € {0, ..., ¢} and each j € {1, ..., 2K}, define

jzlfk

kl= U 1

i=(j—1)2¢-k41

Some properties derived from this construction are given by Banna et al. [3]:

1 log B,

1. 6 < Qandﬁ < Tog2 >
o Bs(1-=8)/

2. dj = =5

3. Each Ié,i e {l1, ...,26} contains n; consecutive integers, and for any i €

B(1-8)",
2t—1 >

and ny <
{1, ..., 2l_1}, 152’-_l and 152[ are spaced by d,_ integers;

4. card(Kp) > g;

5. Foreach k € {0, ..., ¢} and each j € {1, ..., 2%}, card(K,{) = 2t=kp,. For each
jef{l, ..., 2k_1}, K,fj_l and K,fj are spaced by dj_1 integers;

6. Kl = Kpand K] = 1] for j € {1,...,2%}.

A.4 A Decoupling Lemma for 7-Mixing Random Matrices

This section introduces the key tool to decouple t-mixing random matrices using
Cantor-like set constructed in Sect. A.3. With some abuse of notation, within this sec-
tion let’s use {X} je(1,...,n) to denote a generic sequence of p x p symmetric random
matrices. Assume E(X;) = 0 and ||X;|| < M for some positive constant M and for
all j > 1. For a collection of index sets Hk, k € {1, ...,d}, we assume that their car-
dinalities are equal and even. Denote {X;} jent to be the set of matrices whose indices

are in H f‘ . Assume {X} JeHls e X} jemd are mutually independent, while within
each block H {‘ the matrices are possibly dependent. For each k, decompose H {‘ into
two disjoint sets H22k7] and H22" with equal size, containing the first and second half
of H{‘, respectively. In addition, we denote 7y := T{O’({Xj}jEHZZk—I ), {Xj}jeHZZk; -1}
for some constant tp > 0 and for all k € {1, ..., d}. For a given ¢ > 0, we achieve
the following decoupling lemma.
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Lemma A.3 We obtain for any € > 0,

d
E Trexp Z
d ‘ ‘ ' 2d
Z )(1+L1 + L) (L)'E Trexp § (=)'t X;|t,
i=0 k=1 jEHf

(
E Trexp (rZ > X

k=1 jegk

d 2d
Z(d>(1+L1+L2)d—"(L1)"1ETrexp DT[N Xt

i=0 k=1 jGHf
where
Ly := pteexp(te), Ly := exp{card(Hll)tM}to/e,

and {ij}jesz’ k € {l1,...,2d}, are mutually independent and have the same distri-
butions as {Xj}/eHé" kell,...,2d}.

Proof We prove this lemma by induction. For any k € {1, ..., d}, we have Hlk =
2k—1 2k

Hy"™ UH,;, andhencerEH{chIZjEHZZk—l Xj-I—ZjGszka.
By Lemma A.2, for each k € {1,...,d}, we could find a sequence of random

matrices {)~( i} jert and an independent uniformly distributed random variable U on
[0, 1] such that

1. {ij}jeHgk is measurable with respect to the sigma field U({Xj}jeHZk—l) \
2
0({Xj}j€H22k) Vo (Ur);
2. {Xj}jeHQZk is independent of o ({X; }./€H22k—1 );
3. {Xj}jeszk has the same dist:ibution as {Xj}jEH22k; B
4 PUL ey X = X jenp Xil> @) < B jcpp Xj = Xjepp X /e <
70/€x by Markov’s inequality and the fact that tp = Zjeszk E(X; — X;1D.

To make notation easier to follow, we set equal value to €, for k € {1,...,d} and

denote it as €. Moreover, we denote the event ['y = {||Zj€szk )~(j —Zjeszk X< €}
fork e {1,...,d}.
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d
X; | (+E { L) Trexp tZ X; |-
k:l_iEH

11

For the base case, k = 1.

d d
E Trexp tZ Z X; |=E {1, Trexp IZ
k=1 jen

k=1 jeHf

—
—=

Notice the definitions of terms / and I therein.
We have

d
I =FE | 1r, Trexpt ZXJ+ZXJ+ZZXj

jeH) jeH}? k=2 jemt
d
<ETrexp {t Z X; + Z Xj+Z Z X;
jeH; jeH? k=2 jenk
d
+E | Ir, | Trexp ¢ Z X; + Z XJ+Z Z X
jeH) jeH; k=2 jeHk
d
—Trexp {t Z Xj—f-z Xj—f-z Z X;
jeH) jeH; k=2 jeHEk

By linearity of expectation and the facts that Tr(X) < p||X]| and |lexp(X) —exp(Y)|| <
IX — Yllexp(IX — YI) exp(||Y[), we obtain

d
E 1[‘| Trexp t ZX]-I-ZX]—}—ZZX]‘
jeH) jeH? k=2 jeHk
d
—Trexp { ¢ Z XJ+Z 5@4—2 Z X;
jeH) jeH? k=2 jent
d
<E|Irplexpie| DX+ D X;+> Y X
jeH) jeH? k=2 jent
d
—exp 4t ZX]+ Zf(ijZ ZX]-
jeH,; jeH? k=2 jeHk
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<E|1ppl|t Z(Xj—fij) exp 1 ||t Z(Xj_ij) exp 4 |If Z X
jeH? jeH; jeH,
N d
FE XYY,
jeH? k=2 jenf

By spectral mapping theorem, for a symmetric matrix X with | X| < M, we
have exp(|X|l) =< llexp(X)|| V llexp(=X)[| =< [lexp(X)|| + [lexp(—=X)||. Moreover,
since exp(X) is always positive definite for any matrix X and || X|| < Tr(X) for
any positive definite symmetric matrix X, we obtain [lexp(X)|| < Trexp(X) and
llexp(—X)|| < Trexp(—X). In addition, since we have || Zjeﬁzz X; —Xj)l <e€on
I'1, we could further bound the inequality above by

d
E | I, pteexp(te) | exp t( Z X; + Z 5@—#2 Z Xj)

jeH) jeH? k=2 jent
d
< pteexp(te) | ETrexp { ¢ Z X; + Z X +Z Z X
jeH) jeH? k=2 jeny
d
+ETrexp { —¢ Z X; + Z X +Z Z Xj
jeH! jeH? k=2 jenf

Putting together, we reach

d
I <{1 + pteexp(te)}ETrexp q ¢ Z X; + Z X,’ + Z Z X;

JjeH] jeH; k=2 jenf
d
+ pteexp(te)ETrexp { —t Z X; + Z X; + Z Z X; . (A
jeH, jeH; k=2 jemk

We then aim at /1. For this, the proof largely follows the same argument as in [3].
Omitting the details, we obtain

d
11 5exp{card(Hll)tM}(ro/e)ETrexp t Z X; + Z )?j —1—2 Z X;
jeH? jeH:? k=2 jeq]
(A2)
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Denote L; := pteexp(te) and Ly = exp{card(Hf)tM}to/e. Combining (A.1)
and (A.2) yields

d
ETrexp IZ Z X;

k=1 jenf

d
SU+Li+L)ETrexpr| Y X+ Y X+ Y X

jeH) jeH} k=2 jenf
d
+LETrexpd — | DX+ Y X;+) Y X;
jeH] jeH? k=2 jenf
L1 o , d
= (i>(1 +Li+ L) T L) ETrexp { (DI [ Y X+ Y X+ DX
i=0 jeH) jeH? k=2 jent

This finishes the base case.
The induction steps are followed similarly and we omit the details. By iterating d
times, we arrive at the following inequality:

d
E Trexp IZ Z X;

k=1 jeHf
d 4 . . [ d B
< Z(i)(l + LI+ L) T L) ETrexp d (D' | >0 Y X+ > X
i=0 k=1 jeg 2! k=1 jeHz*
(A.3)
where{Xj}jeHszq, kell,.. .,d}and{ij}jeHgk, k € {l,...,d}are mutually inde-

pendent. In addition, they have the same distributions as {X; }j eHZ 1 ke{l,...,d}
and {X;} jeH2 k € {1,...,d}, respectively. For the sake of simplicity and clar-

itz, we add an upper tilde to the matrices with indices in H22k_1, kef{l,....d} ie.,
X; }jeszH isidentically distributed as {X; }jEHZZk—l fork € {1, ...,d}. Hence, (A.3)
could be rewritten as

2d

d d
d ) ) ) -
ETrexp [t > X, | < Z(.)(l + L+ L) (L) ETrexp (=D | Y 3 X,
k=1 jEH]k i=0 ! k=1 jEHf
where {)Ni i) jerks k € {1,...,2d} are mutually independent and their distributions

are the same as {Xj}jeflfv ke{l,...,2d}.
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By changing X to —X, we immediately get the following bound:

d
ETrexp —IZ Z X;

k=1 jeHf
d g 2d
< 1+ L d—i i it 5.
< Z (i>< + L1+ L) (L)' ETrexp { (=D | 37 Y "X
i=0 k=1 jEHé‘
This completes the proof of Lemma A.3. O
A.5 Proof of Theorem 4.3
Proof Without loss of generality, let | = 1/71.
Case I First of all, we consider M = 1.
Step I (Summation decomposition) Let By = n and U;O) =Xjforje{l,...,n}
Let K g, be the Cantor-like set from {1, ..., By} by construction of Sect. A.3, K %0 =
{1,...,Bo}\ KBy, and B] = card(Kgo). Then, define
UV =X, , wherei; € K§ = {i ip)
jooT i J By — Uls---»1ByJ-
For each i > 1, let K, be constructed from {1, ..., B;} by the same Cantor-like set

construction. Denote Kgi ={1,...,Bi}\ Kp, and B;;| = card(Kgi). Then
1 .
U§’ ) = U,(;j), where kj € K§ = {ki..... kg, }.

We stop the process when there is a smallest L such that B; < 2. Then, we have for
i < L—1,B; <n2 ! because each Cantor-like set K B;,, has cardinality greater than
B; /2. Also notice that L < [logn/log?2].

Fori € {0,..., L — 1}, denote

Si= Y U;.i) andS, = » Uj.”.

JEKB; jEKBE—l

Then, we observe

Step II (Bounding Laplacian transform) This step hinges on the following
lemma, which provides an upper bound for the Laplace transform of sum of a
sequence of random matrices which are t-mixing with geometric decay, i.e., (k) <
Y1 exp{—v¥n(k — 1)} for all k > 1 for some constants yr1, Yo > 0. O
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Lemma A.4 (Proofin Sect. A.6) For a sequence of p x p matrices {X;},i € {1, ..., B}
satisfying conditions in Theorem 4.3 with M = 1 and yry > p~', there exists a subset

; V2
Kp C{1,..., B} such that for 0 < t < min{1, Slog(wlBﬁp)},

log E Trexp (t Z Xj> <logp + 4h(4)Br*v?
Jj€KpB

+ 151[1 +exp{%exp( gﬁzt)”l/fz p(— %)

For each S;,i € {0,..., L — 1}, by applying L?//mma A.4 with B = B;, we have

- L . )
for any positive ¢ satisfying 0 < ¢ < min{l, Slog(v1 (11 p] 1,

log E Trexp(tS;) <logp + t2(C12_in + Ca.),

where C := 4h(@)v2, Caj 1= 302 - 25 /yans§.
Denote

Y2
" 8log{y1(n27H)0p} )

T, w2 iy = min [1
Forany 0 <t < f(wl, Y, i), we obtain

1 o 1
t2(C127In + Ca.p) P{Cr 27 ') + G5,
<logp + ~ .

l_t/f(l/fl 1/f2:l) l_t/f(wlrl//Q?l)

log E Trexp(tS;) <logp +

For Sy, since By, <2,for0 <t <1,

21)2

11—t

log ETrexp(Sr) < log p + 12h(21) amax {E(S3)} < log p +

1 . 1 ~
Denote 0; := C; (2_’n)% +C22J., or = ~2v, ki == 1/f@1, ¥, i), and kg :=
1.
Summing up, we have

L-1 1 1
Za, Y HCT@7In)T + €2} 4 V2 < 15y + 601/,

i=0

L
1 81 6
Z < ogn aX{L og(Y1n°p)
=0

" } =Y (Y1, Y2, n, p).
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Hence, by Lemma 3 in [22], for 0 < ¢ < {J(wl, Yo, n, p)}’l, we have

12 (15¢/nv + 60/ T/93)°
1= tY (1, yo,n, p)

n
log E Trexp IZXj <logp+
j=1

Step III (Matrix Chernoff bound) Lastly by matrix Chernoff bound, we obtain

n )C2

. | > < — ~ .
) e s v
Case II We consider general M > 0. It is obvious that if {X,},;c7z is a sequence
of T-mixing random matrices such that t(k; {X¢}iez, || - ) < My exp{—v¥n(k —
1)}, then {X;/M};cz is also a sequence of r-mixing random matrices such that
t(k; {X,/M}rez, || - ) < Y1 exp{—ya(k — 1)} and |X,/M| < 1. Then applying
the result of Case I to {X;/M};c7, we obtain

n )C2
P { Amax X; > < — ~ )
ik (Z J/M) = x] = pexp : 8(152nv3, + 602/y2) + 25 (V1. Y. 1. p) ]

j=1

2
where U%l = SUPkc(1...n) m)"max{E<ZieKXi/M) } = 1)2/M2 for v2
defined in Theorem 4.3. Thus,

n xz
]P lkm (; Xj) ) x] PO o F T T )

This completes the proof of Theorem 4.3. O

A.6 The Proof of Lemma A.4

Proof Let K be constructed as in Sect. A.3 for any arbitrary B > 2 and M = 1.
Case I If 0 <t <4/B, by Lemma 4 in [3], we have

2
ETrexp | ¢ Z Xi | <pexp 2h t Amax Z X; Amax $ E Z X;
ieKp ieKp ieKp

By Weyl’s inequality, Amax(zi cKp X;) < B since card(Kp) < B, and by definition
of v2 in Theorem 4.3, we have Amax{EQ_ X,-)z} < Bv2. Therefore, we obtain
h{thmax (D ek, Xi)} < h(tB) < h(4) and

ieKp
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E Trexp (z 3 Xi) < pexplr*h(4)Bv2). (A4)

ieKp

. . 1//2
Case II Now we consider the case where 4/B < t < min{l1, Soa(y B5p) }.

Step I Let J be a chosen integer from {0, ..., £5} whose actual value will be deter-

mined later. We will use the same notation to denote Cantor-like sets as in Sect. A.3.
By Lemma A.3 and similar induction argument as in [3], we obtain

20 2/-1 J 2/
ETrexp | ¢ Z X; | < Z o Z (1_[ Ak‘ik> E Trexp (—I)Z’{ﬂ iy Z Z )N(j ,
k=1

jek] i1=0 ;=0 =1 jekgi
(A.5)
where {)~( j}je i fori "€ {l,---,2’} are mutually independent and have the same
J
distributions as {Xj}jer-// fori’ € {1,---,27}, and

2k_1 2k=T_j i
Apip = i (I+ L1+ L) (Li,1)*,

1 _ 1

e = 2pt) 22 npexp2 ™ np Ty 11)2,
. 1 —k —k+1 1
Li,1 := (pt/2)2 exp(tep){2° "ngexp(r2 ne)Tdy_+1}2,

1 _ _ 1
Lo = 2pt)T exp(te) {2 ngexp2 ™ np) g, 1 41)2,

Step II Now we choose J as follows:

_ )k
J=inf{ke{0,...,£}:B(lz—ka)fminlg,B”.

2/ - 2/ -
We first bound E Trexpf{r( )’ Z/.GK,-/ X;)} and ETrexp{—z()_ Z/eK"’ X))}
i'=1 J J i'=1 J J

From (A.5), we obtain 27 sets of {i j} that are mutually independent. To make notation
less cluttered, we will remove the upper tilde from X; for all j. Denote the number
of matrices in each set K; tobe g := ZZ_Jng. For each set K;, iefl,..., 21}, we
divide it into consecutive sets with cardinality ¢ and potentially a residual term if g is
not divisible by g. More specifically, we have 2 < g and my 7 := [¢/2q]. The value
g will be determined later.

Then, each set K ‘J contains 2m, z numbers of sets with cardinality g and one set
with cardinality less than 2. For each K i ie {1, ..., 27/ }, denote these consecutive
sets described above by Q};, ke {l,...,2mg, 7+ 1}. Given these notation, we could
rewrite the bound in the following:
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2/
E Trexp tZ Z X;

i=1 jeki
27 2mgG+1 2 mgg 2/ mg g+l
= ETrexp ZZ Z ZX]- = ETrexp ZZ Z X; +ZZ Z Z X;

i=l k=1 jeQ}; i=1 k= leQZk i=l k=l /€Q2A71

Since Trexp(-) is convex (cf. Proposition 2 in [25]), by Jensen’s inequality, we have

2/ 2/ mgg
E Trexp tz Z X;| =< ]ETrexp 2IZZ Z X;
i=1 jel(j i=1 k= ljth
27 mgg+1
+ - ]ETrexp ZIZ Z Z X;

i=1 k=1 je QZk .
Since the number of odd index sets is always equal to or one more than that of the even
index sets, the upper bound of 1 5 E Trexp <2t Zl ! Zwl" > jeoi, X j) will always be

less than or equal to that of lE Trexp (2t Zl | qu atl Z Xj). Hence, we

JjeQ gk—l
only need to provide an upper bound for E Tr exp <2t Z, | Zl" atl ZjeQék 1 Xj).
Our goal is then to replace all {X;} ey in the last inequality by mutually inde-

pendent copies {ij}fEQik_l with same distributions for k € {1, ...,2mg 7+ 1}, i €
{1,...,27}. Again we will proceed by induction. We first show
2/ mgg+1
E Trexp ZZZ Z Z X;
i=1 k=1 jeQék_]
1 mg g +1 27 mgG+1
<Y AETrexp{(-Di2e [ Y Y X+) X; |,
i1=0 k=1 jEQék—l i=2 k=1 jeQék—l

where the constants AV,-I will be specified later. For each {X;} jeol, k €
{1,...,my 7+ 1}, we could find a sequence of {X/}jEQék,l’ kell,.. .Lmq,q + 1}
that are mutually independent with each other. More specifically, let {X;} jeol =
X; }/te By applying Lemma A.2 on {X }/€Q| and {X; }IEQI with a chosen € > 0,

we may find a sequence of random matrices {X )i jeo) such that for each jj € Q3, we
have
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1. ):(jo is measurable with re%)ect to O’({Xj}jeQ}) VoXj)V a(ﬁ}o);

2. )Nijo is independent ofo({Xj}jeQ});

3. X, has the same distribution as X

4. P(I X, — X, =€) < E(l X, — X, D/€ < t54+1/€ by Markov’s inequality.
For each jj € Q%, U }0 is independent with {)~( L } jeo! and X ;. In addition, since there
are at least ¢ Ilumber of matrices between {X} jeo! aEd X, by our construction,
we have t{o (X} jc 1), Xjo3 I - I} < 7g+1. Note that {Xj}jegé is independent with
{X;} jeo! but not mutually independent within the set Q_l,.

Following the induction steps similar to the previous step and without redundancy,
we obtain

27 mgG+1

E Trexp ZIZ Z Z X;

i=1 k=1 jEQék—l

1 mg g+1 27 mg g+1
<Y AETrexp{(-Di2e [ Y Y X+) X; |},
i1=0 k=1 ./'EQékfl i=2 k=1 jeQék—l
where
~ _1 1
€= (4pt) 2H{exp(2rq)Tg+1}2,
~ 1 1 1
Ly = S (4p1)2q exp1q){exp(2tq)g41)2,
~ 1 1
Ly := (4pt)2q{expLtq)tz+1}2,
~ 1 ~ ~ o~
A = (i >(1 + L+ Ly (@™
1
This completes the base case.
Iterating the above calculation, we arrive at the following bound:
27 mgg+1
E Trexp 2tZ Z Z X;
i=1 k=1 jeQék—l
1 1 2/ 2 27 mgg+1
<3 A | ETrexp { (—DZ=2e > S 3 Xt
i1=0  iy=0 \r=I i=1 k=1 jegi |
(A.6)

where {if}jeQék 1 for (i,k) € {1,...,27} x {I,...,my 7 + 1} are mutually
independent and identically distributed as {X;} jeQiy for (i,k) € {1,...,27} x
{1,...,my 7+ 1}, and
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~ _1 1

€ := (4pt)” 2 {exp(2tq)T5+1}2,
~ 1 1 1
Ly:= 5(4pt)2qeXP(2tq€3{eXP(2tq)ra+1}2,
~ 1 1
Ly = (4pt)2q{exp(2tq)t5+1}2,

1 =T Ny TN
=\, JA+Li+Ly) (L))"

Ly

=

Letg := [2/t] A [q/2). {if}jeQék,l for (i,k) e {1,...,27} x {1,. camg g+ 1}

are mutually independent with mean 0 and 27 ZZZI" + card(Qékfl) < B. Moreover,

by Weyl!’s inequality, for (i, k) € {1, . ..,2’} x {1,...,mg g+ 1}, we have

o~ . 4
2 A max Z Xj <2q < ;
J€Qo_y
By Lemma 4 in [3], we obtain
27 mg g+l
ETrexp [26Y Y Y Xj| < pexp{4h(4)Br*v?), (A7)

i=1 k=1 jeQék_]

ETrexp | -2t Y > X; | < pexpldh@)Bi*?). (A.8)

(I ~ ~
Plugging (A.7) and (A.8) into (A.6) and using the factthat Y A; = 142L;+ Ly,

i,=0
we obtain
27 mgg+1 s
E Trexp ZtZ Z Z X; | < (1 2L + L,)* pexp{dh(4)Br}v?).
i=1 k=1 -/eQék—l
(A.9)
By replacing X by —X, we obtain
27 mg g+1 ;
E Trexp —ZIZ Z Z X; | < (1 4+2L + Ly)* pexp{dh(4)Br*v?}.
i=1 k=1 jegi, |
(A.10)
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Combining (A.5) with (A.9) and (A.10), we get

20 271 J
[E Trexp (r > X,—) <>y [(]_[ Ak,,-k) (1+42L, +Z2)21pexp{4h(4)Bt2u2}i|

jeKp i1=0  i;=0L \k=1

J
= {]‘[(1 + 2Lk + Leo)? } (1+2L1 + L)% pexp{ah(4) Br*v?),
k=1

(A.11)

where the last equality is followed by lekk:l Ay =1 +2Lg 1 + Lk,z)zkfl.
By using log(1 4+ x) < x for x > 0, we have

J
log B Tr exp (, > X;) <Y M @Lky + Lio) + 27 QL) + Ly) + loglp exp{4h(4) Br*1?}].
jeKp k=1

(A.12)

J ~ o~
For simplicity, we denote I = ) 2"_1(2Lk,1 + L), 11 = 27 (2L +L5)in (A.12).
k=1
Step III Following calculations similar to [3], we obtain

32¢/2 1 ¥2\17 V2
1< log2 |:1+exp{\/7_p exp (—E)H %exp <—E) (A.13)

1 2
IT <128 |:1 + exp {ﬁexp (—%)H texp (—%) . (A.14)

Hence, by combining (A.4), (A.12), (A.13) and (A.14), we obtain for 0 < ¢ <
min{1

and

1) ]
> 8log(y1Bop) 1

logETrexp | t Z X;

JEKB
1 1) 12 ]
<1 4h(4)Br*v* +151 | 1 — )| -—.
<logp +4h(4)Bt"v" + [ +exp{ﬁexp< 64t>}:| 1/jzexp< o
This completes the proof of Lemma A 4. O
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