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ABSTRACT
This article investigates the problem of testing independence of two random vectors of general dimensions.
For this, we give for the first time a distribution-free consistent test. Our approach combines distance
covariance with the center-outward ranks and signs developed by Marc Hallin and collaborators. In technical
terms, the proposed test is consistent and distribution-free in the family of multivariate distributions
with nonvanishing (Lebesgue) probability densities. Exploiting the (degenerate) U-statistic structure of the
distance covariance and the combinatorial nature of Hallin’s center-outward ranks and signs, we are able to
derive the limiting null distribution of our test statistic. The resulting asymptotic approximation is accurate
already for moderate sample sizes and makes the test implementable without requiring permutation. The
limiting distribution is derived via a more general result that gives a new type of combinatorial noncentral
limit theorem for double- and multiple-indexed permutation statistics. Supplementary materials for this
article are available online.
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1. Introduction

Let X ∈ R
p and Y ∈ R

q be two real random vectors defined on
the same (otherwise unspecified) probability space. This article
treats the problem of testing the null hypothesis

H0 : X and Y are independent, (1)

based on n independent copies (X1, Y1), . . . , (Xn, Yn) of (X, Y).
Testing independence is a fundamental statistical problem that
has received much attention in literature.

For the simplest instance, the bivariate case with p = q = 1,
Hoeffding (1940), Hoeffding (1948), Blum, Kiefer, and Rosen-
blatt (1961), Yanagimoto (1970), Feuerverger (1993), Bergsma
and Dassios (2014), among many others, have proposed tests
that are consistent against all alternatives from slightly different
but rather general classes of distributions. The tests are usu-
ally formulated using (univariate) ranks of the data, although
recently more tests were proposed based on alternative sum-
maries of the data, including (i) binning approaches based on
a partition of the sample space (Heller, Heller, and Gorfine
2013; Heller et al. 2016; Ma and Mao 2019; Zhang 2019), (ii)
mutual information (Kraskov, Stögbauer, and Grassberger 2004;
Kinney and Atwal 2014; Berrett and Samworth 2019), and (iii)
the maximal information coefficient (Reshef et al. 2011, 2016,
2018).

Testing independence of X and Y consistently when one or
both of the dimensions p and q are larger than one is substan-
tially more challenging, as noted in Feuerverger (1993, sec. 7).
Solutions have not been discovered until much more recently.
Two tracks were pursued. First, Székely, Rizzo, and Bakirov
(2007) generalized Feuerverger’s statistic to multivariate cases
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and proposed a new dependence measure termed “distance
covariance.” It has been shown that under the existence of
finite marginal first moments, the distance covariance is zero
if and only if H0 holds. For further extensions, Lyons (2013)
generalized distance covariance/correlation to general metric
spaces, and Jakobsen (2017) considered the corresponding test
of independence in metric spaces.

The second track to characterize nonlinear, nonmonotone
dependence is based on the maximal correlation introduced
in Hirschfeld (1935) and Gebelein (1941), reformulated and
examined by Rényi (1959a, 1959b). Gretton, Smola, et al. (2005),
Gretton, Bousquet, et al. (2005), and Gretton, Herbrich, et al.
(2005) extended this idea to examine multivariate cases, result-
ing in the Hilbert–Schmidt independence criterion (HSIC),
which is a consistent kernel-based measure of dependence in
multivariate cases. Interestingly, Gretton et al. (2008) connected
HSIC with a Gaussian kernel to the characteristic function-
based statistic raised in Feuerverger (1993), and Sejdinovic et al.
(2013) pointed out the equivalence between distance covariance
in general metric spaces and the kernel-based independence
criterion.

A notable feature of both distance- and kernel-based statis-
tics is that their null distributions depend on the distributions
of X and Y even in the large-sample limit. This dependence
arises already for p = q = 1 and is usually difficult to estimate.
As a consequence, the tests are, unlike the rank tests of, for
example, Hoeffding (1948) and Blum, Kiefer, and Rosenblatt
(1961), no longer distribution-free and permutation analysis has
to be conducted to implement them. To remedy this problem,
Székely, Rizzo, and Bakirov (2007) proposed a nonparametric
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test based on distance correlation by applying a universal upper
tail probability bound for all quadratic forms of centered Gaus-
sian random variables that have their mean equal to one (Székely
and Bakirov 2003). However, in practice this upper bound is
usually too conservative for the approach to be a competitor
to the computationally much more expensive permutation test
(Gretton et al. 2008; Székely and Rizzo 2009). This triggers the
following question: For general p, q > 1, does there exist an
asymptotically accurate consistent test of H0 that is distribution-
free and hence directly implementable?

Rank-based tests constitute a natural approach to answering
the above question. Indeed, in contrast to Székely and Rizzo
(2009), Rémillard (2009) claimed that the methods based on
marginal ranks are effective and as powerful as original ones
when the sample size is moderately large and this idea has been
explored in depth in Lin (2017). However, Bakirov, Rizzo, and
Székely (2006) noted that the methods based on marginal ranks
do not enjoy distribution-freeness except in dimension one,
which is also recorded in, for example, Theorem 2.3.2 in Lin
(2017). Using the idea of projection from Escanciano (2006),
Zhu et al. (2017) generalized Hoeffding’s D (Hoeffding 1948)
to multivariate cases, and Kim, Balakrishnan, and Wasserman
(2020) proposed the analogues of Blum–Kiefer–Rosenblatt’s R
(Blum, Kiefer, and Rosenblatt 1961) and Bergsma–Dassios–
Yanagimoto’s τ ∗ (Yanagimoto 1970; Bergsma and Dassios 2014;
Drton, Han, and Shi 2020). Weihs, Drton, and Meinshausen
(2018) proposed other multivariate extensions of Hoeffd-
ing’s D, Blum–Kiefer–Rosenblatt’s R, and Bergsma–Dassios–
Yanagimoto’s τ ∗, and did numerical studies comparing them
to distance covariance applied to marginal ranks. Alternatively,
Heller, Heller, and Gorfine (2013) developed a consistent multi-
variate test based on ranked distance covariance by transferring
the original problem to testing independence of an aggregated
2 × 2 contingency table. However, all the aforementioned tests
are not distribution-free when p or q is larger than 1, and due to
the difficulty of accounting for the dependence within X and Y ,
permutation analysis is required for their implementation. On
the other hand, Heller, Gorfine, and Heller (2012) and Heller
and Heller (2016) introduced distribution-free graph-based and
rank-based tests. However, it is unclear if the former is consis-
tent, and the latter requires choosing two arbitrary reference
points. The latter test is almost surely consistent in the sense
that the choice of reference points needs to avoid an (unknown)
measure zero set.

This article proposes a solution to the above question by
combining Székely, Rizzo, and Bakirov’s distance covariance
with a recently defined concept of multivariate ranks due to
Hallin (2017). Due to the lack of a canonical ordering on R

d for
d > 1, fundamental concepts related to distribution functions
in dimension d = 1, such as ranks and quantiles, do not admit
a simple extension for d ≥ 2 that maintains properties such
as distribution-freeness. To overcome this limitation, several
types of multivariate ranks have been introduced; see Hallin
(2017, sec. 1.3) and, more recently, Ghosal and Sen (2019)
for a literature review. None of them, however, is distribution-
free except for pseudo-Mahalanobis ranks (Hallin and Pain-
daveine 2002a, 2002b), but these are restricted to the class of
elliptically symmetric distributions (Fang, Kotz, and Ng 1990).
Recently, Chernozhukov et al. (2017) introduced the concept of

Monge–Kantorovich ranks and signs for all distributions with
convex and compact supports, which is the first type of mul-
tivariate ranks that enjoys distribution-freeness for a rich class
of distributions. Hallin (2017) generalized this definition by
refraining from moment assumptions and making the solution
more explicit. He also adopted the new terminology center-
outward ranks and signs. Hallin et al. (2020) further showed that
center-outward ranks and signs are not only distribution-free,
but also essentially maximal ancillary, which can be interpreted
as “maximal distribution-free” in view of Basu (1959). As shall
be seen soon, the explicit nature of the solution is important as
it allows for more delicate manipulations and ultimately allows
us to form a test statistic of H0 whose limiting null distribution
can be determined. The limiting distribution furnishes an accu-
rate approximation to the statistic’s null distribution already for
moderate sample sizes and allows us to avoid computationally
more involved permutation analysis.

In detail, our proposed test is based on applying distance
covariance to center-outward ranks and signs. We show that the
test is consistent and distribution-free over the class of multi-
variate distributions with nonvanishing (Lebesgue) probability
densities; see Section 2 for the precise definition of this class.
The consistency is a consequence of a result of Figalli (2018).
In light of the prior work of Székely, Rizzo, and Bakirov (2007),
Hallin (2017), and Figalli (2018), our major new discovery is
the form of the limiting null distribution of the test statistic,
which is established with all parameters given explicitly. To
this end, we study the weak convergence of U-statistics with a
“degenerate” kernel and dependent (permutation) inputs, and
derive a general combinatorial noncentral limit theorem (non-
CLT) for double- and multiple-indexed permutation statistics.
This theorem is new and of independent interest beyond our
particular application of asymptotic calibration of the size of the
independence test under H0.

As we were completing this article, we became aware of
an independent work by Deb and Sen (2019) who also pro-
posed a rank-distance-covariance-based independence test.
Their preprint was posted a few days before ours and presents, in
particular, a result very similar to our Theorem 3.1. The deriva-
tions differ markedly, however. Deb and Sen’s proof uses tech-
niques based on characteristic functions, whereas we develop
a general combinatorial non-CLT for double- and multiple-
indexed permutation statistics that can be applied to the con-
sidered statistic as well as possible modifications. There are
further differences in the precise setup of multivariate ranks:
while we base ourselves directly on recent work by Hallin (2017)
and by Figalli (2018), Deb and Sen (2019) considered trans-
ports to the unit cube rather than the unit ball (see Defini-
tion 2.2) and present weakened assumptions in the definition
of the ranks.

The rest of the article is organized as follows. Section 2
introduces center-outward ranks and signs, and Section 3 spec-
ifies the proposed test. Section 4 gives the theoretical analy-
sis, including the combinatorial non-CLT and a study of the
proposed test. Computational aspects are discussed in Sec-
tion 5, and numerical studies of the finite-sample behavior of
our test and an analysis of stock market data are presented
in Section 6. All proofs are relegated to the supplementary
materials.
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1.1. Notation

The sets of real and positive integer numbers are denoted R and
Z+, respectively. For n ∈ Z+, we define �n� = {1, 2, . . . , n}.
We write {x1, . . . , xn} and {xi}n

i=1 for the multiset consisting
of (possibly duplicate) elements x1, . . . , xn. We use [x1, . . . , xn]
and [xi]n

i=1 to denote sequences. A permutation of a multiset
S = {x1, . . . , xn} is a sequence [xσ(i)]n

i=1, where σ is a bijection
from �n� to itself. The family of all distinct permutations of a
multiset S is denoted P(S). The Euclidean norm of v ∈ R

d

is written ‖v‖. We write Id and Jd for the identity matrix and
all-ones matrix in R

d×d, respectively. For a sequence of vectors
v1, . . . , vd, we use (v1, . . . , vd) as a shorthand of (v�

1 , . . . , v�
d )�.

For a function f : X → R, we define ‖f ‖∞ := maxx∈X |f (x)|.
The greatest integer less than or equal to x ∈ R is denoted 	x
.
The symbol 1(·) stands for the indicator function. Throughout,
c and C refer to positive absolute constants whose values may
differ in different parts of the article. For any two real sequences
[an]n and [bn]n, we write an = O(bn) if there exists C > 0 such
that |an| ≤ C|bn| for all n large enough, and an = o(bn) if
for any c > 0, |an| ≤ c|bn| holds for all n large enough. The
symbols Sd, Sd, and Sd−1 stand for the open unit ball, closed
unit ball, and unit sphere in R

d, respectively. We use d−→ and
a.s.−→ to denote convergence in distribution and almost surely.

For any random vector X, we use PX to represent its probability
measure.

2. Center-Outward Ranks and Signs

In this section, we introduce necessary background on center-
outward ranks and signs. As in Hallin (2017), we will be focused
on the family of absolutely continuous distributions on R

d that
have a nonvanishing (Lebesgue) probability density (Defini-
tion 2.1). In what follows it is understood that the dimension
d could be larger than 1 and that all considered probability
measures are fixed, and not to be changed with the sample size
n in particular.

Definition 2.1. Let P be an absolutely continuous probability
measure on R

d with (Lebesgue) density f . Such P is said to be a
nonvanishing probability measure/distribution if for all D > 0
there exist constants �D;f ≥ λD;f > 0 such that λD;f ≤
f (x) ≤ �D;f for all ‖x‖ ≤ D. We write Pd for the family of
all nonvanishing probability measures/distributions on R

d.

The considered generalization of ranks to higher dimensions
rests on the following concept of a center-outward distribution
function, whose existence and almost everywhere uniqueness
within the family Pd is guaranteed by the main theorem in
McCann (1995, p. 310).

Definition 2.2 (Hallin 2017, Definition 4.1). The center-outward
distribution function F± of a probability measure P ∈ Pd is the
almost everywhere unique function that (i) is the gradient of a
convex function on R

d, (ii) maps Rd to the open unit ball Sd,
and (iii) pushes P forward to Ud, where Ud is the product of
the uniform measure on [0, 1) (for the radius) and the uniform
measure on the unit sphere Sd−1. To be explicit, property (iii)
requires Ud(B) = P(F−1± (B)) for any Borel set B ⊆ Sd.

If X ∼ P ∈ Pd and we further have E‖X‖2 < ∞, then the
center-outward distribution function F± of P coincides with the
L2-optimal transport from P to Ud (Villani 2009, Theorem 9.4),
i.e., it is the almost everywhere unique solution to the following
optimization problem,

inf
T

∫
Rd

∥∥∥T(x) − x
∥∥∥2

dP subject to T�P = Ud, (2)

where T�P denotes the push forward of P under map T. In other
words, the optimization is done over all Borel-measurable maps
from R

d to R
d pushing P forward to Ud. Assuming further that

the Caffarelli’s regularity conditions including compactness of
support (Chernozhukov et al. 2017, Lemma 2.1) hold, F± coin-
cides with the Monge–Kantorovich vector rank transformation
RP proposed in Definition 2.1 in Chernozhukov et al. (2017).
Lastly, it can be easily checked that when d = 1, F± reduces to
2F − 1, where F is the usual cumulative distribution function.

In dimension d = 1, the distribution function F determines
the underlying probability distribution P. A natural question
is then whether F± similarly preserves all information about
a distribution P ∈ Pd when d > 1. That this is indeed the
case turns out to be highly nontrivial, and was not resolved
until very recently. The following proposition shows that F± is
a homeomorphism from R

d to Sd except for a compact set with
Lebesgue measure zero, indicating that all the information about
the probability measure P ∈ Pd can be captured using F±. This
proposition will play a key role in our later justification of the
consistency of our proposed test (Theorem 3.2).

Proposition 2.1 (Figalli 2018, Theorem 1.1; Hallin 2017, Proposi-
tions 4.1 and 4.2). Let P ∈ Pd, with center-outward distribution
function F±. Then,

(i) F± is a probability integral transformation of Rd, that is,
X ∼ P iff F±(X) ∼ Ud;

(ii) The set F−1± (0) is compact and of Lebesgue measure zero.
The restrictions of F± and F−1± toRd\F−1± (0) andSd\{0} are
homeomorphisms between R

d\F−1± (0) and Sd\{0}. If d =
1, 2, then the set F−1± (0) is a singleton, and F± and F−1± are
homeomorphisms between R

d and Sd.

We now move on to estimation of F± based on n independent
copies of X ∼ P ∈ Pd. The considered estimator mimics the
empirical version of the Monge–Kantorovich problem (2), and
the key step is to “discretize” the unit ball Sd to n grid points. In
the following, we sketch Hallin’s approach to the construction
of such a grid point set, with a focus on how to form the grid
points when d ≥ 2. To this end, let us first factorize n into the
following form, whose existence is clear:

n = nRnS + n0, nR, nS ∈ Z+, 0 ≤ n0 < min{nR, nS},
with nR, nS → ∞ as n → ∞. (3)

Next, consider nRnS intersection points between

– the nR hyperspheres centered at 0 with radii 1
nR+1 , . . . , nR

nR+1 ,
and

– nS distinct unit vectors {r1, . . . , rnS}.

The unit vectors in {r1, . . . , rnS} are selected such that the
uniform discrete distribution on this set converges weakly to
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the uniform distribution on Sd−1. For d = 2, we can choose
unit vectors such that the unit circle is divided into nS equal
arcs. For d ≥ 3, the requirement is satisfied almost surely
when independently drawing nS unit vectors from the uniform
distribution on Sd−1. Moreover, it is not difficult to give a deter-
ministic construction that serves our purpose; see Section B in
the supplementary materials.

Definition 2.3. When d ≥ 2, the augmented grid Gd
n0,nR,nS is the

multiset consisting of n0 copies of the origin 0 whenever n0 > 0
and the intersection points { j

nR+1 rk : j ∈ �nR�, k ∈ �nS�}. When
d = 1, letting nS = 2, nR = 	n/nS
, and n0 = n − nRnS, the
augmented grid Gd

n0,nR,nS is the multiset consisting of the origin
0 whenever n0 > 0 and the points {± j

nR+1 : j ∈ �nR�}.

Proposition 2.2. As long as the uniform discrete distribution on
{r1, . . . , rnS} converges weakly to the uniform distribution on
Sd−1, the uniform discrete distribution on the augmented grid
Gd

n0,nR,nS , which assigns mass n0/n to the origin and mass 1/n to
every other grid point, weakly converges to Ud.

We are now ready to introduce Hallin’s estimator, F(n)
± , of F±.

It is defined via the optimal coupling between the observed data
points and the augmented grid Gd

n0,nR,nS .

Definition 2.4 (Hallin 2017, Definition 4.2). Let x1, . . . , xn be
data points in R

d. Let T be the collection of all bijective map-
pings between the multiset {xi}n

i=1 and the augmented grid
Gd

n0,nR,nS . The empirical center-outward distribution function is
defined as

F(n)
± := argmin

T∈T

n∑
i=1

∥∥∥xi − T(xi)
∥∥∥2

, (4)

the center-outward rank of xi is defined as (nR +
1)‖F(n)

± (xi)‖, and the center-outward sign of xi is defined as
F(n)

± (xi)‖/‖F(n)
± (xi)‖ if ‖F(n)

± (xi)‖ �= 0, and 0 otherwise.

The following two propositions from Hallin (2017) give the
Glivenko–Cantelli strong consistency and distribution-freeness
of the empirical center-outward distribution function. Both
shall play key roles for the limiting null distribution and asymp-
totic consistency of the test statistic that will be proposed in
Section 3.

Proposition 2.3 (Glivenko–Cantelli, Hallin 2017, Proposition 5.1;
del Barrio et al. 2018, Theorem 3.1). Let P ∈ Pd with center-
outward distribution function F±, and let X1, . . . , Xn be iid
with distribution P with empirical center-outward distribution
function F(n)

± . Then

max
1≤i≤n

∥∥∥F(n)
± (Xi) − F±(Xi)

∥∥∥ a.s.−→ 0 (5)

when n → ∞ and (3) holds.

Proposition 2.4 (Distribution-freeness, Hallin 2017, Proposi-
tion 6.1(ii); Hallin et al. 2020, Proposition 2.5(ii)). Let X1, . . . , Xn
be iid with distribution P ∈ Pd. Let F(n)

± be their empirical
center-outward distribution function. Then for any decomposi-
tion n0, nR, nS of n, the random vector [F(n)

± (X1), . . . , F(n)
± (Xn)]

is uniformly distributed over P(Gd
n0,nR,nS). The latter set is

comprised of all permutations of the multisetGd
n0,nR,nS ; recall the

notation introduced at the end of Section 1.

3. A Distribution-Free Test of Independence

This section introduces the proposed distribution-free test of H0
in (1) built on center-outward ranks and signs. The main new
methodological idea is simple: We propose to plug the calculated
center-outward ranks and signs, instead of the original data, into
the consistent test statistics presented in the introduction (Sec-
tion 1). The distribution theory for the proposed test statistic,
however, is nontrivial and requires new technical developments,
which shall be detailed in Section 4.

To illustrate our idea, we will focus on one particular consis-
tent test statistic in the sequel, namely, the distance covariance
of Székely, Rizzo, and Bakirov (2007). Other choices including
HSIC and more recent proposals like the ball covariance pro-
posed in Pan et al. (2020) shall be discussed in Section 4 follow-
ing the presentation of our general combinatorial non-CLT.

We begin with details on the distance covariance that are
necessary to convey the main idea. We first introduce a repre-
sentation of the associated measure of dependence.

Definition 3.1 (Distance covariance measure of dependence,
Székely, Rizzo, and Bakirov 2007). Let X ∈ R

p and Y ∈ R
q be

two random vectors with E(‖X‖ + ‖Y‖) < ∞, and let (X′, Y ′)
be an independent copy of (X, Y). The distance covariance of
(X, Y) is defined as

dCov2(X, Y) := E(dX(X, X′)dY(Y , Y ′)), (6)
which is finite and uses the kernel function

dX(x, x′) = dPX (x, x′) := ‖x − x′‖ − E‖x − X2‖
− E‖X1 − x′‖ + E‖X1 − X2‖, (7)

and its analogue dY(y, y′). Here X1 and X2 are independent and
both follow the distribution PX .

The finiteness of dCov2(X, Y) in (6) was proved by Lyons
(2013, Proposition 2.3). It can be shown that under the same
conditions as in Definition 3.1,

dCov2(X, Y) = 1
4

E(s(X1, X2, X3, X4)s(Y1, Y2, Y3, Y4)),

where (X1, Y1), . . . , (X4, Y4) are independent copies of (X, Y)

and
s(t1, t2, t3, t4) := ‖t1 − t2‖+‖t3 − t4‖−‖t1 − t3‖−‖t2 − t4‖;
see also Bergsma and Dassios (2014, sec. 3.4). Accordingly, we
have an unbiased estimator of the distance covariance between
X and Y as follows.

Definition 3.2 (Sample distance covariance, Székely and Rizzo
2013). Let (X1, Y1), . . . , (Xn, Yn) be independent copies of
(X, Y) with X ∈ R

p, Y ∈ R
q, E(‖X‖ + ‖Y‖) < ∞. The sample

distance covariance is defined as

dCov2
n

(
[Xi]n

i=1, [Y i]n
i=1

)
=

(
n
4

)−1

∑
1≤i1<···<i4≤n

K
(
(Xi1 , Y i1), . . . , (Xi4 , Y i4)

)
, (8)
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where

K
(
(x1, y1), . . . , (x4, y4)

)
:= 1

4 · 4!∑
[i1,...,i4]∈P(�4�)

s(xi1 , xi2 , xi3 , xi4)s(yi1 , yi2 , yi3 , yi4), (9)

and recall s(t1, t2, t3, t4) := ‖t1 − t2‖
+ ‖t3 − t4‖ − ‖t1 − t3‖ − ‖t2 − t4‖.

The following is a direct consequence of Lemma 1 in Yao,
Zhang, and Shao (2018b).

Proposition 3.1. Definition 1 in Székely and Rizzo (2013),
Equation (3.2) in Székely and Rizzo (2014), Definition 5.3 (U-
statistic) in Jakobsen (2017), and Definition 3.2 are equivalent.

We are now ready to describe our distribution-free test
of independence, which combines distance covariance with
center-outward ranks and signs.

Definition 3.3 (The proposed distribution-free test statistic). Let
(X1, Y1), . . . , (Xn, Yn) be independent copies of (X, Y) with
PX ∈ Pp and PY ∈ Pq. Let F(n)

X,± and F(n)
Y ,± be the empirical

center-outward distribution functions for {Xi}n
i=1 and {Y i}n

i=1.
We define the test statistic

M̂n := n · dCov2
n

(
[F(n)

X,±(Xi)]n
i=1, [F(n)

Y ,±(Y i)]n
i=1

)
. (10)

By Proposition 2.4, the statistic M̂n is distribution-free under
the independence hypothesis H0 in (1). Hence, an exact critical
value for rejection of H0 can be approximated via Monte Carlo
simulation. Numerically less demanding, one could instead
adopt the critical value based on the limiting null distribution
of M̂n derived from the following theorem.

Theorem 3.1 (Limiting null distribution). Let (X1, Y1), . . . ,
(Xn, Yn) be independent copies of (X, Y) with PX ∈ Pp and
PY ∈ Pq, and X and Y are independent. Then we have

M̂n
d−→

∞∑
k=1

λk(ξ
2
k − 1), (11)

as n → ∞ and (3) holds, where λk, k ∈ Z+, are the nonzero
eigenvalues of the integral equation

E
(

dU(u, U)dV(v, V)φ(U , V)
)

= λφ(u, v), (12)

in which dU(u, u′) and dV(v, v′) are defined as in (7), U ∼ Up
and V ∼ Uq are independent, and [ξk]∞k=1 is a sequence of
independent standard Gaussian random variables.

Remark 3.1. In Section 4, we will prove Theorem 3.1 rigorously.
Intuitively, it is helpful to first consider the following “oracle” test
statistic M̃n:

M̃n := n · dCov2
n

(
[FX,±(Xi)]n

i=1, [FY ,±(Y i)]n
i=1

)
,

where FX,± and FY ,± denote the center-outward distribution
functions of PX and PY , respectively. The infeasibility stems
from the use of the (population) center-outward distribution

functions. One can easily verify using the asymptotic theory of
degenerate U-statistics that under the null

M̃n
d−→

∞∑
k=1

λk(ξ
2
k − 1),

where [λk]∞k=1 and [ξk]∞k=1 are defined as in Theorem 3.1. Some-
what surprising to us, the limiting null distribution of M̂n is
exactly the same as that of M̃n.

Therefore, for any prespecified significance level α ∈ (0, 1),
our proposed test is hence

Tα := 1
(

M̂n > Q1−α

)
,

Q1−α := inf
{

x ∈ R : P
( ∞∑

k=1
λk(ξ

2
k − 1) ≤ x

)
≥ 1 − α

}
.

(13)

Consequently, by Theorem 3.1,

P(Tα = 1 | H0) = α + o(1). (14)

It should be highlighted that, thanks to distribution-freeness,
given any fixed dimensions p and q, the asymptotically small
term in (14) is independent of the underlying distributions,
and converges to zero uniformly over all the underlying dis-
tributions with PX ∈ Pp, PY ∈ Pq, and X independent of
Y . The values of λk’s, and hence also the critical value Q1−α

itself, are distribution-free and only depend on the dimen-
sions p and q. The critical value may thus be calculated using
numerical methods for each pair of p and q. Details will be
described in Section 5.2. Table C.1 in the supplementary mate-
rials further records the critical values at significance levels
α = 0.1, 0.05, 0.01 for (p, q) = (1, 1), (1, 2), . . . , (10, 10) with
accuracy 2 × 10−3.

Due to (i) the near-homeomorphism property of the center-
outward distribution function shown in Proposition 2.1; (ii)
the strong Glivenko–Cantelli consistency of empirical center-
outward distribution functions shown in Proposition 2.3; and
(iii) the fact that the distance covariance measure of dependence
is zero if and only if H0 holds under finiteness of marginal
first moments (Lyons 2013, Theorem 3.11), it holds that M̂n
is asymptotically consistent and the corresponding test Tα is
consistent. This fact is summarized in the following theorem.

Theorem 3.2 (Consistency). Let (X1, Y1), . . . , (Xn, Yn) be inde-
pendent copies of (X, Y), where PX ∈ Pp with center-outward
distribution function FX,±, and PY ∈ Pq with center-outward
distribution function FY ,±. We then have, as long as n → ∞
and (3) holds,

M̂n/n a.s.−→ dCov2
(

FX,±(X), FY ,±(Y)
)

, (15)

where dCov2(FX,±(X), FY ,±(Y)) ≥ 0 with equality if and
only if X and Y are independent. In addition, under any fixed
alternative H1, we obtain M̂n

a.s.−→ ∞ if n → ∞ and (3) holds,
and thus

P(Tα = 1 | H1) = 1 − o(1). (16)
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We conclude this section with one more remark that dis-
cusses an interesting connection between the proposed test
and a famous dependence measure, Blum–Kiefer–Rosenblatt’s R
dependence measure (Blum, Kiefer, and Rosenblatt 1961), when
p = q = 1.

Remark 3.2. In the univariate case (p = q = 1), the statis-
tic M̂n/n is actually (up to a constant) a consistent estimator
of Blum–Kiefer–Rosenblatt’s R measure of dependence (Blum,
Kiefer, and Rosenblatt 1961). In detail, Theorem 3.2 has shown
that M̂n/n a.s.−→ dCov2(FX,±(X), FY ,±(Y)). When X and Y
are both absolutely continuous, Bergsma (2006, Lemma 10)
showed that

1
4

dCov2(X, Y) =
∫

{F(X,Y)(x, y) − FX(x)FY(y)}2dxdy,

where FZ(·) denotes the cumulative distribution function of Z.
This implies that

1
16

dCov2(FX,±(X), FY ,±(Y))

=
∫

{F(X,Y)(x, y) − FX(x)FY(y)}2dFX(x)dFY(y).

The right-hand side is Blum–Kiefer–Rosenblatt’s R and
M̂n/(16n) converges to it almost surely.

4. Theoretical Analysis

This section provides the theoretical justification for the
test in (13). By Proposition 2.4, both [F(n)

X,±(Xi)]n
i=1 and

[F(n)
Y ,±(Y i)]n

i=1 are generated from uniform permutation mea-
sures. In view of Definition 3.3, it is hence clear that under H0
the test statistic M̂n is a summation over the product space of two
uniform permutation measures, which belongs to the family of
permutation statistics.

The study of permutation statistics can be traced back at
least to Wald and Wolfowitz (1944), who proved an asymptotic
normality result for single-indexed permutation statistics of the
form

∑n
i=1 x(n)

i y(n)
πi . Here x(n) and y(n) are vectors that are pos-

sibly varying with n, and π is uniformly distributed on P(�n�).
Later, Noether (1949), Hoeffding (1951), Motoo (1957), and
Hájek (1961), among many others, generalized Wald and Wol-
fowitz’s results in different ways, and Bolthausen (1984) gave a
sharp Berry–Esseen bound for such permutation statistics using
Stein’s method.

Double-indexed permutation statistics, of the form∑
i �=j A(n)

ij B(n)
πiπj with A(n) and B(n) as matrices possibly varying

with n, are more difficult to tackle. They were first investigated
by Daniels (1944), who gave sufficient conditions for asymptotic
normality. Later, various weakened conditions were introduced
in, for example, Bloemena (1964, chap. 4.1), Jogdeo (1968), Abe
(1969), Cliff and Ord (1973, chap. 2.4), Shapiro and Hubert
(1979), Barbour and Eagleson (1986), Pham, Möcks, and Sroka
(1989), and the Berry–Esseen bound was established in Zhao
et al. (1997), Barbour and Chen (2005), and Reinert and Röllin
(2009).

Despite this vast literature, there is a notable absence of
results on permutation statistics which, as its degenerate U-
statistics “cousins”, may weakly converge to a nonnormal dis-
tribution. Our analysis of M̂n, however, hinges on such a com-
binatorial non-CLT. In the following, we present two general
theorems that fill the gap.

Before stating the two theorems, we introduce some notions
needed. For each i = 1, 2, let Zi be a random vector taking
values in �i, a compact subset of Rpi . We consider triangular
arrays {z(n)

i;j , n ∈ Z+, j ∈ �n�}, for i = 1, 2, such that the random
variables with uniform discrete distributions on the respective
multisets {z(n)

i;j , j ∈ �n�}, denoted by Z(n)
i , weakly converge to Zi

as n → ∞. We further introduce an independent copy of Zi,
denoted Z′

i, and independent copies of the Z(n)
i , denoted Z(n)

i
′
.

Finally, for i = 1, 2 and n ∈ Z+, let g(n)
i , gi : �i × �i → R be

real-valued functions, the former of which may change with n.
Our first theorem is then focused on double-indexed

permutation-statistics of the form

D̂(n) =
(

n
2

)−1 ∑
1≤j1<j2≤n

g(n)
1

(
z(n)

1;j1 , z(n)
1;j2

)
g(n)

2

(
z(n)

2;πj1
, z(n)

2;πj2

)
,

(17)
where π is uniformly distributed on P(�n�).

Theorem 4.1. Assume that for each i = 1, 2, the functions
g(n)

i , n ∈ Z+, and gi satisfy the following conditions:

(i) each g(n)
i is symmetric, that is, g(n)

i (z, z′) = g(n)
i (z′, z) for

all z, z′ ∈ �i;
(ii) the family g(n)

i , n ∈ Z+, is equicontinuous;
(iii) each g(n)

i is nonnegative definite, that is,

�∑
j1,j2=1

cj1 cj2 g(n)
i (zj1 , zj2) ≥ 0

for all c1, . . . , c� ∈ R, z1, . . . , z� ∈ �i, � ∈ Z+;
(iv) each g(n)

i has E(g(n)
i (z, Z(n)

i )) = 0;
(v) each g(n)

i has E(g(n)
i (Z(n)

i , Z(n)
i

′
)2) ∈ (0, +∞);

(vi) as n → ∞, the functions g(n)
i converge uniformly on �i to

gi, with E(gi(Zi, Z′
i)

2) ∈ (0, +∞).

It then holds that

nD̂(n) d−→
∞∑

k1,k2=1
λ1,k1λ2,k2(ξ

2
k1,k2

− 1)

as n → ∞, where ξk1,k2 , k1, k2 ∈ Z+, are iid standard Gaussian,
and the λi,k ≥ 0, k ∈ Z+, are eigenvalues of the Hilbert–
Schmidt integral operator given by gi, that is, for each i the λi,k’s
solve the integral equations

E(gi(zi, Zi)ei,k(Zi)) = λi,kei,k(zi)

for a system of orthonormal eigenfunctions ei,k.

Theorem 4.1 provides the essential component of our anal-
ysis for M̂n. However, M̂n is a permutation statistic that is not
double- but quadruple-indexed. To cover this case, we have to
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extend Theorem 4.1 to multiple-indexed permutation statistics,
the study of which is much more sparse (see, e.g., Raic̆ 2015 for
some recent progresses). Further notation is needed.

For all j ∈ Z+, let wj = (z1;j, z2;j) be a vector with zi;j ∈ �i,
for i = 1, 2. Let h : (�1 × �2)

m → R be a symmetric kernel
of order m, that is, h(w1, . . . , wm) = h(wσ1 , . . . , wσm) for all
permutations σ ∈ P(�m�) and w1, . . . , wm ∈ �1 × �2. For
any integer � ∈ �m�, and any measure PW , we let

h�(w1 . . . , w�; PW) := E(h(w1 . . . , w�, W�+1, . . . , Wm)),

where W1, . . . , Wm are m independent random vectors with
distribution PW .

The next theorem treats a multiple-indexed permutation-
statistic of order m defined as


̂(n) =
(

n
m

)−1 ∑
1≤j1<···<jm≤n

h
(
(z(n)

1;j1 , z(n)
2;πj1

), . . . , (z(n)
1;jm , z(n)

2;πjm
)
)

, (18)

where π is uniformly distributed on P(�n�), and the triangular
arrays {z(n)

i;j , n ∈ Z+, j ∈ �n�}, i = 1, 2 are as introduced before
the statement of Theorem 4.1.

Theorem 4.2. Let Zi and Z(n)
i , i = 1, 2, be defined as for Theo-

rem 4.1. Assume the kernel h has the following three properties:

(I) h is continuous with ‖h‖∞ < ∞;
(II) h1

(
w1; PZ(n)

1
× PZ(n)

2

)
= 0;

(III) one has (
m
2

)
· h2

(
w1, w2; PZ(n)

1
× PZ(n)

2

)
= g(n)

1 (z1;1, z1;2)g(n)
2 (z2;1, z2;2),

and
(

m
2

)
· h2

(
w1, w2; PZ1 × PZ2

)
= g1(z1;1, z1;2)g2(z2;1, z2;2),

where for each i = 1, 2, g(n)
i , n ∈ Z+, and gi satisfy

Assumptions (i)–(vi) from Theorem 4.1.

We then have

n
̂(n) d−→
∞∑

k1,k2=1
λ1,k1λ2,k2(ξ

2
k1,k2

− 1)

as n → ∞, where λi,k and ξk1,k2 are defined as in Theorem 4.1.

With the aid of Theorem 4.2, we are now ready to prove
Theorem 3.1, which presents the limiting null distribution of
M̂n. In our context, p1 = p, p2 = q, m = 4, and h is
the kernel K defined in (9). The multisets {z(n)

1;j , j ∈ �n�} and
{z(n)

2;j , j ∈ �n�} are taken to be {u(n)
j , j ∈ �n�} := Gp

n0,nR,nS

and {v(n)
j , j ∈ �n�} := Gq

n0,nR,nS , respectively. Accordingly,
Z(n)

1 follows the uniform discrete distribution over Gp
n0,nR,nS ,

denoted by U(n), and Z(n)
2 has a uniform discrete distribution

over Gq
n0,nR,nS , denoted by V(n). The functions g(n)

1 , g1, g(n)
2 , and

g2 can be chosen as −dU(n) , −dU , −dV(n) , and −dV , defined in
the manner of (7), respectively.

We now verify properties (I)–(III). Write w = (u, v) and
w′ = (u′, v′). Notice that the kernel K is symmetric and
continuous on Sp × Sq. We have

K1
(

w; PU(n) × PV(n)

)
= 0, 6K2

(
w, w′; PU(n) × PV(n)

)
=

(
− dU(n) (u, u′)

)(
− dV(n) (v, v′)

)
,

and 6K2
(

w, w′; PU × PV
)

=
(

− dU(u, u′)
)(

− dV(v, v′)
)

,

by Yao, Zhang, and Shao (2018a, sec. 1.1). Moreover, the
−dU(n) (u, u′) is symmetric, nonnegative definite (Lyons 2013,
p. 3291), and equicontinuous since

|−dU(n) (u, u′)− (−dU(n) (u′′′, u′′))| ≤ 2‖u − u′′′‖+ 2‖u′ − u′′‖.

One can verify that E[−dU(n) (u, U(n))] = 0, and −dU(n) (u, u′)
converges uniformly to −dU(u, u′) by combining the point-
wise convergence using the portmanteau lemma (van der Vaart

s1

s2

s3

t1

t2

t3

c11

c12

c13

c21

c22

c23

c31

c32

c33

Figure 1. Bipartite graph formulation of a linear sum assignment problem (LSAP).

Table 1. Empirical sizes of the proposed test using theoretical (noted as Hallin(t))
and simulation-based (noted as Hallin(s)) rejection threshold, test via distance
covariance with marginal ranks (noted as rdCov), and test via distance covariance
(noted as dCov) in Example 6.1(a).

(p, q) n Hallin(t) Hallin(s) rdCov dCov

(2, 2) 216 0.057 0.046 0.043 0.045
(2, 2) 432 0.054 0.051 0.048 0.050
(2, 2) 864 0.050 0.057 0.050 0.048
(2, 2) 1728 0.045 0.046 0.061 0.057
(3, 3) 216 0.052 0.056 0.058 0.053
(3, 3) 432 0.055 0.045 0.045 0.043
(3, 3) 864 0.052 0.046 0.053 0.048
(3, 3) 1728 0.056 0.050 0.043 0.050
(5, 5) 216 0.060 0.055 0.040 0.048
(5, 5) 432 0.047 0.046 0.048 0.043
(5, 5) 864 0.051 0.048 0.040 0.048
(5, 5) 1728 0.048 0.044 0.053 0.039
(7, 7) 216 0.053 0.048 0.053 0.056
(7, 7) 432 0.051 0.038 0.054 0.053
(7, 7) 864 0.047 0.055 0.048 0.046
(7, 7) 1728 0.046 0.047 0.048 0.052
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Figure 2. Empirical powers of the three competing tests in Example 6.1(a). The y-axis represents the power based on 1000 replicates and the x-axis represents the level of
a desired signal.

1998, Lemma 2.2) and the equicontinuity of −dU(n) (u, u′)
(Rudin 1976, Exercise 7.16). The similar results hold for
−dV(n) (v, v′) and −dV(v, v′). Lastly, under H0, [F(n)

X,±(Xi)]n
i=1

and [F(n)
Y ,±(Y i)]n

i=1 are independent with margins uniformly dis-
tributed on P(Gp

n0,nR,nS) and P(Gq
n0,nR,nS), respectively. Hence

our statistic is distributed of the form (18).
In summary, Theorem 4.2 can be applied to the statistic M̂n

and we have accordingly proven Theorem 3.1 rigorously. Fur-
thermore, although our focus is on the combination of center-
outward ranks and signs with the distance covariance statistic,
the general form of our combinatorial non-CLTs (Theorems 4.1
and 4.2) also yields the limiting null distributions for test statis-
tics based on plugging center-outward ranks and signs into
HSIC-type or ball-covariance statistics (Gretton, Bousquet, et al.
2005; Gretton, Herbrich, et al. 2005; Gretton, Smola, et al. 2005;
Pan et al. 2020). We omit the details for these analogies.

5. Computational Aspects

In this section, we describe the practical implementation of our
test. To perform the proposed test, for any given n, we fix a
factorization such that

n = nRnS + n0, nR, nS ∈ Z+, 0 ≤ n0 < min{nR, nS},
with nR, nS → ∞ as n → ∞.

First, we need to compute [F(n)
X,±(Xi)]n

i=1 and [F(n)
Y ,±(Y i)]n

i=1
as defined in (4). This is an assignment problem and will be
discussed in Section 5.1. After obtaining [F(n)

X,±(Xi)]n
i=1 and

[F(n)
Y ,±(Y i)]n

i=1, the test statistic M̂n in (10) can be computed
using Equation (3.3) in Huo and Székely (2016) in O(n2) time.
Second, we have to calculate the critical value Q1−α defined in
(13). This value can be estimated numerically, as detailed in Sec-
tion 5.2. We have also provided the critical values at significance
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Figure 3. Empirical powers of the three competing tests in Example 6.1(b). The y-axis represents the power based on 1000 replicates and the x-axis represents the level of
a desired signal.

levels α = 0.1, 0.05, 0.01 for (p, q) = (1, 1), (1, 2), . . . , (10, 10)

with accuracy 2 · 10−3 in Table C.1 in the supplementary
materials.

As shall be shown soon, the total computation complexity of
our proposed test is O(n5/2 log(n)) in various cases. To contrast,
to implement the distance covariance based test for instance,
one has a time complexity O(Rn2), with R representing the
number of permutations. For many choices of R, our test will
have a clear computational advantage.

5.1. Assignment Problems

Problem (4) amounts to a linear sum assignment problem
(LSAP), a fundamental problem in linear programming and
combinatorial optimization. We define LSAP through graph
theory. Consider a weighted (complete) bipartite graph (S, T; E)

with S := {si}n
i=1, T := {tj}n

j=1, si, tj ∈ R
d, where in Problem

(4), S = {xi}n
i=1 and T = Gd

n0,nR,nS . The edge between si and
tj, denoted by (si, tj), has a nonnegative weight cij := ‖si −
tj‖2, i, j ∈ �n�. We want to find an optimal matching, that is,
a subset of edges such that each vertex is an endpoint of exactly
one edge in this subset with a minimum sum of weights of its
edges; see Figure 1 for an illustration of n = 3, where edges in
the optimal matching are marked in red.

We introduce some terms to state the theorem below. A
perfect matching is a subset of edges such that each vertex
is incident to exactly one edge. The total weight of a perfect
matching is the sum of weights of the edges in this matching.
A perfect matching is called (1 + ε)-approximate for ε > 0 if its
total weight is no larger than (1 + ε) times the total weight of
the optimal matching.

Theorem 5.1 (Gabow and Tarjan 1989; Sharathkumar and Agar-
wal 2012; Agarwal and Sharathkumar 2014). Assume that
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Figure 4. Empirical powers of the three competing tests in Example 6.1(c). The y-axis represents the power based on 1000 replicates and the x-axis represents the level of
a desired signal.

points si, tj ∈ R
d, i, j ∈ �n�, have bounded integer coordi-

nates, and that the squared distances ‖si − tj‖2, i, j ∈ �n�
are all bounded by some integer N. Then there exists an algo-
rithm to find the optimal matching in O(n5/2 log(nN)) time.
Furthermore,

(i) if d = 2, there exists an exact algorithm for computing
the optimal matching in O(n3/2+δ log(N)) time for any
arbitrarily small constant δ > 0;

(ii) if d ≥ 3, there is an algorithm to compute a (1 +
ε)-approximate perfect matching in O(ε−1n3/2τ(n, ε) log4

(n/ε) log(max cij/ min cij)) time, where τ(n, ε) depending
on n, ε is small.

In the supplementary materials, we will describe the algo-
rithm developed by Gabow and Tarjan (1989) under the basic

settings. It is essentially the combination of the Hungarian
method (Kuhn 1955, 1956; Munkres 1957) and the algorithm
of Hopcroft and Karp (1973). We will ignore the details of the
faster exact algorithm for d = 2 by Sharathkumar and Agarwal
(2012) and the approximate algorithm for d ≥ 3 by Agarwal and
Sharathkumar (2014); both algorithms improve the Gabow–
Tarjan algorithm by exploiting the geometric structure of the
weight matrix.

5.2. Eigenvalues and Quadratic Forms in Normal Variables

In Theorem 3.1, λk, k ∈ Z+, are nonzero eigenvalues (counted
with multiplicity) of the integral equation

E(dU(u, U)dV(v, V)φ(U , V)) = λφ(u, v).
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Figure 5. Empirical powers of the three competing tests in Example 6.2(a). The y-axis represents the power based on 1000 replicates and the x-axis represents the level of
a desired signal.

Under the independence hypothesis H0, the eigenvalues λk, k ∈
Z+, are given by all the products λ1,j1λ2,j2 , j1, j2 ∈ Z+, where
λ1,j, j ∈ Z+, and λ2,j, j ∈ Z+, are the nonzero eigenvalues of
the integral equations

E(dU(u, U)φ1(U)) = λ1φ1(u) and
E(dV(v, V)φ2(V)) = λ2φ2(v),

respectively (Nandy, Weihs, and Drton 2016, Lemma 4.2). The
nonzero eigenvalues of integral equation E(dU(u, U)φ1(U)) =
λ1φ1(u) with U ∼ Up are given by

−4/(π2j2), for all j ∈ Z+ when p = 1.

We are not aware of any closed form formulas for the eigenvalues
when p ≥ 2. However, in practice, the nonzero eigenvalues

{λ1,j}∞j=1 can be numerically estimated by the nonzero eigenval-
ues of the matrix

(IM − JM/M)D(M)(IM − JM/M)/M,

denoted by λ
(M)
1,j , j ∈ �M − 1�, where M := MRMS, D(M) =

[D(M)

jj′ ], D(M)

jj′ = ‖u(M)
j − u(M)

j′ ‖ and u(M)
j , j ∈ �M�, are points in

the grid Gp
0,MR,MS

. Here λ
(M)
1,j , j ∈ �M−1� are all negative (Lyons

2013, p. 3291). For p = 1, we take λ
(M)
1,j = −4/(π2j2). We can

obtain eigenvalues λ
(M)
2,j , j ∈ �M−1� based on the grid Gq

0,MR,MS

similarly. Then we sort the positive products λ
(M)
1,j1 λ

(M)
2,j2 , j1, j2 ∈

�M−1� into a descendingly ordered sequence [λ(M)

k ](M−1)2

k=1 , and
have the following theorem.
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Figure 6. Empirical powers of the three competing tests in Example 6.2(b). The y-axis represents the power based on 1000 replicates and the x-axis represents the level of
a desired signal.

Theorem 5.2. Let [λk]∞k=1 and [λ(M)

k ](M−1)2

k=1 be eigenvalues as
defined in Theorem 3.1 and above, respectively. Let [ξk]∞k=1 be a
sequence of independent standard Gaussian random variables.
Then it holds for any prespecified significance level α ∈ (0, 1)

that

Q(M)
1−α → Q1−α

as MR → ∞ and MS → ∞, where Q(M)
1−α and Q1−α are the

(1 − α) quantiles of

(M−1)2∑
k=1

λ
(M)

k (ξ 2
k − 1) and

∞∑
k=1

λk(ξ
2
k − 1),

respectively.

Consequently, we can approximate the (1 − α) quantile of
quadratic form

∑∞
k=1 λk(ξ

2
k −1) by estimating that of quadratic

form
∑(M−1)2

k=1 λ
(M)

k (ξ 2
k − 1) for a sufficiently large M. The latter

is done by solving the inverse of the cumulative distribution
function of quadratic form

∑(M−1)2

k=1 λ
(M)

k (ξ 2
k − 1), which can

be numerically evaluated using Farebrother’s (1984) algorithm
or Imhof’s (1961) method.

6. Numerical Studies

This section compares the performances of our tests using (i)
the theoretical rejection threshold Q1−α defined in (13) and
computed using the approximation in Section 5.2, and (ii) a
Monte Carlo simulation-based rejection threshold to the exist-
ing tests of independence that use (iii) distance covariance with
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Figure 7. Empirical powers of the three competing tests in Example 6.2(c). The y-axis represents the power based on 1000 replicates and the x-axis represents the level of
a desired signal.

marginal ranks (Lin 2017), and (iv) distance covariance (Székely
and Rizzo 2013).

The test via distance covariance with marginal ranks pro-
ceeds as follows. Write xi = (xi,1, . . . , xi,p) for i ∈ �n�. Let ri,k
be the rank of xi,k among x1,k, x2,k, . . . , xn,k for each k ∈ �p�.
The marginal rank (vector) of xi is defined as (ri,1, . . . , ri,p). The
marginal rank (vector) of yi is defined similarly. Then we run
the permutation-based distance covariance test on the marginal
ranks instead of the original data.

6.1. Simulation Results

We first conduct Monte Carlo simulation experiments on the
finite-sample performance of the proposed test from Sec-
tion 3. We evaluate the empirical sizes and powers of the
four competing tests stated above for both Gaussian and

non-Gaussian distributions. The values reported below are
based on 1000 simulations at the nominal significance level of
0.05, with sample size n ∈ {216, 432, 864, 1728}, dimensions p =
q ∈ {2, 3, 5, 7}, and correlation ρ ∈ {0, 0.005, 0.01, . . . , 0.15}.
More simulation studies on even higher dimensions of p =
q = 10 and 30 are presented in the supplementary materials,
Section C. For tests (iii) and (iv), we resample n times in the
permutation procedure.

Example 6.1. The data are independently drawn from (X, Y) ∈
R

p+q, which follows a multivariate normal distribution with
mean zero and covariance matrix Ip+q +τLp+q;1,2 +ρLp+q;1,p+1
(where Ld;i,j := ed;ie�

d;j + ed;je�
d;i and ed;i ∈ R

d is the ith standard
basis vector in d-dimensional space, that is, all entries are zero
except for the one at the ith position) with (a) τ = 0; (b) τ = 0.5;
and (c) τ = 0.9.
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Table 2. p-values based on the proposed test as well as two competing tests for the dataset of US stock closing prices between 2003 and 2012.

(DD, DOW) (DD, FCX) (DD, MON) (DOW, FCX) (DOW, MON) (FCX, MON)

Hallin (T, VZ) 0.001 0.005 0.002 0.004 0.001 0.065
rdCov (T, VZ) 0.002 0.013 0.005 0.009 0.002 0.070
dCov (T, VZ) 0.002 0.018 0.003 0.012 0.002 0.101
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Figure 8. A comparison of computation time in Example 6.1(a) for the three tests.
The y-axis represents the averaged computation elapsed time (in seconds) of 1000
replicates of a single experiment and the x-axis represents the sample size. To
compute the optimal matching, we used the algorithm in Gabow and Tarjan (1989).

Example 6.2. The data are independently drawn from (X, Y),
which is given by Xi = Qt(1)(�(X∗

i )), i ∈ �p� and Yj =
Qt(1)(�(Y∗

j )), j ∈ �q�, where Qt(1) stands for the quantile
function for Student’s t-distribution with 1 degree of free-
dom (Cauchy distribution), and (X∗, Y∗) are generated as in
Example 6.1.

In these two examples, the independence hypothesis holds
when ρ = 0. We first report the empirical sizes of all four
considered tests, presented in Table 1. It can be observed that
the proposed tests with either rejection threshold as well as their
two competitors control the size effectively.

The empirical powers for Examples 6.1 and 6.2 are summa-
rized in Figures 2–7. For the proposed test, we present results
only for the theoretical rejection threshold as the results for the
simulation-based threshold are similar and hence omitted.

Several facts are noteworthy. First, when the sample size
is large and the dimension is relatively small, throughout all
settings the performance of the proposed test is not much worse
than the two competing ones. It should be highlighted that our
method achieves this performance with smaller computational
time, as shown in Figure 8 and also confirmed in our theoretical
analysis of computational cost. Second, the proposed test beats
the other two when the within-group correlation is high, i.e.,
as τ becomes larger from the setting (a) to (c), even when the
dimension is high. Third, for heavy-tailed distributions, the tests

via distance covariance with center-outward ranks and signs and
marginal ranks perform better than the original distance covari-
ance test. Finally, compared to its competitors, the proposed test
appears to be more sensitive to dimension. This is as expected.

6.2. Real Stock Market Data Analysis

We analyze the monthly log returns of daily closing prices
for stocks that are constantly in the Standard & Poor 100
(S&P 100) index during the time period 2003–2012. The data
are from Yahoo! Finance (finance.yahoo.com), and the stocks
are classified into 10 sectors by Global Industry Classification
Standard (GICS). Stock market data tend to be heavy-tailed with
many outliers, and monthly log returns may reasonably be mod-
eled as independent and identically distributed random vari-
ables. The time period we analyzed includes some well-known
turbulent stretches like the 2007–2008 financial crisis, which,
however, could be either explained using heavy-tailed (e.g.,
elliptical or stable) distribution models or captured as outliers.

In this section we limit our scope and focus on detecting
between-group dependence between two sectors in S&P 100
that contain a rather small number of stocks: (1) Telecom-
munication, including stocks “AT&T Inc. [T]” and “Verizon
Communications [VZ]”; and (2) Materials, including stocks
“Du Pont (E.I.) [DD],” “Dow Chemical [DOW],” “Freeport-
McMoran Cp & Gld [FCX],” and “Monsanto Co. [MON].” We
then consider detection of possible dependence between the
Telecommunication sector and any two stocks in the Materials
sector.

To this end, we apply the three considered tests to the
monthly log returns of (T, VZ) coupled with either (DD, DOW),
or (DD, FCX), or (DD, MON), or (DOW, FCX), or (DOW,
MON), or (FCX, MON). The p-values for these three tests are
reported in Table 2. There, one observes that using the proposed
test yields uniformly the strongest evidence to conclude the
existence of dependence between (T, VZ) and any two stocks
in the Materials sector.

Supplementary Materials

The supplementary materials include a pdf file containing all the technical
proofs and additional numerical results and R scripts used to perform the
numerical studies.
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