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Abstract

Traditional MCMC algorithms are computationally intensive and do not scale
well to large data. In particular, the Metropolis-Hastings (MH) algorithm
requires passing over the entire dataset to evaluate the likelihood ratio in
each iteration. We propose a general framework for performing MH-MCMC
using mini-batches of.the whole dataset and show that this gives rise to
approximately a tempered stationary distribution. We prove that the
algorithm preserves the-modes of the original target distribution and derive
an error bound onsthe approximation with mild assumptions on the
likelihood. To further extend the utility of the algorithm to high dimensional
settings, we construct a proposal with forward and reverse moves using
stochastic gradient and show that the construction leads to reasonable
acceptance probabilities. We demonstrate the performance of our algorithm
in both low dimensional models and high dimensional neural network
applications. Particularly in the latter case, compared to popular
optimization methods, our method is more robust to the choice of learning
rate and improves testing accuracy.

Keywords: scalable MCMC, tempering, neural networks

1 Introduction
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Since its inception, Markov chain Monte Carlo (MCMC) sampling has been an
indispensable tool in Bayesian modeling for obtaining parameter estimates and
their uncertainty. However, traditional MCMC algorithms do not scale well to
large data as they typically involve expensive computation using the full dataset.
Additionally, scaling classical MCMCs toward modern high-dimensional
applications can be problematic. The computational bottleneck led researchers to
pursue lower accuracy, higher efficiency trade-offs such as variational inference.
Despite its computational efficiency, theoretical guarantees for asymptotic
convergence of variational approximations are given typically for specific'models,
and the objective function can contain multiple local optima trapping commonly
used optimization algorithms [7, 13, 21]. In comparison, MCMC techniques have
the potential to navigate non-convex surfaces and find better local optima in the
process. As the amount of data continues to grow rapidly;.the need for scalable
MCMC methods for large-scale learning tasks remains critical. In this paper, we
propose an MCMC algorithm that is scalableiin both the size of the dataset and
the dimension of the parameter space. Qur,algorithm leverages the traveling
property of an MCMC sampler to find bettersolutions to optimization problems in

machine learning.

The search for scalable MCMC methods has largely proceeded in two directions.
The first approach divides the data into manageable batches and performs
MCMC on each batch'in parallel. To collectively process the results, most
methods either require different machines to communicate with each other in
different rounds of MCMC iteration [1], or combine the posterior distribution from
each batch toapproximate the target posterior [23, 31, 28]. Our work follows the
second line of approach, which uses subsamples, or mini-batches, of the full data
in each iteration of the MCMC algorithm. The key in analyzing such an algorithm

is to understand the noise and bias introduced by the mini-batches.

The broad class of pseudo-marginal algorithms [3] use mini-batches of data to

accelerate computation in the Metropolis-Hastings (MH) algorithm [14, 5, 20, 24].



The exact posterior (or some close approximation) is maintained by constructing
an unbiased and nonnegative estimator, which can have a nontrivial form or
require carefully chosen lower bound on the likelihood. Another class of methods
performs approximate tests in the MH acceptance step using mini-batches. To
control the approximation error, an adaptive approach is usually adopted to
sequentially increase the size of a batch until an error bound is met [4, 16, 8].
Approaches based on non-reversible MCMC have also been proposed [6]..In
practice, some of these methods were tested on large datasets with hundreds.of
parameters, but further scaling up in parameter dimension toward deep machine

learning models would be challenging.

In another direction, past few years have witnessed the rise of stochastic
gradient based MCMC algorithms which have shown strong potential in large-
scale machine learning applications. These algorithms are developed from
diffusion-based MCMC and approximate the gradient with noisy estimates based
on mini-batches of data ( [26]), a notable.example being the Stochastic Gradient
Langevin Dynamics (SGLD) and other variants [32, 2, 9, 18]. Many studies have
since analyzed the convergence of SGLD by viewing the algorithm as a discrete-
time simulation of a continuous stochastic differential equation (SDE) [29, 25].
Unlike algorithms such as MALA which uses the MH acceptance test to correct
the errors in discretizinga continuous system (e.g. [27]), SGLD completely
avoids the costly computation of the MH ratio by using a shrinking step size. In

practice, this implies the algorithm eventually converges to a local optimum.

We propose.a general mini-batch MH algorithm whose invariant distribution
approximates a tempered version of the target posterior. By augmenting the
system with a variable related to the subsampling procedure, we show our
algorithm is a reversible Markov chain thus has an invariant distribution. The idea
of augmenting the system to sample a tempered posterior was also explored by
[19] to heuristically design a mini-batch Metropolis sampler, but their algorithm

differs in the use of mini-batches and they did not offer theoretical support for the



method. [10] introduced a mini-batch Gibbs sampler capable of exact sampling
from certain graphical models. Finally, a connection between tempering and
subsample variance was also mentioned in [5]. Here, we provide a rigorous
theoretical foundation for mini-batching in MH. We emphasize that our aim here
is not Bayesian inference from the exact posterior. Rather, we exploit the
tempered posterior with an efficient MCMC sampler to obtain better solutions

from a global optimization.

With mild assumptions on the likelihood and allowing the parameter dimension to
grow at a suitable rate, we provide full theoretical analysis to i) show. the invariant
distribution of our algorithm approximately preserves the modes of the true
posterior, which is an important property for optimization tasks, and ii) bound the
distance between the invariant distribution and the tempered posterior. To further
enhance the utility of our algorithm in high dimensional applications, we design a
proposal function based on Reversible Stochastic Gradient Langevin Dynamic
(RSGLD) to make the calculation of MHratio.computationally efficient while
ensuring reasonable acceptance probability. We show that the proposal
significantly enhances acceptance probability in regions with strong gradient
information and explores flat regions in a way similar to random walk. Empirically,
we demonstrate the tempering effect inherent to our algorithm helps the Markov
chain jump out of local optima and travel between differently modes more easily.
Most importantly, we.show our mini-batch MH algorithm combined with the

RSGLD proposal can be applied to efficiently train neural networks.

The rest of the paper is organized as follows. In Section 2, we introduce our
algorithm and provide theoretical analysis of its stationary distribution. In the high
dimensional setting, we also design a proposal function called RSGLD and show
that adding the reverse move significantly increases the acceptance probability
when the gradient is strong. In Section 3, we demonstrate with an array of
examples from simple Gaussian models to neural networks with >10’

parameters that our algorithm combines the traveling property of an MCMC



sampler and the computational efficiency of stochastic optimization methods,
thus showing good promise for optimization tasks in deep machine learning
applications. In the neural network examples, our algorithm shows higher
accuracy overall and better stability for larger learning rates compared to other

popular optimization methods.
2 Methods

We first introduce our algorithm and outline its connection to tempering using an
augmented variable. We then show under appropriate assumptionsythe
stationary distribution of the mini-batch MH approximately preserves the modes
of the target posterior and is close to a tempered posterior in distribution. In the
high dimensional setting, we design a proposal function that can navigate a
complex surface guided by gradient information and‘ensure the acceptance

probability does not diminish too quickly as the dimension grows.

2.1 MH MCMC with batch tempering (MHBT)

Under the usual Bayesian setting, let x =(x;,...,x,) eX", X clI”, be iid samples
drawn from distribution p(:|0"), where 8 <® c[]? denotes the parameters. Let

7,(0) be the prior on 8. We are interested in sampling from the target posterior

7(0) oc ﬂo(ﬂ)Hp(xi | @) wusing the MH algorithm. In each iteration of classical MH,
i=1

given some proposalfunction ¢(-), a move from 6 to 8’ is accepted with

probability given by the MH ratio,

(0 — 01)= min< 1 (096" > 0)
T 1(0)qg(0—0') |

For large n, the evaluation of 7(-) is costly. Now denote

£,(0)=log p(x, | 8), u(6) = %iw), i1,(0) = %Zma) with 7 < {,...,n} =[]

par My
being an index subset. Let | |, be the collection of /such that | 7 |=m. We will use

£,(0) to approximate w(6).



We next derive our algorithm, MH MCMC with batch tempering (MHBT), using an

augmented system 1. Consider an auxiliary variable z €{0,1}" with
I(r)={i:7,=1} and | I(z)|= m, then we can write z, , = iZzi(a)q. Jointly for
m-i.

(0,7), consider the proposal ¢((0,7) > (0',7'))=q(@ —>0")v, (7)) and the target

m,n

distribution
#0,0) <™y, (1) (1)

where v, is the uniform distribution over |, and ¢, is a scaling constantithat will
be explained soon. Performing the classical MH algorithm on thé augmented pair
(8, 7) with the above proposal and 7, simple algebra shows the acceptance

probability is given by

’«@ﬂ—ﬂﬁﬁwzmm%

2)

7}(0’, r’)q((0’, T’) —> (0, 2'))} Snind 1 q(ﬂ' N 0)ecnf11(z')(0’)
’ 7’2(0’ T)q((aa T) —> (0’, T’)) ’ q(a NN al)ecnlfll(f](a) ’

which can be calculated efficiently using a new mini-batch /(z’) of the data.
Since the stationary distribution of this Markov chain is 7, marginalizing (1) over

r(with 7in the batches suppressed for clarity),

-1
n N
] z ec,,(,u,(a)—#(a)) (3)

m Iel ,

#(0) o« (7(0))"" [

where T =n/c, is the temperature. In this sense, the mini-batch stationary
distribution’is,approximately a tempered version of the posterior, up to a bias
term. Unlike pseudo-marginal MCMCs, we do not require constructing an
unbiased estimate of the likelihood, which leads to improved computational
efficiency. The bias becomes small (i.e. the bias term becomes close to 1) as n
increases for appropriate mand ¢, since f,(0)— 1(6) becomes small. ¢, controls

the trade-off between approximation error and the tempering amount — a smaller



cnleads to a smaller error but a higher temperature. The choice of ¢, and the

exact error rate will also be discussed in Section 2.2.

We summarize the mini-batch MH algorithm in Algorithm 1 (with 7suppressed for

simplicity).
Algorithm 1 MH MCMC with batch tempering (MHBT)

Input: data x, batch size m, constant ¢,, proposal ¢(6 — 6"), log likelihood
0(0), initial 6,, k.

for r=0,1,... do

Draw @' from ¢(6, — 6'), anindex set I' el , randomly, and u ~ Unif[0,1].

' ol (0)
Compute acceptance probability » = mln{ q(0.— 0,)e” }

g(6, — 0"
if u< rthen
0.=0,1 =1,
else
0.=0.,1_=1I".

t2 7t t "

2.2 Preservation oflocal optima and convergence to tempered posterior

In this section, we analyze the properties of the stationary distribution 7(8). In
particular, we show the convergence rate of the bias term in (3) in terms of the
two tuning parameters m and c¢,. Throughout the rest of the paper, for two
positive sequences a, and b, we use the notation a, © b, if for large enough n,

a,<cb

n?

b, <c,a, for some constants ¢i, ¢z not depending on n. ||-||,,|||l, denote

the /,, ¢, norm for vectors, and |-||,, denotes the operator norm of a matrix. |_aJ



is the greatest integer smaller than or equal to a. avb=max{a,b}. E . is the

expectation taken over the data which is generated by the true parameter 6.

Consider the regime where both nand m are large with m <»n. We will also allow
the dimension d'to grow at some suitable rate with respect to n. We assume the
likelihood function p(x|8):= p,(x), x €X , belongs to a parametric family

satisfying the following conditions.

Assumption 1. 7here exist a function L and a vector of measurable funetion T
such that |log p,(x)—log p,(») IS LO) | T (x) =T W Il,, x,y €X, with

Ly :=supL(0) <o and E e " <o for some &, >0.
(=8

Assumption 2. There exists a measurable function M such that
|log p,(x)—log p, (x)|<M(x)||0—-0"||, forall 0,0 €@ and x X . In addition, there

exists &, >0 such that E .e™"™ <o

The above assumptions are mild and require the log likelihood log p,(x) to be
suitably smooth in both # and x. Unlike some pseudo-marginal MCMC
algorithms [3, 20], we do not require. the likelihood to be bounded. We show in
Supplement S2 that these ‘assumptions can be carried over to a number of
commonly used models/in statistics and machine learning, such as mixtures of
exponential family distributions, linear regression with random feature vectors,
and classification tasks‘with fully connected neural networks (which include
logistic regression‘as a special case). In the exponential family example, T (*)
and M(-)ware in fact functions of the sufficient statistic. In the neural network

example, the constant L(#) is related to the network complexity measure.

For large n, it suffices to consider the population log likelihood y, = E . log p,(X)
. Let 6, be a stationary point of x, such that it represents a well-separated local

optimum in the following sense.



Assumption 3. u, /s twice continuously differentiable in 6 . 6, € Int(®) and the

Hessian of u, at 0, has eigenvalues 2,(H, )<0 foralli=1,....d.

Note that the assumption implies there exist q,,5, >0 such that
o — 1y 2Q 1106, ]|, forall [[@-8,|,<35,. Then we have the next theorem

showing 7(6) approximately preserves any well-separated local optimum.

Theorem 1. Suppose 0, is a stationary point of u, satisfying Assumption 3. -For

d 2+a1 ]
some a>0, let c, > o be a sequence such that L 084G , t be a\fixed
m

3log(1/(1-21))
Qc,

constant with t €(0,1/2), and 6, = \/ . Then under Assumpftions 1,

2, for large n,

suplog z(0) < sup logz(@)—log(1/(1-2t)), 4)
0eR, 0eB(6,:6,)

with probability at least 1 -, . Here
R,={0€0:5,<0-6,|,<5,},B(0,;0,)=10.€0:0-6,|,<75,}, and
7,0 ——

The theorem states that with high probability, the supremum of log 7(8) in the
shrinking ball B(6,;6,) is larger than any point in the surrounding region R, by a
constant margin. This guarantees with high probability 7(#) has a local optimum
lying in a shrinking neighborhood centered at 6,. The preservation of local

optima‘is_important for optimization tasks.

We can further bound the distance between 7(€) and the tempered posterior

7" (#) with one more assumption.

Assumption 4. © /s compact.



Theorem 2. Denote r,(0) o« 7" (0) the tempered posterior. Under

Assumptions 1, 2 and 4, for some a>0,0, — 0 slower than c,*”,c, —x such

2+a
that ©=198% 0 p (x| 7)< 0, with probability at least |~ 1f 7/ ©

m | n a
Q| (S
m

, for large n.
The proofs of the above theorems can be found in Supplement S1.

Remark 1.

2+a

1. Both Theorems 1 and 2 require —- loge

m

~— 0, meaning.cp.and d need to

go to infinity at a controlled rate. The convergence regime in both
theorems covers a wide spectrum of batch sizeum,\from w(1) fo O(n).

2. For a given m, if d is fixed, we can choosec, te be a value close to but
smaller than \/E fo make sure the temperature is not too high while the
convergence holds. In Section 3.1, we show using numerical experiments
that the choice of cy is very robust irrlow dimensional models.

3. The convergence requirement has a linear dependence on d. If m=n" for
some fraction y, d can also go fo infinity at the rate of n raised fo some

fractional power.

2.3 MHBT with stochastic gradient based proposal for neural networks

In large-scale machine learning tasks such as training deep neural networks
(DNN); the high‘dimensionality and complex nature of the loss function surface
have posed significant challenges for designing an MCMC sampler that can i)
efficiently navigate the high dimensional surface, ii) result in a reasonable
acceptance probability in the MH test, and iii) be computationally feasible. Recent
studies on stochastic gradient MCMC have demonstrated their potential in
training DNNs [9, 18, 34]. However, these methods are derived from continuous-

time SDEs, and each discretization step introduces some error which ideally



could be corrected with an MH acceptance test. Many of these methods require a
shrinking learning rate in order to circumvent the MH test. In this section, we
propose and analyze a stochastic gradient-based proposal with appropriate MH

correction, which is computationally efficient for DNN applications.

Proposal with Reversible Stochastic Gradient Langevin Dynamics (RSGLD)

Our goal is to design a proposal function that can explore a complex high
dimensional surface efficiently guided by gradient information. We will start,by.

considering the proposal used in SGLD, which has been widely adopted-in.the

literature for large-scale training tasks. Let g,(a):%Zvazi(a) be the average
iel

gradient of mini-batch / the proposal move for SGLD is givenby

N

0 =0+3,0)+ 2 NO,1,), (5)
n

where € is the learning rate, N(0,/,) is.the iid Gaussian noise. Note that we have
written the learning rate in a form that is censistent with the convention for SGD,
so € differs from the learning rate in"the convention for SGLD by a factor of n.
The original SGLD avoids the MH:correction step since it is costly to compute

using the full data.

In practice, in addition to the computational efficiency issue, another difficulty
arises from the acceptance probability as dincreases. Using (5) as the proposal
in Algorithm/1, it can be treated as a mini-batch version of the MALA algorithm

[27] (and'the more general Hamiltonian MCMC). It is known that in these full-

batch algorithms, € needs to scale like a’_%n‘1 to maintain a reasonable
acceptance probability [22]. As an illustration, we consider using (5) as the
proposal in Algorithm 1 to sample from the a-dimensional Gaussian N(0,/,),
where d =1,10,10%,10°, and »n=10%,m =1000,c, = 20. In Figure 1(a), we computed
the average acceptance probability for the first 2000 iterations initializing at the

origin and then selected the largest learning rate € with average acceptance



1

probability at least 0.5 and 0.1. € was chosen from a grid that scales like d *n™"'.

As can be seen, € quickly diminishes to below 10~ when the dimension reaches
103, if we still want to maintain a reasonable acceptance probability. Such a small
learning rate results in very slow convergence and is therefore usually infeasible

for practical use.

Our proposal, Reversible Stochastic Gradient Langevin Dynamics (RSGLD), is
based on SGLD but enhances the acceptance probability by allowing the
sampler to move in the direction of either ascending or descending gradient with
an adjusted Gaussian noise. Using RSGLD as the proposal in Algorithm 1 gives
us a mini-batch MH algorithm that both utilizes gradient informatienand is
computationally efficient. Our proposal modifies (5) in twoways: i) a coin flip
decides whether the move will be in the positive or negative direction of the
gradient. For convenience, we will henceforth refer to.a move in the positive (or
negative) gradient direction as a forward (or backwara) step; ii) the backward
step is coupled with a larger Gaussian‘noise. The new state 8’ is sampled by

20

0+&,(0)+——N(0,1,), ‘withprobability 1/2,
0 = " (6)

%

%
0—-05,(0)+ =2 AN(0,1,Y, with probability 1/2
n
for some constant 21 Denote this proposal ¢,(0 — 8'), then
1 20 1 [ o 208 )
q,w»a'):5¢(0'—0—0g,(0);;1d) +5¢La'—0+0g,(0);;—‘fld), M

where ¢(*;X) is the density of a multivariate Gaussian with zero mean and

covariance matrix Z.

In Algorithm 1, the acceptance probability for moving from (6,,1,) - (6',1")

becomes



' Cabty (0")
min{1, L@ 200”1
q @ —0)e b 1

Similar to the argument in Section 2.1, we can show using an auxiliary variable
the above mini-batch MH algorithm is closely related to a tempered MCMC. We

refer to Supplement S3 for details.

As an illustration to show both the backward step and its associated, enlarged
Gaussian noise increase the acceptance probability, we used the same
Gaussian setting as before (sampling from N(0,1,), where d =10,10°,10°, and
n=10",m=1000,c, =20) and tested 8= 1, which corresponds t0 only adding the
backward move; and = 2, which increases the size of the/Gaussian noise in the
backward move. In Figure 1(b)-(d), we can see both adding the backward move
and increasing the Gaussian noise significantly improve,the acceptance

probability, and the trend is consistent for different dimensions.

Analysis of acceptance probability

In this section, we show that the RSGLD proposal leads to larger proposal ratio,
thus increasing the MH ratio andaceeptance probability overall. To focus on the
behavior of the algorithm, we take‘'the data x as given and fixed, and the only
randomness lies in theselection of data batch and the Gaussian perturbation. Let
Z~N(0,1,) and Hj(@) be the Hessian matrix of g,(6#) on mini-batch / We

assume the following conditions hold.

Assumptien S:=sup,, , || H,(0)||,,< A, where |||,, /s the operator norm.

Assumption 6. For every 0, all batches give similar gradients. More specifically,

for any two batches | and J,

18,(0)=&,(0)[,= O©| &, (O),)- (9



Proposition 1. For large n, suppose Assumptions 5 and 6 hold. Then depending
on where the sampler is in the landscape of the target likelihood, we have the

q,(0' > 0)
q,(0 > 0"

current parameter value to be updated and | is the current batch.

following approximations for the proposal ratio , Where 0 is the

Case 1). Assume there exists a small constant no such that
| Z|,< 1,0/ 2 || &,(0) ||, with high probability (i.e. with probability approaching
'S (ov n,)

1), and the learning rate € is small enough such that 5

1£,(0) 1= old)

for large d, p>1. Then

q,(0' > 0)
q,(0 0"

o ifthe update in (6) results in a forward move, we have >1 with

high probability.

0,0 >0 _

 Ifthe update in (6) results in a backward move, we have ————— =
q,(0 >0

Case 2). Assume || g,(0)|,=0, and thelearning rate € is small enough such that
q,(0" > 6)

O0=o(d™") forlarge d. Thenwe have PP
q,(0 >0

=1+0,(1) for both directions

in (6).
We defer the proof to"Supplement S4.
Remark.2.

1. Inthis proposition, we consider the behavior of the proposal ratio in
different regions of the landscape. The condition in Case 1) means the
sampler is at a location where gradient information is strong. Simple
rearranging in (6) shows in this case, the gradient part dominates the
Gaussian noise. In Case 2), the sampler has reached a flat region of the

landscape.



2 /f||§,(0)||2=0(\/d_), in Case 1) € needs fo satisfy Ol n‘%/ﬂz -1/4yn, , the

rate of which no longer depends on d and scales better than before (
1
d *n”'). Sparse §,(0) (such as in typical neural networks) and large B can

allow for even larger learning rates.

3. The resultin Case 1) implies it is more likely for the MH step to accept a
forward move than a backward move when the gradient is strong. This is a
desirable property in optimization tasks for maintaining efficiency. In
particular, the proposal ratio is lower bounded by 1 in the forward direction
and hence will no longer shrink the overall MH ratio to zerosln Case.2),
the proposal in the sampler behaves like a random walk(if the learning rate

/s sufficiently small.

3 Experiments
3.1 Distributions in low dimensions

Convergence to known posterior

We first examined the convergence behavior of MHBT compared to the
conventional MCMC sampler using,the full dataset (termed full batch MCMC). As
the analysis in Section 2.2'suggests, MHBT converges to a tempered version of
the original posterior distribution. In order to explicitly measure the distance from
this posterior, we considered d-dimensional (d= 2 and 5) Gaussian distributions
with unknown mean é.,known covariance /s, where the prior of # was set to be

N(0,1,). Wergenerated n=10" samples from this distribution with each true

g, =2 .t follows then the posterior of # given the data x is N(Lly_(, (n+1)11d) ,
n+

where x is the sample average. Raising the posterior to temperature 7 changes

the variance to Llld' Mini-batch sampling was performed with Algorithm 1,
n+

setting the proposal ¢(-) as a Gaussian random walk with step size 6 and mini-
batch size m= 1000. We found no significant difference in the results varying m

from 500 to 5000. Full batch MCMC was performed on the tempered posterior



also with the same type of random walk proposal. The same step size d was
chosen for both algorithms and the average acceptance probability was around
0.3.

Figure 2(a) shows the total variation distance between the sampled distributions
and true tempered posterior for the two MCMC algorithms on g-dimensional
Gaussian, as the number of iterations increases. The distance was calculated by
running 10% independent MCMC chains and taking the same number of
independent samples from the tempered distribution, followed by discretization to
group the values into a-dimensional histograms. The results shown correspond
to ¢, = 20, which is smaller than m as discussed in Remark 1| although we
note that a range of ¢, values (5-30) led to very similar results. For both d= 2 and
5, MHBT converges at a rate almost identical to full batech MCMC to the

tempered posterior.

Gaussian mixture

To illustrate the tempering effect of. MHBT.and examine the accuracy of the
approximation in Section 2.2, we ¢onsider an example in [32]. We generated
n=10" samples from a 2-componentmixture Gaussian model with parameters
0 =(6,,0,) following:

0~ N(0,diag(c?,02). 7, %~ 0.5N(6,6%) +0.5N(6, +6,,07),

where o- =256 =10, o, =1. The posterior distribution of  given x=(x,,...,x,)
can be ealculated explicitly as

A’

2(0) e z(ef/o%wz”/a%)ll[( e—%(@f—zelx,) +e—%«eﬁ@ﬂ—zwwz)x,-)\.

i=1

We sampled @ using Algorithm 1, where the proposal ¢(-) is the Gaussian
random walk with step size 8. We set the mini-batch size mto 1000 (varying m

from 500 to 5000 did not change the results noticeably). There remain two tuning



parameters in the algorithm: ¢, and 6. We chose ¢, to be 20 and d such that the
average acceptance probability was around 0.3. Very similar results can be

obtained by a range of ¢, values (e.g. 5-30).

Figure 2(b)-(c) show the sampled # from 105 iterations and the contour plot of
the tempered log posterior, log 7, (6) <1/ T log 7(8) . We can see that the two

modes in these plots coincide well.

Figure 2(d)-(f) compare the trajectory of MHBT with that of the full batch MCMC
in one of the two dimensions. The latter sampling was performed on the,original
posterior distribution, and the step size of the random walk was'chosen so that
the average probability was around 0.3. We fixed 6, =0 and inereased & from
0.5 to 4 so that the two modes in the posterior distribution became increasingly
separated. In each case, MHBT is capable of visiting the two modes of the
distribution whereas the full batch MCMC is trapped in one of the modes. This
highlights the effect of tempering brought about by the mini-batch algorithm,

which makes the landscape smoother and easier for the sampler to travel.

3.2 Neural networks

Fully connected neural networks

We first tested MHBT with RSGLD on the standard MNIST handwritten digit
classification task. The dataset was loaded directly from TensorFlow tutorial and
consists of 55,000 instances for training and 10,000 instances for testing. We
considered a neural network containing one hidden layer with 600 nodes and
RelLU activation function (~4x10° parameters). The outputs from the layer are
connected to a 10-class softmax layer for classification. In this case, the log
likelihood function is the negative of the cross entropy loss. The batch size was
set to 100, which is a typical size used for neural networks. In Supplement S5,
we provide additional results showing how our algorithm behaves under different
m, as well as the interaction between m and the learning rate e. We compared

the performance of our method with a number of popular optimization methods in



the neural network literature for a range of learning rates. In each training, we
started RSGLD with a large Fto initiate the moves and gradually decreased it as

the training progressed.

Choosing B. Throughout training, we monitored the overall acceptance probability
for each epoch, where by convention one epoch equals the total number of
iterations it takes to step through the whole training dataset (in this case
55000/100 =550 iterations). We decreased S according to the following
adjustment phase once the acceptance probability became larger than 0.4 at the
end of each epoch. During the adjustment phase, we ran 100 forward steps
using the current parameter values and computed the MH acceptance
probability. If the average probability of these forward steps‘exceeded 0.7, we
decreased B by 5%. The new £ value was then tested again with 100 forward
steps. The maximum reduction allowed in each adjustment phase was 50%. The
next epoch of training was then run with the.new, 5 value. On the other hand,
when the average probability for one epoch dropped below 0.2, we increased S
by 5%. We observed that in all experiments, 5 eventually stabilized to some

constant slightly larger than 1.

Comparison with other methods. \We performed extensive comparison with SGD
and SGLD using various learning rates and multiple rounds of training to assess
the stability of each/method. Each round of training lasted 2.75x10° iterations
(500 epochs), and all the parameters were initialized with independent N(0,0.03)
distribution. Thesame batch size (100) was used for all the methods. In this high
dimensionaksetting, we explored a range of ¢, values around the batch size and
show results using ¢, = 100. We additionally tested ¢, = 50,200 under the same

settings; the results are very similar thus omitted.

Table 1 shows the prediction errors of the three methods on the testing set, using
the top class from the softmax layer as the predicted label. Each number is the

median error obtained from 30 training rounds with the corresponding standard



deviation shown in parentheses. Overall, the performance of RSGLD improves
with large learning rate and eventually achieves better accuracy (smaller error)
than that attainable by SGD or SGLD at any learning rate. RSGLD shows
substantially better stability for large learning rate than the other two methods. In
particular, when the learning rate is 0.2 or larger, SGD and SGLD can fail to
converge completely for a significant fraction of the training rounds, which
explains the large standard deviations. In general, the standard deviation of
errors increases with the learning rate for all the methods, showing stability,is
hard to achieve with a large learning rate although it can lead to faster
convergence and potentially better prediction. As explained in [33], using a large
learning rate can help algorithms maintain a trajectory high from the valley floor
and more easily overcome energy barriers as they explore,the.loss surface with
stochastic gradients. In this sense, the stability of RSGLD.under large learning
rates is beneficial for training DNNs. We also observe that in all the experiments,
the backward step in RSGLD was much lessilikely 1o be accepted compared to
the forward step, which is discussed in"‘Case 1) of Proposition 1 and is desirable
for optimization efficiency. Since theforward step is identical to SGLD, this
suggests the added MH acceptance-rejection step plays a role in improving the
optimization result. In Supplement §5, we compare prediction error trajectories
from running RSGLD and"SGLD to illustrate how the MH acceptance-rejection

step implicitly selects-a,more efficient trajectory through the parameter space.

In addition to checking the average performance of the methods from multiple
training rounds, we also examine the lowest prediction error achieved under each
learning rate from 30 rounds of training. Since SGD and SGLD did not converge
most of the time under large learning rates, showing the average or median error
would make the plot scale badly. Fig 3(a) shows a trend similar to Table 1 with
RSGLD outperforming the other two methods for large learning rates. Overall the
lowest error is achieved by RSGLD with learning rate around 0.4-0.5. Examples
of detailed testing error trajectories for various methods are shown in Fig 3(b),

where for each method we selected the learning rate with the best performance.



We have further included RMSprop [30] with learning rate 0.005 and Adam [15]
with learning rate 0.001 for comparison. The learning rate was chosen by

optimization via grid search for these two methods.

Convolutional neural networks (CNN)

We next tested a standard three-layer CNN on the CIFAR-10 RGB image dataset
[17], the detailed architecture of which is listed in Supplement Table S1. The
network has around 4 x10° parameters. The dataset consists of 60000 32:x 32
RGB images in 10 classes, with 50000 for training and 10000 for testing. /Al
parameters were initialized independently with N(0,0.02) distribution. The same
batch size and ¢, were used, and the same schedule was used for.decreasing £
as in the last example. Similar to the comparison performed on.MNIST, we used
20 rounds of independent training for each learning rate to check the accuracy
and stability of RSGLD, SGD and SGLD, with each round lasting for 105
iterations. As shown in Table 2, RSGLD consistently outperformed the other two
methods and the margin of difference becoemes larger as the learning rate

increases.
4 Conclusion

In this paper, we study an“efficient MH-MCMC algorithm which uses mini-batches
of data. We draw connections between the stationary distribution of this Markov
chain and the tempered posterior, and provide the approximation errors for a
general class of likelihood functions. We also propose RSGLD, a stochastic
gradientbased-proposal to help the sampler navigate complex high dimensional
surface with reasonable acceptance probability in the MH acceptance test.
Empirically, we demonstrate the algorithm has good convergence behavior and
the tempering effect helps move between well separated modes in classical low
dimensional models. We demonstrate the efficacy of RSGLD in training neural
networks with the MNIST and CIFAR-10 datasets and show that compared to



popular optimization methods, we achieve improved accuracy and stability when

the learning rate is large.

There are several interesting directions for future work. We can think of the MH
acceptance test implicitly performing batch selection by sometimes rejecting a
move based on the current batch, thus it would be interesting to draw
connections with the machine learning literature on optimal batch selections in
SGD [35, 36]. In addition, although we have shown the bias term in the stationary
distribution is negligible asymptotically, it requires ¢, — o at a controlled,rate
implying the temperature is always much larger than 1. To extend the application
of our algorithm from optimization to sampling, it would be helpful to reduce the
bias term further while paying careful attention to the additional computational
cost it incurs. One can also extend the algorithm in a simulated tempering
framework, although the implementation of which in.neural networks would be
even more challenging. Finally, there are atnumber of popular stochastic
optimization algorithms in the machinedearningiliterature which use adaptive
learning rates (e.g. Adagrad [12], RMSprop.[30], second order methods [11]). We
intend to explore how to incorporate such a feature in an adaptive MCMC

framework in future work.
SUPPLEMENTARY MATERIAL

Title: Supplementary-Material for “Mini-batch Metropolis-Hastings with Reversible
SGLD Proposal”.

Note

1For simplicity of description, we assume the prior 7,(8) «c1; the algorithm and

theoretical results generalize with minor modifications to other priors for large n.
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Table 1 MNIST top class prediction error (%) on the testing set using 30 training

rounds for each learning rate. Each number is the median error with standard

deviation in parentheses.

Top class prediction error (%) on the testing set

0.01

0.02

0.05

0.08

0.1

RSGLD

2.01 (0.03)

1.82 (0.03)

1.72 (0.03)

1.75 (0.03)

1.73 (0.04)

SGD

1.81 (0.02)

1.78 (0.02)

1.73 (0.03)

1.75 (0.03)

1.75 (0.06)

SGLD

1.81(0.02)

1.78 (0.02)

1.73 (0.03)

1.72 (0.03)

1.75 (0.07)

0.2

0.3

0.4

0.5

0.6

RSGLD

1.75 (0.13)

1.7 (0.18)

1.68 (0.33)

1.66 (11.4)

1741 (26.9)

SGD

1.76 (16.1)

1.85 (42.1)

89.7 (44.4)

89.7 (33%)

89:8 (24.0)

SGLD

1.8 (33.3)

1.84 (42.1)

89.7 (43.3)

89.9(26.9)

89.8 (37.9)




Table 2 CIFAR-10 top class prediction error (%) on the testing set using 20

training rounds for each learning rate. The numbers shown are the

median/lowest errors out of 20 rounds.

Top class prediction error (%) on the testing set

0.005

0.008

0.02

0.04

RSGLD

26.93/26.29

26.81/26.01

26.95/26.36

27.34/26.75

SGD

27.03/26.55

27.03/26.43

27.27/26.85

27.85/27.14

SGLD

27.00/26.60

26.88/26.19

27.31/26.70

27.85/27.08




