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Abstract 
Traditional MCMC algorithms are computationally intensive and do not scale 
well to large data. In particular, the Metropolis-Hastings (MH) algorithm 
requires passing over the entire dataset to evaluate the likelihood ratio in 
each iteration. We propose a general framework for performing MH-MCMC 
using mini-batches of the whole dataset and show that this gives rise to 
approximately a tempered stationary distribution. We prove that the 
algorithm preserves the modes of the original target distribution and derive 
an error bound on the approximation with mild assumptions on the 
likelihood. To further extend the utility of the algorithm to high dimensional 
settings, we construct a proposal with forward and reverse moves using 
stochastic gradient and show that the construction leads to reasonable 
acceptance probabilities. We demonstrate the performance of our algorithm 
in both low dimensional models and high dimensional neural network 
applications. Particularly in the latter case, compared to popular 
optimization methods, our method is more robust to the choice of learning 
rate and improves testing accuracy. 

Keywords: scalable MCMC, tempering, neural networks 
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Since its inception, Markov chain Monte Carlo (MCMC) sampling has been an 

indispensable tool in Bayesian modeling for obtaining parameter estimates and 

their uncertainty. However, traditional MCMC algorithms do not scale well to 

large data as they typically involve expensive computation using the full dataset. 

Additionally, scaling classical MCMCs toward modern high-dimensional 

applications can be problematic. The computational bottleneck led researchers to 

pursue lower accuracy, higher efficiency trade-offs such as variational inference. 

Despite its computational efficiency, theoretical guarantees for asymptotic 

convergence of variational approximations are given typically for specific models, 

and the objective function can contain multiple local optima trapping commonly 

used optimization algorithms [7, 13, 21]. In comparison, MCMC techniques have 

the potential to navigate non-convex surfaces and find better local optima in the 

process. As the amount of data continues to grow rapidly, the need for scalable 

MCMC methods for large-scale learning tasks remains critical. In this paper, we 

propose an MCMC algorithm that is scalable in both the size of the dataset and 

the dimension of the parameter space. Our algorithm leverages the traveling 

property of an MCMC sampler to find better solutions to optimization problems in 

machine learning. 

The search for scalable MCMC methods has largely proceeded in two directions. 

The first approach divides the data into manageable batches and performs 

MCMC on each batch in parallel. To collectively process the results, most 

methods either require different machines to communicate with each other in 

different rounds of MCMC iteration [1], or combine the posterior distribution from 

each batch to approximate the target posterior [23, 31, 28]. Our work follows the 

second line of approach, which uses subsamples, or mini-batches, of the full data 

in each iteration of the MCMC algorithm. The key in analyzing such an algorithm 

is to understand the noise and bias introduced by the mini-batches. 

The broad class of pseudo-marginal algorithms [3] use mini-batches of data to 

accelerate computation in the Metropolis-Hastings (MH) algorithm [14, 5, 20, 24]. 

Acc
ep

ted
 M

an
us

cri
pt



The exact posterior (or some close approximation) is maintained by constructing 

an unbiased and nonnegative estimator, which can have a nontrivial form or 

require carefully chosen lower bound on the likelihood. Another class of methods 

performs approximate tests in the MH acceptance step using mini-batches. To 

control the approximation error, an adaptive approach is usually adopted to 

sequentially increase the size of a batch until an error bound is met [4, 16, 8]. 

Approaches based on non-reversible MCMC have also been proposed [6]. In 

practice, some of these methods were tested on large datasets with hundreds of 

parameters, but further scaling up in parameter dimension toward deep machine 

learning models would be challenging. 

In another direction, past few years have witnessed the rise of stochastic 

gradient based MCMC algorithms which have shown strong potential in large-

scale machine learning applications. These algorithms are developed from 

diffusion-based MCMC and approximate the gradient with noisy estimates based 

on mini-batches of data ( [26]), a notable example being the Stochastic Gradient 

Langevin Dynamics (SGLD) and other variants [32, 2, 9, 18]. Many studies have 

since analyzed the convergence of SGLD by viewing the algorithm as a discrete-

time simulation of a continuous stochastic differential equation (SDE) [29, 25]. 

Unlike algorithms such as MALA which uses the MH acceptance test to correct 

the errors in discretizing a continuous system (e.g. [27]), SGLD completely 

avoids the costly computation of the MH ratio by using a shrinking step size. In 

practice, this implies the algorithm eventually converges to a local optimum. 

We propose a general mini-batch MH algorithm whose invariant distribution 

approximates a tempered version of the target posterior. By augmenting the 

system with a variable related to the subsampling procedure, we show our 

algorithm is a reversible Markov chain thus has an invariant distribution. The idea 

of augmenting the system to sample a tempered posterior was also explored by 

[19] to heuristically design a mini-batch Metropolis sampler, but their algorithm 

differs in the use of mini-batches and they did not offer theoretical support for the 
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method. [10] introduced a mini-batch Gibbs sampler capable of exact sampling 

from certain graphical models. Finally, a connection between tempering and 

subsample variance was also mentioned in [5]. Here, we provide a rigorous 

theoretical foundation for mini-batching in MH. We emphasize that our aim here 

is not Bayesian inference from the exact posterior. Rather, we exploit the 

tempered posterior with an efficient MCMC sampler to obtain better solutions 

from a global optimization. 

With mild assumptions on the likelihood and allowing the parameter dimension to 

grow at a suitable rate, we provide full theoretical analysis to i) show the invariant 

distribution of our algorithm approximately preserves the modes of the true 

posterior, which is an important property for optimization tasks, and ii) bound the 

distance between the invariant distribution and the tempered posterior. To further 

enhance the utility of our algorithm in high dimensional applications, we design a 

proposal function based on Reversible Stochastic Gradient Langevin Dynamic 

(RSGLD) to make the calculation of MH ratio computationally efficient while 

ensuring reasonable acceptance probability. We show that the proposal 

significantly enhances acceptance probability in regions with strong gradient 

information and explores flat regions in a way similar to random walk. Empirically, 

we demonstrate the tempering effect inherent to our algorithm helps the Markov 

chain jump out of local optima and travel between differently modes more easily. 

Most importantly, we show our mini-batch MH algorithm combined with the 

RSGLD proposal can be applied to efficiently train neural networks. 

The rest of the paper is organized as follows. In Section 2, we introduce our 

algorithm and provide theoretical analysis of its stationary distribution. In the high 

dimensional setting, we also design a proposal function called RSGLD and show 

that adding the reverse move significantly increases the acceptance probability 

when the gradient is strong. In Section 3, we demonstrate with an array of 

examples from simple Gaussian models to neural networks with 510  

parameters that our algorithm combines the traveling property of an MCMC 
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sampler and the computational efficiency of stochastic optimization methods, 

thus showing good promise for optimization tasks in deep machine learning 

applications. In the neural network examples, our algorithm shows higher 

accuracy overall and better stability for larger learning rates compared to other 

popular optimization methods. 

2 Methods 

We first introduce our algorithm and outline its connection to tempering using an 

augmented variable. We then show under appropriate assumptions, the 

stationary distribution of the mini-batch MH approximately preserves the modes 

of the target posterior and is close to a tempered posterior in distribution. In the 

high dimensional setting, we design a proposal function that can navigate a 

complex surface guided by gradient information and ensure the acceptance 

probability does not diminish too quickly as the dimension grows. 

2.1 MH MCMC with batch tempering (MHBT) 

Under the usual Bayesian setting, let 1( , , ) ,n p
nx x   x X X , be iid samples 

drawn from distribution *(·| )p θ , where * dθ  denotes the parameters. Let 

0 ( ) θ  be the prior on θ . We are interested in sampling from the target posterior 

0
1

( ) ( ) ( | )
n

i
i
p x 



 θ θ θ  using the MH algorithm. In each iteration of classical MH, 

given some proposal function (·)q , a move from θ  to θ  is accepted with 

probability given by the MH ratio, 

( ) ( )( ) min 1, .
( ) ( )

qr
q





   
    

  

θ θ θ
θ θ

θ θ θ
 

For large n, the evaluation of (·)  is costly. Now denote 

1

1 1ˆ( ) log ( | ), ( ) ( ), ( ) ( )
| |

n

i i i I j
i j I

p x
n I

 
 

   θ θ θ θ θ θ  with {1, , } [ ]I n n    

being an index subset. Let mI  be the collection of I such that | |I m . We will use 

ˆ ( )I θ  to approximate ( ) θ . 
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We next derive our algorithm, MH MCMC with batch tempering (MHBT), using an 

augmented system 1. Consider an auxiliary variable {0,1}n   with 

( ) { : 1}iI i    and | ( ) |I m  , then we can write ( )
1

1ˆ ( )
n

I i i
im 


  θ . Jointly for 

( , )θ , consider the proposal ,(( , ) ( , )) ( ) ( )m nq q         θ θ θ θ  and the target 

distribution 

( )ˆ ( )
,( , ) ( )n Ic

m ne 
   

θ
θ  (1) 

where ,m n  is the uniform distribution over mI  and cn is a scaling constant that will 

be explained soon. Performing the classical MH algorithm on the augmented pair 

( , )θ  with the above proposal and  , simple algebra shows the acceptance 

probability is given by 

( )

( )

ˆ ( )

ˆ ( )

( , ) (( , ) ( , )) ( )(( , ) ( , )) min 1, min 1, ,
( , ) (( , ) ( , )) ( )

n I

n I

c

c

q q er
q q e









   
 

   

         
       

        

θ

θ

θ θ θ θ θ
θ θ

θ θ θ θ θ

 (2) 

which can be calculated efficiently using a new mini-batch ( )I   of the data. 

Since the stationary distribution of this Markov chain is  , marginalizing (1) over 

τ (with τ in the batches suppressed for clarity), 

 
1

1/ ˆ( ( ) ( ))( ) ( ) n I

m

T c

I

n
e

m
  







 
  

 
θ θ

θ θ
I

 (3) 

where / nT n c  is the temperature. In this sense, the mini-batch stationary 

distribution is approximately a tempered version of the posterior, up to a bias 

term. Unlike pseudo-marginal MCMCs, we do not require constructing an 

unbiased estimate of the likelihood, which leads to improved computational 

efficiency. The bias becomes small (i.e. the bias term becomes close to 1) as n 

increases for appropriate m and cn since ˆ ( ) ( )I θ θ  becomes small. cn controls 

the trade-off between approximation error and the tempering amount – a smaller 
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cn leads to a smaller error but a higher temperature. The choice of cn and the 

exact error rate will also be discussed in Section 2.2. 

We summarize the mini-batch MH algorithm in Algorithm 1 (with τ suppressed for 

simplicity). 

Algorithm 1 MH MCMC with batch tempering (MHBT) 

Input: data x, batch size m, constant cn, proposal ( )q  θ θ , log likelihood 

( )θ , initial 0θ , I0. 

for 0,1,t   do 

Draw θ  from ( )tq  θ θ , an index set mI  I  randomly, and ~ Unif[0,1]u . 

Compute acceptance probability 
ˆ ( )

ˆ ( )

( )min 1,
( )

n I

n I tt

c
t

c
t

q er
q e





    
  

   

θ

θ

θ θ

θ θ
 

if u < r then 

1 1,t tI I    θ θ , 

else 

1 1,t t t tI I  θ θ . 

2.2 Preservation of local optima and convergence to tempered posterior 

In this section, we analyze the properties of the stationary distribution ( ) θ . In 

particular, we show the convergence rate of the bias term in (3) in terms of the 

two tuning parameters m and cn. Throughout the rest of the paper, for two 

positive sequences an and bn, we use the notation n na b©  if for large enough n, 

1 2,n n n na c b b c a   for some constants c1, c2 not depending on n. 1 2||·|| ,||·||  denote 

the 1 2,  norm for vectors, and ||·||op  denotes the operator norm of a matrix. a    
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is the greatest integer smaller than or equal to a. max{ , }a b a b  . *
θ

E  is the 

expectation taken over the data which is generated by the true parameter *
θ . 

Consider the regime where both n and m are large with m n . We will also allow 

the dimension d to grow at some suitable rate with respect to n. We assume the 

likelihood function ( | ) : ( ),p x p x x 
θ

θ X , belongs to a parametric family 

satisfying the following conditions. 

Assumption 1. There exist a function L and a vector of measurable function T  

such that 1| log ( ) log ( ) | ( ) || ( ) ( ) || , ,p x p y L x y x y   
θ θ

θ T T X , with 

0 : sup ( )L L


  
θ

θ  and 1 1
*

|| ( )||Xe  
θ

TE  for some 1 0  . 

Assumption 2. There exists a measurable function M such that 

1| log ( ) log ( ) | ( ) || ||p x p x M x   
θ θ

θ θ  for all ,  θ θ  and xX . In addition, there 

exists 2 0   such that 2
*

( )M Xe  
θ

E . 

The above assumptions are mild and require the log likelihood log ( )p x
θ  to be 

suitably smooth in both θ  and x. Unlike some pseudo-marginal MCMC 

algorithms [3, 20], we do not require the likelihood to be bounded. We show in 

Supplement S2 that these assumptions can be carried over to a number of 

commonly used models in statistics and machine learning, such as mixtures of 

exponential family distributions, linear regression with random feature vectors, 

and classification tasks with fully connected neural networks (which include 

logistic regression as a special case). In the exponential family example, (·)T  

and (·)M  are in fact functions of the sufficient statistic. In the neural network 

example, the constant ( )L θ  is related to the network complexity measure. 

For large n, it suffices to consider the population log likelihood *: log ( )p X 
θ θθ

E

. Let 0θ  be a stationary point of θ  such that it represents a well-separated local 

optimum in the following sense. 
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Assumption 3. θ  is twice continuously differentiable in θ . 0 ( )Int θ  and the 

Hessian of θ  at 0θ  has eigenvalues 
0

( ) 0i H 
θ

 for all 1, ,i d  . 

Note that the assumption implies there exist 0 0, 0 ò  such that 

0 0 0 2|| ||   
θ θ

θ θò  for all 0 2 0|| ||  θ θ . Then we have the next theorem 

showing ( ) θ  approximately preserves any well-separated local optimum. 

Theorem 1. Suppose 0θ  is a stationary point of θ  satisfying Assumption 3. For 

some 0  , let nc   be a sequence such that 
2 log

0n ndc c
m



 , t be a fixed 

constant with (0,1/ 2)t  , and 
0

3log(1/ (1 2 ))
n

n

t
c





ò

. Then under Assumptions 1, 

2, for large n, 

0( ; )
suplog ( ) sup log ( ) log(1/ (1 2 )),

n nR
t



 
 

  
θ θ θ

θ θ
B

 (4) 

with probability at least 1 n . Here 

0 2 0 0 0 2{ : || || }, ( ; ) { :|| || }n n n nR            θ θ θ θ θ θ θB , and 

2

1
n

n
nt c
m




 
 
 

© . 

The theorem states that with high probability, the supremum of log ( ) θ  in the 

shrinking ball 0( ; )nθB  is larger than any point in the surrounding region Rn by a 

constant margin. This guarantees with high probability ( ) θ  has a local optimum 

lying in a shrinking neighborhood centered at 0θ . The preservation of local 

optima is important for optimization tasks. 

We can further bound the distance between ( ) θ  and the tempered posterior 

1/ ( )T θ  with one more assumption. 

Assumption 4. Θ is compact. 
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Theorem 2. Denote 1/( ) ( )T
T θ θ  the tempered posterior. Under 

Assumptions 1, 2 and 4, for some 0, 0n  ò  slower than /2 ,n nc c   such 

that 
2 log

0, ( || )n n
KL T n

dc c D
m



 


  ò  with probability at least 
2

11 ,n n

n n
n c
m



   
 
 
 

©
ò

, for large n. 

The proofs of the above theorems can be found in Supplement S1. 

Remark 1. 

1. Both Theorems 1 and 2 require 
2 log

0n ndc c
m



 , meaning cn and d need to 

go to infinity at a controlled rate. The convergence regime in both 

theorems covers a wide spectrum of batch size m, from (1)  to O(n). 

2. For a given m, if d is fixed, we can choose cn to be a value close to but 

smaller than m  to make sure the temperature is not too high while the 

convergence holds. In Section 3.1, we show using numerical experiments 

that the choice of cn is very robust in low dimensional models. 

3. The convergence requirement has a linear dependence on d. If m n  for 

some fraction γ, d can also go to infinity at the rate of n raised to some 

fractional power. 

2.3 MHBT with stochastic gradient based proposal for neural networks 

In large-scale machine learning tasks such as training deep neural networks 

(DNN), the high dimensionality and complex nature of the loss function surface 

have posed significant challenges for designing an MCMC sampler that can i) 

efficiently navigate the high dimensional surface, ii) result in a reasonable 

acceptance probability in the MH test, and iii) be computationally feasible. Recent 

studies on stochastic gradient MCMC have demonstrated their potential in 

training DNNs [9, 18, 34]. However, these methods are derived from continuous-

time SDEs, and each discretization step introduces some error which ideally 
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could be corrected with an MH acceptance test. Many of these methods require a 

shrinking learning rate in order to circumvent the MH test. In this section, we 

propose and analyze a stochastic gradient-based proposal with appropriate MH 

correction, which is computationally efficient for DNN applications. 

Proposal with Reversible Stochastic Gradient Langevin Dynamics (RSGLD) 

Our goal is to design a proposal function that can explore a complex high 

dimensional surface efficiently guided by gradient information. We will start by 

considering the proposal used in SGLD, which has been widely adopted in the 

literature for large-scale training tasks. Let 
1ˆ ( ) ( )

| |I i
i I

g
I 

  θ
θ θ  be the average 

gradient of mini-batch I, the proposal move for SGLD is given by 

2ˆ ( ) (0, ),I dg N I
n

   θ θ θ
òò  (5) 

where ϵ is the learning rate, (0, )dN I  is the iid Gaussian noise. Note that we have 

written the learning rate in a form that is consistent with the convention for SGD, 

so ϵ differs from the learning rate in the convention for SGLD by a factor of n. 

The original SGLD avoids the MH correction step since it is costly to compute 

using the full data. 

In practice, in addition to the computational efficiency issue, another difficulty 

arises from the acceptance probability as d increases. Using (5) as the proposal 

in Algorithm 1, it can be treated as a mini-batch version of the MALA algorithm 

[27] (and the more general Hamiltonian MCMC). It is known that in these full-

batch algorithms, ϵ needs to scale like 
1

14d n


  to maintain a reasonable 

acceptance probability [22]. As an illustration, we consider using (5) as the 

proposal in Algorithm 1 to sample from the d-dimensional Gaussian (0, )dN I , 

where 2 31,10,10 ,10d  , and 410 , 1000, 20nn m c   . In Figure 1(a), we computed 

the average acceptance probability for the first 2000 iterations initializing at the 

origin and then selected the largest learning rate ϵ with average acceptance 
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probability at least 0.5 and 0.1. ϵ was chosen from a grid that scales like 
1

14d n


 . 

As can be seen, ϵ quickly diminishes to below 710  when the dimension reaches 

103, if we still want to maintain a reasonable acceptance probability. Such a small 

learning rate results in very slow convergence and is therefore usually infeasible 

for practical use. 

Our proposal, Reversible Stochastic Gradient Langevin Dynamics (RSGLD), is 

based on SGLD but enhances the acceptance probability by allowing the 

sampler to move in the direction of either ascending or descending gradient with 

an adjusted Gaussian noise. Using RSGLD as the proposal in Algorithm 1 gives 

us a mini-batch MH algorithm that both utilizes gradient information and is 

computationally efficient. Our proposal modifies (5) in two ways: i) a coin flip 

decides whether the move will be in the positive or negative direction of the 

gradient. For convenience, we will henceforth refer to a move in the positive (or 

negative) gradient direction as a forward (or backward) step; ii) the backward 

step is coupled with a larger Gaussian noise. The new state θ  is sampled by 

2ˆ ( ) (0, ), with probability 1/2,

2ˆ ( ) (0, ), with probability 1/2

I d

I d

g N I
n

g N I
n




 


  


 



θ θ

θ

θ θ

òò

òò
 (6) 

for some constant 1  . Denote this proposal ( )Iq  θ θ , then 

2

2 2

1 2 1 2ˆ ˆ( ) ( ); ( ); ,
2 2I I d I dq g I g I

n n


 
  

               
θ θ θ θ θ θ θ θ

ò òò ò  (7) 

where (·; )   is the density of a multivariate Gaussian with zero mean and 

covariance matrix Σ. 

In Algorithm 1, the acceptance probability for moving from ( , ) ( , )t tI I  θ θ  

becomes 
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ˆ ( )

( )min 1, .
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 


   
 

   

θ

θ

θ θ

θ θ
 (8) 

Similar to the argument in Section 2.1, we can show using an auxiliary variable 

the above mini-batch MH algorithm is closely related to a tempered MCMC. We 

refer to Supplement S3 for details. 

As an illustration to show both the backward step and its associated, enlarged 

Gaussian noise increase the acceptance probability, we used the same 

Gaussian setting as before (sampling from (0, )dN I , where 2 310,10 ,10d  , and 

410 , 1000, 20nn m c   ) and tested β = 1, which corresponds to only adding the 

backward move; and β = 2, which increases the size of the Gaussian noise in the 

backward move. In Figure 1(b)-(d), we can see both adding the backward move 

and increasing the Gaussian noise significantly improve the acceptance 

probability, and the trend is consistent for different dimensions. 

Analysis of acceptance probability 

In this section, we show that the RSGLD proposal leads to larger proposal ratio, 

thus increasing the MH ratio and acceptance probability overall. To focus on the 

behavior of the algorithm, we take the data x as given and fixed, and the only 

randomness lies in the selection of data batch and the Gaussian perturbation. Let 

~ (0, )dN IZ  and ( )IH θ  be the Hessian matrix of ˆ ( )Ig θ  on mini-batch I. We 

assume the following conditions hold. 

Assumption 5. ,sup || ( ) ||
mI I opH  
θ

θI , where ||·||op  is the operator norm. 

Assumption 6. For every θ , all batches give similar gradients. More specifically, 

for any two batches I and J, 

2 2ˆ ˆ ˆ|| ( ) ( ) || ( || ( ) || ).J I Ig g O g θ θ θò  (9) 
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Proposition 1. For large n, suppose Assumptions 5 and 6 hold. Then depending 

on where the sampler is in the landscape of the target likelihood, we have the 

following approximations for the proposal ratio 
( )
( )

J

I

q
q

 

 

θ θ

θ θ
, where θ  is the 

current parameter value to be updated and I is the current batch. 

Case 1). Assume there exists a small constant η0 such that 

2 0 2ˆ|| || · / 2 || ( ) ||In gZ θò  with high probability (i.e. with probability approaching 

1), and the learning rate ϵ is small enough such that 
2 2

20
22

( ) ˆ|| ( ) || ( )
1 I

n g o d







θ

ò ò
 

for large d, 1  . Then 

 if the update in (6) results in a forward move, we have 
( )

1
( )

J

I

q
q

 


 

θ θ

θ θ
 with 

high probability. 

 if the update in (6) results in a backward move, we have 
( )

(1)
( )

J
P

I

q o
q

 


 

θ θ

θ θ

. 

Case 2). Assume 2ˆ|| ( ) || 0Ig θ , and the learning rate ϵ is small enough such that 

1( )o d ò  for large d. Then we have 
( )

1 (1)
( )

J
P

I

q o
q

 
 

 

θ θ

θ θ
 for both directions 

in (6). 

We defer the proof to Supplement S4. 

Remark 2. 

1. In this proposition, we consider the behavior of the proposal ratio in 

different regions of the landscape. The condition in Case 1) means the 

sampler is at a location where gradient information is strong. Simple 

rearranging in (6) shows in this case, the gradient part dominates the 

Gaussian noise. In Case 2), the sampler has reached a flat region of the 

landscape. 
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2. If 2ˆ|| ( ) || ( )Ig O dθ , in Case 1) ϵ needs to satisfy 1 2
01 /n   ò , the 

rate of which no longer depends on d and scales better than before (
1

14d n


 ). Sparse ˆ ( )Ig θ  (such as in typical neural networks) and large β can 

allow for even larger learning rates. 

3. The result in Case 1) implies it is more likely for the MH step to accept a 

forward move than a backward move when the gradient is strong. This is a 

desirable property in optimization tasks for maintaining efficiency. In 

particular, the proposal ratio is lower bounded by 1 in the forward direction 

and hence will no longer shrink the overall MH ratio to zero. In Case 2), 

the proposal in the sampler behaves like a random walk if the learning rate 

is sufficiently small. 

3 Experiments 

3.1 Distributions in low dimensions 

Convergence to known posterior 

We first examined the convergence behavior of MHBT compared to the 

conventional MCMC sampler using the full dataset (termed full batch MCMC). As 

the analysis in Section 2.2 suggests, MHBT converges to a tempered version of 

the original posterior distribution. In order to explicitly measure the distance from 

this posterior, we considered d-dimensional (d = 2 and 5) Gaussian distributions 

with unknown mean θ , known covariance Id, where the prior of θ  was set to be 

(0, )dN I . We generated 510n   samples from this distribution with each true 

* 2i  . It follows then the posterior of θ  given the data x is 1, ( 1)
1 d

nN n I
n

 
  

x , 

where x  is the sample average. Raising the posterior to temperature T changes 

the variance to 
1 d

T I
n 

. Mini-batch sampling was performed with Algorithm 1, 

setting the proposal (·)q  as a Gaussian random walk with step size δ and mini-

batch size m = 1000. We found no significant difference in the results varying m 

from 500 to 5000. Full batch MCMC was performed on the tempered posterior 
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also with the same type of random walk proposal. The same step size δ was 

chosen for both algorithms and the average acceptance probability was around 

0.3. 

Figure 2(a) shows the total variation distance between the sampled distributions 

and true tempered posterior for the two MCMC algorithms on d-dimensional 

Gaussian, as the number of iterations increases. The distance was calculated by 

running 105 independent MCMC chains and taking the same number of 

independent samples from the tempered distribution, followed by discretization to 

group the values into d-dimensional histograms. The results shown correspond 

to cn = 20, which is smaller than m  as discussed in Remark 1, although we 

note that a range of cn values (5-30) led to very similar results. For both d = 2 and 

5, MHBT converges at a rate almost identical to full batch MCMC to the 

tempered posterior. 

Gaussian mixture 

To illustrate the tempering effect of MHBT and examine the accuracy of the 

approximation in Section 2.2, we consider an example in [32]. We generated 

510n   samples from a 2-component mixture Gaussian model with parameters 

1 2( , ) θ  following: 

2 2 2 2
1 2 1 1 2~ (0,diag( , )), ~ 0.5 ( , ) 0.5 ( , ),i x xN X N N       θ  

where 2 2 2
1 22, 10, 1x     . The posterior distribution of θ  given 1( , , )nx x x  

can be calculated explicitly as 

 2 2 2 2 2 2
1 1 2 2 1 1 1 2 1 2

1 1 1/ / ( 2 ) (( ) 2( ) )
2 4 4

1

( ) .i i
n x x

i
e e e

         


       



 
   

θ  

We sampled θ  using Algorithm 1, where the proposal (·)q  is the Gaussian 

random walk with step size δ. We set the mini-batch size m to 1000 (varying m 

from 500 to 5000 did not change the results noticeably). There remain two tuning 
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parameters in the algorithm: cn and δ. We chose cn to be 20 and δ such that the 

average acceptance probability was around 0.3. Very similar results can be 

obtained by a range of cn values (e.g. 5-30). 

Figure 2(b)-(c) show the sampled θ  from 105 iterations and the contour plot of 

the tempered log posterior, log ( ) 1/ log ( )T T θ θ . We can see that the two 

modes in these plots coincide well. 

Figure 2(d)-(f) compare the trajectory of MHBT with that of the full batch MCMC 

in one of the two dimensions. The latter sampling was performed on the original 

posterior distribution, and the step size of the random walk was chosen so that 

the average probability was around 0.3. We fixed 1 0   and increased θ2 from 

0.5 to 4 so that the two modes in the posterior distribution became increasingly 

separated. In each case, MHBT is capable of visiting the two modes of the 

distribution whereas the full batch MCMC is trapped in one of the modes. This 

highlights the effect of tempering brought about by the mini-batch algorithm, 

which makes the landscape smoother and easier for the sampler to travel. 

3.2 Neural networks 

Fully connected neural networks 

We first tested MHBT with RSGLD on the standard MNIST handwritten digit 

classification task. The dataset was loaded directly from TensorFlow tutorial and 

consists of 55,000 instances for training and 10,000 instances for testing. We 

considered a neural network containing one hidden layer with 600 nodes and 

ReLU activation function ( 5~ 4 10  parameters). The outputs from the layer are 

connected to a 10-class softmax layer for classification. In this case, the log 

likelihood function is the negative of the cross entropy loss. The batch size was 

set to 100, which is a typical size used for neural networks. In Supplement S5, 

we provide additional results showing how our algorithm behaves under different 

m, as well as the interaction between m and the learning rate ϵ. We compared 

the performance of our method with a number of popular optimization methods in 
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the neural network literature for a range of learning rates. In each training, we 

started RSGLD with a large β to initiate the moves and gradually decreased it as 

the training progressed. 

Choosing β. Throughout training, we monitored the overall acceptance probability 

for each epoch, where by convention one epoch equals the total number of 

iterations it takes to step through the whole training dataset (in this case 

55000 /100 550  iterations). We decreased β according to the following 

adjustment phase once the acceptance probability became larger than 0.4 at the 

end of each epoch. During the adjustment phase, we ran 100 forward steps 

using the current parameter values and computed the MH acceptance 

probability. If the average probability of these forward steps exceeded 0.7, we 

decreased β by 5%. The new β value was then tested again with 100 forward 

steps. The maximum reduction allowed in each adjustment phase was 50%. The 

next epoch of training was then run with the new β value. On the other hand, 

when the average probability for one epoch dropped below 0.2, we increased β 

by 5%. We observed that in all experiments, β eventually stabilized to some 

constant slightly larger than 1. 

Comparison with other methods. We performed extensive comparison with SGD 

and SGLD using various learning rates and multiple rounds of training to assess 

the stability of each method. Each round of training lasted 52.75 10  iterations 

(500 epochs), and all the parameters were initialized with independent (0,0.03)N  

distribution. The same batch size (100) was used for all the methods. In this high 

dimensional setting, we explored a range of cn values around the batch size and 

show results using cn = 100. We additionally tested 50,200nc   under the same 

settings; the results are very similar thus omitted. 

Table 1 shows the prediction errors of the three methods on the testing set, using 

the top class from the softmax layer as the predicted label. Each number is the 

median error obtained from 30 training rounds with the corresponding standard 
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deviation shown in parentheses. Overall, the performance of RSGLD improves 

with large learning rate and eventually achieves better accuracy (smaller error) 

than that attainable by SGD or SGLD at any learning rate. RSGLD shows 

substantially better stability for large learning rate than the other two methods. In 

particular, when the learning rate is 0.2 or larger, SGD and SGLD can fail to 

converge completely for a significant fraction of the training rounds, which 

explains the large standard deviations. In general, the standard deviation of 

errors increases with the learning rate for all the methods, showing stability is 

hard to achieve with a large learning rate although it can lead to faster 

convergence and potentially better prediction. As explained in [33], using a large 

learning rate can help algorithms maintain a trajectory high from the valley floor 

and more easily overcome energy barriers as they explore the loss surface with 

stochastic gradients. In this sense, the stability of RSGLD under large learning 

rates is beneficial for training DNNs. We also observe that in all the experiments, 

the backward step in RSGLD was much less likely to be accepted compared to 

the forward step, which is discussed in Case 1) of Proposition 1 and is desirable 

for optimization efficiency. Since the forward step is identical to SGLD, this 

suggests the added MH acceptance-rejection step plays a role in improving the 

optimization result. In Supplement S5, we compare prediction error trajectories 

from running RSGLD and SGLD to illustrate how the MH acceptance-rejection 

step implicitly selects a more efficient trajectory through the parameter space. 

In addition to checking the average performance of the methods from multiple 

training rounds, we also examine the lowest prediction error achieved under each 

learning rate from 30 rounds of training. Since SGD and SGLD did not converge 

most of the time under large learning rates, showing the average or median error 

would make the plot scale badly. Fig 3(a) shows a trend similar to Table 1 with 

RSGLD outperforming the other two methods for large learning rates. Overall the 

lowest error is achieved by RSGLD with learning rate around 0.4-0.5. Examples 

of detailed testing error trajectories for various methods are shown in Fig 3(b), 

where for each method we selected the learning rate with the best performance. 
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We have further included RMSprop [30] with learning rate 0.005 and Adam [15] 

with learning rate 0.001 for comparison. The learning rate was chosen by 

optimization via grid search for these two methods. 

Convolutional neural networks (CNN) 

We next tested a standard three-layer CNN on the CIFAR-10 RGB image dataset 

[17], the detailed architecture of which is listed in Supplement Table S1. The 

network has around 64 10  parameters. The dataset consists of 60000 32 × 32 

RGB images in 10 classes, with 50000 for training and 10000 for testing. All 

parameters were initialized independently with (0,0.02)N  distribution. The same 

batch size and cn were used, and the same schedule was used for decreasing β 

as in the last example. Similar to the comparison performed on MNIST, we used 

20 rounds of independent training for each learning rate to check the accuracy 

and stability of RSGLD, SGD and SGLD, with each round lasting for 105 

iterations. As shown in Table 2, RSGLD consistently outperformed the other two 

methods and the margin of difference becomes larger as the learning rate 

increases. 

4 Conclusion 

In this paper, we study an efficient MH-MCMC algorithm which uses mini-batches 

of data. We draw connections between the stationary distribution of this Markov 

chain and the tempered posterior, and provide the approximation errors for a 

general class of likelihood functions. We also propose RSGLD, a stochastic 

gradient based proposal to help the sampler navigate complex high dimensional 

surface with reasonable acceptance probability in the MH acceptance test. 

Empirically, we demonstrate the algorithm has good convergence behavior and 

the tempering effect helps move between well separated modes in classical low 

dimensional models. We demonstrate the efficacy of RSGLD in training neural 

networks with the MNIST and CIFAR-10 datasets and show that compared to 
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popular optimization methods, we achieve improved accuracy and stability when 

the learning rate is large. 

There are several interesting directions for future work. We can think of the MH 

acceptance test implicitly performing batch selection by sometimes rejecting a 

move based on the current batch, thus it would be interesting to draw 

connections with the machine learning literature on optimal batch selections in 

SGD [35, 36]. In addition, although we have shown the bias term in the stationary 

distribution is negligible asymptotically, it requires nc   at a controlled rate 

implying the temperature is always much larger than 1. To extend the application 

of our algorithm from optimization to sampling, it would be helpful to reduce the 

bias term further while paying careful attention to the additional computational 

cost it incurs. One can also extend the algorithm in a simulated tempering 

framework, although the implementation of which in neural networks would be 

even more challenging. Finally, there are a number of popular stochastic 

optimization algorithms in the machine learning literature which use adaptive 

learning rates (e.g. Adagrad [12], RMSprop [30], second order methods [11]). We 

intend to explore how to incorporate such a feature in an adaptive MCMC 

framework in future work. 

SUPPLEMENTARY MATERIAL 

Title: Supplementary Material for “Mini-batch Metropolis-Hastings with Reversible 

SGLD Proposal”. 

Note 

1For simplicity of description, we assume the prior 0( ) 1 θ ; the algorithm and 

theoretical results generalize with minor modifications to other priors for large n. 
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Fig. 1 (a) The largest ϵ allowed to achieve reasonable average acceptance 

probability on 2 3(0, ), 1,10,10 ,10dN I d  . (b), (c), (d), the average acceptance 

probability for SGLD, RSGLD ( 1,2  ) for (b) d = 10, (c) 210d  , (d) 310d  . 
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Fig. 2 (a) Total variation distance between the sampled distribution and true 

tempered posterior for d-dimensional Gaussian. d = 2, 5. (b), (c) Scatter plot of 

sampled θ  values vs. contour plot of the tempered log posterior; (d), (e), (f) 

trajectories of MHBT and full batch MCMC for the 2-component Gaussian 

mixture model with fixed 1 0  , and 2 0.5,2,4   respectively. 
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Fig. 3 (a) Lowest error rate in % achieved by the three methods out of 30 training 

rounds using various learning rates.(b) Examples of testing error trajectories 

using different training methods. 
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Table 1 MNIST top class prediction error (%) on the testing set using 30 training 

rounds for each learning rate. Each number is the median error with standard 

deviation in parentheses. 

Top class prediction error (%) on the testing set 

ϵ 0.01  0.02  0.05  0.08  0.1  

RSGLD  2.01 (0.03)  1.82 (0.03) 1.72 (0.03) 1.75 (0.03) 1.73 (0.04) 

SGD  1.81 (0.02)  1.78 (0.02) 1.73 (0.03) 1.75 (0.03) 1.75 (0.06) 

SGLD  1.81 (0.02)  1.78 (0.02) 1.73 (0.03) 1.72 (0.03) 1.75 (0.07) 

 0.2  0.3  0.4  0.5  0.6  

RSGLD  1.75 (0.13)  1.7 (0.18)  1.68 (0.33) 1.66 (11.4) 1.71 (26.9) 

SGD  1.76 (16.1)  1.85 (42.1) 89.7 (44.4) 89.7 (33.4) 89.8 (24.0) 

SGLD  1.8 (33.3)  1.84 (42.1) 89.7 (43.3) 89.9 (26.9) 89.8 (37.9) 
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Table 2 CIFAR-10 top class prediction error (%) on the testing set using 20 

training rounds for each learning rate. The numbers shown are the 

median/lowest errors out of 20 rounds. 

Top class prediction error (%) on the testing set 

ϵ 0.005  0.008  0.02  0.04  

RSGLD  26.93/26.29  26.81/26.01 26.95/26.36 27.34/26.75 

SGD  27.03/26.55  27.03/26.43 27.27/26.85 27.85/27.14 

SGLD  27.00/26.60  26.88/26.19 27.31/26.70 27.85/27.08 
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