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Consider the heteroscedastic nonparametric regression model with

random design

Yi = f(Xi) + V 1/2(Xi)εi, i = 1, 2, . . . , n,

with f(·) and V (·) α- and β-Hölder smooth, respectively. We show

that the minimax rate of estimating V (·) under both local and global

squared risks is of the order

n
− 8αβ

4αβ+2α+β ∨ n−
2β

2β+1 ,

where a ∨ b := max{a, b} for any two real numbers a, b. This result

extends the fixed design rate n−4α ∨ n−2β/(2β+1) derived in Wang

et al. [2008] in a non-trivial manner, as indicated by the appearances

of both α and β in the first term. In the special case of constant

variance, we show that the minimax rate is n−8α/(4α+1) ∨ n−1 for

variance estimation, which further implies the same rate for quadratic

functional estimation and thus unifies the minimax rate under the

nonparametric regression model with those under the density model

and the white noise model. To achieve the minimax rate, we develop

a U-statistic-based local polynomial estimator and a lower bound

that is constructed over a specified distribution family of randomness

designed for both εi and Xi.

1. Introduction. Consider the model

Yi = f(Xi) + V 1/2(Xi)εi, i = 1, 2, . . . , n,(1)

where {Xi}ni=1 are independent and identically distributed (i.i.d.) univariate ran-

dom design points, and {εi}ni=1 are i.i.d. with zero mean, unit variance, and are

independent of {Xi}ni=1. In this paper, we study the optimal estimation of V (·)
under both local and global squared risks. Variance estimation is a fundamental
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statistical problem [Von Neumann, 1941, 1942; Rice, 1984; Hall et al., 1990] with

wide applications. It is useful in, for example, construction of confidence bands for

the mean function, estimation of the signal-to-noise ratio [Verzelen and Gassiat,

2018], and selection of the optimal kernel bandwidth [Fan, 1992].

When {Xi}ni=1 are fixed, estimation of V (·) in (1) has been studied extensively

in the literature via residual-based methods [Hall and Carroll, 1989; Ruppert

et al., 1997; Härdle and Tsybakov, 1997; Fan and Yao, 1998] and difference-

based methods [Muller and Stadtmuller, 1987; Müller et al., 2003; Brown and

Levine, 2007; Wang et al., 2008]. One important heuristic from previous studies

is that, compared to residual-based methods, difference-based methods are able

to achiever a smaller bias and subsequently a smaller mean squared error by

avoiding direct estimation of the mean function. More precisely, when Xi = i/n,

i = 1, . . . , n and f(·) and V (·) in (1) are α- and β-Hölder smooth, respectively,

Wang et al. [2008] proposed a difference estimator which achieved the optimal

rate of the order n−4α ∨ n−
2β

2β+1 under both local and global squared risks.

In contrast, our study focuses on the case where {Xi}ni=1 are i.i.d. random

design points on the real line. For this, we show that when f(·) and V (·) in (1)

are α- and β-Hölder smooth, respectively, the minimax rate of estimating V (·) is

of the order n
− 8αβ

4αβ+2α+β ∨n−
2β

2β+1 under both local and global squared risks. This

result has several noteworthy implications:

• The minimax rates in random and fixed design settings share a common

component, n
− 2β

2β+1 , as well as the same transition boundary α = β/(4β+2).

• For α < β/(4β + 2), a faster rate is achievable with a random design.

• Unlike the fixed design setting, for α < β/(4β + 2), α and β are now both

present in the first term of the minimax rate in the random design case.

We now discuss in more detail this minimax rate. The upper bound of the

minimax rate is achieved by smoothing pairwise differences via local polynomial

regression, the former of which is formulated via U-statistics. Our analysis of

this estimator hence relies on the four-term Bernstein inequality in Giné et al.

[2000], and unlike classic kernel methods, requires no smoothness assumption on

the design density.

For the lower bound, due to the appearances of both α and β in the non-

trivial n
− 8αβ

4αβ+2α+β part of the minimax rate and the additional randomness of

{Xi}ni=1, the derivation is much more involved than its counterpart in the fixed

design setting. We tackle the first difficulty of entangled α and β via a proper

localization technique in the construction of the mean function f(·), depicted in
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Figure 2 in Section 3.2. The second difficulty caused by the randomness of {Xi}ni=1

is resolved with a new trapezoid-shaped construction of the mean f(·), aided by

a result due to Kolchin et al. [1978] on the sparse multinomial distribution. This

result helps characterize the asymptotic behavior of the locations of {Xi}ni=1 and

plays a key role in our proof, but to our knowledge has not been well used in the

nonparametric statistics literature.

In the special case of constant variance, (1) is reduced to

Yi = f(Xi) + σεi, i = 1, 2, . . . , n,(2)

and the goal becomes estimation of σ2. In this case, the problem is linked to

estimation of a quadratic functional, which has been studied in depth in the

other two benchmark nonparametric models, the density model [Bickel and Ritov,

1988; Laurent, 1996; Giné and Nickl, 2008] and the white noise model [Donoho

and Nussbaum, 1990; Fan, 1991; Laurent and Massart, 2000]. In the density

model, one observes an i.i.d. univariate sequence {Xi}ni=1 from some unknown

density f(·), and the goal is to estimate
∫
f2(x)dx. In the white noise model, one

observes a continuous-time process from dYt = f(t)dt + n−1/2dWt for t ∈ [0, 1]

with Wt a standard Wiener process. The goal is to estimate
∫ 1

0 f
2(t)dt. Under an

α-smoothness condition on f(·), the minimax rate in both of the aforementioned

two cases is n−8α/(4α+1) ∨ n−1 (cf. Theorem 1(ii) and 2(ii) in Bickel and Ritov

[1988], Theorem 4 in Fan [1991]).

Following Doksum and Samarov [1995], a quadratic functional of interest under

(2) with random design is

Q :=

∫
f2(x)pX(x)w(x)dx,(3)

where pX(·) is the unknown design density and w(·) ≥ 0 is some known weight

function. Assuming in (2) that f is α-Hölder smooth, we show that the mini-

max rate of estimating σ2 and Q (when σ2 is unknown) is n−8α/(4α+1) ∨ n−1,

thereby unifying the minimax rate of quadratic functional estimation in all three

benchmark nonparametric models.

In this paper, we also provide extensions of (2) to multivariate cases, with a

focus on the multivariate nonparametric regression model

Yi = f(Xi) + σεi, i = 1, 2, . . . , n,(4)

and the nonparametric additive model

Yi =

d∑

k=1

fk(Xi,k) + σεi, i = 1, 2, . . . , n,(5)
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Table 1. Summary of minimax rates in (1), (2), (4) and (5). The two types of fixed design
considered, (GD) and (DD), are defined in (20) and (21), respectively. For a d-dimensional
smoothness index α = (α1, . . . , αd)

>, α := d/(
∑d
k=1 1/αk), αmin := min1≤k≤d αk, and

αmax := max1≤k≤d αk. The respective sections contain the definition of the distribution class
of {(Xi, εi)}ni=1 in the random design setting and distribution class of {εi}ni=1 in the fixed design
setting. Our results include all of the random design rates and fixed design rates in (4) and (5).
Note results for (4) and (5) have additional requirements; see Sections 4.1 and 4.2 for details.

stated in minimax rate boundary

(1), fixed Wang et al. [2008] n−4α ∨ n−2β/(2β+1)

α = β/(4β + 2)
(1), random Theorems 3, 4, 5 n

− 8αβ
4αβ+β+2α ∨ n−

2β
2β+1

(2), fixed Wang et al. [2008] n−4α ∨ n−1

α = 1/4
(2), random Theorems 1, 2 n−8α/(4α+1) ∨ n−1

(4), fixed (GD) Proposition 3 n−4αmax/d ∨ n−1 αmax = d/4
(4), fixed (DD) Proposition 4 n−4αmin ∨ n−1 αmin = 1/4

(4), random Propositions 1, 2 n−8α/(4α+d) ∨ n−1 α = d/4

(5), fixed (GD) Proposition 5 n−1

(5), fixed (DD) Proposition 6 n−4αmin ∨ n−1

αmin = 1/4
(5), random Propositions 7, 8 n−8αmin/(4αmin+1) ∨ n−1

in both fixed and random designs. Here, Xi := (Xi,1, . . . , Xi,d)
>, i = 1, . . . , n, for

some fixed positive integer d. Regarding the fixed design, we consider two types,

namely, the grid design (GD) and the diagonal design (DD). With a total of n

design points, the former places them on a regular grid in the d-dimensional cube

[0, 1]d while the latter only places design points on the diagonal. Details are given

in Sections 4.1 and 4.2.

We summarize theminimaxrates in all of theaforementionedmodels inTable1.

The rest of the paper is organized as follows. Section 2 presents the simple

model (2) with constant variance. Section 3 discusses its heteroscedastic extension

(1). Section 4 discusses the multivariate nonparametric regression model (4), the

additive model (5), and several other extensions of our main results. The essential

lower bound proof of the minimax rate n−8α/(4α+1) ∨ n−1 under model (2) is

presented in Section 5, with the rest of the proofs given in a supplement.

The notation used throughout the paper is as follows. For any positive integer

n, [n] denotes the set {1, 2, . . . , n}. For any real number a, we use dae to de-

note the smallest integer greater than or equal to a, and bac the largest integer

strictly smaller than a. For any positive integer d, 0d denotes the zero vector of

dimension d and Id denotes the identity matrix of dimension d. For a real vector

x, ‖x‖ and ‖x‖∞ denote its Euclidean and infinity norms, respectively. For a

real matrix A, we use ‖A‖, ‖A‖F , and |A| to denote its spectral norm, Frobe-

nius norm, and determinant, respectively. For an m-times differentiable function
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f : R → R with some positive integer m, we use f (k) to denote its kth deriva-

tive for k = 1, 2, . . . ,m. For identically distributed random variables Xi and Xj ,

we use PXi(·) and pXi(·) to denote the distribution and density of Xi, X̃ij to

denote Xi −Xj , and p
X̃ij

(·) to denote the density of Xi −Xj . Similar notation

PXi(·), pXi(·), X̃ij , pX̃ij
(·) applies to identically distributed random vectors Xi

and Xj . For a positive integer d and µ ∈ Rd,Σ ∈ Rd×d, Nd(µ,Σ) stands for

the d-dimensional normal distribution with mean µ and covariance Σ. We will

drop the subscript d for simplicity when d = 1. Φ(·) and ϕ(·) represent the stan-

dard normal distribution and density. More generally, we will write ϕµ,σ2(·) as

the density for the normal distribution with mean µ and variance σ2. For two

probability measures P,Q defined on a common space (Ω,A), TV(P,Q) denotes

their total variation distance, that is, TV(P,Q) := supA∈A|P(A)−Q(A)|. For two

real sequences {an} and {bn}, an . bn if |an| ≤ C|bn| for some positive absolute

constant C. We say an � bn if an . bn and bn . an.

2. Homoscedastic case. To illustrate some of the main ideas developed in

this paper, we begin with a discussion of the elementary univariate homoscedastic

nonparametric regression model (2):

Yi = f(Xi) + σεi, i = 1, 2, . . . , n.

Here, {Xi}ni=1 are i.i.d. copies of a univariate random variable X, f(·) belongs

to an α-Hölder class that will be specified soon, and {εi}ni=1 are i.i.d. copies of a

variable ε with zero mean and unit variance and are independent of {Xi}ni=1. Both

the mean function f(·) and the distribution of {Xi}ni=1 are assumed unknown.

Model (2) has been extensively studied using residual-based and difference-

based methods; see, among many others, Von Neumann [1941], Von Neumann

[1942], Rice [1984], Gasser et al. [1986], Hall et al. [1990], Hall and Marron [1990],

Thompson et al. [1991], Müller et al. [2003], Wang et al. [2008]. A related func-

tional estimation problem has also been studied in semiparametric models [Robins

et al., 2008, 2009]. Most of the previous studies focus on the case of fixed design,

especially the equidistant design with Xi = i/n, i ∈ [n], for which the minimax

rate of estimating σ2 under an α-Hölder smoothness constraint on f(·) is known

to be n−4α ∨ n−1 (cf. Theorems 1 and 2 in Wang et al. [2008]).

In detail, let I be a fixed (possibly infinite) interval on the real line. Define the

Hölder class Λα,I(CF ) on I as follows:

(6)
Λα,I(CF ) :=

{
f : for all x, y ∈ I and k = 0, . . . , bαc,∣∣∣f (k)(x)

∣∣∣ ≤ CF and
∣∣∣f (bαc)(x)− f (bαc)(y)

∣∣∣ ≤ CF |x− y|α
′}
,
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where α′ := α− bαc. Denote the support of X as supp(X).

Define the joint distribution class Pcv,(X,ε) (where “cv” stands for “constant

variance”) with the following conditions:

(a) X satisfies supp(X) ⊂ I.

(b) X has density pX(·) and there exists a fixed positive constant C0 such that

sup
x∈R

pX(x) ≤ C0.

(c) There exist two fixed constants δ0 > 0 and c0 > 0 such that for any 0 <

δ < δ0, there exists a set Uδ ⊂ [−1, 1] such that

λ(Uδ) ≥ c0 and inf
u∈Uδ

p
X̃ij

(uδ) ≥ c0,

where λ(·) represents the Lebesgue measure on the real line, and X̃ij =

Xi −Xj .

(d) Eε4 ≤ Cε for some fixed positive constant Cε.

Note that no smoothness condition is placed on the density of X. Condition

(c) essentially requires the density p
X̃ij

to be “dense” around 0, and is strictly

weaker than a uniform lower bound of p
X̃ij

over a fixed neighborhood of 0. It also

follows from the following sufficient condition on the marginal density pX(·) (see

Lemma A4 in the supplement for the justification):

(c′) X is compactly supported (taken to be [0, 1] without loss of generality).

There exists some positive constant c0 and subset S ⊂ [−1, 1] with Lebesgue

measure λ(S) ≥ 3/4 such that pX(t) ≥ c0 uniformly over t ∈ S.

In particular, (c′) covers the uniform distribution on [0, 1] and the distribution of

X in the lower bound construction in the proof of Theorem 2.

The rest of the section is devoted to proving, for any fixed positive constants

CF and Cσ, the following minimax rate:

inf
σ̃2

sup
f∈Λα,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E
(
σ̃2 − σ2

)2 � n−8α/(4α+1) ∨ n−1,(7)

where P(X,ε) denotes the joint distribution of (X, ε), and σ̃2 ranges over all esti-

mators of σ2.

2.1. Upper bound. The upper bound is achieved by a difference estimator

based on U-statistics (with convention 0/0 = 0):

σ̂2 :=

(
n
2

)−1∑
i<jKh(Xi −Xj)(Yi − Yj)2/2

(
n
2

)−1∑
i<jKh(Xi −Xj)

.(8)
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Here, Kh(·) := K(·/h)/h, where h = hn is a bandwidth parameter satisfying

hn ↓ 0 as n → ∞, and K(·) is a symmetric density kernel supported on [−1, 1]

that satisfies

MK ≤ inf
|u|≤1

K(u) ≤ sup
|u|≤1

K(u) ≤MK(9)

for two fixed constants MK and MK ; one example is the box kernel K(u) =

1{|u| ≤ 1}/2 which satisfies (9) with MK = MK = 1/2.

The following error bound is derived via the exponential inequality for degen-

erate U-statistics due to Giné et al. [2000].

Theorem 1. Suppose the kernel K(·) in σ̂2 is chosen such that (9) is satisfied

with constants MK and MK , and the bandwidth hn is chosen as

hn �
{
n−2/(4α+1), 0 < α < 1/4,

n−1, α ≥ 1/4.
(10)

Then, under (2) with random design, it holds that

sup
f∈Λα,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E
(
σ̂2 − σ2

)2 ≤ C
(
n−8α/(4α+1) ∨ n−1

)
,

where C is some fixed positive constant that only depends on MK ,MK , α,CF , Cσ
and C0, c0, Cε in Pcv,(X,ε).

Remark 1. The error rate in Theorem 1 is achieved by choosing the optimal

bandwidth hn to balance the “bias-variance” decomposition:

{
E
(
σ̂2 − σ2

)2}1/2
. h2(α∧1)

n +
1

nh
1/2
n

,(11)

where a∧ b := min{a, b} for any two real numbers a, b. The bias term h
2(α∧1)
n re-

flects the second-order effect of the unknown mean on variance estimation, which

has been noted by Hall and Carroll [1989] and Wang et al. [2008]. The variance

part follows from the fact that there is an average number of n2hn pairs of (i, j)

such that |Xi −Xj | ≤ hn. We note that the same “bias-variance” decomposition

has appeared in quadratic functional estimation in the density model and Gaus-

sian sequence model [Bickel and Ritov, 1988; Fan, 1991; Giné and Nickl, 2008].

See Section 4.3 for a more detailed discussion.
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Remark 2. While most of the previous works are in the context of fixed de-

sign, Müller et al. [2003] considered constant variance estimation with random

design, and their estimator (formula (1.4) therein) is almost identical to our σ̂2.

Under certain assumptions (Assumptions 1 and 2 and (2.4) - (2.7) therein), they

show that their estimator is root-n consistent and asymptotically normal. How-

ever, as commented in the first paragraph on p. 184 of their paper, their condi-

tion (2.7) is only satisfied when the mean function smoothness α is strictly larger

than 1/4, and no analysis is provided below this threshold. Our minimax rate

n−8α/(4α+1) ∨ n−1 therefore confirms that α ≥ 1/4 is indeed the minimal require-

ment for any variance estimator to be root-n consistent and we also demonstrate

the optimality of σ̂2 for 0 < α < 1/4.

Finally, in (2), we have assumed that the smoothness index α is known. If it is

unknown, then the variance can be estimated adaptively via Lepski-type methods

[Lepski, 1991, 1992]. This is discussed in more detail in Section 4.5.

2.2. Lower bound. The derivation of the lower bound in (7) is much more

involved. In particular, the construction in the fixed design setting (cf. Theorem

2 in Wang et al. [2008]) cannot be extended to the random design case, since the

spike-type construction of f(·) located at each deterministic design point leads

to a sub-optimal rate in the random design setting. To achieve a sharp rate, we

have to exploit the randomness of {Xi}ni=1; this requires us to handle a highly

convoluted alternative hypothesis that no longer leads to a product measure of

{Yi}ni=1 given each realization of {Xi}ni=1 in LeCam’s two-point method. This

calls for a careful analysis of the locations of {Xi}ni=1.

We now sketch a proof of the n−8α/(4α+1) component in (7) for 0 < α < 1/4,

with a particular emphasis on where the difference arises with the fixed design

setting. The proof can be roughly divided into two steps. In the first step, we

construct a two-point testing problem with the null being a Gaussian (H0) and the

alternative a Gaussian location mixture (H̃1). In the second step, we approximate

the Gaussian location mixture (H̃1) by a location mixture with compact support

(H1), which, unlike the alternative in the first step, belongs to the considered

model class.

We start by introducing the construction of f(·), σ2, ε, and X under the null

H0 and the alternative H̃1 in the first step. For each n, let

hn � n−2/(4α+1), θ2
n � h2α

n , and N := 1/(6hn),
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<latexit sha1_base64="hpaOv2G1q1F8JXdouZRL0hqoqcM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecZpwP6IjJULBKFrpwasMqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/m186I2dWGZIw1rYUkrn6eyKjkTHTKLCdEcWxWfZy8T+vl2J47WdCJSlyxRaLwlQSjEn+NhkKzRnKqSWUaWFvJWxMNWVow8lD8JZfXiXti7rn1r37y1rjpoijDCdwCufgwRU04A6a0AIGITzDK7w5E+fFeXc+Fq0lp5g5hj9wPn8ArtqMyQ==</latexit><latexit sha1_base64="hpaOv2G1q1F8JXdouZRL0hqoqcM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecZpwP6IjJULBKFrpwasMqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/m186I2dWGZIw1rYUkrn6eyKjkTHTKLCdEcWxWfZy8T+vl2J47WdCJSlyxRaLwlQSjEn+NhkKzRnKqSWUaWFvJWxMNWVow8lD8JZfXiXti7rn1r37y1rjpoijDCdwCufgwRU04A6a0AIGITzDK7w5E+fFeXc+Fq0lp5g5hj9wPn8ArtqMyQ==</latexit><latexit sha1_base64="hpaOv2G1q1F8JXdouZRL0hqoqcM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecZpwP6IjJULBKFrpwasMqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/m186I2dWGZIw1rYUkrn6eyKjkTHTKLCdEcWxWfZy8T+vl2J47WdCJSlyxRaLwlQSjEn+NhkKzRnKqSWUaWFvJWxMNWVow8lD8JZfXiXti7rn1r37y1rjpoijDCdwCufgwRU04A6a0AIGITzDK7w5E+fFeXc+Fq0lp5g5hj9wPn8ArtqMyQ==</latexit><latexit sha1_base64="hpaOv2G1q1F8JXdouZRL0hqoqcM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecZpwP6IjJULBKFrpwasMqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/m186I2dWGZIw1rYUkrn6eyKjkTHTKLCdEcWxWfZy8T+vl2J47WdCJSlyxRaLwlQSjEn+NhkKzRnKqSWUaWFvJWxMNWVow8lD8JZfXiXti7rn1r37y1rjpoijDCdwCufgwRU04A6a0AIGITzDK7w5E+fFeXc+Fq0lp5g5hj9wPn8ArtqMyQ==</latexit>

6hn
<latexit sha1_base64="IG1eyPb6/fyO4UToUEnZGj++NF4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2k3bpZhN2N0Ip/Q1ePCji1R/kzX/jps1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+y/32EyrNE/loJikGMR1KHnFGjZX8q1FfVvrVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoIpVYYzgbNKL9OYUjamQ+xaKmmMOpjOj52RM6sMSJQoW9KQufp7YkpjrSdxaDtjakZ62cvF/7xuZqKbYMplmhmUbLEoygQxCck/JwOukBkxsYQyxe2thI2ooszYfPIQvOWXV0nrou65de/hsta4LeIowwmcwjl4cA0NuIcm+MCAwzO8wpsjnRfn3flYtJacYuYY/sD5/AH8o44h</latexit><latexit sha1_base64="IG1eyPb6/fyO4UToUEnZGj++NF4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2k3bpZhN2N0Ip/Q1ePCji1R/kzX/jps1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+y/32EyrNE/loJikGMR1KHnFGjZX8q1FfVvrVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoIpVYYzgbNKL9OYUjamQ+xaKmmMOpjOj52RM6sMSJQoW9KQufp7YkpjrSdxaDtjakZ62cvF/7xuZqKbYMplmhmUbLEoygQxCck/JwOukBkxsYQyxe2thI2ooszYfPIQvOWXV0nrou65de/hsta4LeIowwmcwjl4cA0NuIcm+MCAwzO8wpsjnRfn3flYtJacYuYY/sD5/AH8o44h</latexit><latexit sha1_base64="IG1eyPb6/fyO4UToUEnZGj++NF4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2k3bpZhN2N0Ip/Q1ePCji1R/kzX/jps1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+y/32EyrNE/loJikGMR1KHnFGjZX8q1FfVvrVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoIpVYYzgbNKL9OYUjamQ+xaKmmMOpjOj52RM6sMSJQoW9KQufp7YkpjrSdxaDtjakZ62cvF/7xuZqKbYMplmhmUbLEoygQxCck/JwOukBkxsYQyxe2thI2ooszYfPIQvOWXV0nrou65de/hsta4LeIowwmcwjl4cA0NuIcm+MCAwzO8wpsjnRfn3flYtJacYuYY/sD5/AH8o44h</latexit><latexit sha1_base64="IG1eyPb6/fyO4UToUEnZGj++NF4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2k3bpZhN2N0Ip/Q1ePCji1R/kzX/jps1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+y/32EyrNE/loJikGMR1KHnFGjZX8q1FfVvrVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoIpVYYzgbNKL9OYUjamQ+xaKmmMOpjOj52RM6sMSJQoW9KQufp7YkpjrSdxaDtjakZ62cvF/7xuZqKbYMplmhmUbLEoygQxCck/JwOukBkxsYQyxe2thI2ooszYfPIQvOWXV0nrou65de/hsta4LeIowwmcwjl4cA0NuIcm+MCAwzO8wpsjnRfn3flYtJacYuYY/sD5/AH8o44h</latexit>

12hn
<latexit sha1_base64="qwRLrrZkuOSzl8GTwEdBvyqEvfs=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Kpsi6LHoxWMF+wHtUrJpto3NJkuSFcrS/+DFgyJe/T/e/Ddm2z1o64OBx3szzMwLE8GN9f1vb219Y3Nru7RT3t3bPzisHB23jUo1ZS2qhNLdkBgmuGQty61g3UQzEoeCdcLJbe53npg2XMkHO01YEJOR5BGnxDqpjevjgSwPKlW/5s+BVgkuSBUKNAeVr/5Q0TRm0lJBjOlhP7FBRrTlVLBZuZ8alhA6ISPWc1SSmJkgm187Q+dOGaJIaVfSorn6eyIjsTHTOHSdMbFjs+zl4n9eL7XRdZBxmaSWSbpYFKUCWYXy19GQa0atmDpCqObuVkTHRBNqXUB5CHj55VXSrtewX8P3l9XGTRFHCU7hDC4AwxU04A6a0AIKj/AMr/DmKe/Fe/c+Fq1rXjFzAn/gff4AZreOWA==</latexit><latexit sha1_base64="qwRLrrZkuOSzl8GTwEdBvyqEvfs=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Kpsi6LHoxWMF+wHtUrJpto3NJkuSFcrS/+DFgyJe/T/e/Ddm2z1o64OBx3szzMwLE8GN9f1vb219Y3Nru7RT3t3bPzisHB23jUo1ZS2qhNLdkBgmuGQty61g3UQzEoeCdcLJbe53npg2XMkHO01YEJOR5BGnxDqpjevjgSwPKlW/5s+BVgkuSBUKNAeVr/5Q0TRm0lJBjOlhP7FBRrTlVLBZuZ8alhA6ISPWc1SSmJkgm187Q+dOGaJIaVfSorn6eyIjsTHTOHSdMbFjs+zl4n9eL7XRdZBxmaSWSbpYFKUCWYXy19GQa0atmDpCqObuVkTHRBNqXUB5CHj55VXSrtewX8P3l9XGTRFHCU7hDC4AwxU04A6a0AIKj/AMr/DmKe/Fe/c+Fq1rXjFzAn/gff4AZreOWA==</latexit><latexit sha1_base64="qwRLrrZkuOSzl8GTwEdBvyqEvfs=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Kpsi6LHoxWMF+wHtUrJpto3NJkuSFcrS/+DFgyJe/T/e/Ddm2z1o64OBx3szzMwLE8GN9f1vb219Y3Nru7RT3t3bPzisHB23jUo1ZS2qhNLdkBgmuGQty61g3UQzEoeCdcLJbe53npg2XMkHO01YEJOR5BGnxDqpjevjgSwPKlW/5s+BVgkuSBUKNAeVr/5Q0TRm0lJBjOlhP7FBRrTlVLBZuZ8alhA6ISPWc1SSmJkgm187Q+dOGaJIaVfSorn6eyIjsTHTOHSdMbFjs+zl4n9eL7XRdZBxmaSWSbpYFKUCWYXy19GQa0atmDpCqObuVkTHRBNqXUB5CHj55VXSrtewX8P3l9XGTRFHCU7hDC4AwxU04A6a0AIKj/AMr/DmKe/Fe/c+Fq1rXjFzAn/gff4AZreOWA==</latexit><latexit sha1_base64="qwRLrrZkuOSzl8GTwEdBvyqEvfs=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Kpsi6LHoxWMF+wHtUrJpto3NJkuSFcrS/+DFgyJe/T/e/Ddm2z1o64OBx3szzMwLE8GN9f1vb219Y3Nru7RT3t3bPzisHB23jUo1ZS2qhNLdkBgmuGQty61g3UQzEoeCdcLJbe53npg2XMkHO01YEJOR5BGnxDqpjevjgSwPKlW/5s+BVgkuSBUKNAeVr/5Q0TRm0lJBjOlhP7FBRrTlVLBZuZ8alhA6ISPWc1SSmJkgm187Q+dOGaJIaVfSorn6eyIjsTHTOHSdMbFjs+zl4n9eL7XRdZBxmaSWSbpYFKUCWYXy19GQa0atmDpCqObuVkTHRBNqXUB5CHj55VXSrtewX8P3l9XGTRFHCU7hDC4AwxU04A6a0AIKj/AMr/DmKe/Fe/c+Fq1rXjFzAn/gff4AZreOWA==</latexit>

(N � 1)6hn
<latexit sha1_base64="hNz4AUZQXViOH7aN2JDacLzeT88=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSLUg2VXRD0WvXiSCvYD26Vk02wbmmSXJCuUpf/CiwdFvPpvvPlvzLZ70NYHA4/3ZpiZF8ScaeO6387S8srq2npho7i5tb2zW9rbb+ooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjG4yv/VElWaRfDDjmPoCDyQLGcHGSo+Vu1Pv5GLYk8VeqexW3SnQIvFyUoYc9V7pq9uPSCKoNIRjrTueGxs/xcowwumk2E00jTEZ4QHtWCqxoNpPpxdP0LFV+iiMlC1p0FT9PZFiofVYBLZTYDPU814m/ud1EhNe+SmTcWKoJLNFYcKRiVD2PuozRYnhY0swUczeisgQK0yMDSkLwZt/eZE0z6qeW/Xuz8u16zyOAhzCEVTAg0uowS3UoQEEJDzDK7w52nlx3p2PWeuSk88cwB84nz87+o9Q</latexit><latexit sha1_base64="hNz4AUZQXViOH7aN2JDacLzeT88=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSLUg2VXRD0WvXiSCvYD26Vk02wbmmSXJCuUpf/CiwdFvPpvvPlvzLZ70NYHA4/3ZpiZF8ScaeO6387S8srq2npho7i5tb2zW9rbb+ooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjG4yv/VElWaRfDDjmPoCDyQLGcHGSo+Vu1Pv5GLYk8VeqexW3SnQIvFyUoYc9V7pq9uPSCKoNIRjrTueGxs/xcowwumk2E00jTEZ4QHtWCqxoNpPpxdP0LFV+iiMlC1p0FT9PZFiofVYBLZTYDPU814m/ud1EhNe+SmTcWKoJLNFYcKRiVD2PuozRYnhY0swUczeisgQK0yMDSkLwZt/eZE0z6qeW/Xuz8u16zyOAhzCEVTAg0uowS3UoQEEJDzDK7w52nlx3p2PWeuSk88cwB84nz87+o9Q</latexit><latexit sha1_base64="hNz4AUZQXViOH7aN2JDacLzeT88=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSLUg2VXRD0WvXiSCvYD26Vk02wbmmSXJCuUpf/CiwdFvPpvvPlvzLZ70NYHA4/3ZpiZF8ScaeO6387S8srq2npho7i5tb2zW9rbb+ooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjG4yv/VElWaRfDDjmPoCDyQLGcHGSo+Vu1Pv5GLYk8VeqexW3SnQIvFyUoYc9V7pq9uPSCKoNIRjrTueGxs/xcowwumk2E00jTEZ4QHtWCqxoNpPpxdP0LFV+iiMlC1p0FT9PZFiofVYBLZTYDPU814m/ud1EhNe+SmTcWKoJLNFYcKRiVD2PuozRYnhY0swUczeisgQK0yMDSkLwZt/eZE0z6qeW/Xuz8u16zyOAhzCEVTAg0uowS3UoQEEJDzDK7w52nlx3p2PWeuSk88cwB84nz87+o9Q</latexit><latexit sha1_base64="hNz4AUZQXViOH7aN2JDacLzeT88=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSLUg2VXRD0WvXiSCvYD26Vk02wbmmSXJCuUpf/CiwdFvPpvvPlvzLZ70NYHA4/3ZpiZF8ScaeO6387S8srq2npho7i5tb2zW9rbb+ooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjG4yv/VElWaRfDDjmPoCDyQLGcHGSo+Vu1Pv5GLYk8VeqexW3SnQIvFyUoYc9V7pq9uPSCKoNIRjrTueGxs/xcowwumk2E00jTEZ4QHtWCqxoNpPpxdP0LFV+iiMlC1p0FT9PZFiofVYBLZTYDPU814m/ud1EhNe+SmTcWKoJLNFYcKRiVD2PuozRYnhY0swUczeisgQK0yMDSkLwZt/eZE0z6qeW/Xuz8u16zyOAhzCEVTAg0uowS3UoQEEJDzDK7w52nlx3p2PWeuSk88cwB84nz87+o9Q</latexit>

. . . . . .
<latexit sha1_base64="ZfBvQmB5QjfqRKcpVzbmvs9V6bs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDabTbt0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ9meLw3w86+MJPCoOt+O5W19Y3Nrep2bWd3b/+gfnjUNWmuGe+wVKa6F1LDpVC8gwIl72Wa0ySU/DEc3878xyeujUjVA04yHiR0qEQsGEUr+b6MUjSLPqg33KY7B1klXkkaUKI9qH/5UcryhCtkkhrT99wMg4JqFEzyac3PDc8oG9Mh71uqaMJNUMxvnpIzq0QkTrUthWSu/t4oaGLMJAntZEJxZJa9mfif188xvg4KobIcuWKLh+JcEkzJLAASCc0ZyokllGlhbyVsRDVlaGOq2RC85S+vku5F03Ob3v1lo3VTxlGFEziFc/DgClpwB23oAIMMnuEV3pzceXHenY/FaMUpd47hD5zPH3wqkfY=</latexit><latexit sha1_base64="ZfBvQmB5QjfqRKcpVzbmvs9V6bs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDabTbt0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ9meLw3w86+MJPCoOt+O5W19Y3Nrep2bWd3b/+gfnjUNWmuGe+wVKa6F1LDpVC8gwIl72Wa0ySU/DEc3878xyeujUjVA04yHiR0qEQsGEUr+b6MUjSLPqg33KY7B1klXkkaUKI9qH/5UcryhCtkkhrT99wMg4JqFEzyac3PDc8oG9Mh71uqaMJNUMxvnpIzq0QkTrUthWSu/t4oaGLMJAntZEJxZJa9mfif188xvg4KobIcuWKLh+JcEkzJLAASCc0ZyokllGlhbyVsRDVlaGOq2RC85S+vku5F03Ob3v1lo3VTxlGFEziFc/DgClpwB23oAIMMnuEV3pzceXHenY/FaMUpd47hD5zPH3wqkfY=</latexit><latexit sha1_base64="ZfBvQmB5QjfqRKcpVzbmvs9V6bs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDabTbt0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ9meLw3w86+MJPCoOt+O5W19Y3Nrep2bWd3b/+gfnjUNWmuGe+wVKa6F1LDpVC8gwIl72Wa0ySU/DEc3878xyeujUjVA04yHiR0qEQsGEUr+b6MUjSLPqg33KY7B1klXkkaUKI9qH/5UcryhCtkkhrT99wMg4JqFEzyac3PDc8oG9Mh71uqaMJNUMxvnpIzq0QkTrUthWSu/t4oaGLMJAntZEJxZJa9mfif188xvg4KobIcuWKLh+JcEkzJLAASCc0ZyokllGlhbyVsRDVlaGOq2RC85S+vku5F03Ob3v1lo3VTxlGFEziFc/DgClpwB23oAIMMnuEV3pzceXHenY/FaMUpd47hD5zPH3wqkfY=</latexit><latexit sha1_base64="ZfBvQmB5QjfqRKcpVzbmvs9V6bs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthaaUDabTbt0swm7E6GE/g0vHhTx6p/x5r9x2+agrQ9meLw3w86+MJPCoOt+O5W19Y3Nrep2bWd3b/+gfnjUNWmuGe+wVKa6F1LDpVC8gwIl72Wa0ySU/DEc3878xyeujUjVA04yHiR0qEQsGEUr+b6MUjSLPqg33KY7B1klXkkaUKI9qH/5UcryhCtkkhrT99wMg4JqFEzyac3PDc8oG9Mh71uqaMJNUMxvnpIzq0QkTrUthWSu/t4oaGLMJAntZEJxZJa9mfif188xvg4KobIcuWKLh+JcEkzJLAASCc0ZyokllGlhbyVsRDVlaGOq2RC85S+vku5F03Ob3v1lo3VTxlGFEziFc/DgClpwB23oAIMMnuEV3pzceXHenY/FaMUpd47hD5zPH3wqkfY=</latexit>�

<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit>
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<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit>

�
<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit>
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<latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit><latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit><latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit><latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit>

4hn
<latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit><latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit><latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit><latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit>
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<latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit><latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit><latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit><latexit sha1_base64="ybnL6984hSca2LeqP0mpCy0JxVU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjOa433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPEzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ72rpuc2vYdWo31bxlGFMziHS/DgGtpwDx3oAoEInuEV3hzhvDjvzseyteKUM6fwB87nD8QYjgs=</latexit>
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<latexit sha1_base64="P8aFBj+kwJjUpG26qXi/WMZ+3+U=">AAACAnicbVA9SwNBEJ2LXzF+Ra3E5kgQUoU7Gy2DNlYSwXxAEo+9vUmyZG/v2N1TwhFs/Cs2ForY+ivsBAt/ipuPQhMfDDzem2Fmnh9zprTjfFqZpeWV1bXsem5jc2t7J7+7V1dRIinWaMQj2fSJQs4E1jTTHJuxRBL6HBv+4HzsN25RKhaJaz2MsROSnmBdRok2kpc/6Hvipk143CftOxagZjzAVI68Sy9fdMrOBPYicWekWCmUvr4BoOrlP9pBRJMQhaacKNVynVh3UiI1oxxHuXaiMCZ0QHrYMlSQEFUnnbwwso+MEtjdSJoS2p6ovydSEio1DH3TGRLdV/PeWPzPayW6e9pJmYgTjYJOF3UTbuvIHudhB0wi1XxoCKGSmVtt2ieSUG1Sy5kQ3PmXF0n9uOw6ZffKpHEGU2ThEApQAhdOoAIXUIUaULiHR3iGF+vBerJerbdpa8aazezDH1jvPwcZmgo=</latexit><latexit sha1_base64="fseEkL9YksLl1JIIf5vaB577Li0=">AAACAnicbVDLSsNAFJ34rPUVdSVuQovQVUnc1GXRjSupYB/Q1DCZ3DZDJ5MwM1FKKG78C9duXCji1h9w6070Y5w+Ftp64MLhnHu59x4/YVQq2/40FhaXlldWc2v59Y3NrW1zZ7ch41QQqJOYxaLlYwmMcqgrqhi0EgE48hk0/f7pyG9eg5A05pdqkEAnwj1Ou5RgpSXP3A89fuViloTYvaEBKMoCyMTQO/fMol22x7DmiTMlxWqh9P1Veb+veeaHG8QkjYArwrCUbcdOVCfDQlHCYJh3UwkJJn3cg7amHEcgO9n4haF1qJXA6sZCF1fWWP09keFIykHk684Iq1DOeiPxP6+dqu5xJ6M8SRVwMlnUTZmlYmuUhxVQAUSxgSaYCKpvtUiIBSZKp5bXITizL8+TxlHZscvOhU7jBE2QQweogErIQRVURWeohuqIoFv0gJ7Qs3FnPBovxuukdcGYzuyhPzDefgAlLZug</latexit><latexit sha1_base64="fseEkL9YksLl1JIIf5vaB577Li0=">AAACAnicbVDLSsNAFJ34rPUVdSVuQovQVUnc1GXRjSupYB/Q1DCZ3DZDJ5MwM1FKKG78C9duXCji1h9w6070Y5w+Ftp64MLhnHu59x4/YVQq2/40FhaXlldWc2v59Y3NrW1zZ7ch41QQqJOYxaLlYwmMcqgrqhi0EgE48hk0/f7pyG9eg5A05pdqkEAnwj1Ou5RgpSXP3A89fuViloTYvaEBKMoCyMTQO/fMol22x7DmiTMlxWqh9P1Veb+veeaHG8QkjYArwrCUbcdOVCfDQlHCYJh3UwkJJn3cg7amHEcgO9n4haF1qJXA6sZCF1fWWP09keFIykHk684Iq1DOeiPxP6+dqu5xJ6M8SRVwMlnUTZmlYmuUhxVQAUSxgSaYCKpvtUiIBSZKp5bXITizL8+TxlHZscvOhU7jBE2QQweogErIQRVURWeohuqIoFv0gJ7Qs3FnPBovxuukdcGYzuyhPzDefgAlLZug</latexit><latexit sha1_base64="1ADh7HsoSFdSrPvb1R0Zc9cmDH0=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkriRY9FL56kgv2AJobNZtIs3WzC7kYpoXjxr3jxoIhXf4U3/43bNgdtfTDweG+GmXlBxqhUtv1tVJaWV1bXquu1jc2t7R1zd68j01wQaJOUpaIXYAmMcmgrqhj0MgE4CRh0g+HlxO/eg5A05bdqlIGX4AGnESVYack3D2Kf37mYZTF2H2gIirIQCjH2r32zbjfsKaxF4pSkjkq0fPPLDVOSJ8AVYVjKvmNnyiuwUJQwGNfcXEKGyRAPoK8pxwlIr5i+MLaOtRJaUSp0cWVN1d8TBU6kHCWB7kywiuW8NxH/8/q5is69gvIsV8DJbFGUM0ul1iQPK6QCiGIjTTARVN9qkRgLTJROraZDcOZfXiSd04ZjN5wbu968KOOookN0hE6Qg85QE12hFmojgh7RM3pFb8aT8WK8Gx+z1opRzuyjPzA+fwD2O5fE</latexit>

f(·)
<latexit sha1_base64="CjK5saAseRcZqQQzrwfSQe6I+Xw=">AAAB73icbVDLSgNBEOyNrxhfUY9ehgQhIoRdL3oMevEYwTwgu4TZ2dlkyOzMOjMrhCU/4cWDIrn6O978GyePgyYWNBRV3XR3hSln2rjut1PY2Nza3inulvb2Dw6PyscnbS0zRWiLSC5VN8SaciZoyzDDaTdVFCchp51wdDfzO89UaSbFoxmnNEjwQLCYEWys1I1rPomkueiXq27dnQOtE29Jqo2KfzkFgGa//OVHkmQJFYZwrHXPc1MT5FgZRjidlPxM0xSTER7QnqUCJ1QH+fzeCTq3SoRiqWwJg+bq74kcJ1qPk9B2JtgM9ao3E//zepmJb4KciTQzVJDFojjjyEg0ex5FTFFi+NgSTBSztyIyxAoTYyMq2RC81ZfXSfuq7rl178GmcQsLFOEMKlADD66hAffQhBYQ4PACb/DuPDmvzoczXbQWnOXMKfyB8/kDdE2RDA==</latexit><latexit sha1_base64="KduT8kPh1VXEHv5gEBPkQ7z8ULY=">AAAB73icbVDLSgNBEJz1GeMr6tHLkCBEhLDrRY9BLx4jmAckS5idnU2GzM6sM73CsuQnRPCgiFd/x1v+xsnjoIkFDUVVN91dQSK4AdedOGvrG5tb24Wd4u7e/sFh6ei4ZVSqKWtSJZTuBMQwwSVrAgfBOolmJA4Eawej26nffmLacCUfIEuYH5OB5BGnBKzUiao9Gio475cqbs2dAa8Sb0Eq9XLv4mVSzxr90ncvVDSNmQQqiDFdz03Az4kGTgUbF3upYQmhIzJgXUsliZnx89m9Y3xmlRBHStuSgGfq74mcxMZkcWA7YwJDs+xNxf+8bgrRtZ9zmaTAJJ0vilKBQeHp8zjkmlEQmSWEam5vxXRINKFgIyraELzll1dJ67LmuTXv3qZxg+YooFNURlXkoStUR3eogZqIIoGe0Rt6dx6dV+fD+Zy3rjmLmRP0B87XD323kpI=</latexit><latexit sha1_base64="KduT8kPh1VXEHv5gEBPkQ7z8ULY=">AAAB73icbVDLSgNBEJz1GeMr6tHLkCBEhLDrRY9BLx4jmAckS5idnU2GzM6sM73CsuQnRPCgiFd/x1v+xsnjoIkFDUVVN91dQSK4AdedOGvrG5tb24Wd4u7e/sFh6ei4ZVSqKWtSJZTuBMQwwSVrAgfBOolmJA4Eawej26nffmLacCUfIEuYH5OB5BGnBKzUiao9Gio475cqbs2dAa8Sb0Eq9XLv4mVSzxr90ncvVDSNmQQqiDFdz03Az4kGTgUbF3upYQmhIzJgXUsliZnx89m9Y3xmlRBHStuSgGfq74mcxMZkcWA7YwJDs+xNxf+8bgrRtZ9zmaTAJJ0vilKBQeHp8zjkmlEQmSWEam5vxXRINKFgIyraELzll1dJ67LmuTXv3qZxg+YooFNURlXkoStUR3eogZqIIoGe0Rt6dx6dV+fD+Zy3rjmLmRP0B87XD323kpI=</latexit><latexit sha1_base64="6iYIxes/MnLRymB6mlJy2AYjuAM=">AAAB73icbVBNS8NAEJ34WetX1aOXYBHqpSRe9Fj04rGC/YA2lM1m0y7d7MbdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXpoIb9LxvZ219Y3Nru7RT3t3bPzisHB23jco0ZS2qhNLdkBgmuGQt5ChYN9WMJKFgnXB8O/M7T0wbruQDTlIWJGQoecwpQSt141qfRgovBpWqV/fmcFeJX5AqFGgOKl/9SNEsYRKpIMb0fC/FICcaORVsWu5nhqWEjsmQ9SyVJGEmyOf3Tt1zq0RurLQtie5c/T2Rk8SYSRLazoTgyCx7M/E/r5dhfB3kXKYZMkkXi+JMuKjc2fNuxDWjKCaWEKq5vdWlI6IJRRtR2YbgL7+8StqXdd+r+/detXFTxFGCUziDGvhwBQ24gya0gIKAZ3iFN+fReXHenY9F65pTzJzAHzifP2HOj4M=</latexit>

h↵
ner1

<latexit sha1_base64="E6DD+RjLZ3ghoFVMAhxZn+CL2TM=">AAACAnicbVA9SwNBEJ3zM8avUyuxORKEVOHORsugjWUE8wFJPPb2JsmSvb1jd08JR7Dxr9hYKGLrr7ATLPwpbj4KTXww8Hhvhpl5QcKZ0q77aS0tr6yurec28ptb2zu79t5+XcWppFijMY9lMyAKORNY00xzbCYSSRRwbASDi7HfuEWpWCyu9TDBTkR6gnUZJdpIvn3Y98VNm/CkT9p3LETNeIiZHPmebxfdsjuBs0i8GSlWCqWvbwCo+vZHO4xpGqHQlBOlWp6b6E5GpGaU4yjfThUmhA5ID1uGChKh6mSTF0bOsVFCpxtLU0I7E/X3REYipYZRYDojovtq3huL/3mtVHfPOhkTSapR0OmibsodHTvjPJyQSaSaDw0hVDJzq0P7RBKqTWp5E4I3//IiqZ+UPbfsXZk0zmGKHBxBAUrgwSlU4BKqUAMK9/AIz/BiPVhP1qv1Nm1dsmYzB/AH1vsP2xaZ7Q==</latexit><latexit sha1_base64="moa/BoUCArR1E6KJYBhKHiJ055s=">AAACAnicbVC7TsNAEDyHVwgvAxWisRIhpYpsmlBG0FAGiTyk2Fjn8yY55Xy27s6gyIpo+AtqGgoQouUHaOkQfAyXRwEJI600mtnV7k6QMCqVbX8auaXlldW1/HphY3Nre8fc3WvKOBUEGiRmsWgHWAKjHBqKKgbtRACOAgatYHA29lvXICSN+aUaJuBFuMdplxKstOSbB32fX7mYJX3s3tAQFGUhZGLkO75Zsiv2BNYicWakVCuWv7+q7/d13/xww5ikEXBFGJay49iJ8jIsFCUMRgU3lZBgMsA96GjKcQTSyyYvjKwjrYRWNxa6uLIm6u+JDEdSDqNAd0ZY9eW8Nxb/8zqp6p54GeVJqoCT6aJuyiwVW+M8rJAKIIoNNcFEUH2rRfpYYKJ0agUdgjP/8iJpHlccu+Jc6DRO0RR5dIiKqIwcVEU1dI7qqIEIukUP6Ak9G3fGo/FivE5bc8ZsZh/9gfH2A/kqm4M=</latexit><latexit sha1_base64="moa/BoUCArR1E6KJYBhKHiJ055s=">AAACAnicbVC7TsNAEDyHVwgvAxWisRIhpYpsmlBG0FAGiTyk2Fjn8yY55Xy27s6gyIpo+AtqGgoQouUHaOkQfAyXRwEJI600mtnV7k6QMCqVbX8auaXlldW1/HphY3Nre8fc3WvKOBUEGiRmsWgHWAKjHBqKKgbtRACOAgatYHA29lvXICSN+aUaJuBFuMdplxKstOSbB32fX7mYJX3s3tAQFGUhZGLkO75Zsiv2BNYicWakVCuWv7+q7/d13/xww5ikEXBFGJay49iJ8jIsFCUMRgU3lZBgMsA96GjKcQTSyyYvjKwjrYRWNxa6uLIm6u+JDEdSDqNAd0ZY9eW8Nxb/8zqp6p54GeVJqoCT6aJuyiwVW+M8rJAKIIoNNcFEUH2rRfpYYKJ0agUdgjP/8iJpHlccu+Jc6DRO0RR5dIiKqIwcVEU1dI7qqIEIukUP6Ak9G3fGo/FivE5bc8ZsZh/9gfH2A/kqm4M=</latexit><latexit sha1_base64="utcq1yZsXv8dBldU3veQfFQ4gUU=">AAACAnicbVBNS8NAEN34WetX1JN4WSyCp5J40WPRi8cK9gOaGDabSbt0swm7G6WE4sW/4sWDIl79Fd78N27bHLT1wcDjvRlm5oUZZ0o7zre1tLyyurZe2ahubm3v7Np7+22V5pJCi6Y8ld2QKOBMQEszzaGbSSBJyKETDq8mfucepGKpuNWjDPyE9AWLGSXaSIF9OAjEnUd4NiDeA4tAMx5BIceBG9g1p+5MgReJW5IaKtEM7C8vSmmegNCUE6V6rpNpvyBSM8phXPVyBRmhQ9KHnqGCJKD8YvrCGJ8YJcJxKk0Jjafq74mCJEqNktB0JkQP1Lw3Ef/zermOL/yCiSzXIOhsUZxzrFM8yQNHTALVfGQIoZKZWzEdEEmoNqlVTQju/MuLpH1Wd526e+PUGpdlHBV0hI7RKXLROWqga9RELUTRI3pGr+jNerJerHfrY9a6ZJUzB+gPrM8fykeXpw==</latexit>

h↵
ner2

<latexit sha1_base64="MhqK0d3KyrLoNUl1EqY8nEPNeoE=">AAACAnicbVA9SwNBEJ2LXzF+Ra3E5kgQUoW7NFoGbSwjmA9I4rG3N0mW7O0du3tKOIKNf8XGQhFbf4WdYOFPcfNRaOKDgcd7M8zM82POlHacTyuzsrq2vpHdzG1t7+zu5fcPGipKJMU6jXgkWz5RyJnAumaaYyuWSEKfY9MfXkz85i1KxSJxrUcxdkPSF6zHKNFG8vJHA0/cdAiPB6RzxwLUjAeYyrFX8fJFp+xMYS8Td06K1ULp6xsAal7+oxNENAlRaMqJUm3XiXU3JVIzynGc6yQKY0KHpI9tQwUJUXXT6Qtj+8Qogd2LpCmh7an6eyIloVKj0DedIdEDtehNxP+8dqJ7Z92UiTjRKOhsUS/hto7sSR52wCRSzUeGECqZudWmAyIJ1Sa1nAnBXXx5mTQqZdcpu1cmjXOYIQvHUIASuHAKVbiEGtSBwj08wjO8WA/Wk/Vqvc1aM9Z85hD+wHr/Adyame4=</latexit><latexit sha1_base64="IzS/PgbQ+H3ReHMSMbKTZodwSaQ=">AAACAnicbVC7TsNAEDzzDOFloEI0ViKkVJGdJpQRNJRBIg8pDtb5vE5OOZ+tuzMosiIa/oKahgKEaPkBWjoEH8PlUUDCSCuNZna1u+MnjEpl25/G0vLK6tp6biO/ubW9s2vu7TdlnAoCDRKzWLR9LIFRDg1FFYN2IgBHPoOWPzgb+61rEJLG/FINE+hGuMdpSAlWWvLMw77Hr1zMkj52b2gAirIAMjHyKp5ZtMv2BNYicWakWCuUvr+q7/d1z/xwg5ikEXBFGJay49iJ6mZYKEoYjPJuKiHBZIB70NGU4whkN5u8MLKOtRJYYSx0cWVN1N8TGY6kHEa+7oyw6st5byz+53VSFZ50M8qTVAEn00VhyiwVW+M8rIAKIIoNNcFEUH2rRfpYYKJ0ankdgjP/8iJpVsqOXXYudBqnaIocOkIFVEIOqqIaOkd11EAE3aIH9ISejTvj0XgxXqetS8Zs5gD9gfH2A/qum4Q=</latexit><latexit sha1_base64="IzS/PgbQ+H3ReHMSMbKTZodwSaQ=">AAACAnicbVC7TsNAEDzzDOFloEI0ViKkVJGdJpQRNJRBIg8pDtb5vE5OOZ+tuzMosiIa/oKahgKEaPkBWjoEH8PlUUDCSCuNZna1u+MnjEpl25/G0vLK6tp6biO/ubW9s2vu7TdlnAoCDRKzWLR9LIFRDg1FFYN2IgBHPoOWPzgb+61rEJLG/FINE+hGuMdpSAlWWvLMw77Hr1zMkj52b2gAirIAMjHyKp5ZtMv2BNYicWakWCuUvr+q7/d1z/xwg5ikEXBFGJay49iJ6mZYKEoYjPJuKiHBZIB70NGU4whkN5u8MLKOtRJYYSx0cWVN1N8TGY6kHEa+7oyw6st5byz+53VSFZ50M8qTVAEn00VhyiwVW+M8rIAKIIoNNcFEUH2rRfpYYKJ0ankdgjP/8iJpVsqOXXYudBqnaIocOkIFVEIOqqIaOkd11EAE3aIH9ISejTvj0XgxXqetS8Zs5gD9gfH2A/qum4Q=</latexit><latexit sha1_base64="7DEhqavxN77l9dUKzj+ijMPBEgI=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkrSix6LXjxWsB/QxLDZTJqlm03Y3SglFC/+FS8eFPHqr/Dmv3Hb5qCtDwYe780wMy/IGJXKtr+Nysrq2vpGdbO2tb2zu2fuH3RlmgsCHZKyVPQDLIFRDh1FFYN+JgAnAYNeMLqa+r17EJKm/FaNM/ASPOQ0ogQrLfnmUezzOxezLMbuAw1BURZCISZ+0zfrdsOewVomTknqqETbN7/cMCV5AlwRhqUcOHamvAILRQmDSc3NJWSYjPAQBppynID0itkLE+tUK6EVpUIXV9ZM/T1R4ETKcRLozgSrWC56U/E/b5Cr6MIrKM9yBZzMF0U5s1RqTfOwQiqAKDbWBBNB9a0WibHAROnUajoEZ/HlZdJtNhy74dzY9dZlGUcVHaMTdIYcdI5a6Bq1UQcR9Iie0St6M56MF+Pd+Ji3Voxy5hD9gfH5A8vLl6g=</latexit>

Fig 1. The black solid line represents the construction of f(·) under the alternative hypothesis

H̃1. The thick red segments indicate the support of X under both H0 and H̃1, on which X is
uniformly distributed. Here, hn � n−2/(4α+1) and is chosen such that N := 1/(6hn) is a positive
integer. {r̃i}Ni=1 are N i.i.d. standard normal variables.

and divide the unit interval [0, 1] into N intervals of length 6hn, with n large

enough and hn chosen such that N is a positive integer.

Choice of f(·): Under H0, let f ≡ 0. Under H̃1, let f(·) be a piecewise

trapezoidal function on the N intervals. That is, for each i ∈ [N ], f takes

on a value of hαn r̃i on the intervals [(6i− 5)hn, (6i− 1)hn] and then linearly

decreases to zero on the two endpoints 6(i − 1)hn and 6ihn, with {r̃i}Ni=1

i.i.d. standard normal variables.

Choice of σ2: Under H0, let σ2 = 1 + θ2
n. Under H̃1, let σ2 = 1.

Choice of ε: Under both H0 and H̃1, let ε ∼ N (0, 1).

Choice of X: Under both H0 and H̃1, let {Xi}ni=1 be uniformly distributed

over the union of the upper bases of the trapezoids, that is, over
⋃N
i=1[(6i−

5)hn, (6i− 1)hn].

See Figure 1 for an illustration of the construction.

In contrast to the spike-type construction of f(·) in the fixed design setting,

our construction is trapezoid-shaped, which guarantees a maximal variation in

the mean to compensate for the difference in the variance under the null and

alternative. This is unnecessary in the fixed design setting since the point of
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maximal variation in the mean (center of each spike) can be directly placed at

each fixed Xi = i/n, resulting in n evenly spaced spikes in f(·).
Denote the joint distribution of {(Xi, Yi)}ni=1 under H0 and H̃1 by P0 and P̃1

with respective density p0 and p̃1. Under the above construction, conditional on

{Xi}ni=1, {Yi}ni=1 are distributed as

H0 : p0({Yi}ni=1 | {Xi}ni=1) =
n∏

i=1

ϕ0,1+θ2n
(Yi)

and

H̃1 : p̃1({Yi}ni=1 | {Xi}ni=1) =

N∏

j=1

∫ 
 ∏

{i:bi=j}

ϕhαnv,1(Yi)


ϕ(v)dv,

where {bi}ni=1 is the location index sequence of {Xi}ni=1 defined as

bi := j if Xi ∈ [(6j − 5)hn, (6j − 1)hn],

which characterizes which trapezoid each Xi falls into. Using Lemma 2 that will

be stated in Section 5, one can then upper bound

TV(P0, P̃1) = ETV(P0({Yi}ni=1 | {Xi}ni=1), P̃1({Yi}ni=1 | {Xi}ni=1)) . θ2
nnh

1/2
n ,

which can be made smaller than a sufficiently small constant c by choosing hn
sufficiently small.

The second step of the proof aims to find a sequence of bounded random

variables {ri}Ni=1 to replace the standard normal sequence {r̃i}Ni=1 in P̃1, so that for

each realization of {ri}Ni=1, the corresponding f(·) in the alternative is α-Hölder

smooth with a fixed constant. Then, denoting the distribution of {ri}Ni=1 as G,

one wishes to approximate the conditional distribution P̃1({Yi}ni=1 | {Xi}ni=1) in

H̃1 by P1({Yi}ni=1 | {Xi}ni=1) with density

p1({Yi}ni=1 | {Xi}ni=1) =
N∏

j=1

∫ 
 ∏

{i:bi=j}

ϕhαnv,1(Yi)


G(dv)

in H1. Even with the aid of moment matching techniques already established in

the literature, upper bounding TV(P1, P̃1) is still nontrivial. Specifically, unlike

in the fixed design setting, now with high probability the conditional distribution

of {Yi}ni=1 given {Xi}ni=1 is no longer a product measure. This is because multiple



VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION 11

Xi’s could fall into the same trapezoid in the construction of f(·). This can be

handled relatively easily in the first step since there we only have to analyze the

pairwise correlation of Yi | Xi and Yj | Xj depending on whether Xi and Xj

fall into the same trapezoid, but it is much less tractable in the second step.

More specifically, in order to match moments, we now have to divide the Xi’s

into groups based on their memberships among the trapezoids, which naturally

requires us to monitor the locations of {Xi}ni=1, and in particular the number

of Xi’s that fall into the same trapezoid. This is possible by observing that the

memberships of {Xi}ni=1 now follow a sparse multinomial distribution (n2/(4α+1)

bins, n balls) so that a result in Kolchin et al. [1978] can be applied. This allows

us to show that with high probability the maximum number of Xi’s in each

trapezoid is bounded by a fixed constant, which, along with Lemma 1 in Section

5, allows us to calculate

TV(P1, P̃1) . nθ2p
n

for p := 1+d1/4αe. This indicates that TV(P1, P̃1) is smaller than some sufficiently

small constant c. Then, by the triangle inequality,

TV(P0,P1) ≤ TV(P0, P̃1) + TV(P1, P̃1) ≤ 2c.

Details of the above derivation will be given in Section 5. The resulting lower

bound is as follows.

Theorem 2. Under (2) with random design, it holds that

inf
σ̃2

sup
f∈Λα,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E
(
σ̃2 − σ2

)2 ≥ c
(
n−8α/(4α+1) ∨ n−1

)
,

where c is some fixed positive constant that only depends on α,CF , Cσ and C0, c0, Cε
in Pcv,(X,ε), and σ̃2 ranges over all estimators of σ2.

Remark 3. It remains an open problem to prove a lower bound rate that is

strictly slower than n−1 over the sub-class of Pcv,(X,ε) with more regular designs,

which includes in particular the uniform design on [0, 1]. We conjecture that in

this case, n−8α/(4α+1) ∨ n−1 is still the minimax rate in view of analogous results

in quadratic functional estimation [Bickel and Ritov, 1988; Fan, 1991].

3. Heteroscedastic case. We now study the heteroscedastic model (1),

Yi = f(Xi) + V 1/2(Xi)εi, i = 1, 2, . . . , n,
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where {Xi}ni=1 are i.i.d. copies of X on the real line, f(·) and V (·) are α- and β-

Hölder smooth on the fixed (possibly infinite) interval I, respectively, and {εi}ni=1

are i.i.d. copies of ε with zero mean and unit variance and are independent of

{Xi}ni=1. As in Section 2, smoothness indices α and β are assumed known, while

f(·), V (·), and the distribution of X are unknown. For any estimator Ṽ (·), the

estimation accuracy is measured both locally via

R1(Ṽ , V ;x∗) :=
(
Ṽ (x∗)− V (x∗)

)2
(12)

at a point x∗ in the support of X, supp(X), and globally via

R2(Ṽ , V ) :=

∫ (
Ṽ (x)− V (x)

)2
PX(dx)(13)

with PX the distribution of X.

Model (1) has been studied in, for example, Muller and Stadtmuller [1987],

Hall and Carroll [1989], Ruppert et al. [1997], Härdle and Tsybakov [1997], Fan

and Yao [1998], Munk and Ruymgaart [2002], Brown and Levine [2007], Wang

et al. [2008], with a focus mainly on the fixed design case. An exception is Munk

and Ruymgaart [2002], with which we draw a detailed comparison in Remark 8

below. Theorems 1 and 2 in Wang et al. [2008] established a minimax rate of the

order n−4α ∨ n−2β/(2β+1) under equidistance design Xi = i/n, i ∈ [n] when f(·)
and V (·) are α- and β-Hölder smooth on [0,1].

Define Pvf,(X,ε) (where “vf” stands for “variance function”) as follows:

(a) X satisfies supp(X) ⊂ I.

(b) X has density pX(·), and there exists a fixed positive constant C0 such that

sup
x∈R

pX(x) ≤ C0.

(c) There exist fixed positive constants c0 and δ0 such that

inf
x∗∈supp(X)

pX(x∗) ≥ c0 and

inf
0<δ<δ0

inf
x∗∈supp(X)

λ({u ∈ [−1, 1] : x∗ + δu ∈ supp(X)}) ≥ c0,

where λ(·) is the Lebesgue measure on the real line.

(d) Eε4 ≤ Cε for some fixed positive constant Cε.

One can readily verify that Pvf,(X,ε) ⊂ Pcv,(X,ε), with the latter defined in the

beginning of Section 2. Compared to Pcv,(X,ε), Condition (c) in Pvf,(X,ε) is posed
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on the marginal density and support of X, since in the variance function case

we require a sufficient number of close pairs (Xi, Xj) around each target x∗. We

also note that, as in Pcv,(X,ε), no smoothness assumption is posed on the design

density in Pvf,(X,ε).

The rest of the section is devoted to proving, for any fixed positive constants

CF and CV , the following minimax rates

(14)

inf
Ṽ

sup
f∈Λα,I(CF )

sup
V ∈Λβ,I(CV )

sup
P(X,ε)∈Pvf,(X,ε)

sup
x∗∈supp(X)

ER1(Ṽ , V ;x∗)�n−
8αβ

4αβ+2α+β ∨n−
2β

2β+1 ,

inf
Ṽ

sup
f∈Λα,I(CF )

sup
V ∈Λβ,I(CV )

sup
P(X,ε)∈Pvf,(X,ε)

ER2(Ṽ , V )�n−
8αβ

4αβ+2α+β ∨n−
2β

2β+1 ,

where P(X,ε) denotes the joint distribution of (X, ε), and Ṽ (·) ranges over all

estimators of V (·).

3.1. Upper bound. We now propose an estimator of V (x∗) for some fixed x∗ ∈
supp(X) by combining pairwise differences with local polynomial regression. We

first introduce some notation. Let ` be the largest integer strictly smaller than β

and

q(u) := (1, u, u2/2!, . . . , u`/`!)>.

For any 1 ≤ i < j ≤ n, define

Dij := (Yi−Yj)2/2, Xij := (Xi+Xj)/2, and Kij := Kh1(Xi−Xj)Kh2(Xij−x∗),

where h1, h2 are two bandwidths. Define an (`+ 1)× (`+ 1) matrix

Bn :=

(
n

2

)−1∑

i<j

q

(
Xij − x∗

h2

)
q>
(
Xij − x∗

h2

)
Kij

and B∗n as its adjugate such that BnB
∗
n = B∗nBn = |Bn|I`+1. For example, when

` = 1, we have

Bn =

[
s0 s1

s1 s2

]
, B∗n =

[
s2 −s1

−s1 s0

]
, and |Bn| = s0s2 − s2

1,

where

sk :=

(
n

2

)−1∑

i<j

(
Xij − x∗

h2

)k
Kij , k = 0, 1, 2.
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Following Fan [1993], we propose a robust local polynomial estimator:

V̂LP(x∗) :=

(
n

2

)−1∑

i<j

Dij(|Bn|+ τn)−1q>(0)B∗nq

(
Xij − x∗

h2

)
Kij ,(15)

where τn is some sufficiently small positive constant that decays to 0 polynomially

with n. Let

wij :=

(
n

2

)−1

q>(0)B∗nq

(
Xij − x∗

h2

)
Kij and w̃ij := wij/(|Bn|+ τn).

Then, it holds that V̂LP(x∗) =
∑

i<j w̃ijDij ,
∑

i<j wij = |Bn|, and

∑

i<j

wij(Xij − x∗)k =
∑

i<j

w̃ij(Xij − x∗)k = 0, k = 1, 2, . . . , `.(16)

The last property (16) is referred to as the reproducing property of local polyno-

mial estimators (cf. Proposition 1.12 in Tsybakov [2009]).

Theorem 3. Suppose the kernel K(·) in V̂LP is chosen such that (9) holds

with constants MK and MK , τn � n−κ for some fixed constant κ ≥ 1, and the

bandwidths h1, h2 are chosen as

(h1, h2) �





(
n
− 2β

4αβ+β+2α , n
− 4α

4αβ+β+2α

)
, 0 < α < β

4β+2 ,(
n−1, n

− 1
2β+1

)
, α ≥ β

4β+2 .
(17)

Then, under (1) with random design, it holds that

sup
f∈Λα,I(CF )

sup
V ∈Λβ,I(CV )

sup
P(X,ε)∈Pvf,(X,ε)

sup
x∗∈supp(X)

ER1(V̂LP, V ;x∗)≤C
(
n
− 8αβ

4αβ+β+2α ∨n−
2β

2β+1

)

and

sup
f∈Λα,I(CF )

sup
V ∈Λβ,I(CV )

sup
P(X,ε)∈Pvf,(X,ε)

ER2(V̂LP, V ) ≤ C
(
n
− 8αβ

4αβ+β+2α ∨ n−
2β

2β+1

)
,

where C is some fixed positive constant that only depends on MK ,MK , α, β, CF , CV
and C0, c0, Cε in Pvf,(X,ε).

Remark 4. Variance function estimation in (1) with fixed design Xi = i/n,

i ∈ [n], has been studied in Wang et al. [2008]. There the minimax rate is

inf
Ṽ

sup
f∈Λα,[0,1](CF )

sup
V ∈Λβ,[0,1](CV )

sup
Eε4≤Cε

sup
x∗∈[0,1]

ER1(Ṽ , V ;x∗) � n−4α ∨ n−2β/(2β+1),
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inf
Ṽ

sup
f∈Λα,[0,1](CF )

sup
V ∈Λβ,[0,1](CV )

sup
Eε4≤Cε

ER2(Ṽ , V ) � n−4α ∨ n−2β/(2β+1),

with the integral in R2 under the Lebesgue measure on [0, 1]. Comparing the above

result with the error rate in Theorem 3, we see that the transition boundary in both

the fixed and random design settings is α = β/(4β + 2). When α ≥ β/(4β + 2),

V (·) under both R1 and R2 can be estimated at the classic nonparametric rate

n−2β/(2β+1) as if the mean function f(·) were known. When α < β/(4β + 2),

a faster rate can be achieved in the random design case. This can be intuitively

understood by the fact that, by constrast to the fixed design case, a significant

portion of pairs have distance smaller than 1/n in the random design setting.

Remark 5. As has been noted in Wang et al. [2008], in the fixed design

setting, estimating the variance (function) by smoothing the squared residuals

obtained from pre-estimation of the mean function f(·) is sub-optimal. The same

conclusion also applies to the random design setting. Since the design being fixed

or random has no first-order effect on the estimation of the mean, the above

method only achieves the rates n−4α/(2α+1) ∨ n−1 in variance estimation and

n−4α/(2α+1) ∨ n−2β/(2β+1) in variance function estimation, neither of which is

minimax optimal.

Remark 6. Unlike in the fixed design case, once below the threshold α =

β/(4β + 2), α and β are now both present in the minimax rate in the random

design case, suggesting that the smoothness of V (·) always has an effect on its

estimation. This is because variance function estimation in the random design set-

ting is essentially a “two-dimensional” problem, where we have to jointly choose

two optimal neighborhood sizes to characterize the closeness between (i) each Xi

and Xj; and (ii) every pair (Xi, Xj) and each target point x∗. By contrast, in

the fixed design setting, the distance between Xi and Xj is constrained to be no

smaller than 1/n, and thus cannot be jointly optimized with the distance between

(Xi, Xj) and x∗.

Remark 7. One might wonder whether the following Nadaraya-Watson type

estimator can be used to establish the upper bound in Theorem 3:

V̂NW(x∗) :=

∑
i<jKh1(Xi −Xj)Kh2(Xij − x∗)Dij∑
i<jKh1(Xi −Xj)Kh2(Xij − x∗)

,(18)

where K(·) is now chosen to be a higher-order kernel to further reduce bias when

β > 1. It turns out that the analysis of V̂NW requires an extra assumption on the
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smoothness of the density pX(·) which can be completely avoided with V̂LP. More-

over, it is well-known that local polynomial estimators have good finite sample

properties and boundary performances when X is compactly supported [Fan and

Gijbels, 1995].

Remark 8. Munk and Ruymgaart [2002] considered minimax estimation of

the variance function (and more generally, its derivatives) in the context of non-

parametric regression with random design. We focus on the comparison of their

results on variance function estimation with ours. Their lower bound (Theorem 1

therein) is proved independent of the smoothness level of the mean function and

upper bound (Theorem 4 therein) is proved under sufficient smoothness on the

mean function. Therefore their minimax rate is only comparable to the n−2β/(2β+1)

component in ours. In this case, their lower bound of the order n−(2β−1)/(2β) is

proved over the following class of variance function:

Sβ :=

{
1 +

∞∑

k=1

δkek : |δk| . k−β

}

for any β > 1, where {ek}∞k=1 is an arbitrary basis on L2([−π, π]). Moreover,

continuous differentiability of the error density is required in their paper. In con-

trast, we pose no smoothness conditions on the error density, and neither Sβ nor

Sβ+1/2 can be embedded in the β-Hölder class Λβ considered in our setting (e.g.,

f(x) = |x| with domain [−π, π] belongs to S2 but is not 1.5- or 2-Hölder smooth

since it is not differentiable at the origin). In summary, the results in Munk and

Ruymgaart [2002] neither imply nor contradict the n−2β/(2β+1) part in our mini-

max rate, and our results are more refined since they characterize the exact elbow

α = β/(4β + 2) and also the minimax rate below this threshold.

3.2. Lower bound. The following are matching lower bounds to Theorem 3.

Theorem 4. Under (1) with random design, for any x∗ ∈ supp(X),

inf
Ṽ

sup
f∈Λα,I(CF )

sup
V ∈Λβ,I(CV )

sup
P(X,ε)∈Pvf,(X,ε)

ER1(Ṽ , V ;x∗) ≥ c
(
n
− 8αβ

4αβ+β+2α ∨ n−
2β

2β+1

)
,

where c is some fixed positive constant that only depends on α, β, CF , CV and

C0, c0, Cε in Pvf,(X,ε), and Ṽ ranges over all estimators of V .

Theorem 5. Under (1) with random design,

inf
Ṽ

sup
f∈Λα,I(CF )

sup
V ∈Λβ,I(CV )

sup
P(X,ε)∈Pvf,(X,ε)

ER2(Ṽ , V ) ≥ c
(
n
− 8αβ

4αβ+β+2α ∨ n−
2β

2β+1

)
,
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1 � h�
2

<latexit sha1_base64="tzVaHZQfWBwJNUkmB0/llGK1Mc8=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBD0GvXiMYB6QrGF2MpsMmZ1dZ3oDIeQ7vHhQxKsf482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFRw8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ35zRHXRsTqAccJ9yPaVyIUjKKVfI9ckEG38tgJONJuseSW3TnIKvEyUoIMtW7xq9OLWRpxhUxSY9qem6A/oRoFk3xa6KSGJ5QNaZ+3LVU04safzI+ekjOr9EgYa1sKyVz9PTGhkTHjKLCdEcWBWfZm4n9eO8Xw2p8IlaTIFVssClNJMCazBEhPaM5Qji2hTAt7K2EDqilDm1PBhuAtv7xKGpWy55a9+8tS9SaLIw8ncArn4MEVVOEOalAHBk/wDK/w5oycF+fd+Vi05pxs5hj+wPn8AfJnkOk=</latexit><latexit sha1_base64="tzVaHZQfWBwJNUkmB0/llGK1Mc8=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBD0GvXiMYB6QrGF2MpsMmZ1dZ3oDIeQ7vHhQxKsf482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFRw8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ35zRHXRsTqAccJ9yPaVyIUjKKVfI9ckEG38tgJONJuseSW3TnIKvEyUoIMtW7xq9OLWRpxhUxSY9qem6A/oRoFk3xa6KSGJ5QNaZ+3LVU04safzI+ekjOr9EgYa1sKyVz9PTGhkTHjKLCdEcWBWfZm4n9eO8Xw2p8IlaTIFVssClNJMCazBEhPaM5Qji2hTAt7K2EDqilDm1PBhuAtv7xKGpWy55a9+8tS9SaLIw8ncArn4MEVVOEOalAHBk/wDK/w5oycF+fd+Vi05pxs5hj+wPn8AfJnkOk=</latexit><latexit sha1_base64="tzVaHZQfWBwJNUkmB0/llGK1Mc8=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBD0GvXiMYB6QrGF2MpsMmZ1dZ3oDIeQ7vHhQxKsf482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFRw8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ35zRHXRsTqAccJ9yPaVyIUjKKVfI9ckEG38tgJONJuseSW3TnIKvEyUoIMtW7xq9OLWRpxhUxSY9qem6A/oRoFk3xa6KSGJ5QNaZ+3LVU04safzI+ekjOr9EgYa1sKyVz9PTGhkTHjKLCdEcWBWfZm4n9eO8Xw2p8IlaTIFVssClNJMCazBEhPaM5Qji2hTAt7K2EDqilDm1PBhuAtv7xKGpWy55a9+8tS9SaLIw8ncArn4MEVVOEOalAHBk/wDK/w5oycF+fd+Vi05pxs5hj+wPn8AfJnkOk=</latexit><latexit sha1_base64="tzVaHZQfWBwJNUkmB0/llGK1Mc8=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBD0GvXiMYB6QrGF2MpsMmZ1dZ3oDIeQ7vHhQxKsf482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFRw8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ35zRHXRsTqAccJ9yPaVyIUjKKVfI9ckEG38tgJONJuseSW3TnIKvEyUoIMtW7xq9OLWRpxhUxSY9qem6A/oRoFk3xa6KSGJ5QNaZ+3LVU04safzI+ekjOr9EgYa1sKyVz9PTGhkTHjKLCdEcWBWfZm4n9eO8Xw2p8IlaTIFVssClNJMCazBEhPaM5Qji2hTAt7K2EDqilDm1PBhuAtv7xKGpWy55a9+8tS9SaLIw8ncArn4MEVVOEOalAHBk/wDK/w5oycF+fd+Vi05pxs5hj+wPn8AfJnkOk=</latexit>

�
<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit>

V (·)
<latexit sha1_base64="ESYMlDUFtX2Yccw6xjMz4FqBjdE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOq1qj4UJnvfLFbfmzkFWiZeTCuRo9MtfvTBhWcwVMkmN6Xpuiv6EahRM8mmplxmeUjaiA961VNGYG38yv3dKzqwSkijRthSSufp7YkJjY8ZxYDtjikOz7M3E/7xuhtG1PxEqzZArtlgUZZJgQmbPk1BozlCOLaFMC3srYUOqKUMbUcmG4C2/vEpaFzXPrXn3l5X6TR5HEU7gFKrgwRXU4Q4a0AQGEp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8ASl6Pdw==</latexit><latexit sha1_base64="ESYMlDUFtX2Yccw6xjMz4FqBjdE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOq1qj4UJnvfLFbfmzkFWiZeTCuRo9MtfvTBhWcwVMkmN6Xpuiv6EahRM8mmplxmeUjaiA961VNGYG38yv3dKzqwSkijRthSSufp7YkJjY8ZxYDtjikOz7M3E/7xuhtG1PxEqzZArtlgUZZJgQmbPk1BozlCOLaFMC3srYUOqKUMbUcmG4C2/vEpaFzXPrXn3l5X6TR5HEU7gFKrgwRXU4Q4a0AQGEp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8ASl6Pdw==</latexit><latexit sha1_base64="ESYMlDUFtX2Yccw6xjMz4FqBjdE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOq1qj4UJnvfLFbfmzkFWiZeTCuRo9MtfvTBhWcwVMkmN6Xpuiv6EahRM8mmplxmeUjaiA961VNGYG38yv3dKzqwSkijRthSSufp7YkJjY8ZxYDtjikOz7M3E/7xuhtG1PxEqzZArtlgUZZJgQmbPk1BozlCOLaFMC3srYUOqKUMbUcmG4C2/vEpaFzXPrXn3l5X6TR5HEU7gFKrgwRXU4Q4a0AQGEp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8ASl6Pdw==</latexit><latexit sha1_base64="ESYMlDUFtX2Yccw6xjMz4FqBjdE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOq1qj4UJnvfLFbfmzkFWiZeTCuRo9MtfvTBhWcwVMkmN6Xpuiv6EahRM8mmplxmeUjaiA961VNGYG38yv3dKzqwSkijRthSSufp7YkJjY8ZxYDtjikOz7M3E/7xuhtG1PxEqzZArtlgUZZJgQmbPk1BozlCOLaFMC3srYUOqKUMbUcmG4C2/vEpaFzXPrXn3l5X6TR5HEU7gFKrgwRXU4Q4a0AQGEp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8ASl6Pdw==</latexit>

�
<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit>

�
<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit>

�
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4h1
<latexit sha1_base64="PclO0MjwIYphBJXVYBoUQzaRS1s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68TnpXTc9teg+tRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2ekjc4=</latexit><latexit sha1_base64="PclO0MjwIYphBJXVYBoUQzaRS1s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68TnpXTc9teg+tRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2ekjc4=</latexit><latexit sha1_base64="PclO0MjwIYphBJXVYBoUQzaRS1s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68TnpXTc9teg+tRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2ekjc4=</latexit><latexit sha1_base64="PclO0MjwIYphBJXVYBoUQzaRS1s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68TnpXTc9teg+tRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2ekjc4=</latexit>

�
<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit>

4h1
<latexit sha1_base64="PclO0MjwIYphBJXVYBoUQzaRS1s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68TnpXTc9teg+tRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2ekjc4=</latexit><latexit sha1_base64="PclO0MjwIYphBJXVYBoUQzaRS1s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68TnpXTc9teg+tRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2ekjc4=</latexit><latexit sha1_base64="PclO0MjwIYphBJXVYBoUQzaRS1s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68TnpXTc9teg+tRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2ekjc4=</latexit><latexit sha1_base64="PclO0MjwIYphBJXVYBoUQzaRS1s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68TnpXTc9teg+tRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2ekjc4=</latexit>

f(·)
<latexit sha1_base64="cWAGMnA2ALH7TlO/Q711xNpKEjA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOlG1x8IEz/vliltz5yCrxMtJBXI0+uWvXpiwLOYKmaTGdD03RX9CNQom+bTUywxPKRvRAe9aqmjMjT+Z3zslZ1YJSZRoWwrJXP09MaGxMeM4sJ0xxaFZ9mbif143w+janwiVZsgVWyyKMkkwIbPnSSg0ZyjHllCmhb2VsCHVlKGNqGRD8JZfXiWti5rn1rz7y0r9Jo+jCCdwClXw4ArqcAcNaAIDCc/wCm/Oo/PivDsfi9aCk88cwx84nz9jDo+H</latexit><latexit sha1_base64="cWAGMnA2ALH7TlO/Q711xNpKEjA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOlG1x8IEz/vliltz5yCrxMtJBXI0+uWvXpiwLOYKmaTGdD03RX9CNQom+bTUywxPKRvRAe9aqmjMjT+Z3zslZ1YJSZRoWwrJXP09MaGxMeM4sJ0xxaFZ9mbif143w+janwiVZsgVWyyKMkkwIbPnSSg0ZyjHllCmhb2VsCHVlKGNqGRD8JZfXiWti5rn1rz7y0r9Jo+jCCdwClXw4ArqcAcNaAIDCc/wCm/Oo/PivDsfi9aCk88cwx84nz9jDo+H</latexit><latexit sha1_base64="cWAGMnA2ALH7TlO/Q711xNpKEjA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOlG1x8IEz/vliltz5yCrxMtJBXI0+uWvXpiwLOYKmaTGdD03RX9CNQom+bTUywxPKRvRAe9aqmjMjT+Z3zslZ1YJSZRoWwrJXP09MaGxMeM4sJ0xxaFZ9mbif143w+janwiVZsgVWyyKMkkwIbPnSSg0ZyjHllCmhb2VsCHVlKGNqGRD8JZfXiWti5rn1rz7y0r9Jo+jCCdwClXw4ArqcAcNaAIDCc/wCm/Oo/PivDsfi9aCk88cwx84nz9jDo+H</latexit><latexit sha1_base64="cWAGMnA2ALH7TlO/Q711xNpKEjA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbNqlm03cnQil9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSqFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZZJMM95kiUx0J6CGS6F4EwVK3kk1p3EgeTsY3c789hPXRiTqAccp92M6UCISjKKVOlG1x8IEz/vliltz5yCrxMtJBXI0+uWvXpiwLOYKmaTGdD03RX9CNQom+bTUywxPKRvRAe9aqmjMjT+Z3zslZ1YJSZRoWwrJXP09MaGxMeM4sJ0xxaFZ9mbif143w+janwiVZsgVWyyKMkkwIbPnSSg0ZyjHllCmhb2VsCHVlKGNqGRD8JZfXiWti5rn1rz7y0r9Jo+jCCdwClXw4ArqcAcNaAIDCc/wCm/Oo/PivDsfi9aCk88cwx84nz9jDo+H</latexit>

�<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit> �<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit>

�<latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit><latexit sha1_base64="TTGPhLskvxA7obg3CyikF/hi+ro=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOyS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+nfmdJ6oNU/LBTlIaCTyULGEEWye1w5gNw7xfrfl1fw60SoKC1KBAs1/9CgeKZIJKSzg2phf4qY1yrC0jnE4rYWZoiskYD2nPUYkFNVE+v3aKzpwyQInSrqRFc/X3RI6FMRMRu06B7cgsezPxP6+X2eQ6yplMM0slWSxKMo6sQrPX0YBpSiyfOIKJZu5WREZYY2JdQBUXQrD88ippX9QDvx7cX9YaN0UcZTiBUziHAK6gAXfQhBYQeIRneIU3T3kv3rv3sWgtecXMMfyB9/kDj+qPGw==</latexit>

2h1
<latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit><latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit><latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit><latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit>

2h1
<latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit><latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit><latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit><latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit>

2h1
<latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit><latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit><latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit><latexit sha1_base64="nMNnRwdbuE4FWCGO0367gT7nNjs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcakVjb1xvuE23AFonXkkaUKIzrn+NJjFJBZWGcKz10HMT42dYGUY4XdRGqaYJJjM8pUNLJRZU+1lx6wJdWGWCwljZkgYV6u+JDAut5yKwnQKbSK96ufifN0xNeONnTCapoZIsF4UpRyZG+eNowhQlhs8twUQxeysiEVaYGBtPzYbgrb68Tnqtpuc2vYerRvu2jKMKZ3AOl+DBNbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH2SWjcw=</latexit>

h↵
1 er1
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Fig 2. The black solid line on the top represents the variance function V (·) in the alternative H̃1,
and the black solid line on the bottom represents the mean function f(·). The thick red segments

mark the support of X under both H0 and H̃1. Here, h1 � n−
2β

4αβ+β+2α , h2 � n−
4α

4αβ+β+2α , and
are chosen such that both M := h2/(4h1)− 1/2 and N := 2M + 1 are positive integers. {r̃i}Ni=1

are N i.i.d. standard normal variables.

where c is some fixed positive constant that only depends on α, β, CF , CV and

C0, c0, Cε in Pvf,(X,ε), and Ṽ ranges over all estimators of V .

Due to the appearances of both α and β in the nontrivial n
− 8αβ

4αβ+β+2α part of

the minimax rate, proving the above two results is more involved than proving

Theorem 2. In particular, it takes an extra step of localization in the construction

of the mean function f(·) as well as V (·). More precisely, for the lower bound at

a target point x∗ in Theorem 4, our construction of both f(·) and V (·) only has

variation within a small neighborhood of x∗. Such localized construction is not

necessary in the fixed design setting, since when proving the n−4α component

therein (see Remark 4), the variance function can simply be taken as a constant.

In what follows, we give a proof sketch of the nontrivial n−8αβ/(4αβ+β+2α)

component of the lower bound in Theorem 4 for α < β/(4β + 2); the proof of

Theorem 5 can be seen as an extension of Theorem 4 via a standard construction

of multiple hypotheses. We assume the support of X is contained in I = [0, 1],

and for clarity of illustration, here we present the construction for an interior

point x∗ ∈ (0, 1)
⋂

supp(X). The proof works for boundary points as well.
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We continue to adopt the two-step approach introduced in the proof sketch

of Theorem 2 in Section 2.2. The second step is very similar with the help of

Lemmas 1 and 3, so we will focus on the construction under the null H0 and

alternative H̃1 in the first step. Choose the parameters

h1 � n−
2β

4αβ+β+2α , h2 � n−
4α

4αβ+β+2α , and θ2
n = h2α

1 = hβ2

so that h2/h1 →∞ as n→∞.

Choice of V (·): Under H0 let V ≡ 1. Under H̃1, let V (·) be one minus

a smooth bump function around x∗ with width h2 and height hβ2 so that

V (x∗) = 1− θ2
n.

Choice of f(·): Under H0 let f ≡ 0. Under H̃1, let f(·) be a “local” version

of the design in Theorem 2. That is, f takes on a value of 0 outside of

[x∗ − h2, x
∗ + h2], and inside that h2-neighborhood of x∗, f is piecewise

trapezoidal with upper base length 2h1, lower base length 4h1 and height

{hα1 r̃i}Ni=1 for a standard normal sequence {r̃i}Ni=1 with N := h2/(2h1) a

positive integer.

Choice of ε: Under both H0 and H̃1, let ε ∼ N (0, 1).

Choice of X: Under both H0 and H̃1, let X be uniformly distributed on the

union of [0, 1]\[x∗ − h2, x
∗ + h2] and the upper bases of all the trapezoids

inside [x∗ − h2, x
∗ + h2].

See Figure 2 for an illustration of H̃1.

Under the above construction, the squared distance between the null and al-

ternative hypotheses (1 − (1 − θ2
n))2 = θ4

n � n
− 8αβ

4αβ+β+2α is the desired minimax

rate. Using Lemma 2, we can show that

TV(P0, P̃1) . θ2
nnh

1/2
1 h

1/2
2 ≤ c

for some sufficiently small c, where P0 and P̃1 represent the joint distribution of

{(Xi, Yi)}ni=1 under H0 and H̃1, respectively. The detailed proof is presented in

the supplement.

4. Discussion. The two univariate models (1) and (2) discussed in the pre-

vious two sections raise natural questions about possible extensions to the mul-

tivariate setting. In what follows, we first present some partial results in this

direction in the sense of (4) and (5). We then establish some connections be-

tween our study and quadratic functional estimation and variance estimation
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in the linear model. Lastly, we discuss two more extensions of (2) in the direc-

tion of adaptive estimation and mean function with inhomogeneous smoothness.

Throughout, consider CF , Cσ, C0, c0, Cε to be fixed positive constants.

4.1. Multivariate nonparametric regression. Consider the following multivari-

ate version of (2):

Yi = f(Xi) + σεi, i = 1, 2, . . . , n,

where {Xi}ni=1 = {(Xi,1, . . . , Xi,d)
>}ni=1 are i.i.d. copies of X = (X1, . . . , Xd)

> in

Rd for some fixed positive integer d, {εi}ni=1 are i.i.d. copies of ε with zero mean

and unit variance and are independent of {Xi}ni=1, and f : Rd → R belongs to a

d-dimensional anisotropic Hölder class with smoothness index α = (α1, . . . , αd)
>

defined below. The goal is to estimate σ2 with f(·) and the distribution of X as

nuisance parameters. This problem has been studied in Spokoiny [2002], Munk

et al. [2005], Cai et al. [2009], to name a few, again with a focus on the fixed

design setting.

Let I1, . . . , Id be d fixed (possibly infinite) intervals on R and let I be their

Cartesian product I1 × . . . × Id ⊂ Rd. Following Barron et al. [1999] and Bhat-

tacharya et al. [2014], we define an anisotropic Hölder class Λα,I(CF ) on I as

follows. For any x ∈ I and k ∈ [d], let fk(· | x−k) denote the univariate func-

tion y 7→ f(x1, . . . , xk−1, y, xk+1, . . . , xd), with x−k defined as x without the kth

component. Then, Λα,I(CF ) is defined as all f : I 7→ R such that

max
1≤k≤d

max
0≤j≤bαkc

sup
x∈I

∥∥∥f (j)
k (· | x−k)

∥∥∥
∞
≤ CF

and

max
1≤k≤d

sup
x∈I

sup
y1,y2∈Ik

∣∣∣f (bαkc)
k (y1 | x−k)− f (bαkc)

k (y2 | x−k)
∣∣∣

|y1 − y2|α′k
≤ CF ,

where again bαkc is the largest integer strictly smaller than αk and α′k := αk −
bαkc. Let supp(X) be the support of X.

Define Pmcv,(X,ε) (where “mcv” stands for “multivariate constant variance”) as

the multivariate counterpart of Pcv,(X,ε):

(a) X satisfies supp(X) ⊂ I.

(b) X has density pX(·) and there exists a fixed positive constant C0 such that

sup
u∈Rd

pX(u) ≤ C0.
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(c) There exist two fixed constants δ0 > 0 and c0 > 0 such that for any δ ∈ Rd

that satisfies ‖δ‖∞ < δ0, there exists a set U := Uδ ⊂ [−1, 1]d such that

λ(Uδ) ≥ c0 and inf
u∈Uδ

p
X̃ij

(u1δ1, . . . , udδd) ≥ c0,

where λ(·) represents the Lebesgue measure on Rd.
(d) Eε4 ≤ Cε for some fixed positive constant Cε.

For an upper bound on the minimax risk, we propose the following multivariate

extension of (8) via a product kernel (again with convention 0/0 = 0):

σ̂2
d :=

(
n
2

)−1∑
i<j

(∏d
k=1Khk(Xi,k −Xj,k)

)
(Yi − Yj)2/2

(
n
2

)−1∑
i<j

(∏d
k=1Khk(Xi,k −Xj,k)

) ,(19)

where K(·) is a kernel chosen to satisfy (9), and {hk}dk=1 is a kernel bandwidth

sequence.

In the following results, we will use α to denote the harmonic mean of the

d-dimensional smoothness index α, i.e. α := d/(
∑d

k=1 1/αk). This quantity is

known as the effective smoothness in classical problems such as anisotropic den-

sity estimation [Ibragimov and Khasminski, 1981; Birgé, 1986] and anisotropic

function estimation [Nussbaum, 1986; Hoffman and Lepski, 2002].

Proposition 1. Suppose 0 < αk ≤ 1, k ∈ [d]. Suppose the kernel K(·)
in σ̂2

d is chosen such that (9) is satisfied with constants MK and MK , and the

bandwidth sequence is chosen as hk � n−2α/(αk(4α+d)) for all k ∈ [d]. Then, under

(4) with random design, it holds that

sup
f∈Λα,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈Pmcv,(X,ε)

E
(
σ̂2
d − σ2

)2 ≤ C
(
n−8α/(4α+d) ∨ n−1

)
,

where C is some fixed positive constant that only depends on MK ,MK ,α, CF , Cσ
and C0, c0, Cε in Pmcv,(X,ε).

Proposition 2. Under (4) with random design, it holds that

inf
σ̃2

sup
f∈Λα,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈Pmcv,(X,ε)

E
(
σ̃2 − σ2

)2 ≥ c
(
n−8α/(4α+d) ∨ n−1

)
,

where c is some fixed positive constant that only depends on α, CF , Cσ and C0, c0, Cε
in Pmcv,(X,ε), and σ̃2 ranges over all estimators of σ2.
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We note that Proposition 1 is only proved for αk ∈ (0, 1], k ∈ [d]. The general

case when αk is possibly larger than 1 is much more involved due to the difficulty

in the random design analysis. Propositions 1 and 2, combined, imply that the

minimax rate is n−8α/(4α+d)∨n−1 for αk ∈ (0, 1], k ∈ [d]. In particular, when f is

in an isotropic α-Hölder class (0 < α ≤ 1), this rate becomes n−8α/(4α+d) ∨ n−1.

We also remark that a different estimator achieving the rate n−8α/(4α+d) ∨ n−1

over an isotropic α-Hölder class has been briefly sketched in Robins et al. [2008].

For completeness, we also state without proof some results for model (4) in the

fixed design setting. In particular, we consider the following two types of fixed

designs in the d-dimensional unit cube [0, 1]d, namely, the grid design (GD):

(X(i1,...,id),1, . . . , X(i1,...,id),d) = (i1/n
1/d, . . . , id/n

1/d),(20)

(i1, . . . , id) ∈ [n1/d]× . . .× [n1/d]

assuming n1/d is an integer, and the diagonal design (DD):

(Xi,1, . . . , Xi,d) = (i/n, . . . , i/n), i ∈ [n].(21)

Here for any positive integer n, [n] denotes the set {1, 2, . . . , n}. Let αmax :=

maxk∈[d] αk and αmin := mink∈[d] αk. The first result for (GD) is a simple mod-

ification of the isotropic result in Cai et al. [2009] by taking differences along

the smoothest direction with index αmax. The second result can be readily de-

duced from the fact that Yi = f̃(i/n) + σεi, i ∈ [n], where f̃(x) := f(x, . . . , x) is

αmin-Hölder smooth.

Proposition 3. Under (4) with fixed design (GD), it holds that

inf
σ̃2

sup
f∈Λ

α,[0,1]d
(CF )

sup
σ2≤Cσ

sup
Eε4≤Cε

E
(
σ̃2 − σ2

)2 � n−4αmax/d ∨ n−1

up to some fixed positive constant that only depends on α, CF , Cσ, Cε, where σ̃2

ranges over all estimators of σ2.

Proposition 4. Under (4) with fixed design (DD), it holds that

inf
σ̃2

sup
f∈Λ

α,[0,1]d
(CF )

sup
σ2≤Cσ

sup
Eε4≤Cε

E
(
σ̃2 − σ2

)2 � n−4αmin ∨ n−1

up to some fixed positive constant that only depends on α, CF , Cσ, Cε, where σ̃2

ranges over all estimators of σ2.
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When f(·) belongs to an isotropic α-Hölder class, Proposition 3 implies the

minimax rate n−4α/d ∨ n−1 derived in Cai et al. [2009]. Comparison with the

random design rate n−8α/(4α+d) ∨ n−1 thus shows that, for 0 < α ≤ 1, a faster

rate is again achievable in the random design setting for α < d/4.

4.2. Nonparametric additive model. Consider variance estimation in the ad-

ditive model (5):

Yi =
d∑

k=1

fk(Xi,k) + σεi, i = 1, 2, . . . , n,

for some fixed integer d ≥ 2, where {εi}ni=1 are i.i.d. with zero mean and unit

variance and are independent from {Xi}ni=1 = {(Xi,1, . . . , Xi,d)
>}ni=1 in the ran-

dom design setting. Unlike Section 4.1, we specify d ≥ 2, since the minimax rate

in the fixed design (GD) has completely different behavior for d = 1 and d ≥ 2

(see Proposition 5 below).

4.2.1. Fixed design. We first consider the two fixed designs (GD) and (DD)

defined in (20) and (21). For both designs, we consider an error distribution

class with only a finite fourth moment condition. We start with (GD), where

by iteratively taking pairwise differences, one is able to estimate the variance

at the parametric rate n−1 without any smoothness assumption on the additive

components {fk}dk=1. For simplicity, we illustrate this idea with d = 2 with two

additive components f(·) and g(·), and assume that
√
n is an even number. In

this case,

Yi,j = f

(
i√
n

)
+ g

(
j√
n

)
+ σεi,j , (i, j) ∈ [

√
n]× [

√
n],

where {εi,j}i,j∈[
√
n] are i.i.d. with zero mean and unit variance. By taking the

pairwise difference in the first dimension, we have

Y(i1,i2),j := Yi1,j − Yi2,j = f

(
i1√
n

)
− f

(
i2√
n

)
+ σ(εi1,j − εi2,j)

for all j ∈ [
√
n] and (i1, i2) ∈ [

√
n] × [

√
n] such that i1 6= i2. Taking again the

pairwise difference in the second dimension, we have

Y(i1,i2),(j1,j2) := Y(i1,i2),j1 − Y(i1,i2),j2 = σ(εi1,j1 − εi2,j1 − εi1,j2 + εi2,j2)

for all (i1, i2, j1, j2) ∈ [
√
n] × [

√
n] × [

√
n] × [

√
n] such that i1 6= i2 and j1 6= j2.

Clearly, we have EY(i1,i2),(j1,j2) = 0 and Var(Y(i1,i2),(j1,j2)) = 4σ2. Let m :=
√
n/2
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and define I := {(1, 2), (3, 4), . . . , (2m−1, 2m)} with cardinality m. Then, for the

set of data points {Y(i1,i2),(j1,j2)}(i1,i2),(j1,j2)∈I with cardinality m2 = n/4, it can

be readily verified that they are i.i.d. with mean 0 and variance 4σ2. Therefore,

with Y defined as the sample average of {Y(i1,i2),(j1,j2)}(i1,i2),(j1,j2)∈I , the sample

variance estimator,

σ̂2
add, GD :=

1

n

∑

(i1,i2),(j1,j2)∈I

(
Y(i1,i2),(j1,j2) − Y

)2
,

achieves the parametric rate n−1. A similar derivation holds for general d.

Proposition 5. Suppose d ≥ 2. Under (5) with fixed design (GD), it holds

that

inf
σ̃2

sup
fk,k∈[d]

sup
σ2≤Cσ

sup
Eε4≤Cε

E
(
σ̃2 − σ2

)2 � n−1

up to some fixed positive constant that only depends on Cσ and Cε, where σ̃2

ranges over all estimators of σ2, and the first supremum is taken over all functions

defined on [0, 1] for each k ∈ [d].

Now we move on to the design (DD), where we assume each additive component

fk in (5) is αk-Hölder smooth on [0, 1] with some fixed constant CF . In this case,

the model can equivalently be written as

Yi = f̃(i/n) + σεi, i = 1, 2, . . . , n,

where f̃ :=
∑d

k=1 fk is αmin-Hölder smooth. Therefore, the univariate estimator

and lower bound in Wang et al. [2008] can be directly applied.

Proposition 6. Under (5) with fixed design (DD), it holds that

inf
σ̃2

sup
fk∈Λαk,[0,1](CF ),k∈[d]

sup
σ2≤Cσ

sup
Eε4≤Cε

E
(
σ̃2 − σ2

)2 � n−4αmin ∨ n−1

up to some fixed positive constant that only depends on CF , Cσ, Cε, where σ̃2

ranges over all estimators of σ2.

Comparison of Propositions 6 and 4 shows that, in contrast to grid design

(GD) and random design below, there is no gain from an additive structure in

the mean function for the diagonal design (DD).
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4.2.2. Random design. We now discuss (5) with a random design for {Xi}ni=1

when fk is αk-Hölder smooth on some fixed set Ik for each k ∈ [d]. Since a shift

in the mean does not affect the estimation of variance, we assume Efk(X1,k) = 0

for each k ∈ [d] for simplicity. Recall the definition of Pcv,(X,ε) in the beginning

of Section 2. Define the joint distribution class Padd,(X,ε) (where “add” stands for

“additive”) as:

For each k ∈ [d], the joint distribution of (Xk, ε) belongs to Pcv,(X,ε) and

the components of X are mutually independent.

In view of Theorem 2, the following lower bound is immediate.

Proposition 7. Under (5) with random design, it holds that

inf
σ̃2

sup
fk∈Λαk,Ik (CF ),k∈[d]

sup
σ2≤Cσ

sup
P(X,ε)∈Padd,(X,ε)

E
(
σ̃2 − σ2

)2 ≥ c
(
n
− 8αmin

4αmin+1 ∨ n−1

)
,

where c is a fixed positive constant that only depends on α, CF , Cσ and C0, c0, Cε
in Padd,(X,ε), and σ̃2 ranges over all estimators of σ2.

We now describe a procedure that matches the lower bound in Proposition

7, but depends crucially on mutual independence. For illustrative purposes, we

again consider the case of only two additive components f(·) and g(·), which are

α- and β-Hölder smooth, respectively. Let X and W denote the two covariates.

For each i ∈ [n], define

εXi := f(Xi) + σεi and εWi := g(Wi) + σεi,

and their corresponding variances

σ2
X := Ef2(X) + σ2 and σ2

W := Eg2(W ) + σ2.

Clearly, we have EεXi = 0 and EεWi = 0, and εXi and εWi are independent of

g(Wi) and f(Xi), respectively. Now, notice that the additive model in (5) can be

equivalently viewed as Yi = f(Xi) + εWi . Thus by applying the univariate kernel

estimator defined in (8) to {(Yi, Xi)}ni=1, which we denote as σ̂2
W , one obtains

E
(
σ̂2
W − σ2

W

)2 ≤ C(n−8α/(4α+1) ∨ n−1)

for some fixed positive constant C. Similarly, defining σ̂2
X as σ̂2

W , one has

E
(
σ̂2
X − σ2

X

)2 ≤ C(n−8β/(4β+1) ∨ n−1).
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Lastly, under a finite fourth moment assumption on ε, a sample variance estimator

of {Yi}ni=1, denoted as σ̂2
Y , achieves the parametric rate n−1 in estimating the

total variance Var(Y ), which can be decomposed as Ef2(X) + Eg2(W ) + σ2.

Consequently, we have shown that the method-of-moments estimator

σ̂2
moment,2 := σ̂2

X + σ̂2
W − σ̂2

Y(22)

achieves the optimal rate in Proposition 7. We summarize the above derivation

for the natural extension σ̂2
moment,d to general d.

Proposition 8. Under (5) with random design, it holds that

sup
fk∈Λαk,Ik (CF ),k∈[d]

sup
σ2≤Cσ

sup
P(X,ε)∈Padd,(X,ε)

E
(
σ̂2

moment,d − σ2
)2 ≤ C

(
n
− 8αmin

4αmin+1 ∨ n−1

)
,

where C is some fixed positive constant that only depends on α, CF , Cσ and

C0, c0, Cε in Padd,(X,ε).

Propositions 7 and 8 together imply the minimax rate over Padd,(X,ε), which

further illustrates the fact that an additive structure in the mean function could

possibly avoid the “curse of dimensionality” in variance estimation. However,

we note that our results crucially rely on the mutual independence condition.

It is still largely unclear if the same minimax rate could apply to the general

case without this condition, though a discussion of an interesting connection to

variance estimation under linear models shall be made in Section 4.4.

4.3. Connection to quadratic functional estimation. We now formally state

the connection between quadratic functional estimation and variance estimation

in (2), the first of which has been studied in, for example, Doksum and Samarov

[1995], Ruppert et al. [1995], Huang and Fan [1999], and Robins et al. [2009].

Recall the definition of Q in (3) with some non-negative weight function w(·).
Squaring both sides of (2), multiplying by w(Xi), and then taking the expecta-

tion, one has

E
(
Y 2
i w(Xi)

)
= E

(
f2(Xi)w(Xi)

)
+ σ2E(w(Xi)ε

2
i ) = Q+ σ2Ew(Xi).

Under a finite fourth moment assumption on ε, both E
(
Y 2
i w(Xi)

)
and Ew(Xi)

can be estimated at the parametric rate via the sample mean estimator, and σ2

can be estimated via σ̂2 in (8) with rate n−8α/(4α+1) ∨ n−1 under the quadratic
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risk. Therefore, the estimator

Q̂ :=
1

n

n∑

i=1

Y 2
i w(Xi)−

(
1

n

n∑

i=1

w(Xi)

)
· σ̂2

achieves the same rate n−8α/(4α+1) ∨ n−1. In fact, it is not possible to improve

upon this rate since if there exists an estimator Q̃ with a faster convergence rate,

then the “conjugate” estimator of σ2 defined as

σ̃2 := max

{
1
n

∑n
i=1 Y

2
i w(Xi)− Q̃

1
n

∑n
i=1w(Xi)

, 0

}
· 1
{

1

n

n∑

i=1

w(Xi) > 0

}

will also converge to σ2 at a faster rate, violating the lower bound in Theorem 2.

The following result summarizes the derivation. Recall the definition of Pcv,(X,ε)

in the beginning of Section 2.

Proposition 9. Suppose the weight function w(·) in the definition of Q is

uniformly bounded on R. Then, it holds that

inf
Q̃

sup
f∈Λα,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E
(
Q̃−Q

)2
� n−8α/(4α+1) ∨ n−1

up to some fixed positive constant that only depends on w(·), α,CF , Cσ and

C0, c0, Cε in Pcv,(X,ε), where Q̃ ranges over all estimators of Q.

4.4. Connection to the linear model. Throughout this paper, we have treated

the distribution ofX as a nuisance parameter. Interestingly, when we do know the

distribution of X, variance estimation in nonparametric regression with random

design becomes substantially easier with the aid of parallel work in the high-

dimensional linear model [Verzelen and Villers, 2010; Dicker, 2014; Kong and

Valiant, 2018; Verzelen and Gassiat, 2018]. We first elaborate on this point using

the simple model (2), and then formulate corresponding results for (4) and (5).

By applying the inverse of the distribution function F of X, (2) can be equiv-

alently written as

Yi = f(Ui) + σεi, i = 1, 2, . . . , n,

where {Ui}ni=1 = {F (Xi)}ni=1 are i.i.d. uniform on [0, 1], and f(·) := f ◦ F−1(·) is

still α-Hölder smooth under Lipschitz continuity on F−1. Then, using a wavelet

expansion for Hölder classes (cf. Proposition 2.5 in Meyer [1990]), one has

Yi = f1(Ui) +
2J∑

j=1

ψj(Ui) + σεi, i = 1, 2, . . . , n,(23)
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where {ψj}∞j=1 is an L2-orthonormal wavelet basis under the Lebesgue measure

on [0, 1], and f1(·) is the remainder term after truncation at resolution J = Jn
which satisfies ‖f1‖∞ = O(2−αJn). Let ψ := (ψ1, . . . , ψ2J ) and assume without

loss of generality that Eψ = 02J , since a mean shift does not affect the estimation

of variance. Moreover, due to the orthonormality of {ψj}∞j=1, we have Cov(ψ) =

E(ψψ>) = I2J . Following Verzelen and Gassiat [2018] and Kong and Valiant

[2018], the estimator

σ̂2
proj :=

1

n− 1

n∑

i=1

(Yi − Y )2 −
(
n

2

)−1∑

i<j

YiYjψ
>(Ui)ψ(Uj)

has a variance term of the order (2Jn +n)/n2 and a bias term of the order 2−2αJn .

Therefore, by choosing the optimal truncation level 2Jn � n2/(4α+1), σ̂2
proj recovers

the optimal rate n−8α/(4α+1) ∨ n−1 in Theorem 1.

Define σ̂2
proj,d (with tensor wavelet basis) and σ̂2

proj,add as the natural extensions

of σ̂2
proj under (4) and (5), respectively (see the proofs of Propositions 10 and 11

in the supplement for exact definitions). In the wavelet expansion, we will use

Jk to denote the truncation level for the kth component of f(·) in (4) and fk
in (5), and we use Fk to denote the marginal distribution of X1,k. Recall that

α = d/(
∑d

k=1 1/αk) for α = (α1, . . . , αd)
>.

Proposition 10 (Multivariate nonparametric regression, design known). Sup-

pose the distribution of X is known with supp(X) ⊂ I for some fixed set I ⊂ Rd,
and F−1

k (·) is Lipschitz continuous for all k ∈ [d] with some fixed positive con-

stant. Then, when 2Jk is chosen to be of the order n2α/(αk(4α+d)) for k ∈ [d] in

σ̂2
proj,d, it holds that

sup
f∈Λα,I(CF )

sup
σ2≤Cσ

sup
Eε4≤Cε

E
(
σ̂2

proj,d − σ2
)2 ≤ C

(
n−8α/(4α+d) ∨ n−1

)
,

where C is some fixed positive constant that only depends on α, CF , Cσ, Cε, and

the distribution of X.

Proposition 11 (Nonparametric additive model, design known). Suppose

the distribution of X is known with supp(X) ⊂ I1 × . . . × Id for some fixed

intervals I1, . . . , Id on the real line, and F−1
k (·) is Lipschitz continuous for all

k ∈ [d] with some fixed positive constant. Then, when 2Jk is chosen to be of the

order n2αk/(4αk+1) for k ∈ [d] in σ̂2
proj,add, it holds that

sup
fk∈Λαk,Ik (CF ),k∈[d]

sup
σ2≤Cσ

sup
Eε4≤Cε

E
(
σ̂2

proj,add − σ2
)2 ≤ C

(
n
− 8αmin

4αmin+1 ∨ n−1

)
,
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where C is some fixed positive constant that only depends on α, CF , Cσ, Cε, and

the distribution of X.

As in the classical setting of mean function estimation via orthogonal series,

the difference of the rates in Propositions 10 and 11 is clearly explained by the

number of wavelet bases used to approximate f in (4) and {fk}dk=1 in (5). We

also note that, quite interestingly, Proposition 10 gives results beyond the case

0 < α1, . . . , αd ≤ 1 considered in Proposition 1, and Proposition 11 does not rely

on the mutual independence of the components of X.

4.5. Adaptive estimation of constant variance. In this subsection, we consider

adaptive estimation of the variance σ2 in model (2). This is achieved by a Lepski-

type procedure [Lepski, 1991, 1992]. Let σ̂2(h) be the estimator in (8) with an

explicit dependence on the bandwidth parameter h. For any given sample size n

and fixed positive constant δ, define two positive integers m1 and m2 such that

2−m1 ≤ n−1 ≤ 2−m1+1 and 2−m2−1 ≤ n−(2−δ) ≤ 2−m2 , and define the following

dyadic grid

Hδ :=
{

2−j : m1 ≤ j ≤ m2, j ∈ Z
}
.

Then, define the estimator σ̂2
adapt := σ̂2

(
ĥδ

)
with

ĥδ := max
{
h ∈ Hδ :

∣∣σ̂2(h)− σ̂2(h′)
∣∣ ≤ τ(log n)1/2n−1(h′)−1/2,∀h′ ∈ Hδ, h′ < h

}

for some sufficiently large positive constant τ . If the set being maximized is empty,

we will take ĥδ = n−(2−δ).

To state the error bound of σ̂2
adapt, we need the following variant Padapt

cv,(X,ε) of

the distribution class Pcv,(X,ε) considered in Theorem 1, where we replace the

finite fourth-moment assumption (d) therein by the stronger sub-Gaussian tail

condition:

(d′) There exist some fixed positive constants C1,ε and C2,ε such that Eexp(tε) ≤
C1,εexp(C2,εt

2) for any t ∈ R.

A similar exponential moment assumption has been made in the context of adap-

tive estimation under fixed design (cf. Theorems 1 and 2 in Cai and Wang [2008]).

Proposition 12. For any given sufficiently small fixed α∗ > 0, fix some

δ∗ ∈ (0, 8α∗/(4α∗ + 1)). Suppose the kernel K(·) in σ̂2
adapt = σ̂2

(
ĥδ∗

)
is chosen

such that (9) is satisfied with constants MK and MK , and τ in ĥδ∗ is chosen
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to be sufficiently large (only depending on δ∗, C1,ε, C2,ε). Then, under (2) with

random design, it holds uniformly over all α ≥ α∗ that

sup
f∈Λα,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈P

adapt
cv,(X,ε)

E
(
σ̂2

adapt − σ2
)2 ≤ C

{(
log n

n2

)4α/(4α+1)

∨ n−1

}
,

where C is some fixed positive constant that only depends on δ∗,MK ,MK , CF , Cσ,

and C0, c0, C1,ε, C2,ε in Padapt

cv,(X,ε).

The following proposition shows that the extra poly-logarithmic term cannot

be removed.

Proposition 13. Let φn,α := (log n/n2)2α/(4α+1) ∨ n−1/2 for any α > 0 and

positive integer n. Consider any fixed positive α∗ and α∗ ≤ α1 < α2 <∞. Then,

for any sufficiently large n and sufficiently small fixed positive constant c, any

estimator σ̃2 will satisfy that, if

sup
f∈Λα2,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈P

adapt
cv,(X,ε)

E
(
(σ̃2 − σ2)/φn,α2

)2 ≤ c,

then

sup
f∈Λα1,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈P

adapt
cv,(X,ε)

E
(
(σ̃2 − σ2)/φn,α1

)2 ≥ c.

The above two results combined are in line with analogous adaptation results

in quadratic functional estimation [Efromovich and Low, 1996; Cai and Low,

2006].

5. Proof of Theorem 2.

Proof. We will only prove the lower bound n−8α/(4α+1) in the regime 0 <

α < 1/4 since for α ≥ 1/4, the rate reduces to the parametric rate n−1 and

the proof is straightforward. Throughout the proof, C represents a generic suffi-

ciently large positive constant and c represents a generic sufficiently small posi-

tive constant always taken to be smaller than 1/4. Both C and c only depend on

α,CF , Cσ, Cε, C0, c0 and might have different values for each occurrence. By ap-

propriately rescaling the parameters in the lower bound construction, without loss

of generality, we assume that the sample size n and the constants CF , Cσ, Cε, C0

are sufficiently large, c0 is sufficiently small, and [0, 1] ⊂ I.
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We will make use of Le Cam’s two point method. Introduce the following

constants:

θ2
n := h2α

n := cn−4α/(4α+1) and N := Nn := 1/(6hn),(24)

where we tune the constant c in hn so that N is a positive integer. We now

specify f(·), distribution of X and distribution of ε in the null and alternative

hypotheses, H0 and H1, respectively.

Choice of σ2: Under H0, let σ2 = 1 + θ2
n. Under H1, let σ2 = 1.

Choice of ε: Under both H0 and H1, let ε ∼ N (0, 1).

Choice of X: Under both H0 and H1, let X be uniformly distributed on the

union of the intervals [(6i− 5)hn, (6i− 1)hn] for i ∈ [N ].

Choice of f(·): Under H0, let f ≡ 0. Under H1, let f take the value hαnri on

[(6i− 5)hn, (6i− 1)hn], where {ri}Ni=1 are N i.i.d. symmetric and bounded

random variables with distribution G satisfying

∫ ∞

−∞
xjG(dx) =

∫ ∞

−∞
xjϕ(x)dx, j = 1, . . . , q,(25)

where q is some fixed odd integer strictly larger than 1 + 1/(2α). Let f be

0 at points 6(i − 1)hn for i ∈ [N ], and then linearly interpolate f for the

rest of the unspecified points on [0, 1].

See Figure 1 for an illustration. In the definition of f(·) under H1, the existence

of the distribution G is guaranteed by Lemma 1, and the range of {ri}Ni=1, which

we denote as B, only depends on α.

Clearly, σ2 ≤ Cσ under both H0 and H1. Moreover, f(·) under both H0 and H1

belongs to Λα,[0,1](CF ) due to the boundedness of {ri}Ni=1 in H1. Next, we show

that the joint distribution of (X, ε) belongs to Pcv,(X,ε). Condition (d) clearly

holds and Condition (a) holds with I = [0, 1]. Condition (b) holds as well by the

fact that pX(u) = 3/2 for u ∈ [(6i− 5)hn, (6i− 1)hn] for i ∈ [N ] and pX(u) = 0

otherwise. Lastly, for Condition (c), it holds by the convolution formula that for

any 0 < u < 1/2

p
X̃ij

(u) =

∫ 1

u
pX(t)pX(t− u)dt ≥

N∑

i=du/(6hn)e+1

∫ (6i−1)hn

(6i−5)hn

pX(t)pX(t− u)dt

≥
N∑

i=du/(6hn)e+1

3

2
· 3

2
· 2hn ≥

3

8
− 9hn ≥

1

4
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for sufficiently large n. Here, the second inequality follows from the fact that for

any fixed t ∈ [(6i− 5)hn, (6i− 1)hn], pX(t) = 3/2 and pX(t− u) = 0 on a subset

with Lebesgue measure at most 2hn. By symmetry of X̃ij , Condition (c) also

holds with δ0 = 1/2 and Uδ ≡ [−1, 1].

Denote by σ2
i , fi,Pi,(X,ε), i = 0, 1, the choice of σ2, f , and P(X,ε) under H0

and H1, respectively. Let π be the distribution on Λα,I(CF ) such that f1 ∼ π.

Moreover, let Eσ2,f,P(X,ε)
represent the expectation with respect to the model (2)

with parameters σ2, f,P(X,ε). Then, we have

inf
σ̃2

sup
f∈Λα,I(CF )

sup
σ2≤Cσ

sup
P(X,ε)∈Pcv,(X,ε)

E
(
σ̃2 − σ2

)2

≥ inf
σ̃2

{
1

2
Eσ2

0 ,f0,P0,(X,ε)

(
σ̃2 − σ2

)2
+

1

2

∫
Eσ2

1 ,f,P1,(X,ε)

(
σ̃2 − σ2

)2
dπ(f)

}

≥ inf
σ̃2

{
1

2
Eσ2

0 ,f0,P0,(X,ε)

(
σ̃2 − σ2

)2
+

1

2
Eσ2

1 ,f1,P1,(X,ε)

(
σ̃2 − σ2

)2
}
,

where the first inequality follows by lower bounding the maximum risk with

Bayes risk with prior π. In what follows, we will use P0 and P1 to denote the joint

distribution of {Yi, Xi}ni=1 under H0 and H1, respectively. Note that the choice of

θ2
n in (24) leads to the desired lower bound under the quadratic loss. Therefore,

adopting the standard reduction scheme with Le Cam’s two point method (cf.

Theorem 2.2 in Tsybakov [2009]), it suffices to show that TV(P0,P1) ≤ c < 1. To

show this, let {r̃i}Ni=1 be N i.i.d. standard normal random variables, and P̃1 be

the joint distributions of {Xi, Yi}ni=1 under H1 with {ri}Ni=1 replaced by {r̃i}Ni=1.

Then, by triangle inequality, we have

TV(P0,P1) ≤ TV(P0, P̃1) + TV(P1, P̃1).

We will show TV(P0, P̃1) ≤ c and TV(P1, P̃1) ≤ c seperately.

For the first inequality, define x := (x1, . . . , xn), dx := dx1 . . . dxn and similarly

for y and dy. Denote p0, p1, and p̃1 as the densities of P0, P1, and P̃1 with respect

to the Lebesgue measure. Then, we have

(26)

TV(P0, P̃1) =
1

2

∫ ∫
|p0(x,y)− p̃1(x,y)|dxdy

=

∫
p(x)dx

{
1

2

∫
|p0(y | x)− p̃1(y | x)|dy

}

=

∫
p(x)dxTV(P0(y | x), P̃1(y | x)),
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where p(x) :=
∏n
i=1 pX(Xi) stands for the common density of {Xi}ni=1 under P0

and P̃1. Note that under P0, y | x ∼ Nn(0,Σ0), with Σ0 = (1 + θ2
n)In. Define

{bi}ni=1 to be the location index sequence of {Xi}ni=1 taking values in [N ], that is,

bi = j if Xi ∈ [(6j − 5)hn, (6j − 1)hn].

Then, due to the symmetry of {ri}Ni=1 and design of the nonparametric component

f , it holds that under P̃1, y | x ∼ Nn(0,Σ1), with (Σ1)ii = 1 + h2α
n = 1 + θ2

n

and (Σ1)ij = h2α
n 1{bi = bj} for i 6= j. Define N0 :=

∑
i 6=j 1{bi = bj}. Since Σ1 is

positive definite (see Lemma A5 in the supplement), we have by Lemma 2 that

TV(P0(y | x), P̃1(y | x)) ≤ C θ2
n

1 + θ2
n

N
1/2
0 ≤ Cθ2

nN
1/2
0 .

Note that N0 is a random variable that depends on {Xi}ni=1, and by (26) and

Jensen’s inequality we have

TV(P0, P̃1) ≤ Cθ2
nEN

1/2
0 ≤ Cθ2

n(EN0)1/2.

Some simple algebra shows that EN0 ≤ Cn2hn, thus by choosing a sufficiently

small c in the definition of hn in (24), we have

TV(P0, P̃1) ≤ Cθ2
nnh

1/2
n ≤ c.

To complete the proof, we now show that TV(P1, P̃1) ≤ c. Consider an arbitrary

realization of {Xi}ni=1, and assume that based on their location indices {bi}ni=1,

{Xi}ni=1 is partitioned into L clusters with corresponding cardinality s` so that

the Xi’s in the same cluster have the same value bi. Apparently, we have the

relations 1 ≤ L ≤ n and
∑L

`=1 s` = n. Let mmax be the maximum cluster size,

and define the “good event” Ωn := {mmax ≤ K}, where K := b2/(1− 4α))c+ 2.

Then, it holds that

TV(P1, P̃1) = E
(
1ΩnTV(P1(y | x), P̃1(y | x)

)
+ E

(
1ΩcnTV(P1(y | x), P̃1(y | x))

)

≤ E
(
1ΩnTV(P1(y | x), P̃1(y | x)

)
+ P(Ωc

n).

Under the choice of hn in (24), N is of the order n2/(4α+1), and

λK := lim
n→∞

nK

K!NK−1
= 0.

Thus by Lemma 3 (and continuity), it holds that Ωn has asymptotic probability 1

under both P1 and P̃1. As a result, it suffices to upper bound TV(P1(y | x), P̃1(y |
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x)) for each realization x in Ωn, where the maximum cluster size mmax is bounded

by a fixed constant.

Denoting p1,π` and p̃1,π` for each ` ∈ [L] as the joint density of those yi’s in

the `th cluster π` conditioning on the given realization of {Xi}ni=1 under P1 and

P̃1, we obtain that

p1(y | x)− p̃1(y | x) =
L∏

`=1

p1,π` −
L∏

`=1

p̃1,π` .

The above inequality further implies by telescoping that

|p1(y | x)− p̃1(y | x)| ≤
L∑

`=1

|p1,π` − p̃1,π` |.

For each ` ∈ [L], |p1,π` − p̃1,π` | only depends on the `th cluster through its car-

dinality, which we now control for a general cluster size d ≥ 1. Without loss of

generality, we assume that ` = 1 and the yi’s in this cluster are {y1, . . . , yd} with

common location index bi = 1 for i ∈ [d]. Then, under the choice of θ2
n in (24),

we clearly have Yi = θnr1 + εi under P1 and Yi = θnr̃1 + εi under P̃1 for i ∈ [d],

where the sequence {εi}di=1 follows the standard normal distribution under both

P1 and P̃1. Therefore it holds that

p1,π1(y1, . . . , yd) =

∫ ∞

−∞
ϕ(y1 − θnv) . . . ϕ(yd − θnv)G(dv),

p̃1,π1(y1, . . . , yd) =

∫ ∞

−∞
ϕ(y1 − θnv) . . . ϕ(yd − θnv)ϕ(v)dv,

where G is the distribution of {ri}Ni=1 specified in (25). Using the well-known

equality ϕ(t− θnv) = ϕ(t)(
∑∞

k=0 v
kθknHk(t)/k!) for any t, v, where Hk is the kth

order Hermite polynomial, it holds that

ϕ(y1 − θnv) . . . ϕ(yd − θnv)

= ϕ(y1) . . . ϕ(yd)

∞∑

k1,...,kd=0

v
∑d
i=1 kiθ

∑d
i=1 ki

n
Hk1(y1)

k1!
. . .

Hkd(yd)

kd!

= ϕ(y1) . . . ϕ(yd)

∞∑

k=0

vkθkn
∑

k1+...+kd=k

Hk1(y1)

k1!
. . .

Hkd(yd)

kd!

and therefore

p1,π1(y1, . . . , yd)− p̃1,π1(y1, . . . , yd)
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= ϕ(y1) . . . ϕ(yd)
∞∑

k=0

θkn
∑

k1+...+kd=k

Hk1(y1)

k1!
. . .

Hkd(yd)

kd!

∫
vk(G− Φ)(dv)

= ϕ(y1) . . . ϕ(yd)

∞∑

k=p

θ2k
n

∑

k1+...+kd=2k

Hk1(y1)

k1!
. . .

Hkd(yd)

kd!

∫
v2k(G− Φ)(dv),

where the second equality follows by the symmetry and moment matching prop-

erty of G in (25) and p := (q + 1)/2 is a positive integer. This further yields

|p1,π1(y1, . . . , yd)− p̃1,π1(y1, . . . , yd)|

≤ ϕ(y1) . . . ϕ(yd)

∞∑

k=p

θ2k
n

∑

k1+...+kd=2k

|Hk1(y1)|
k1!

. . .
|Hkd(yd)|

kd!

∫
v2kG(dv)+

ϕ(y1) . . . ϕ(yd)
∞∑

k=p

θ2k
n

∑

k1+...+kd=2k

|Hk1(y1)|
k1!

. . .
|Hkd(yd)|

kd!

∫
v2kϕ(v)dv

:= I + II.

For term I, since G is compactly supported on [−B,B], one clearly has

I ≤ ϕ(y1) . . . ϕ(yd)
∞∑

k=p

θ2k
n B

2k
∑

k1+...+kd=2k

|Hk1(y1)|
k1!

. . .
|Hkd(yd)|

kd!
.

For term II, using the equality
∫
ϕ(v)v2kdv = (2k − 1)!!, with (2k − 1)!! :=

(2k − 1)(2k − 3) . . . 1, we obtain

II = ϕ(y1) . . . ϕ(yd)
∞∑

k=p

θ2k
n (2k − 1)!!

∑

k1+...+kd=2k

|Hk1(y1)|
k1!

. . .
|Hkd(yd)|

kd!
.

We now upper bound
∫∞
−∞|Hk(t)|ϕ(t)dt for an arbitrary positive integer k. When

k is even, as has been calculated in Wang et al. [2008] (cf. chain of inequality

after Equation (19) on Page 662),
∫∞
−∞|Hk(t)|ϕ(t)dt ≤ 2k/2(k − 1)!!. When k is

odd, set k = 2k̃ + 1, then we have

∫ ∞

−∞
|Hk(t)|ϕ(t)dt =

∫ ∞

−∞
ϕ(t)

∣∣∣∣∣∣
(2k̃ + 1)!

k̃∑

m=0

(−1)mt2k̃+1−2m

m!(2k̃ + 1− 2m)!2m

∣∣∣∣∣∣
dt

≤
k̃∑

m=0

(2k̃ + 1)!

m!(2k̃ + 1− 2m)!2m

∫ ∞

−∞
|t|2k̃+1−2mϕ(t)dt
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=

√
2

π

k̃∑

m=0

(2k̃ + 1)!(2k̃ − 2m)!!

m!(2k̃ + 1− 2m)!2m

=

√
2

π

k̃∑

m=0

(2k̃ + 1)!(2m)!!

(k̃ −m)!(2m+ 1)!2k̃−m

=

√
2

π
(2k̃ + 1)!!

k̃∑

m=0

k̃!

m!(k̃ −m)!

(m!)222m

(2m+ 1)!

≤ (2k̃ + 1)!!

k̃∑

m=0

k̃!

m!(k̃ −m)!

= (2k̃ + 1)!!2k̃,

where in the third line we use the fact that
∫∞
−∞ |t|2`+1ϕ(t)dt =

√
2/π(2`)!! for

any positive integer `. Define for any positive integer k: [k]1 := k − 1 if k is even

and k if k is odd, and [k]2 := k/2 if k is even and (k − 1)/2 if k is odd. Then,

the above calculation implies that
∫∞
−∞|Hk(t)|ϕ(t)dt ≤ ([k]1)!!2[k]2 for any k, and

moreover, it can be readily checked that ([k]1)!!/(k!) = 1/(2[k]2([k]2)!). Therefore,

for term I = I(y1, . . . , yd), we have
∫

Rd
I(y1, . . . , yd)dy1 . . . dyd

≤
∞∑

k=p

θ2k
n (B2)k

∑

k1+...+kd=2k

1

(k1)! . . . (kd)!
([k1]1)!!2[k1]2 . . . ([kd]1)!!2[kd]2

=
∞∑

k=p

θ2k
n (B2)k

∑

k1+...+kd=2k

1

([k1]2)! . . . ([kd]2)!
.

Now note that the number of d-tuple (k1, . . . , kd) such that k1 + . . .+ kd = 2k is

upper bounded by (Ck)d, which is further bounded by Ck for every k ≥ 0 with

some sufficiently large C that only depends on d, and for each such tuple, it holds

that

k − d

2
=

d∑

i=1

ki − 1

2
≤

d∑

i=1

[ki]2 ≤
d∑

i=1

ki
2

= k,

thus we have
∑

k1+...+kd=2k

{([k1]2)! . . . ([kd]2)!}−1 ≤ Ck
∑

k−d/2≤k1+...+kd≤k

{(k1)! . . . (kd)!}−1.
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For the latter quantity, we have by the multinomial identity
∑

x1+...+xd+1=k

k!/(x1! . . . xd+1!)(d+ 1)−k = 1

that

(d+ 1)k

k!
=

∑

k1+...+kd+1=k

1

(k1)! . . . (kd+1)!

=
∑

k1+...+kd≤k

1

(k1)! . . . (kd)!(k − (k1 + . . .+ kd))!

≥
∑

k−d/2≤k1+...+kd≤k

1

(k1)! . . . (kd)!(k − (k1 + . . .+ kd))!

≥
((

d

2

)
!

)−1 ∑

k−d/2≤k1+...+kd≤k

1

(k1)! . . . (kd)!
.

This concludes that
∫

Rd
I(y1, . . . , yd)dy1 . . . dyd ≤ θ2p

n

∞∑

k=p

(CB2)k

k!
≤ θ2p

n e
CB2

.

Using a similar argument for II = II(y1, . . . , yd), we obtain

∫

Rd
II(y1, . . . , yd)dy1 . . . dyd ≤

∞∑

k=p

(2k − 1)!!

k!
θ2k
n C

k =
∞∑

k=p

(2k − 1)!!

(2k)!!
θ2k
n (2C)k ≤ θ2p

n C
p

(27)

since θ2
n < 1/C for sufficiently large n.

Putting together the pieces, we have for every realization x in Ωn

∫

Rn
|p1(y | x)− p̃1(y | x)|dy ≤

L∑

`=1

∫

R|π`|
|p1,π` − p̃1,π` | ≤ L max

1≤d≤K
θ2p
n (eCB

2
+ Cp)

≤ nθ2p
n (eCB

2
+ Cp) ≤ c.

Here, the second inequality follows since every |p1,π` − p̃1,π` | depends on the `th

cluster only through its cardinality, the third inequality follows since L ≤ n and

K is a fixed absolute constant that only depends on α, and the last inequality

follows due to the choice θ2
n = h2α

n = cn−4α/(4α+1) and the value of p. This

completes the proof.
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Lemma 1 (Lemma 1, Wang et al. [2008]). For any fixed positive integer q,

there exist a B <∞ and a symmetric distribution G on [−B,B] such that G and

the standard normal distribution have the same first q moments, that is,

∫ B

−B
xjG(dx) =

∫ ∞

−∞
xjϕ(x)dx, j = 1, . . . , q.

Lemma 2 (Theorem 1.1, Devroye et al. [2018]). If µ ∈ Rd and Σ1 and Σ2

are positive definite d× d matrices, then

1

100
≤ TV(Nd(µ,Σ1),Nd(µ,Σ2))

min{1, ‖Σ−1
1 Σ2 − Id‖F }

≤ 3

2
.

For the following lemma, we first introduce some terminology regarding the

multinomial distribution. Let m,M be two positive integers, and the random

vector (f1, . . . , fM ) be the multinomial count with total count m and equal prob-

ability (1/M, 1/M, . . . , 1/M). Define ρ := m/M . For any positive integer r ≥ 2,

define λ := λr := limm→∞m
r/(r!M r−1). Following Kolchin et al. [1978] (Chapter

2, Equation (11)), we will call the domain of variation m,M →∞, in which

ρ→ 0, 0 < λr <∞

the left-hand r-domain. The following lemma characterizes the asymptotic be-

havior of the maximum frequency fmax defined as max1≤j≤M fj .

Lemma 3 (Theorem 1 of Section 2.6, Kolchin et al. [1978]). Suppose the

multinomial distribution with total count m and equal probability (1/M, . . . , 1/M)

is in the left-hand r-domain for some positive integer r ≥ 2 with limit λr, then it

holds that

P(fmax = r − 1)→ e−λr and P(fmax = r)→ 1− e−λr ,

i.e., the maximum frequency converges asymptotically to a two-point distribution.
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Supplement A: Supplement to “Optimal estimation of variance in

nonparametric regression with random design”

(). This supplement contains proofs of remaining results.
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Meyer, Y. (1990). Ondelettes et Opérateurs I: Ondelettes. Hermann, Paris.

Muller, H.-G. and Stadtmuller, U. (1987). Estimation of heteroscedasticity in regression analysis.

The Annals of Statistics, 15(2):610–625.

Müller, U. U., Schick, A., and Wefelmeyer, W. (2003). Estimating the error variance in non-

parametric regression by a covariate-matched U-statistic. Statistics: A Journal of Theoretical

and Applied Statistics, 37(3):179–188.

Munk, A., Bissantz, N., Wagner, T., and Freitag, G. (2005). On difference-based variance

estimation in nonparametric regression when the covariate is high dimensional. Journal of



40 Y. SHEN, C. GAO, D. WITTEN, AND F. HAN

the Royal Statistical Society: Series B (Statistical Methodology), 67(1):19–41.

Munk, A. and Ruymgaart, F. (2002). Minimax rates for estimating the variance and its

derivatives in non-parametric regression. Australian and New Zealand Journal of Statistics,

44(4):479–488.

Nussbaum, M. (1986). On nonparametric estimation of a regression function, being smooth on

a domain in Rk. Theory of Probability and its Applications, 31:118–125.

Rice, J. (1984). Bandwidth choice for nonparametric regression. The Annals of Statistics,

12(4):1215–1230.

Robins, J., Li, L., Tchetgen, E., and van der Vaart, A. (2008). Higher order influence functions

and minimax estimation of nonlinear functionals. In Probability and Statistics: Essays in

Honor of David A. Freedman, pages 335–421. Institute of Mathematical Statistics.

Robins, J., Tchetgen, E. T., Li, L., and van der Vaart, A. (2009). Semiparametric minimax

rates. Electronic Journal of Statistics, 3:1305–1321.

Ruppert, D., Sheather, S. J., and Wand, M. P. (1995). An effective bandwidth selector for local

least squares regression. Journal of the American Statistical Association, 90(432):1257–1270.

Ruppert, D., Wand, M. P., Holst, U., and Hösjer, O. (1997). Local polynomial variance-function

estimation. Technometrics, 39(3):262–273.

Spokoiny, V. (2002). Variance estimation for high-dimensional regression models. Journal of

Multivariate Analysis, 82(1):111–133.

Thompson, A., Kay, J., and Titterington, D. (1991). Noise estimation in signal restoration using

regularization. Biometrika, 78(3):475–488.

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer, New York.

Verzelen, N. and Gassiat, E. (2018). Adaptive estimation of high-dimensional signal-to-noise

ratios. Bernoulli, 24(4B):3683–3710.

Verzelen, N. and Villers, F. (2010). Goodness-of-fit tests for high-dimensional Gaussian linear

models. The Annals of Statistics, 38(2):704–752.

Von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to

the variance. The Annals of Mathematical Statistics, 12(4):367–395.

Von Neumann, J. (1942). A further remark concerning the distribution of the ratio of the

mean square successive difference to the variance. The Annals of Mathematical Statistics,

13(1):86–88.

Wang, L., Brown, L. D., Cai, T. T., and Levine, M. (2008). Effect of mean on variance function

estimation in nonparametric regression. The Annals of Statistics, 36(2):646–664.

Department of Statistics

University of Washington

Seattle, WA 98195

E-mail: ydshen@uw.edu

Department of Statistics

University of Chicago

Chicago, IL 60637

E-mail: chaogao@galton.uchicago.edu

Department of Statistics

University of Washington

Seattle, WA 98195

E-mail: dwitten@uw.edu

Department of Statistics

University of Washington

Seattle, WA 98195

E-mail: fanghan@uw.edu

mailto:ydshen@uw.edu
mailto:chaogao@galton.uchicago.edu
mailto:dwitten@uw.edu
mailto:fanghan@uw.edu

	1 Introduction
	2 Homoscedastic case
	2.1 Upper bound
	2.2 Lower bound

	3 Heteroscedastic case
	3.1 Upper bound
	3.2 Lower bound

	4 Discussion
	4.1 Multivariate nonparametric regression
	4.2 Nonparametric additive model
	4.2.1 Fixed design
	4.2.2 Random design

	4.3 Connection to quadratic functional estimation
	4.4 Connection to the linear model
	4.5 Adaptive estimation of constant variance

	5 Proof of Theorem 2
	Acknowledgement
	Supplementary Material
	References
	Author's addresses

